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Incorporating Temporary Coherent Scatterers
in Multi-Temporal InSAR Using Adaptive

Temporal Subsets
Fengming Hu , Jicang Wu, Ling Chang , and Ramon F. Hanssen , Senior Member, IEEE

Abstract— Multi-temporal interferometric synthetic aperture
radar (MT-InSAR) is used for many applications in earth
observation. Most MT-InSAR methods select scatterers with high
coherence throughout the entire time series. However, as time
series lengthen, inevitable changes in surface scattering lead
to decorrelation, which systematically decreases the number of
coherent scatterers. Here, we propose a novel method to detect
and process temporary coherent scatterers (TCS) by subsequently
analyzing the amplitude and the interferometric phase. Two
hypothesis tests are developed for amplitude analysis in order to
identify the moments of appearing and/or disappearing coherent
scatterers. Based on the amplitude analysis, the parameters
of interest are then estimated using the interferometric phase.
An optimized adaptive temporal subset approach is proposed to
improve the precision of the estimated parameters. If the scatter-
ers are not evenly distributed over the area, a secondary (support)
network is designed to improve the spatial point distribution.
The main advantage of this method is the reliable extraction of
a subset of time series without using any contextual information.
Experimental results show that the TCSs significantly increase
the number of observations for displacement monitoring and
improve the change detection capability in urban construction
areas.

Index Terms— Change detection, multi-temporal InSAR,
Rayleigh distribution, temporary coherent scatterer.

I. INTRODUCTION

D IFFERENTIAL interferometric synthetic aperture
radar (DInSAR) is able to monitor the displacements

of geo-objects with millimeter-level accuracy. However, this
accuracy is significantly reduced due to atmospheric delays
and decorrelation noise [1], [2]. To overcome this limitation,
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multi-temporal InSAR (MT-InSAR) has become the standard
approach to detect subtle deformations. There are three
types of methods for MT-InSAR. First, the Small BAseline
Subset (SBAS) method is used in geodetic applications
over wide scales [3]–[5]. This method requires groups of
contiguous scatterers to be coherent [6] over limited temporal
and spatial baseline ranges. Effectively, the process of multi-
looking is applied to improve the correlation at the expense
of a loss of resolution [7]. The second type of methods is
based on point (persistent) scatterers (PS) and/or distributed
scatterers (DS). PS-InSAR [8], [9] focuses on point or single
scatterers with high coherence during the whole acquired
time. The PS can be selected either by the normalized
amplitude dispersion (NAD) [9] or by the signal-to-clutter
ratio (SCR) [10]. This method overcomes the limitation of
decorrelation due to spatial and temporal baselines and works
well especially in urban areas, as lots of PS targets, related
to man-made objects, can be found there [11]–[13]. However,
it has limited applicability in rural areas. Compared to PS,
DS decorrelate temporally and typically span several pixels
where the amplitude is small but statistically homogeneous,
which is common in rural areas. The phase of DS is obtained
by using all combinations of interferograms [14], [15] to avoid
temporal decorrelation. Hybrid methods form the third type
of MT-InSAR approaches. Here, high-coherence scatterers are
selected based on other criteria, such as coherence [16], phase
analysis [17], [18], maximum likelihood estimation [19],
or eigenvalues of the coherence matrix [20], which include
not only PS but also high-quality DS.

In most methods, selected points are expected to maintain
high coherence over the entire time series. However, for longer
time series SAR data, pixels may exhibit PS behavior only
during parts of the time series, here referred to as temporary
coherent scatterers (TCS) [21]–[23]. In [21], an abrupt change
is detected using a Bayesian step detector considering a
Gaussian approximation for the amplitude. In [22], an analysis
of phase and amplitude is performed to detect TCS, and a
TCS start and stop time is estimated from the amplitude data,
using a genetic algorithm. In [23] and [24], TCS are selected
by assuming amplitude stability over consecutive SAR image
pairs and evaluated using a multi-master interferogram stack.
Detecting a significant change in the time series of a single
pixel is the main problem in selecting TCS. Compared to
the interferometric phase, the amplitude is considered to be
strongly related to the property of ground targets [25], [26].
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Detecting a temporal change in the amplitude time series
of a single pixel was performed using analysis of vari-
ance (ANOVA) in [27]. However, the hypothesis test of
ANOVA assumes a Gaussian distribution [28], while the
amplitude distribution may not be Gaussian. In fact, DS are
often assumed to follow a Rayleigh distribution [25] while PS
follow the Rice distribution [29]. The stability of the amplitude
can be expressed by the NAD, where a low NAD, typically less
than 0.25, is associated with a stable, strong scatterer. Selecting
only points with a low NAD over the entire time series results
in a spatially sparse data set with high quality, while increasing
the NAD results in a more spatially dense data set, albeit with
variable quality. Therefore, different strategies are required
depending on the quality of the selected points and the desired
point density. For this reason, Kampes [30] and van Leijen [31]
applied two consecutive networks (primary and secondary)
with NAD thresholds of 0.25 and 0.45, respectively, to first
detect potential high-quality points, followed by densification
to include more points. Similarly, Li et al. [32] showed that the
percentage of (phase) coherent points decreases rapidly with
increasing NAD, and points with NAD > 1 should be treated
as pure noise. However, for TCS, it is expected that the NADs
of the entire time span can be much larger than one. More
importantly, should TCS with a large NAD be erroneously
selected as PS candidates, parts of the interferometric phases
will be invalid, which will bias the estimated parameters. Here,
we present an optimal way for jointly modeling of TCS and
PS using both amplitude and interferometric phase time series.
First, we briefly introduce the statistical characteristics of the
amplitude time series of a single pixel and establish a change
detection algorithm using two hypothesis tests based on the
Rayleigh distribution. TCS are selected only for coherent
subsets of the time series, and step times are identified auto-
matically. Then, the process of MT-InSAR combining TCS and
PS is reviewed including arc solution, network construction,
parameter estimation, and precision assessment. In addition,
an adaptive temporal subset approach based on the length
of the time series and a secondary network is adapted to
the interferometric process. Finally, we apply our method
to real SAR data. Both single pixel change detection and
interferometric processing are compared with conventional
methods. This paper is organized as follows. We introduce
the amplitude process in selecting TCS in Section II followed
by the interferometric phase processing in Section III. Two
real data results are presented in Section IV, followed by the
conclusions in Section V.

II. AMPLITUDE ANALYSIS

A. Statistical Characteristics of Amplitude

The observation of every single pixel in an SAR image is
the summation of all elementary scatterers within a resolution
cell, which is defined as a complex Gaussian random variable
with variance σ 2 [1], [33]. The complex number Z is usually
expressed as

Z = A · e− jψ (1)

where A and ψ represent the amplitude and phase, respec-
tively, with a joint probability density function (PDF)

TABLE I

TAXONOMY OF CLASSES OF SCATTERERS BASED ON COHERENCE,
INCLUDING THEIR ACRONYMS, AMPLITUDE PDF’S,

AND EXPECTED NAD

defined as

f (Z) = 1

2πσ 2 exp

(
−Re(Z)2 + Im(Z)2

2σ 2

)
. (2)

Considering the property of the scatterers, it ranges from
point scatterers to DS [1]. A scatterer is considered to be
“coherent” to some degree, if the physical scattering mecha-
nism does not change significantly over a given time interval.
Based on the coherence, we distinguish three classes: 1) inco-
herent scatterers, where the coherence drops significantly
within the repeat-interval of the satellite; 2) continuously
(persistently) coherent scatterers, i.e., coherent over the entire
time interval; and 3) TCS, where coherence is only occurring
over a subset of the entire time series, see Table I. According
to this taxonomy, the associated amplitude time series can be
divided into five classes, as shown in Table I. The PDF of the
amplitude holds information of the class of scatterers we are
dealing with.

For incoherent DS (IDS), we assume that the amplitude A
follows a Rayleigh distribution [25], which is a special case
of the Rice distribution [34]. This follows from the joint PDF
in (2), see [1], with a PDF defined as

f (A|σ) = A

σ 2 e− A2

2σ2 , A ≥ 0 (3)

where σ 2 is the variance of the signal, here estimated per
point over time. Its cumulative distribution function (CDF) is
given as

F(A|σ) = 1 − e− A2

2σ2 , A ≥ 0. (4)

If Ai , with i ∈ [1,m] are m independent observations
from a Rayleigh distribution, the unbiased estimator of
σ 2 is [35], [36]

σ̂ 2 = 1

2m

m∑
i=1

A2
i . (5)

The amplitude of continuously coherent point scatter-
ers (CCPS) follows a Rice distribution [29] with a high
signal-to-noise ratio (SNR) while that of continuously coherent
DS (CCDS) follows a Rice distribution with low SNR. In
the following discussion, there is no need to distinguish point
scatterers or DS. For this reason, we will refer to continuously
coherent scatterers (CCS) and TCS from now on, see Table I.
However, as the treatment of CCS is stated in conventional
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PS-InSAR processing, this is not further considered here.
We assume that TCS are characterized by a change from Rice
to Rayleigh or vice versa. The basic rationale underlying our
assumption is that a coherent DS will show less variability
in its amplitude (over time) than an IDS. This follows from
the assumption that an IDS can only be incoherent if it
experiences changes over time. This difference in amplitude
behavior for both categories of DS should, therefore, result
in different distributions. The Rice distribution is a generic
distribution, with two extremes. On the one hand, if the
amplitude is relatively high and stable, this is expressed in
a high noncentrality parameter, which means that the Rice
distribution will be more Gaussian-like. For example, it will
be less likely that (during the time series) amplitudes can
occur which are either much higher or much lower than the
mean. On the other hand, if the amplitude is varying more
(as a consequence of temporal decorrelation), which means
that there is a higher likelihood for both higher as well as
lower amplitudes, the Rice distribution is more Rayleigh-like.
This follows from the fact that the Rayleigh distribution has a
longer “tail” for higher amplitudes, while the amplitudes lower
than the mean are less unlikely.

B. TCS Candidates

Considering the NADs of different scatterers, CCS have the
smallest values, IDS medium, while the TCS have the largest
values. Therefore, it is more likely to misclassify an IDS as
being a TCS. Moreover, the number of IDS is much larger
than that of other scatterers. Therefore, removing most IDS
from the TCS candidates will reduce the misclassifications
and improve the efficiency.

We perform a hypothesis test (here referred to as Rayleigh
test) to test whether m observations stem from the same
Rayleigh distribution [35].

First, we estimate the variance σ 2 using (5). Then,
we reorder the observations (amplitudes), which have the
range (0,∞), in increasing order and bin them into B bins
(0, x1), (x1, x2), · · · , (xB−1,∞) with varying bin-widths, but
constant probability. Siddiqui [36] recommends B to be at
least 5. We compute the upper boundary, xi , of the i th bin
using (4) under the condition that the expected number of
observations in each bin is equal, i.e., m/B . Adapting (4) to

P(0 ≤ x < xi ) = 1 − e
− x2

i
2σ2 = i

B
, i = 1, . . . , B − 1 (6)

we invert this to obtain the upper boundary xi

xi =
√

2σ 2ln

(
B

B − i

)
, i = 1, . . . , B − 1. (7)

Supposing that the total number of observations in the i th bin
is fi , the test statistic is defined as [36]

χ2
0 =

B∑
i=1

( fi − m/B)2

m/B
(8)

where χ2
0 follows a χ2 distribution with B − 2 degrees of

freedom [37]. Given the significance level α, the critical value

χ2
α is obtained. If χ2

0 < χ2
α , we sustain the hypothesis that

the m observations are from the same distribution, which
means the pixel did not change during the acquisition time;
hence, it is not a temporary coherent scatterer. Note that
due to speckle noise in the single look image, increasing the
significance level α will lead to more detected changes, hence
more potential TCS’s. This initial result will be refined in the
following steps.

C. Step-Change Location Estimation (Heaviside Function)

Determining for which period a point is coherent requires
locating the time of a stepwise change automatically. We pro-
pose an iterative algorithm under the assumption that the two
subsets of amplitude time series on each side of the step are
from different distributions if a change happens to the ground
targets, and this step is applied on the TCS candidates obtained
in Section II-B. This problem is tackled via another hypothesis
test: testing whether the two independent subsets are from the
same Rayleigh distribution. First, we consider the single-step
case. If this step is located between the pth image and the
p+1th image, the whole time series is divided into two groups,
A1, . . . , A p and A p+1, . . . , Am . To test the hypothesis that
σ 2

1 = σ 2
2 , the test statistic is defined as [36]

Fp =
∑p

i=1 A2
i

2 p

/∑m
i=p+1 A2

i

2(m − p)
= σ̂ 2

1

σ̂ 2
2

∼ F2p,2(m−p),0 (9)

with a central F-distribution with 2 p and 2m − 2 p degrees
of freedom, where σ̂ 2

1 and σ̂ 2
2 denote the unbiased estimated

variances of the two subsets. It is worth noting that the F-value
is always larger than one. The ratio and degrees of freedom
are inverted when σ̂ 2

1 < σ̂ 2
2 . Given the significance level α,

the critical value Fα is obtained. If Fp > Fα , we reject the
hypothesis that the two subsets are from the same distribution,
which means that the step is located after the pth image. At
this time, decreasing the significance level α will reduce the
number of false detected TCS. This way, the location of the
step is given by

p̂ = arg maxp=1:m−1

(∑p
i=1 A2

i

2 p

/∑m
i=p+1 A2

i

2(m − p)

)
. (10)

If more than one step exists, this process can be repeated
several times until no step exists in the remaining subsets of
the time series. Based on the above two hypothesis tests (8)
and (9), the whole approach of identifying TCS is established,
which is shown in Fig. 1. This yields a time series which is
divided into n + 1 subsets with n step times. The MT-InSAR
process requires enough observations in the time domain,
as the number of images must be larger than a particular
threshold [9]. The IDS among the TCS candidates will have
Fp values smaller than Fα and will be removed in this
process. In addition, CCS are removed based on the PS-InSAR
result.

This approach allows us to distinguish three possible
changes: 1) “appearing” TCS: the time series is coherent
from the last step time to the end; 2) “disappearing” TCS:
the time series is coherent from the first acquisition up to
the first step time; and 3) “visiting” TCS: the time series is
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Fig. 1. Flowchart of iteratively identifying TCS. This procedure is part of
the total flowchart in Fig. 2.

coherent between two adjacent step times (at least two step
times exist in this case).

III. PHASE ANALYSIS

A. Arc Solution

In MT-InSAR, the basic observations are the differential
interferometric phases of the arcs. Considering m −1 differen-
tial interferograms from m SAR images, the phase difference
between two points i and j of a single arc in the kth
interferogram can be expressed as follows:

�φk
i, j = Ci, j − 4π

λ

Bk⊥,i
Ri sin θi

�hi, j

−4π

λ
tk�vi, j + 2πnk

i, j + ek
i, j (11)

where �hi, j and �vi, j denote the residual height difference
and the velocity difference between the two points, respec-
tively; nk

i, j ∈ Z denotes the integer phase ambiguity; tk and
Bk⊥,i denote the temporal baseline and perpendicular baseline,
respectively; Ri is the slant range, θi is the local incidence

angle, and λ is the radar wavelength; Ci, j denotes the phase
constant that corresponds to the atmospheric delay difference
in the master image, and ek

i, j denotes the random error of the
phase, including the atmospheric delay difference in the slave
image. The integer least-squares (ILS) model of PS can be
defined as follows [38]:

E

⎧⎪⎨
⎪⎩
⎡
⎢⎣
�φ1

i, j
...

�φm−1
i, j

⎤
⎥⎦
⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

2π 0 0

0
. . . 0

0 0 2π

⎤
⎥⎦
⎡
⎢⎣

n1
i, j
...

nm−1
i, j

⎤
⎥⎦

−4π

λ

⎡
⎢⎢⎢⎢⎢⎣

B1⊥,i
Ri sin θi

t1

...
...

Bm−1
⊥,i

Ri sin θi
tm−1

⎤
⎥⎥⎥⎥⎥⎦
[
�hi, j

�vi, j

]
+ Ci, j (12)

where E{·} denotes the expectation. Arc solutions are
obtained using (12), and details of the main process can be
found in [39]. In our approach, the variance–covariance (VC)
matrix used to weight the observations is determined by
variance component estimation (VCE). Phase unwrapping for
arcs is implemented using the Lambda method [38], [40],
and the validation of the ambiguity resolution is tested by
the ratio test [41]. Then, parameters can be estimated using
a least-squares approach, satisfying the acceptance condition.
Then the model for appearing TCS, disappearing TCS, and
visiting TCS is defined as

E

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
�φtstart

i, j
...

�φ
tstop
i, j

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ =

⎡
⎢⎣

2π 0 0

0
. . . 0

0 0 2π

⎤
⎥⎦
⎡
⎢⎢⎣

ntstart
i, j
...

n
tstop
i, j

⎤
⎥⎥⎦

−4π

λ

⎡
⎢⎢⎢⎢⎢⎢⎣

Btstart⊥,i
Ri sin θi

tstart

...
...

B
tstop
⊥,i

Ri sin θi
tstop

⎤
⎥⎥⎥⎥⎥⎥⎦
[
�hi, j

�vi, j

]
+ Ci, j (13)

where tstart and tstop denote the locations of the step times as
discussed in Section II-C. For appearing TCS, tstop is m − 1,
and tstart is the last step time. For disappearing TCS, tstop is
the first step time, and tstart is 1. For visiting TCS, tstart and
tstop are two adjacent step times.

B. Network Construction

As TCS and PS time series have different lengths, it is not
possible to process them together. In addition, PS selected
by different thresholds will also have a different noise level.
Therefore, an agile processing method is required, and points
with different qualities should be processed with different
strategies. Fig. 2 shows the flowchart of processing points in
different groups. During our processing, points are divided into
three groups: 1) PS with low noise; 2) PS with medium noise;
and 3) TCS. These three groups are processed separately.

First, PS points with low noise are selected with a
strict threshold to provide high precision of the final result.
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Fig. 2. Flowchart of processing points in different groups.

For example, 0.25 is a recommended threshold of the NAD to
select PS [9]. In this group, VCE is applied to determine the
weight matrix, and parameters for the orbit error are estimated
if necessary. Then, the reference network is established using
two steps. An initial network is generated by a Delaunay
network to link all points. After removing poor arcs, the main
network which contains most points is identified by the depth-
first search algorithm [42]. Every isolated point is connected
to its nearest neighbors in the main network, and the number
of nearest points is increased sequentially. In addition, only
points that are connected to other points more than two times
are accepted in the reference network.

Fig. 3. Example of the adaptive temporal subsets on an arbitrary subset of
TCS. Every point has its own coherence interval.

Second, points with medium noise are selected by increasing
the NAD threshold. A second-order network is used to link
these new points to the reference network. This process is
similar to the second step in the reference network. New
arcs are generated by connecting every point to its nearest
neighbors in the reference network and these new arcs are
solved using the same way. During this process, the weight
matrix and the parameters of the orbit error, as determined by
the reference network, are used again.

Third, TCS and their step times are obtained by amplitude
analysis. In the third group, the three types of TCS (appearing,
disappearing, and visiting TCS) are processed using the same
way separately. First, TCS are divided into several levels of
temporal subsets according to the subset length. Fig. 3 illus-
trates three levels of adaptive temporal subsets on 45 randomly
selected TCS including 15 appearing TCS, 15 disappearing
TCS, and 15 visiting TCS. Then, every TCS is connected to
its nearest PS to generate the second-order network at each
level. Unfortunately, if PS are unevenly distributed over the
area, it is difficult to find a sufficient number of arcs between
TCS and PS. Therefore, a secondary network is adopted. The
first network is used to link some of the TCS to the PS network
and the secondary network is used to link remaining TCS to
the previously linked TCS for each type of TCS separately.
Here, we always connect “new” appearing TCS to previously
linked appearing TCS since they always span a common time
interval, cf. Fig. 3. This also holds for disappearing TCS. For
visiting TCS, we calculate the length of the common time
interval when connecting “new” visiting TCS to previously
linked visiting TCS. If the length is smaller than a given
threshold (see Fig. 2), this arc is dropped from the processing.

C. Parameter Estimation and Precision

In the reference network, a velocity map can be obtained
for all n1 points by integrating all arc solutions

v1 = (BT
1 Q−1

1 B1
)+

BT
1 Q−1

1 �v1 (14)
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where B1 denotes the design matrix related to the network;
�v1 denotes the estimated differential deformation rate of all
arcs; (·)+ denotes the pseudoinverse and is solved by a faster
algorithm [43]. Q−1

1 is the weight matrix related to the quality
of the arc solutions which is defined as

Q−1
1 = diag

(
σ−2
�v1
, . . . , σ−2

�vn

)
(15)

where σ 2
�v denotes the variance of the estimated deformation

rate, and n denotes the number of accepted arcs. The term
diag(·) denotes the diagonal elements of the matrix. The
precision of all points can be estimated as follows:

D{v1} = σ 2
1

(
BT

1 Q−1
1 B1

)+(
BT

1 Q−1
1 B1

)(
BT

1 Q−1
1 B1

)+
(16)

where σ 2
1 denotes the variance of unit weight. No reference

point is specified during the estimation.
Based on the established reference network, PS points

with medium noise as well as TCS can be included in
the second-order network. The velocity map for n2 new
points can be obtained by integrating new arc solutions
jointly with points in the reference (first-order) network.
The estimated parameters of the points in the reference
network do not change in the subsequent steps, and the
solution of the second-order network is formulated as
follows:[

v2
k

]
=
[

BT
2 Q−1

2 B2 GT

G 0

]−1 [
BT

2 Q−1
2 �v2
v1

]
(17)

where B2 denotes the design matrix related to the net-
work; �v2 denotes the estimated differential deformation
rate of all arcs; Q−1

2 is the weight matrix related to the
quality of the arc solution which is defined in the same
way as Q−1

1 ; and k is a Lagrange coefficient vector, with-
out physical meaning which we do not use during the
process.

The constraints matrix G is defined as

G v2 = v1. (18)

The first n1 columns of matrix G are a unit matrix with
dimension n1 × n1, while the remaining n2 columns are a
zeros matrix with dimension n1 × n2.

The precision of points in the second-order network can be
formulated as follows:

D{v2} = σ 2
2

(
BT

22 Q−1
2 B22

)−1
BT

22 Q−1
2 Ql

·Q−1
2 B22

(
BT

22 Q−1
2 B22

)−1 (19)

where Ql is defined as follows:

Ql = Q2 + B21
(

Dv1/σ
2
1

)
BT

21 (20)

where B21 and B22 are obtained by splitting the design
matrix B2

B2 = [B21|B22]. (21)

Fig. 4. Amplitude time series and F-values of three pixels. Results of
three time series obtained by (a), (c), and (e) our method and (b), (d), and
(f) ANOVA. Black dashed line: threshold F-value.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Change Detection of a Single Pixel

Real SAR data was used to test and demonstrate the change
detection algorithm with amplitude time series of single pixels.
All pixels are classified into three groups, based on their
NAD. The first group, with NAD<0.25, is assumed to contain
high-quality PS points, which exhibit a homogeneous behavior
over time. The second group, with 0.25 <NAD< 1, is assumed
to contain PS points with more noise, as well as DS points.
The third group, with NAD> 1, may hold points which are
either incoherent or exhibit a discontinuity in their temporal
behavior (TCS).

Three amplitude time series from the different groups were
chosen to validate our method, with NAD values of 1.04, 0.21,
and 0.67, respectively. Setting the level of significance α to
0.02, both our method and ANOVA were applied to the three
time series, see Fig. 4.

Fig. 4(a), (c), and (e) are obtained by our method. Consec-
utively testing the step time for each image, we obtain the
corresponding F-values using (9). Different from ANOVA,
the threshold of each F-value varies, so we set an F-value
which is smaller than the critical value Fα to zero. The step
time is then located at a maximum F-value. Here, we only
consider a single step time. The step time of the first time
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Fig. 5. Amplitude images of the first time series from the 7th to the 18th
image. The first row corresponds to the amplitude images from the 7th to
the 12th, while the second row corresponds to the amplitude images from the
13th to the 18th. Red cross: location of the pixel.

Fig. 6. NADs obtained by different positions of step times using the first
time series.

series is at the 12th image, while there are no changes
in the second and third time series. Fig. 4(b), (d), and (f)
are obtained by ANOVA. The threshold for the F-value is
represented as a black dashed line, and the step time is located
at the maximum F-value, as long as it is also greater than the
threshold. Therefore, the step time of the first time series is
after the 11th image and after the 18th and the 17th image for
the second and third time series, respectively. Then, we show
the amplitude images of the first time series from the 7th
to the 18th image in Fig. 5. The point changed from the 12th
image, and there is no signal after the 12th image. Therefore,
the step time is located at the 12th image. Furthermore, Fig. 6
shows the NADs obtained by different positions of step times
using the first time series. Comparing the positions of the step
times obtained by the two methods, the results by our method
are more consistent with the actual situation.

Although the algorithm indicates that there is no change
(since 0.25 <NAD< 1 for the third time series and NAD<
0.25 for the second time series), a visual inspection of the point
confirms that the amplitude is very stable, and the phase time
series is steady state. Therefore, the ANOVA method results
in false alarms of changes.

On the other hand, considering the computational burden
of single pixel change detection, the time complexity of the
two algorithms is compared. Supposing that only one step
time exists, the time complexity of both methods is O(m).
However, if there were s step times, the time complexity of
ANOVA is O(ms) while that of our method is O(m log m),
which is much faster.

B. Case Study I: Delft

The first demonstration of the amplitude-augmented
interferometric processing was implemented using 40

Fig. 7. Distributions of the temporal and spatial baselines. Red dot: master
image. Blue dots: slave images.

Fig. 8. Velocity on PSs in Delft, The Netherlands.

Sentinel-1A (S1A) images between April 2016 and Febru-
ary 2018 in Delft, The Netherlands. The data set covered
a 10 × 10 km area and was registered using GMT5SAR
software [44]. The slant range and azimuth pixel spacings are
2.3 and 14.7 m, respectively.

Most areas did not change during the evaluated time slot,
and PS points were distributed with high density throughout
the area. External digital elevation models (DEMs) were not
used in our process, and only a flattened phase correction was
applied during data preprocessing. During the interferometric
process, PS points in the first and second groups were
selected using a NAD with thresholds of 0.25 and 0.4. Higher
values could be chosen as the second threshold, but the noise
would increase accordingly. Fig. 7 shows the distribution of
the spatial and temporal baselines. The maximum temporal
baseline was 200 days, and the maximum spatial baseline
was less than 150 m.

PS points in the first and second groups were solved and
the final velocity map contained 50 294 points, which is shown
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Fig. 9. Distribution of step times on appearing TCS and disappearing TCS.

Fig. 10. Distribution of NADs on TCS obtained from the subset and the
entire time series.

in Fig. 8. The subsidence rates range from −15 to +10 mm/a,
and PS points are evenly distributed over the whole area. Then,
the iterative change detection algorithm described in Section II
was applied where the significance levels of the two hypothesis
tests were set to 0.5 and 0.02. The initial result is extremely
noisy; hence, interferometric processing is required to refine
the result. The distribution of the appearing and disappearing
TCS with the corresponding step times in the whole area
are shown in Fig. 9. Based on the step times, the NADs of
the TCS can be recalculated using the subsets of the time
series. Fig. 10 shows the distribution of the NADs on TCS
by the entire and subset time series. If the threshold was set
to 0.4, the number of available points increased from 6283 to
23 273. Furthermore, the longer the length of time series is,
the higher the precision of the estimated parameters that can

Fig. 11. Amplitude time series with adaptive temporal sampling on four TCS.
Red lines: coherent interval. Blue lines: locations of step times. (a) Appearing
TCS. (b) Disappearing TCS. (c) Visiting TCS with two step-times. (d) Visiting
TCS with four step-times.

Fig. 12. Velocity on TCS in Delft. White rectangles: selected areas for
details.

be obtained in the MT-InSAR algorithm. A temporal threshold
on the subset length is set to obtain reliable solutions of TCS.
In this case, the thresholds cover 70%, 50%, and 30% of the
whole time series, which corresponds to the length of 28, 20,
and 12, respectively.

Four pixels are selected to show the amplitude time series
with adaptive temporal subsets. Fig. 11(a) and (b) are appear-
ing and disappearing TCS. Fig. 11(c) and (d) are visiting
TCS. The coherent interval is determined by interferomet-
ric processing. Fig. 12 shows the velocity of the TCS.
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Fig. 13. Magnified views of selected area. First row: velocity on PS.
Second row: velocity on TCS. Third and fourth rows: Google Earth images.
(a), (d), (g), and (j) Region A. (b), (e), (h), and (k) Region B. (c), (f), (i), and
(l) Region C. Colors are as in Fig. 12.

The number of accepted appearing TCS is 6741, that of the
disappearing TCS is 7449 and that of the visiting TCS is
2188. We also estimate the standard deviations (SDs) of linear
deformation velocity for all TCS, which are used to evaluate
the reliability of the parameters.

Three small regions (A, B, and C) are selected to show
more details, which are marked as three white rectangles
in Fig. 12. There are new buildings in the three selected areas,
and magnified views of these areas are shown in Fig. 13.
According to Fig. 13(a)–(f), results of PS do not include any
valid points in these areas, while results of TCS highlights
these changes. Fig. 13(g)–(l) show the construction of the
new buildings in the selected area from the Google Earth
comparison, which shows good agreement with the result of
TCS. It is obvious to find the changes caused by construction.
In addition, Fig. 14 shows the amplitude time series of several
TCS in selected region B. All points contain a jump at similar

Fig. 14. Amplitude time series of the TCS in the area C.

Fig. 15. Distribution of the temporal and spatial baselines. Red dot: master
image. Blue dots: slave images.

times and their step times are at the 9th, 10th, and 11th image,
which means this construction is most likely to occur between
January 16, 2017 and February 9, 2017.

C. Case Study II: Shanghai Hongqiao Airport

The second demonstration of the amplitude-augmented
interferometric processing uses 37 TerraSAR-X (TSX) images
(March 2009–October 2012). The data set covered a 3×6 km
area of Shanghai Hongqiao International Airport, during the
time when the T2-terminal was built. The data set was
coregistered using the GAMMA software. The slant range and
azimuth pixel spacing are 0.91 and 1.97 m, respectively.

The thresholds and steps conducted in this case study
were identical to the ones in the Delft study area. The main
difference between the two cases is the distribution of the
points. Points in the Delft case are distributed with high
density in the entire area, while the points in the Shanghai
case are distributed with a high density only in some areas.
Fig. 15 shows the distribution of the spatial and temporal
baselines. The maximum temporal baseline was 850 days, and
the maximum spatial baseline was 400 m.

The final velocity map of PS contains 40 934 points with
subsidence rates ranging between −25 and +15 mm/a, see
Fig. 16. PS points are only detected in the north and east areas
due to the construction of the airport during the entire (100%)
time range. Valid PS points are extremely sparse, therefore,
it is difficult to estimate the deformation of the entire area
based on this result. If we plot appearing, disappearing, and
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Fig. 16. Velocity on PS in Shanghai HongQiao Airport.

Fig. 17. Velocity on TCS in Shanghai HongQiao Airport, visualized under
the assumption that the velocity of each point is constant over the entire time
range.

visiting TCS in this area, we obtain Fig. 17, which contains
94 519 points. Note that this is double the amount of PS, and
therefore the inclusion of TCS to the PS yields an increase

Fig. 18. Change detection in the construction area of Shanghai HongQiao
Airport. (Left) Appearance map. (Right) Disappearance map.

TABLE II

ACCEPTED NUMBER OF APPEARING TCS WITH DIFFERENT STRATEGIES

of 200% in the number of valuable points. Moreover, note that
the visualization of these points in a single velocity figure is
suboptimal, as points which are coherent only over a subset of
time may exhibit a different velocity compared to the CCPS
points.

Comparison with the PS velocity map, cf. Fig. 16, shows
buildings and constructions that were not detected using the
full time series.

In addition to the TCS velocity map, the results of the
amplitude-based change detection approach show the dates
of appearance and disappearance of structures, see Fig. 18.
From the appearance map in Fig. 18 (left), the T2-terminal
including its surrounding facilities and new roads around the
airport were completed later than March 2011. According to
the disappearance map, Fig. 18 (right), some structures on the
west of the airport were removed between December 2009 and
August 2010. The homogeneity in the appearance and disap-
pearance dates can be used as a reliability metric of the results.

D. Adaptive Temporal Subsets and Secondary Network

Four results considering the adaptive temporal subset
approach and secondary network were obtained, and only
appearing TCS were used to perform a comparison. Table II
shows the number of appearing TCS with different strategies.
Fig. 19 shows the velocity of appearing TCS, where the
number of appearing TCS is 62 820.

First, we used the three levels of temporal subsets, but did
not apply the secondary network. The velocity of appearing
TCS is shown in Fig. 20. The density of TCS is lower,
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Fig. 19. Velocity of appearing TCS at HongQiao Airport with a three-level
(70%/50%/30%) process and a secondary network.

Fig. 20. Velocity of appearing TCS at HongQiao Airport with a three-level
(70%/50%/30%) process but without the secondary network.

and the total number of accepted TCS is much lower,
i.e., 47 119 points. Three small regions (A, B, and C) were
selected to show more details, which were marked as three

Fig. 21. Magnified views of selected area. First row: velocity of appearing
TCS with a secondary network. Second row: velocity of appearing TCS
without a secondary network. (a) and (d) Region A. (b) and (e) Region B. (c)
and (f) Region C. Colors are as in Fig. 19.

white rectangles in Figs. 19 and 20. According to Fig. 21, more
TCS are accepted with the help of the secondary network,
which shows details of the subsidence.

Second, the temporal subset approach was limited to only
one level, i.e., 30% of the entire time series. However, this
time, the secondary network was applied. Now, the number of
accepted TCS is 63 233, which contains a similar point density

The third test was applied with a one-level process (30%
of the entire time range), but without the secondary network.
The number of accepted TCS is 42 672, and the point density
over the runways is lower again, From the comparison, both
the one-level (30%) and three-level (70%, 50%, and 30%)
processes show a relatively high point density, and the sec-
ondary network appears to be necessary if the PS are not
evenly distributed over the whole area.

The SDs of the appearing TCS obtained by different strate-
gies in the Shanghai case study have been compared. The
first comparison is the SDs of appearing TCS obtained by
three-level and one-level with the secondary network, which
is shown in Fig. 22. The SDs of points obtained by the
three-level process are smaller than those of points obtained
by the one-level process. The quality of points with a longer
time series is better than that of points with shorter time series,
so it is reasonable to process points with different temporal
support separately. The second comparison concerns the SDs
of appearing TCS obtained by the three-levels approach with
and without the secondary network, which is shown in Fig. 23.
Although the number of points in these two groups is different,
the SDs of the appearing TCS are similar. Through the above
analysis considering the number of accepted TCS and their
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Fig. 22. Comparison of SDs on TCS obtained by the three-level
(70%/50%/30%) and the one-level (30%) processing.

Fig. 23. Comparison of SDs on TCS obtained by the three-level
(70%/50%/30%) process with and without the secondary network.

SDs, the process of the secondary network appears to be useful
to include more potential TCS, and the adaptive temporal
subset approach is helpful to evaluate the quality of TCS
properly.

V. CONCLUSION

A new method for processing TCS is proposed based on
amplitude change detection. Amplitude time series can be used
to select potential TCS and locate the step time automatically.
Assuming a Rayleigh distribution, two hypothesis tests are
introduced to conduct single pixel change detection. The inter-
ferometric phase is used to refine the initial result and estimate
the parameters of the TCS. Only TCS which have enough
arcs connected to the reference network are accepted, which
separates the pure noise and true TCS from the candidates.

In addition, during the interferometric processing of the
TCS, an adaptive temporal subset approach is established,
considering the length of the time series, to improve the
precision of the estimates. A secondary network is used to
include as many points as possible. Both options improve
the density and precision of the final points especially for
a spatially uneven distribution of points over the area. Two
cases with a different distribution of points using S1A data

in Delft and TSX data in Shanghai Hongqiao International
Airport were conducted. Not only does the velocity map of the
TCS have a greater point density and show the deformation
characteristics of the area, but it also highlights the changes
in the construction area accurately.
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