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Abstract— Wildfires are one of the most destructive disasters
on the planet. They also significantly impact the land surface.
Satellite data have been widely used to detect the outbreak and
monitor the expansion of fire incidents for damage assessment
and disaster management. Polar-orbiting satellite data have been
used for several decades but data from geostationary satellites,
which can provide observations with a high temporal resolution,
have received much less attention. This paper utilizes data from
FengYun-2G, a Chinese geostationary satellite, to detect wildfires
in two selected research regions in January 2016. The detection
algorithm systemizes image-based analysis to filter out obvious
nonfire pixels and temporal analysis to confirm the true detec-
tions. Fire detection is based on comparisons between predicted
and observed values. The results show that the proposed method
has some advantages compared with the use of polar-orbiting
satellite data, including early detection and continuous observa-
tion. The validation work is conducted based on the collection
6.1 Global Monthly Fire Location Product generated from fire
detections by Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors. The average accuracy within the target time
is 56%, while the omission error rate is over 78%. In detail, the
algorithm has a lower omission error rate in Australia while it
fails in detecting most of the fire pixels in India. The dominance of
small fire incidents, as well as low spatial resolution greatly limit
the detection ability. Many small fires were beyond the ability of
Stretched Visible and Infrared Spin Scan Radiometer (S-VISSR)
data when no significant fire characteristics could be captured.
Future development of the algorithm will focus on improving the
results by enhancing the adaption to different regions, as well
as, including multisource data sets.

Index Terms— Active fire detection algorithm, FengYun-2G,
geostationary satellite data.

I. INTRODUCTION

W ILDFIRES have heavily influenced both natural and
artificial environments [1]–[4]. The biomass burning

caused by wildfires is one of the major factors that cause
changes in land surfaces [5]. Some researchers have estimated
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that the total annual area burned globally is as high as 6×106
ha [6].

The detection and monitoring of wildfires have always been
challenging. Satellites carrying instruments with mid-infrared
and thermal infrared channels can provide researchers and
decision-makers with a general view of fires within short time
periods. Therefore, analyzing the relevant satellite data has
become an important problem that needs to be solved.

Research in this field began when Matson and Dozier [7]
used data from the NOAA Advanced Very High-Resolution
Radiometer (AVHRR) to detect active fires. In the following
decades, numerous algorithms and fire products were gen-
erated. Dozier [8] used AVHRR data to build a model that
revealed the relationship between a fire pixel and its internal
subpixels. This model became the theoretical basis for further
fire-detection work. Flannigan and Vonderhaar [9] applied
the threshold method, while Lee and Tag [10] developed the
contextual method for the detection of active burning pixels.
Giglio et al. [11] designed an enhanced contextual algorithm,
which combined the absolute threshold, the contextual method,
and false alarm elimination and was based on Moderate
Resolution Imaging Spectroradiometer (MODIS) data. The
ideas behind the enhanced contextual algorithm have proved
to be effective in various environments and for many different
types of data. Much of the subsequent research that has been
carried out has been based on this algorithm. Giglio et al. [12]
upgraded the algorithm to version 6, which was able to
detect fires in water areas, while Csiszar et al. [13] and
Schroeder et al. [14] applied it to the Visible Infrared Imaging
Radiometer Suite (VIIRS). Lin et al. [15] achieved improved
results by applying the contextual algorithm to Visible and
Infra-Red Radiometer (VIRR) from FengYun-3C, a Chinese
meteorological polar-orbiting satellite. In addition, much other
research has been done to improve the performance of active
fire detection algorithms using different data sets [16]–[25].

While geostationary satellites can provide users with high-
temporal resolution images, which is very important in detect-
ing rapid changes, such as wildfire incidents, the low spatial
resolution and lack of appropriate algorithms has hindered the
application of these data [26]–[35]. One of the earliest studies
that attempted to examine the ability of geostationary satellites
to detect biomass burning was carried out by Prins and
Menzel [36] using Geostationary Operational Environmental
Satellite (GOES) data. Roberts and Wooster [37], [38] and
Roberts et al. [39] have been doing continuous research
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TABLE I

S-VISSR INSTRUMENT CHANNELS

on fire pixel detection using the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) and have achieved satisfactory
results. Based on the achievements of earlier research, this
study uses data from one of the Chinese geostationary satel-
lites, FengYun-2G. Spatial analysis is included, and full use
of the advantages of the high temporal resolution is made to
detect and monitor active fires.

II. DATA SETS

The FengYun II (FY-2) meteorological satellites are the first
generation of geostationary meteorological satellites developed
by China independently and are designed to be complementary
with the polar-orbiting meteorological satellites of the FY-1
and FY-3 series. The first geostationary meteorological satellite
FY-2A was launched on June 10, 1997. FY-2G is the 5th
operational satellite and the 2nd satellite in batch 3 of the FY-2
series. It is designed to obtain daytime visible cloud images,
day and night infrared cloud and water vapor distribution
maps, and to be a stable platform for collecting meteorolog-
ical, hydrological, and marine data for domestic and foreign
research. It was successfully launched on December 31, 2014,
and is positioned at 105◦ E above the equator. Observation and
data acquisition services began on June 3, 2015 [40]. Due to
the position of FengYun-2G, it generally provides the imagery
of East Asia, South Asia, Central Asia, and Oceania and
provides data once every hour. Four extra images are acquired
and offered at 5:30, 11:30, 17:30, and 23:30. The latest data
sets have improved the temporal resolution to half an hour,
which means users can be provided with 48 images per day.
In this paper, to retain the same frequency of observations,
the four extra images are abandoned.

FengYun-2G carries the Stretched Visible and Infrared Spin
Scan Radiometer (S-VISSR), which contains five channels
from the visible to the thermal infrared region. Details of these
channels are shown below in Table I. The visible channel pro-
vides images at two different spatial resolutions. The 1.25-km
resolution images (single band) are stored separately, while the
5-km resolution images are stored together with the images
from the other channels. Channels 1, 4, and 5 were used in

TABLE II

INTRODUCTION OF CLOUD DETECTION MASK

Fig. 1. Example of FY-2G S-VISSR mid-infrared channel values, cloud clas-
sification, and MODIS fire product results at 2:00 A.M. UTC on January 19,
2016.

the algorithms. The channels are remarked as “TIR,” “MIR,”
and “VIS,” which represent thermal infrared, mid-infrared and
visible channel, respectively. Besides, cloud classification has
been stored in S-VISSR L1 data as well. Although the cloud
masks are valid and effective, the results from cloud masks
were too vague for algorithms to classify the cloud pixels
accurately, which will increase the difficulty in selecting valid
pixels in the following steps. As Fig. 1 shows, the CLD mask
can portray the cloud pixels clearly comparing with MODIS
result (MOD14A1). Nevertheless, more pixels are classified
into cloud-affected pixels, namely, “Cloud Type II” in Table II.
Excluding these pixels without distinction may cause obvious
omission errors. Although the cloud classification was not
utilized in this paper, the land and sea mask could be generated
as a derivative by adding up a long series of CLD mask data.

Before the detection progress began, preprocessing of the
data was required. The data was stored in S-VISSR L1 files in
the form of discrete digital numbers (1–1024 for bands 1–4;
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Fig. 2. Flowchart of the algorithm developed in this study. The algorithm
generates binary classification results. (The AF within the boxes is the
abbreviation for “active fire.”)

1–64 for band 5) with no physical meanings. By checking
look-up tables (LUTs) for corresponding channels, these DN
(digital number) values will be turned into brightness tem-
perature (BT) or reflectance values. Detailed descriptions of
the involved scientific data sets and LUTs can be checked
in Table III. Considering that the values for calibration have
already been recorded in the LUTs, any pixels with even higher
actual BT values could not be recognized correctly. According
to the LUTs, the highest BT value for mid-infrared channel
stored in the file is around 340 K.

III. METHODOLOGY

Although, already, there have been studies that have used
geostationary satellite imagery, much of this previous research
was based on the analysis of single-date imagery with pix-
els being detected as fire pixels using thresholding meth-
ods or other image processing methods [28], [31], [38]. Some
other research was carried out based on time series analysis,
while the image characteristics were not taken into considera-
tion. However, a single S-VISSR image can provide only very
limited information due to the relatively low spatial resolution.
On the one hand, to better explore the potential of time-series
analysis and take full advantage of the information contained
in the imagery, temporal analysis is involved. On the other
hand, the introduction of spatial analysis in this algorithm
helps reduce the calculation time as well. By eliminating the
pixels with obvious nonfire characterization, the calculation
time will be saved, and the time series analysis will focus on
some target areas. The flowchart of this algorithm has been
shown in Fig. 2.

A. Data Preprocessing

In addition to the basic data processing, an image crop-
ping is involved. The time series analysis procedures in fire

detection algorithms are always the most time-consuming
components. The processing of full disk images could be even
slower without the high-performance instruments. For saving
computation resources and computing time, image cropping
would be involved in the data preprocessing step. The full disk
image will be clipped into 169 (13 × 13) subsets. The size of
each data set will be 176 × 176 pixels. Considering that the
neighboring subsets may share connecting image information,
a square ring with a size of 2 pixels will be added to every
subset data set. The four sides of the 2-pixels-ring will contain
different values based on the relative position among the
169 subsets. The sides, where there are also the outermost
sides of the full disk image, would be filled in with value 0.
On the other hand, the inner connected sides will be filled
in with values from the neighboring data sets. By adding the
neighboring values to every subset data set, the size will be
changed to 180 × 180 pixels as well. Fig. 3 illustrates the full
disk map and the selected subsets after image cropping. The
horizontal and vertical labels can be utilized to identify the
detailed images.

In this paper, two major research regions were selected,
which generally cover parts of Southern Asia and the main
area of Australia. The horizontal and vertical labels are listed
as below. The red hollow circles in Fig. 4 show the fire
pixels detected in January 2016, from MODIS products.
A large number of fire pixels were located in the selected
research areas. Besides, the FengYun-2G satellite is positioned
at 105◦ E, where the data covering these areas would have
relatively small geometric deformation.

B. Spatial Analysis

Spatial analysis is one of the common methods to calculate
the characteristics of images and capture the anomalies, where
fire pixels may locate. It can still be effective in the algorithms
and variation in the infrared channels can be captured when
the fire incidents take 10−3 ∼ 10−4 of the pixels [39], [41].
Besides, by eliminating a large number of nonfire pixels, the
computing resources can be saved as well for the upcoming
time analysis step. In this paper, the spatial analysis procedure
inherits and integrates the concepts of “potential fire tests” and
“contextual tests” from [11], [12], [14], and [15]. Over 90%
and 99% of the original pixels will be removed after these
two steps. The “potential fire tests” will be applied to every
pixel. Those that satisfy the requirements after the test will
enter the “contextual tests.” Values will be calculated further
from the moving windows centered on the pixels, where the
neighboring pixels can be sketched.

The potential fire tests contain the requirements concerning
the multiple thresholds. The following are the detailed criteria:

TMIR ≥ TMIR + 5&TMIR ≥ 310 (1)

�T ≥ 15 (2)

VIS ≤ 20 (3)

where TMIR, �T , and VIS represent MIR BT values, differ-
ences between MIR and TIR, and the reflectance of the visible
channel. In the FengYun-2G data, MIR, TIR, and VIS values
are acquired from channels IR4, IR1, and VIS, as Table III
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Fig. 3. (a) Full disk image of FengYun-2G S-VISSR 4th channel captured at 0:00 A.M. UTC on January 1, 2016. The MIR BT values decrease as the color
changes from red to blue. (b) Clusters of subsets clipped from full disk images. These subsets are selected as research areas.

Fig. 4. Daily results of detected MODIS fire pixels on a monthly base. Each red hollow circle represents a fire pixel.

shows. TMIR is the average value of the subset images. Equa-
tion (1) contains both fixed and dynamic thresholds, where the
fixed thresholds are defined based on [12], [15], and [42], and
the dynamic thresholds are defined based on the statistical
information of the images. Fig. 5 demonstrates the changes
of one of the regions tested on January 7, 2016. The title
for every subplot illustrates the imaging time and calculated
values for the whole image. The BT values decrease as the
colors change from red to blue on the heat maps. It is obvious
to find that the characteristics of the images can vary a lot even
in the same place at different times, such as the average MIR

value. Therefore, a fixed lower limit is involved to expel pixels
with obvious nonfire features, while the combining of dynamic
thresholds will help to adapt to scenarios, where the fixed
thresholds may not be effective. Fig. 6 shows the histograms
of the MIR value from the corresponding subplots in Fig. 5.
The percentages of pixels above two thresholds are listed in
the title for every subplot. The solid and dashed vertical lines
indicate the fixed and dynamic thresholds locations, respec-
tively, in different places on the histograms. In the areas with
low average MIR values, fixed thresholds keep the gate for
rejecting most of the nonfire pixels which may contain pixels
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Fig. 5. Average and SD of MIR values within the 24 h of the region (H:10, V:08) on January 7, 2016. Values decrease as the color changes from red to
blue.

Fig. 6. Percentages of pixels with values above fixed and dynamic thresholds.

within the bright spots. In other cases, dynamic thresholds play
the dominant role in eliminating extra yet unqualified pixels.
Unlike the combination of dynamic and fixed thresholds, only
fixed threshold 15 K is utilized in the potential fire tests. Pixels
contaminated by clouds will have much stronger effects on the
calculation of �T values and the fire pixels may be neglected.

Fig. 7 demonstrates the heat maps of �T values in different
areas at different observation times. The average �T values
can vary a lot when the percentage of cloud pixels change. The
observation times of these areas are displayed in the subtitles.
Indexes of the subset images are H3V4, H7V10, and H8V1,
respectively, from the first to the third column. The average
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Fig. 7. Comparisons the average delta values among different areas at
different times.

data can vary a lot, as Fig. 7 demonstrates. Equation (3) is set
to remove the pixels with a high reflectance, such as the desert
pixels or pixels on cloud edges, where the high reflectance is
one of the main characteristics. The pixels which satisfy the
above three requirements will enter the following contextual
test. In addition to the above requirements, pixels within the
water area will be rejected as nonfire pixels as well. Although
the latest active fire detection algorithms have gained the
ability in detecting the fire pixel in water areas [12], [43], it is
still difficult to detect fire incidents on FengYun-2G images
considering the low spatial resolution.

Contextual test contains the following several criteria:
TMIR ≥ T �

MIR,min + 15&�T ≥ �T �
min + 15 (4)

TMIR ≥ T �
MIR + 5&�T ≥ �T + 5 (5)

TMIR ≥ T �
MIR + 1.5&T �

MIR ≥ 318&�T ≥ �T + 1. (6)

The markers with superscripts illustrate the corresponding
values calculated from the moving window with a window size
of 2 pixels centered on the aim pixels. This size matches with
the square ring added around the original subset data set as
well. Equations (4)–(6) describe three parallel requirements
designed from different scenarios. Equation (4) sets thresh-
olds for comparisons based on the minimum values within
the moving window, while (5) sets thresholds based on the
average values. When pixels are in high MIR value regions,
the variation may not be so obvious to detect comparison with
the normal regions. Therefore, a lower dynamic MIR threshold
is utilized. Pixels that meet any one of the above conditions
will be added to the temporal analysis for further confirmation.

C. Temporal Analysis

One of the most important advantages of using geostation-
ary satellites to detect active fire pixels is that, with the help of
high temporal resolution images, the anomalies can be detected
from minor changes. Besides, the multitemporal images can
also draw the variations dynamically where the fire incidents
can be monitored continuously. Research based on multitem-
poral active fire detection has been carried out continuously.

One of the major achievements is to involve the method of
modeling a diurnal temperature cycle (DTC). By modeling
patterns of diurnal temperature changes, the values on aim
images with confirmed observation time can be predicted.
Active fires are outbreaks, which will cause BT values to rise
in a short time and be far away from the normal states, namely
the predicted values. Pixels can be detected when the observed
value is high enough to reach the established requirements for
temporal tests. To capture the pattern of temperature changes
more precisely, various enhanced algorithms are involved to
handle the abnormal data or outlier information.

Gottsche and Olesen [44] involved a robust estimator to
enhance the performance and overcome the effects of remained
cloud pixels. Roberts and Wooster [37] further explored the
potentialities of DTC and established a mature system based
on the robust matching algorithm [45] and the Kalman filter
method [46]. This method can generate solid prediction results
with low mean square errors based on previous observations
even if there are large numbers of cloud-affected values.
On the one side, the series of methods can make accurate
assumptions to detect active fires. On the other side, the com-
puting time limits the usage of these algorithms in larger
areas or longer time series.

In this paper, a new aspect to analyze the variation of
the pixels is introduced, where attentions are paid only to
the values with the same observation time on different days.
Fig. 8 shows the line charts of the changes, of a single pixel,
within a month. The subplots demonstrated the daily changes
with the same observation time during a whole month. The
yellow lines are subsets of the blue lines, which record the
valid data and original data series, respectively. The solid green
lines indicate the average values calculated from the valid data
series. As Fig. 8 shows, the differences among the values
may be very large. Yet, there are certain fluctuation ranges
around the average values indicating that every pixel changes
within secure ranges if no sudden incidents occur. The ranges
can be even clearer when invalid values are removed. The
length of the time series is set to 30 days. Fig. 9 demonstrates
the comparisons between the results generated from different
lengths of the input data. Without any doubt, the calculation
time increases as the length of input data grows and the
trend tends to become smooth when the length is above
20. Alternatively, more errors can be avoided when there
is more information to construct a time series. In addition,
the systematical problems including omission of data from
the archive, bad data quality, etc., should also be taken into
consideration. Hence, we select 30 days as the length of the
input time series data when the computation time is acceptable,
and the insufficiencies of data will be avoided. The test shows
that the average time for calculating every single pixel is
around 1 × 10−4 s

Tvalid,ts = (Toriginal,ts ≥ 270) (7)

T0.9999,top = Tvalid,ts + t0.9999 ∗ σ Tvalid,ts√
n

(8)

TMIR ≥ T0.9999,top + 2 (9)

TMIR ≥ max(Tvalid,ts) + 2.5. (10)
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TABLE III

DETAILED DESCRIPTION OF INVOLVED DATA SETS

Fig. 8. Subplots of the daily changes where the titles illustrate the observing time. The meanings for different colors and lines are demonstrated as above.
Two green dash/dotted-dash lines are the requirements in temporal analysis, respectively.

The Tvalid,ts and Toriginal,ts denote the valid data sequences
and original data sequences, respectively. Pixels that succeeded
in tests in the spatial analysis will undertake the temporal
analysis procedure. The original data contain values captured
at the same observing time with a length of 30 days and valid
data contain values above 270 K within the original series.
The bad quality of data or part of cloud pixels may show
the extreme low MIR values of the data. Besides, these values
will strongly affect the calculation of the average and standard
deviations (SD). Hence, only values above 270 K will be con-
sidered as valid. As mentioned above, the estimations of the
fluctuation ranges would be made to depict the normal states
of the pixels. For every pixel to be tested, since the observing
time is set to be the same, the values are assumed to be within
certain ranges. Fig. 10 gives several randomly selected pixels

located at different places. The titles of subplots indicate the
information including horizontal and vertical indexes of the
subsets; x and y values of the map coordinates. The histograms
are values of the time series of the pixels. Generally, the data
sequences have the similar shapes of normal distribution.
A total of 30 days’ data was involved. Therefore, the knowl-
edge of student’s t-distribution can perform in this case. Thus,
confidence intervals are introduced to draw the ranges where
the pixel’s value should be highly possible inside. Considering
that the possibilities of fire incidents are rather low, we select
an extremely high percentile value to conclude as many pixels
as possible to avoid commission errors. In (8), the upper limit
of the confidence interval, noted as T0.9999,top, is calculated.
Tvalid,ts and σ Tvalid,ts are the average and SD values of the
valid data within the sequence, while t0.9999 is the t-score
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Fig. 9. Comparisons between the results generated from different lengths of
time-series input data. The total amounts of detected fire pixels are listed in
the titles for every subplot.

Fig. 10. Histograms demonstrating the distributions of valid data in different
images and different pixels.

generated under the settings of the 99.99% percentile.
√

n
is the square root of the size of input data. Equations (9)
and (10) introduce two separate and parallel criteria to test
whether the pixel is beyond the thresholds. The 2 K is an
empirical threshold set to validate that the increment between
the pixel value and the upper limit is caused by abnormally
high-temperature incidents rather than random disturbances.
In some circumstances, the pixel value is higher than any
other values within the sequences, while it is still less than the
thresholds in (9). Equation (10) is set to make a supplementary
judgement to decide if it is a fire pixel. A pixel that satisfies
(9) or (10) will be considered as an outlier from the time
series, namely, an active fire pixel.

IV. RESULTS

It was necessary to assess the results of applying the
algorithm to determine its advantages and shortcomings.

In validation of active fire algorithms, the date and time
of captured fire incidents from credible data sets should be
concerned as well. Thus, the collection 6.1 Global Monthly
Fire Location Product is introduced, namely MCD14ML. The
monthly fire location product contains the geographic location,
date, time, fire radiative power (FRP), detection confidence,
etc. Every line stands for a detected single fire pixel by
the Terra and Aqua MODIS sensors. For further systemat-
ical operations, the near-simultaneously recorded active fire
detections products (MOD14 from Terra and MYD14 from
Aqua), as well as the corresponding geolocation swath files
(MOD03/MYD03), should be utilized.

Since the size of the FengYun-2G pixel is different from
the MODIS pixel, we conduct the validation on a basis of
virtual defined windows. For every FY-2G active fire pixel,
a window with the same size of its pixel is predefined. It would
be considered as true detection when there are more than one
MODIS active fire pixel falling in the range of the window.
The FY-2G pixels that fail to find any neighboring MODIS
active fire pixels would be considered as commission errors.
Similarly with the assessment of FY-2G pixels, a MODIS
active fire pixel would be believed to be validated if it is
found associated with an FY-2G pixel. Omission errors would
occur when the pixel stands alone with no connections to any
other FY-2G pixel. Furthermore, the time issue is an important
factor in detecting active fire pixels. Therefore, the difference
between the observing times is limited to less than an hour.

Generally, over 11 000 FengYun-2G subset images were
selected in this paper. Results demonstrate the superiority
of the geostationary data and this algorithm, as well as
insufficiencies including multiple errors in detection. In the
Australian regions, 3802 out of 6639 detect fire pixels were
considered to be true detections, and 1827 out of 4090 MODIS
active fires were detected with neighboring FengYun-2G detec-
tions. In the Indian regions, almost none of the MODIS active
fires were detected, and only 127 detections were made by the
algorithm. The following two cases indicate the results from
MODIS fire products and this algorithm.

Fig. 11 illustrates one of the cases from the Australia
research area. The results with fire pixels from MODIS
products and this algorithm are superimposed together on
the heat maps of FengYun-2G MIR channel. The values
decrease as the color changes from red to blue. The series
of images were captured on January 6 when bushfires took
place in Yarloop, a historic mill town 110 km south of Perth.
Fig. 12 shows that the fires lasted for a few days after the
initial outbreaks according to the records of MODIS active
fire products. The legend displays the fire pixels in different
colors with the description indicating the name of the relevant
files. The MODIS captured the initial separate traces of the
fire incidents when the Terra satellite overpassed this area. The
bushfire later expanded and seriously threatened the neighbor-
ing areas. Another MODIS image was taken within 17:00 to
18:00 UTC and few more fire pixels were captured. However,
the increase of fire pixels in MODIS fire products is either
not enough to reflect the seriousness of the bushfire or able
to capture the dynamics. More fire pixels were detected on
the results from MODIS fire products on January 7. Instead,
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Fig. 11. Images of the detection results on one of the subsets. The solid
lines indicate the southwest coast lines of Australia. Markers superimposed
on the subplots are active fire pixels from MODIS products and FengYun-2G
algorithms, respectively.

Fig. 12. Active fire detection captured from MODIS fire products.

hourly observations and the positioning on 105◦ E offer the
ability to make continuous surveillance. As Fig. 11 shows,
apart from the false detection at 2:00 UTC and lack of data
at 4:00 UTC, the continuous detection began from 5:00 UTC.
With more active fire pixels detected in the adjacent area and
constant alarms, the smoke and plumes from the fire block the
observation and no detections were made between 11:00 to
13:00 UTC. More continuous detections were made the next
day, which was the same as the facts and results from MODIS
products. FengYun-2G provides early-time fire detection and
subsequent observations per hour to track the trends of the
fires.

Although many of the FengYun results are validated to
be true detection, both commission and omission errors are
serious problems in the current result. In the three research
regions, the dominant kinds of errors are different. Fig. 13
shows the detection results generated from MODIS fire prod-
uct and FengYun-2G algorithm. The background images are
similar heat maps of FengYun-2G MIR channel with the

Fig. 13. Images of the detection results on one of the subsets. The solid
lines indicate part of the west and east coast lines of the Indian subcontinent.
Markers superimposed on the subplots are active fire pixels from MODIS
products and FengYun-2G algorithms, respectively.

same color bar as that in Fig. 11. Sporadic active fire pixels
were selected from MODIS fire products. The geolocation of
these fire pixels distributed separately and few of them are
connected to each other. In addition, the many pixels detected
on 4:00 UTC were not further detected at 7:00 and 17:00 UTC.
Thus, assumptions could be made that these pixels are detected
from small fire incidents, which affected only neighboring
areas and lasted short time periods. The FengYun-2G failed to
make fire detections in this area. Small fire incidents should
be the main reason for the obvious omission errors. To display
and analyze the cause of these kinds of errors in the Indian
research area, the detailed information at 17:00 UTC on the
same day was selected from Fig. 13, where multiple MODIS
fire pixels were detected. Fig. 14 shows the image at the
mentioned time. Detailed knowledge for one of the FY-2G
pixel was demonstrated in the subplots. The aimed pixel on
FengYun-2G image is under fire incidents detected by MODIS
fire products, while the pixel itself is not considered an active
fire pixel by the algorithm. The subplot on the top illustrates
the heat map of the neighboring area around the aimed pixel.
The absolute value of the aimed pixel is not high enough to
succeed in the spatial analysis, while the time series shows
that the pixels are not higher than the required threshold
either. Yet from the results of MODIS fire products, the pixel
has an MIR value of 332.5 K of the observing time. Small
fire incidents together with the ambient lower background
temperature generate low MIR value in the mixed pixel.

Comparing cases of the fire pixels detected from
FengYun-2G algorithm and MODIS fire products, we find
that one of the major causes of these obvious omission
errors is the sizes of the fire incidents. As confirmed on the
figures superimposed with MODIS active fire products, the
fire pixels are under a low detection rate when they scatter in
different places. Therefore, to examine whether the distribution
of the fire pixels had an influence on the accuracy of the
algorithm, the sizes of the MODIS fire pixel polygons are
calculated. Every polygon contains a single or a group of
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Fig. 14. Failure in detecting active fires in India research area.

Fig. 15. Comparisons between two research areas in the count of fire
polygons.

Fig. 16. Heat map of FengYun-2G MIR data with MODIS active fire products
superimposed on.

spatial contiguous fire pixels. Both the number of fire pixel
polygons and the fire pixels within the polygons are calculated.
Fig. 15 shows the comparisons between the two research areas

in the count of fire polygons. The x-axis in every subplot
shows the number of fire pixels within a single polygon,
while the y-axis is the number of corresponding polygons. The
percentage of true detection polygons are plotted on the first
subplot as well, which can justify the fact that the algorithm
works better in larger sizes of fire incidents. According to
the results, the average size of fire incidents in Australia
contains 3.39 MODIS fire pixels while the size in India is
1.59 MODIS fire pixels. From the aspect of FengYun-2G
detection results, the same conclusion could be drawn. In the
Australian research area, an average of 18.62 MODIS fire
pixels is contained within the window of FengYun-2G as
described in the validation part. Fig. 16 demonstrated a heat
map centered on an active fire from FengYun-2G data. The
map shows the neighboring area with the pixels’ MIR values
marked inside. MODIS active fire pixels within this area are
marked in red hollow circles. It is obvious that under the
circumstances, where the more MODIS active fire pixels are
gathering, the more omission errors would be avoided.

V. DISCUSSION AND CONCLUSION

This paper has described an active fire-detection algorithm
for use with data acquired by the Chinese geostationary
satellite, FengYun-2G. Numerous active fire-detection algo-
rithms have been developed in the past, but only a few of
them are designed for geostationary data and even fewer for
Chinese satellite data. FengYun-2G is an operational satellite
and provides researchers with 5-km spatial resolution data
every hour. As the spatial analysis method helps in removing
many of the unrelated pixels, the high temporal resolution
and time series analysis assist in characterizing pixels and
avoiding mistakes caused by coarse spatial resolution. Fully
developing the potentialities of time-series analysis becomes
essential. The proposed algorithm consists of three major
steps: data preprocessing, spatial analysis, and temporal analy-
sis. A universal method for processing full-disk images is
introduced and would greatly enhance the efficiency of further
calculation especially in research, where the emphasis may be
concentrated on certain local areas. During the spatial analysis,
potential fire tests are utilized with the support of a combina-
tion of fixed and dynamic thresholds to eliminate nonfire pixels
to the max extent. The coming contextual tests further help to
narrow down the range of pixels. Subsequently, a time series
analysis method is introduced where data sequences with the
same observing time are taken as input data. Different from
previous research where people tried to simulate the patterns
of the BT values of diurnal changes, the solid fluctuation
ranges are the core contents to capture. For every pixel to be
tested, the input data were analyzed based on the knowledge
of students’ t-distribution. Thus, confidence intervals with high
percentile number are constructed. Active fire detections are
made according to the calculated confidence intervals and the
max value from the input data sequence. The algorithm works
stable and fast. However, the results still have serious problems
to be fixed. Obvious errors, especially omission errors, are a
serious problem as is also the case with other geostationary
algorithms.
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The research for geostationary has been performed for
decades while few algorithms were designed for FengYun-2G
algorithm. This paper sketched an active fire detection algo-
rithm based on the previous study of contextual and temporal
analysis methods. But the evident insufficiencies remind us
that further developments should be made. One of the future
research directions is to drop the error rate by adding false
alarm elimination schemes and enhancing the ability to capture
small fire incidents. Another direction is to involve multiple
sources of data, which is under research currently. The data
include those from polar-orbiting satellites, which can provide
higher spatial resolution and new geostationary satellite. With
the sequence of FY3 series data now in operation, more
information about the same research area with different data
can help to draw the characteristics more accurately. New
data sets are available from the China Meteorological Admin-
istration as well. The new Chinese geostationary satellite
FengYun-4A was launched on December 10, 2016 and carries
newly designed instruments including the Lightning Mapping
Imager (LMI) and the Advanced Geostationary Radiation
Imager (AGRI). The AGRI instrument provides 14 channels
with spectral bands including the visible, infrared, shortwave
infrared, mid-infrared, and thermal infrared. The spatial resolu-
tion has been upgraded to 0.5–4 km depending on the channel
and the temporal resolution has been upgraded to 15 min.
All these upgrades strengthen the ability to carry out active
fire detection and continuous monitoring. In addition, another
satellite in the FengYun-2 series, FengYun-2H has now been
in service with the same instrument S-VISSR on board, which
makes the algorithm to function for FengYun-2H data as well.
In the future, new algorithms could be constructed based on
the new FengYun-4 satellite data. More concentrations would
be placed on various upgraded instruments to enhance the
performance of the algorithms. Finally, the study areas will
be expanded to cover more than just Australia. The research
contents will be expanded to include the energy of burning
pixels rather than merely the detection. This will help to
quantify the limitations of fire detection by using the S-VIRRS
data.

This work has further explored the ability of FY-2G, a Chi-
nese satellite, to carry out active fire detection. This study
was based on previous research using both polar-orbiting
and geostationary data and used spatial as well as temporal
analysis. Although the calculation speed met the necessary
requirements for processing time series data, the error rate was
still comparatively high, which means that there is still a lot of
room for improving the algorithm. Among the problems to fix,
omission errors should be the first. Further development of the
algorithm and the use of next-generation satellite data should
allow a more accurate and faster algorithm to be developed in
the future.
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