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Cyclic Shift Matrix—A New Tool for the
Translation Matching Problem

Xiurui Geng and Weitun Yang

Abstract— For numerous applications in image registration,
sub-pixel translation estimation is a fundamental task, and
increasing attention has been given to methods based on image
phase information. However, we have found that none of these
methods is universal. In other words, for any one of these
methods, we can always find some image pairs which will not
be well matched. In this paper, by introducing the cyclic shift
matrix (CSM), we present a new model for the translation
matching problem and derive a least squares solution for the
model. In addition, by repeatedly applying the CSM to the
matching image, an iterative CSM method is proposed to further
improve the matching accuracy. Furthermore, we show that the
traditional phase-based matching algorithms can only achieve an
exact solution when there is a cyclic shift relationship between
the images to be matched. The proposed method is evaluated
using simulated and real images and demonstrates a better
performance in both accuracy and robustness compared with
the state-of-the-art methods.

Index Terms— Cyclic shift matrix (CSM), phase correlation,
sub-pixel translation.

I. INTRODUCTION

TO ADDRESS the image translation registration problem,
traditional cross-correlation methods, such as normalized

cross correlation and zero-normalized cross correlation, are
time-consuming and often inaccurate in many cases [1], [2].
Because of this, the phase information-based matching method
has begun to attract attention and is now widely used due to
its accuracy and effectiveness [3]–[6]. Translation matching
methods (TMMs) based on phase information are generally
derived from the Fourier shift property [7]. Assuming a sub-
pixel shift between two images G(x, y) and H(x, y) is x0 and
y0 in the x- and y-directions, respectively, and the relationship
can be expressed as

H(x, y) = G(x − x0, y − y0). (1)

After the Fourier transformation (FT), the relationship is
transformed into

Ĥ(u, v) = Ĝ(u, v)exp{−i(ux0 + vy0)} (2)
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where Ĝ(u, v) and Ĥ(u, v) are the corresponding FT of
G(x, y) and H(x, y), and u and v are the coordinates in the
frequency domain. As can be seen, the pixel shifts of images
in the spatial domain are transformed into the Fourier domain
as linear phase differences [7]. The normalized cross-power
spectrum matrix is defined as

P(u, v) = Ĝ(u, v)Ĥ∗(u, v)

|Ĝ(u, v)Ĥ∗(u, v)| = exp{i(ux0 + vy0)} (3)

where ∗ stands for the complex conjugate, and it can be seen
that the P matrix is only related to the shifts.

Currently, the use of the P matrix can be divided into
two categories. The first class of method gives an estimate
of x0 and y0 by finding the main peak location of the
inverse FT (IFT) of the normalized cross-power spectrum
matrix P [8]–[10]. In the case of integer pixel shifts, the IFT of
P is a Dirac delta function centered on (x0, y0) [2], and it could
be correctly captured by a simple IFT for P. As for the sub-
pixel shift situation, some methods introduce the procedure
of interpolation to achieve sub-pixel precision [11]. However,
these are easily affected by noise and other interference [12].
Accuracy could also be increased to 1/k pixel by the pro-
cedure of up-sampling using the factor k. Unfortunately, this
becomes too much time-consuming when k is large. In [13],
an improved method is proposed to increase the speed of
the up-sampling: it first computes the initial shift estimate
according to the conventional IFT method with an up-sampling
factor k = 2, and then a much larger k is applied to the data in
a 1.5×1.5 neighborhood around the initial estimate. It should
be noted that this type of method is restricted by the value
of k, and the precision could only reach 1/k pixel at most.

The other type of method directly uses the phase infor-
mation of P matrix to estimate the pixel shift. The phase
shift angle of the matrix P can be expressed as a linear
function of the shift (x0, y0), and thus, it represents a 2-D
plane through the origin of the u-v coordinates. Based on this
fact, many methods have been proposed [5], [14], [15]. The
Stone method [14] uses the least squares adjustment to fit
the 2-D plane after removing the high-frequency and small-
magnitude spectral components. Since the phase shift angle is
2π wrapped in the frequency domain, only shifts less than one
pixel can be measured using the Stone method [16]. Hoge [17]
applied a singular value decomposition (SVD) to the P matrix
and transformed the 2-D phase unwrapping problem into two
separate 1-D unwrapping problems. Then, the unwrapping
phase information of the dominant rank-one approximation
of the P matrix is used to estimate (x0, y0). In addition,
since the phase information could be easily interrupted
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by noise, some optimization strategies [18], [19] are intro-
duced to the SVD method to further improve its performance.
For example, the method in [18] proposes a robust extension
to the SVD method using a so-called “projection” masking
operator under the assumption that the noise is additive white
Gaussian noise. And, in [20], a random sample consen-
sus (RANSAC) [21], [22] algorithm is introduced to make the
SVD method more reliable and effective.

These algorithms can achieve good results in many cases.
However, they are not universal and cannot obtain good
results in certain situations. In this paper, by introducing the
cyclic shift matrix (CSM), we propose a new model for the
image translation matching problem (TMP) and obtain a least
squares solution for the model, named the CSM method.
Interestingly, we found that the traditional TMM based on
phase information could only get the exact solution when there
was a cyclic shift relationship between images to be matched.
In addition, an iterative cyclic shift method is presented and
this is expected to further improve the estimation accuracy
of TMM.

II. METHODS

In this section, we first introduce some basic properties
of the CSM, followed by a detailed derivation of the CSM
method. Then, the applicable condition of the traditional
phase-based methods is given in a lemma. In addition,
by repeated use of the CSM, an iterative version of CSM is
presented. Details are stated as follows.

A. Cyclic Shift Model

In this paper, a cyclic shift matrix Q is introduced to
simulate the translation of images in the horizontal and vertical
directions. The basic form of the Q matrix is defined as

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0
. . .

. . .
. . . 1

1 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

which could be generated by cyclically moving each column
of the identity matrix.

Using the QT matrix to left multiply an image is equivalent
to a cyclic shift of the image in the vertical direction, that is,
the first line of the image becomes the second row, the second
line becomes the third row, and so on. It is worth noting that
due to the cyclic shift property of the Q matrix, the last line of
the original image is moved to the first row in the new image.
Similarly, when image I is right-multiplied by the Q matrix,
it results in a horizontal cyclic shift of the image. For example,
a matrix I of 3×5 size is shown in Fig. 1(a). When we multiply
the left- and right-hand sides of the image by QT

3×3 and Q5×5,
respectively, the transformed image I

� = QT
3×3IQ5×5 can be

obtained [Fig. 1(b)]. As can be seen, under the effect of the
QT

3×3 and Q5×5 matrix, the image is cyclically shifted down
and to the right by a single pixel.

Fig. 1. Diagram of a CSM in an integer pixel shift situation. (a) Original
image. (b) Transformed image.

Fig. 2. Diagram of a CSM in a sub-pixel shift situation. (a) Original image.
(b) Transformed image.

The above example shows that the cyclic shift of arbitrary
integer pixels of an image can be precisely described by the
CSM. In fact, we can also use the fractional order power of the
Q matrix to simulate a sub-pixel translation of an image with
arbitrary precision. Assuming the eigenvalue and eigenvector
matrix of the Q matrix are D and U, respectively, the Q matrix
can be expressed as

Q = UDUH (5)

where the superscript H stands for a conjugate transpose. The
fractional order power of the Q matrix can be calculated as

Qx = UDxUH (6)

where x can be any real number and Dx can be obtained by
simply calculating the x-power of its diagonal elements. For
example, calculating the value of Q0.01

3×3, we obtain

Q0.01
3×3 =

⎡
⎣ 0.9999 0.0122 −0.0120
−0.0120 0.9999 0.0122
0.0122 −0.0120 0.9999

⎤
⎦ . (7)

In fact, when the order of Q is odd, it can be shown that
Qx is still a real matrix for any real number x . Therefore,
we assume that the number of both rows and columns of the
image to be matched is odd in this paper. If the real image
does not meet this condition, we can use image clipping or up-
sampling to make it meet the condition. We also use matrix I
(Fig. 2) to illustrate the effect of matrix Qx when x is any
real number. In Fig. 2, the original image I [Fig. 2(a)] is
transformed into I� by multiplying its left- and right-hand sides
with (QT

3×3)
0.01 and Q0.02

5×5, respectively. Under the effect of the
matrix multiplications, the image is cyclically shifted down
and to the right by 0.01 and 0.02 pixels, respectively, and the
generated image I

�
, which is shown as Fig. 2(b), is also a real

matrix. As can be seen, although the sub-pixel shift between
images is very small, it can still be accurately reflected by the
power of the Q matrix.

Motivated by the above property of the Q matrix, we can
formulate the TMP as the optimization problem in the
following:

min
x,y

f (x, y) = min
x,y

||A − �
QT

1

	xBQ2
y ||F (8)
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where A and B represent the image pair for registration,
Q1 and Q2 are two CSMs, x and y are the pixel shifts we
need to estimate, and ||.||F stands for the Frobenius norm. The
dimensions of A, B, Q1, and Q2 are m × n, m × n, m × m,
and n × n, respectively. Since the Q matrix is a real matrix,
it is easy to verify that the following equations hold:

QT = QH = (QH)∗ = (UDHUH)∗ = U∗DUT. (9)

Thus

(QT)x = U∗DxUT. (10)

Combining (6), (8), and (10), we can have�
QT

1

	xBQ2
y = U∗

1Dx
1UT

1 BU2Dy
2UH

2 (11)

where D1 and D2 are the eigenvalue matrices of Q1 and Q2,
respectively, and U1 and U2 are the corresponding eigenvector
matrices.

As is well known, the discrete FT (DFT) of an image can
be expressed as the form of matrix multiplication

Â = F1AF2, B̂ = F1BF2 (12)

where Â and B̂ are the DFT of A and B, and F1 and F2 are the
corresponding DFT matrices. Interestingly, it can be found that
the DFT matrix is exactly the eigenvector matrix of Q matrix,
which means U1 = F1 and U2 = F2. In addition, since the
DFT matrix is a symmetric complex matrix, F = FT and
F∗ = FH. Therefore, after some simple algebraic operations,
the DFT of (11) can be calculated as

F1
�
QT

1

	x BQ2
yF2 = Dx

1B̂Dy
2 . (13)

Since Dx
1 and Dy

2 are both diagonal matrices, the right-hand
side of (13) can be rewritten as

Dx
1B̂Dy

2 = B̂. × �
diag

�
Dx

1

	
diag

�
Dy

2

	T	
(14)

where .× represents the elementwise product operator.
It is worth noting that the DFT matrix is necessarily a

unitary matrix, and an n×n DFT matrix F can be expressed as

F = [f1, f2, · · · , fn] (15)

where fp is the pth column of F matrix, and the qth element
of fp is fqp = (1)/(

√
n)ei((q−1)∗(p−1)∗2π)/(n). Combining (5)

and (15), the eigenvalue matrix D of the Q matrix can be
rewritten as

D = FHQF = [f1, f2, · · · , fn]HQ[f1, f2, · · · , fn]. (16)

Since Q matrix is the CSM, when the column vector fp is
left-multiplied by the Q matrix, it will cause a cyclic shift for
the vector, which is equivalent to multiplying f j by a factor
ei((p−1)∗2π)/(n) (i.e., Qfp = ei((p−1)∗2π)/(n)fp). Then, (16) can
be re-expressed as

D = [f1, f2, · · · , fn]H


f1, ei 2π

n f2, · · · , ei (n−1)∗2π
n fn

�
. (17)

It can be easily verified that the diagonal elements
of D are dpp = ei((p−1)∗2π)/(n), which means in (14),
diag(Dx

1) = [eiu1x , eiu2 x , · · · , eium x ]T and diag(Dy
2) =

[eiv1 y, eiv2 y, · · · , eivn y]T, where u j = (( j − 1) ∗ 2π)/(m)
( j = 1, · · · , m) and vk = ((k − 1) ∗ 2π)/(n) (k = 1, · · · , n)

are the phase angles of the j th and kth eigenvalue of
Q1 and Q2, respectively.

Let Ĉ = Â./B̂, where ./ stands for the elementwise division
operator. Combining (12) and (14), (8) can be transformed into
the following optimization problem:

min
x,y

f (x, y) = min
x,y

||Ĉ − �
diag

�
Dx

1

	
diag

�
Dy

2

	T	||F. (18)

If two images A and B are circularly shifted versions of each
other, then x and y must exist to make A = (QT

1 )x BQ2
y , and

thus, Ĉ = diag(Dx
1)diag(Dy

2)T holds. It can be found that the
modules of all the elements in Ĉ are 1 since the modules of all
the elements of diag(Dx

1)diag(Dy
2)T are evidently equal to 1.

Therefore, in order to obtain the optimal solution (x and y) of
the model (8) or (18), we only need to pay attention to their
phase information. Because

diag
�
Dx

1

	
diag

�
Dy

2

	T =
⎡
⎢⎣

ei(u1·x+v1·y) · · · ei(u1·x+vn ·y)

...
. . .

...

ei(um ·x+v1·y) · · · ei(um ·x+vn ·y)

⎤
⎥⎦
(19)

the phase information of (diag(Dx
1)diag(Dy

2)T) can be
extracted from (19)

Phase
�
diag

�
Dx

1

	
diag

�
Dy

2

	T	

=
⎡
⎢⎣

u1·x + v1·y · · · u1·x + vn ·y
...

. . .
...

um ·x + v1·y · · · um ·x + vn ·y

⎤
⎥⎦ . (20)

Let us define a third-order tensor X∈Rm×n×2, and its
frontal slices are given by

X ::1 =
⎡
⎢⎣

u1 · · · u1
...

. . .
...

um · · · um

⎤
⎥⎦

X ::2 =
⎡
⎢⎣
v1 · · · vn
...

. . .
...

v1 · · · vn

⎤
⎥⎦ . (21)

Denote the Phase(Ĉ) as the phase matrix of Ĉ, then the
optimization problem in (18) can be further transformed into

min
x,y

f (x, y) = min
x,y

||Phase(Ĉ) − X ×3 s||F (22)

where s = [x, y]T are the parameters we need to estimate, and
×3 represents the 3-mode product operator. The vector and
matrix form of Phase(Ĉ) and X are denoted, respectively, as

c = vec(Phase(Ĉ))

X = [vec(X ::1), vec(X ::2)] (23)

where vec(.) is the vectorization operator. Theoretically, in the
absence of noise, we could directly obtain the exact solution
of (22) by using the least squares method, which is given by

s = (XTX)−1XTc. (24)

It could be verified that the method presented above, named
the CSM method, is equivalent to Stone’s method [14] in
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theory. And it should be noted that the above derivation can
only be established when there is a cyclic shift relationship
between the images to be matched, which is hardly satisfactory
in real situations. For practical applications, the least squares
solution (24) can only be considered as an approximate
estimation for a real sub-pixel shift.

B. Applicable Condition of the Cross-Power Spectrum
Method

In this section, we explore the applicable condition of the
cross-power spectrum-based method and obtain an interesting
finding which is stated in Lemma 1.

Lemma 1: Consider two m × n images (G and H) to be
matched, and the traditional phase-based methods can obtain
the exact solution for any sub-pixel shifts only when x0 and
y0 exist to make the equation G = (QH

1 )x0HQy0
2 hold, where

Q1 and Q2 are the CSMs defined by (4).
Proof: Denote Ĝ and Ĥ as the DFT of the images G and

H, respectively, and their cross-power spectrum matrix is

P = (Ĝ. × Ĥ∗)./|Ĝ. × Ĥ∗| = (Ĝ./Ĥ)./|Ĝ./Ĥ| (25)

where |.| represents the module operation on each element of
the matrix.

When there is cyclic shift relationship between the images
G and H, according to the derivation in Section II-A, x0 and y0
must exist to make the following equation hold:

Ĝ./Ĥ = diag(Dx0
1 )diag(Dy0

2 )T (26)

where D1 and D2 are the eigenvalue matrices of Q1 and Q2,
respectively. As discussed in Section II-A, since diag(Dx

1) =
eiux0 and diag(Dy0

2 ) = eivy0 , where u = (u1, u2, · · · , um)T,
v = (v1, v2, · · · , vn)T, and u j ( j = 1, · · · , m) and vk(k =
1, · · · , n) are defined as above, (26) can be expressed as

Ĝ./Ĥ = eiux0 eivT y0 . (27)

In this case, the module of each element in Ĝ./Ĥ is equal
to 1. Therefore, we can rewrite (27) as

(Ĝ./Ĥ)./|Ĝ./Ĥ| = eiux0eivT y0 (28)

which is exactly the discrete matrix form of (3).
The traditional phase-based methods are all based on (1),

which is only established on the assumption that the size of
an image is infinite. However, real images are discrete and
finite, so it is impossible for them to meet this condition.
Interestingly, (28) indicates that (2) or (3) still holds if there is
a cyclic shift relationship between the images to be matched,
and the exact solution can be obtained by the least squares
method in the absence of noise. Therefore, we can conclude
that the cross-power spectrum-based methods or the phase-
based methods can only obtain an exact solution for the
sub-pixel TMP when a circularly shifted relationship exists
between the images to be matched.

For real images, when the cyclic shift relationship between
images is not satisfied, (28) does not hold. This is why none
of the phase-based methods can obtain an exact solution for
the TMP.

Fig. 3. Reference and matching images. (a) Reference image. (b) Matching
image with x = 0.5 and y = 0.5. (c) Matching image with x = 2.5 and y = 2.5.

Fig. 4. Phase information of different shifts. (a) Phase information with
x = 0.5 and y = 0.5. (b) Phase information with x = 2.5 and y = 2.5.

C. Implementation of CSM

Theoretically, our method works for any sub-pixel trans-
lation of two images to be matched. However, as mentioned
above, the phase wrapping phenomenon appears when the sub-
pixel shift is large [14], [16]. For example, an image [Fig. 3(a)]
of 129 × 129 size is used as the reference to generate two
circularly shifted images with shifts (0.5, 0.5) [Fig. 3(b)] and
(2.5, 2.5) [Fig. 3(c)]. The phase information, which is defined
as (20), of the generated images is shown in Fig. 4.

As can be seen, the phase ranges smoothly from 0 to 2π
when x = 0.5 and y = 0.5, and there is no phase wrapping
phenomenon in Fig. 4(a). In contrast, in the case of x = 2.5
and y = 2.5, the phase angle splits into five parts and the
phase is heavily wrapped, as shown in Fig. 4(b).

As proved in Section II-A, the values of u j and vk both
range from 0 to 2π , and thus, in theory, the length of the
phase range of (20) is not greater than 2π(|x |+|y|). However,
no matter how large the value of (|x |+ |y|), the phase of (20)
will always locate between 0 and 2π in the actual calculation.
Therefore, the phase wrapping phenomenon is unavoidable
when |x | + |y| > 1, as shown in Fig. 4(b).

One solution to the above problem is phase unwrapping.
However, it is hard for phase unwrapping to obtain high
precision results when noise and other interference exist in the
images. An alternative way is to make the theoretical phase
and the actual phase both locate in [0, 2π], which implies
|x | + |y| � 1. As a result, we roughly divide our method into
two stages: the integer pixel shift calculation (IPSC) and the
sub-pixel shift calculation (SPSC). The detailed steps are as
follows.

1) Integer Pixel Calculation: Because the inverse DFT
(IDFT) has proved effective in dealing with the problem
of integer pixel translation, at the IPSC stage, we directly
use the IDFT of the cross-power spectrum matrix to
make a coarse registration for images to locate the inte-
ger part of (x, y) [2]. Then, the registration images will
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be resized according to the result of the transformation.
For example, if the integer part of (x, y) is (6, 6) and
the size of the image pair is 129 × 129, then we crop
the images to size 123 × 123.

2) Frequency Masking and Noise Removing: Since high-
frequency components are more susceptible to noise [23]
and most of the energy is concentrated in the low-
frequency regions for natural images [24], we should
mask out the high-frequency component before the
estimation. In this paper, we preprocess the phase infor-
mation [Phase(Ĉ)] with an ideal low-pass filter.

3) Initial Registration: After eliminating the high-
frequency component, we directly use (24) to obtain
the initial sub-pixel shift estimate (x (0)

s , y(0)
s ).

4) Fine Registration: Due to the existence of noise and
other interference, even after removing the integer
part of the shifts and the high-frequency component,
the phase wrapping phenomenon may still exist. In this
situation, the performance of CSM or other phase-based
methods is still not guaranteed. To address this issue,
we iteratively apply our CSM method to the image
pair to gradually reduce the influence of noise and
interference. Details are as follows.

a) A new matching image B(1) is generated accord-
ing to the initial estimate (x (0)

s , y(0)
s ): B(1) =

(QT
1 )x (0)

s B(0)Qy(0)
s

2 . Then, in order to eliminate the
impact of unmatched regions, the outermost pixel
of the image B(1) is removed, and the same oper-
ation is performed on the reference image A.

b) We apply the CSM method to the resized reference
image A and the generated matching image B(1)

to obtain the revised estimation (x (1)
s , y(1)

s ). Then,
we generate the new matching image B(2) =
(QT

1 )x (1)
s B(0)Qy(1)

s
2 and resize it in the same manner.

Repeating the above steps, we can gradually correct the
sub-pixel shift estimation. It should be noted that because
the subsequent images are generated by the original matching
image B(0), their sizes will not get smaller with an increase in
the number of iterations. The combination of the integer and
sub-pixel shift is the final translation estimation.

The key to the above steps is the repeated use of the CSM.
In this way, the shift between the images is continuously
reduced. Thus, the phase wrapping problem can be gradu-
ally alleviated, and the matching accuracy is expected to be
increasingly high. The pseudo-code is given in Algorithm 1.

III. EXPERIMENTS AND RESULTS

Simulated and real images were used to evaluate the per-
formance of the CSM method. In simulated cases, we con-
ducted experiments with two types of displacement images:
cyclic shift images and images with known offsets. In order
to evaluate the accuracy of our algorithm, we compared
the CSM method with five classical phase correlation
methods: the traditional DFT [7] method, the DFT with
up-sampling (DFT-US) [13] method, the traditional SVD
method [17], the SVD-Ransac method [20] and Stone’s
method [14].

Algorithm 1 Pseudo-Code to Implement the Iterative CSM
Method
Input: The reference image A, the matching image B,

the number of iterations k.
Output: Estimation of the pixel shifts (x, y)
1: Integer pixel shift calculation:
2: Calculating the integer shift (xinteger, yinteger) by the DFT

method in [7], and obtaining the new matching image
pair A(0) and B(0) by resizing the images (A and B)
according to (xinteger, yinteger).

3: Sub-pixel calculation:
4: Calculating the Phase(diag(Dx

1)diag(Dy
2)T) and Phase(Ĉ)

according to Section II-A.
5: Applying an ideal low-pass filter to the

Phase(diag(Dx
1)diag(Dy

2)T) and Phase(Ĉ) to reduce
the influence of noise and interference.

6: Calculating the sub-pixel estimate (x (0)
s , y(0)

s ) according to
(24).

7: for j = 1 → k − 1 do
8: Generating the new matching image B( j ) by B( j ) =

(QT
1 )x ( j−1)

s B(0)Qy( j−1)
s

2 .
9: Repeating steps 4, 5 and 6 with images A(0) and

B( j ), and obtaining the new sub-pixel estimation
(x ( j )

s , y( j )
s ).

10: (x ( j )
s , y( j )

s ) = (x ( j )
s , y( j )

s ) + (x ( j−1)
s , y( j−1)

s ).
11: end for
12: (x, y) = (xinteger, yinteger) + (x (k)

s , y(k)
s ).

The traditional DFT method determines the pixel shifts by
directly using the peak location of the IDFT result of the
cross-power spectrum matrix P. The DFT-US method raises
the accuracy up to 1/k pixel in theory by up-sampling the
data with a factor of k, which is set to 10 in the following
experiments. The traditional SVD method uses the phase
information of the dominant singular vector of the cross-
power spectrum matrix P to estimate the shifts, and the
SVD-Ransac method adds the phase fringe filter [15] and
the Ransac algorithm to reduce the influence of noise and
interference. A frequency masking procedure is required in the
SVD method, the SVD-Ransac method, Stone’s method, and
the CSM method. In the following experiments, the diameter
of the masking is set to half the length of the short edge of
the matching images for these methods.

The estimation error e is defined as the 2-norm of the offset
between the estimation and the ground truth, which is given
by e = (e2

x + e2
y)

1/2
, where ex and ey are the offsets in the

x- and y-directions, respectively. In order to obtain a result
in the statistical sense, we conducted multiple experiments
with different parameters for each method, and three metrics
were used to evaluate their performance: the mean value of e,
the max value of e, and the standard deviation ρr of e.

As for the real image case, we chose a hyperspectral image,
which was acquired using a push-broom imaging spectrometer,
to evaluate the performance of the CSM method. The push-
broom imaging spectrometer has a misalignment between the
cameras of the sensors, so there may exist sub-pixel offsets
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Fig. 5. Image used in the cyclic shift experiment. (a) Original image.
(b) Example of circularly shifted image generated by Q matrix with sub-
pixel (2.5, 2.5). (c) Example of noise-adding circularly shifted image gener-
ated by Q matrix with sub-pixel shift (2.5, 2.5) and ρg = 0.03.

TABLE I

RESULTS OF CSM WITH k = 1 FOR THE CYCLIC SHIFT EXPERIMENT

between different bands in an image, which will lead to
spectral distortion. Therefore, we applied our algorithm to
different bands of a hyperspectral image to estimate (and
calibrate) the translation offset between them. Since there is
no ground truth of the offset for the used data, the CSM
algorithm will not be compared with other algorithms and the
performance is evaluated only by visual inspection.

A. Cyclic Shift Images

In the cyclic shift experiment, we directly generated the
simulated data using the cyclic shift matrix Q, and the original
image A used in the experiment is shown in Fig. 5(a). The
circularly shifted images are generated according to Bi =
(QT)xi AQyi , where xi and yi are pixel shifts in the x-
and y-directions, respectively. In this section, the pixel shifts
(xi , yi ) range from 0.1 to 2.5 in steps of 0.3 pixel for both
the x- and y-directions. Thus, we can generate 81 shifted
images from the reference. One of the generated images
with (2.5, 2.5) pixel shifts is illustrated in Fig. 5(b), and the
matching results of the CSM method with the number of
iterations k = 1 are listed in Table I.

As can be seen, no matter how large we set the pixel shifts,
the CSM method could always obtain the exact solution, which
means the CSM method can completely deal with the situation
of cyclic shift. However, for a real image, there always exists
some noise, so we conduct the following experiment, where
Gaussian white noise is added to the reference and matching
images.

The images are first normalized within [0, 1]. Then,
the zero-mean Gaussian white noise with the standard devi-
ation ρ = 0.03 is added to each of them, and the corrupted
image corresponding to Fig. 5(b) is shown in Fig. 5(c). The
number of iterations for CSM is set to k = 1, 3, and 5. The
results for different methods are tabulated in Table II. It can be
seen that in the presence of noise, none of these methods can
obtain an exact solution. Among them, the CSM (k = 3 and 5)

TABLE II

RESULTS OF DIFFERENT METHODS FOR THE CYCLIC
SHIFT IMAGES WITH NOISE

method achieves the best results in all three metrics, while the
performance of the SVD method is the worst, which implies
that the SVD method is susceptible to noise. The result of
Stone’s method is exactly the same as that of CSM (k = 1),
since they are both based on the least squares method. It is
worth noting that the performance of CSM is improved with
the increasing number of iterations, which indicates that the
iteration strategy presented in the step of fine registration is
indeed effective.

B. Images With Known Offsets

In this section, we use several real image pairs with known
offsets to evaluate the performance of CSM. The original
images used in this section are high-resolution images from
the Gaofen-2 (GF-2) satellite with a 4 m×4 m resolution and a
size of 6900×7300 pixels. In order to evaluate the algorithms
quantitatively, we use the following method to obtain the
ground truth of the sub-pixel shifts: we first crop two sub-
images to size 1290×1290 from the original image at intervals
of s pixels. Then, we down-sampled the image pair by a factor
of k. As a result, the shift of the new image pair becomes s/k
pixels. The value of k is set to 10 in all experiments.

In addition, two kinds of down-sampling methods are used
in this paper: the mean down-sampling (MDS) method and
the directly down-sampling (DDS) method. The difference
between them is that MDS uses the average gray value of
a region, for example, the average gray value of a region size
10 × 10, to represent the region, while DDS picks out the
pixels in the top-left corner to represent the region.

In the following, we evaluate the effect of two dominant
error sources (aliasing and noise) on the sub-pixel phase
correlation methods. Experiments are carried out with a variety
of noise and aliasing, which are named the aliasing experiment
and noise experiment, respectively.

1) Aliasing Experiment: Three sub-images (1290 ×
1290 pixels) of the GF-2 satellite imagery, as shown
in Fig. 6(a)–(c), are selected as the original reference images.
For each of them, 50 matching images (1290 × 1290 pixels)
are cropped from the original images (6900 × 7300 pixels)
with the integer offsets ranging from 1 to 50 pixels by a step
of 1 pixel in both the x- and y-directions. To simulate the
effect of aliasing, we first apply a 2-D Gaussian function
with a support size of gs, which is set to 25 × 25, and
a standard deviation of ρ as the blurring kernel to the
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Fig. 6. Original and generated images used in experiments. (d)–(f) Value
of ρ is set to 2. (j)–(l) Value of ρg is set to 0.03. (a) Sub-image 1 used in
the aliasing experiment (1290 × 1290). (b) Sub-image 2 used in the aliasing
experiment (1290 × 1290). (c) Sub-image 3 used in the aliasing experiment
(1290 × 1290). (d) Down-sampled image 1 with aliasing (129 × 129).
(e) Down-sampled image 2 with aliasing (129 × 129). (f) Down-sampled
image 3 with aliasing (129 × 129). (g) Sub-image 1 used in the noise
experiment (1290 × 1290). (h) Sub-image 2 used in the noise experiment
(1290 × 1290). (i) Sub-image 3 used in the noise experiment (1290 ×
1290). (j) Down-sampled image 1 with noise (129 × 129). (k) Down-sampled
image 2 with noise (129 × 129). (l) Down-sampled image 3 with noise
(129 × 129).

original reference and matching images. Then, 150 image pairs
(129 × 129 pixels) used in the experiment can be generated
by each of the two down-sampling methods described above.
By controlling the value of ρ , we could change the amount of
aliasing. In the experiment, the value of ρ ranges from 0 to 5
in steps of 0.5 and the generated data where ρ = 2 are shown
in Fig. 6(d)–(f). Also, the number of iterations k of the CSM
method is set to k = 1, 3, and 5, where k = 1 means that
there is no iteration. We use the results of all the 150 image
pairs for error statistics, and the error curves with respect to
the variance (ρ ) are plotted in Fig. 7. Since the DFT method
can only solve the translation problem of integer pixels, its
result will not be included in the figure.

As can be seen, in the case of MDS, the curves of the
three metrics (average error, maximum error, and standard
derivation) are relatively flat. It means that the performances of
these methods are all insensitive to the degree of aliasing when
MDS is adopted. However, their performance can be greatly
improved as the value of ρ increases in the DDS situation.

The accuracy of the DFT method can be improved by intro-
ducing an up-sampling operation, and on the whole, the curves
of DFT-US show a relatively flat trend. Similarly, after the
introduction of the Ransac algorithm, the SVD-Ransac method
has a better performance than SVD, as shown in Fig. 7.
As expected, the performance of Stone’s method and CSM
(k = 1) are exactly the same.

The CSM method with k = 3 and 5 outperforms all the other
methods for all the metrics, which indicates that the iteration
strategy in the CSM algorithm is effective in real image cases.
It is worth noting that the results of CSM (k = 3) are almost
the same as that of CSM (k = 5), which means that CSM can
obtain a good performance without too many iterations.

2) Noise Experiment: In this section, we select three dif-
ferent sub-images (1290 × 1290) from the GF-2 satellite
imagery, which are shown in Fig. 6(g)–(i), as the original
reference images and generate the image pairs (129 × 129)
in the same way as Section III-B1. After normalizing the
image value into [0, 1], a zero-mean Gaussian white noise
with a standard variance of ρg is added into all the image
pairs to analyze the influence of noise on the performance of
the methods. In this experiment, the value of ρg ranges from
0 to 0.05 in steps of 0.005. The images with ρg = 0.03 are
shown in Fig. 6(j)–(l). The number of iterations, k, for CSM
is also set to k = 1, 3, 5. The results of the 150 image pairs
are used for statistics, and the error curves of the different
methods with respect to ρg are shown in Fig. 8.

As can be seen, when ρg = 0, which means there is no noise
in the images to be matched, none of the methods can obtain
an exact solution. Among them, the CSM method achieves
the best results in all three metrics for both the MDS and
DDS situations. In addition, the performance of CSM with
k = 3 and 5 is obviously better than others, which again
indicates the effectiveness of the iteration strategy.

Different from aliasing, the influence of noise is significant
on the sub-pixel shift estimation. With an increase of ρg , all
the methods tend to deteriorate, and the trend is more obvious
in the DDS situation. As can be seen from Fig. 8, although
the precision of DFT-US is not very high, it has a strong
anti-noise performance. The SVD method and SVD-Ransac
perform well when ρg is small. However, they are susceptible
to noise and their results significantly become worse as ρg

grows. Stone’s method shows the same performance as that of
CSM (k = 1), which is as expected.

Of all the methods, CSM surpasses all the others, especially
when k = 3 and 5. The performance of CSM with k =
3 and 5 is almost the same in the MDS situation. However, for
DDS, the difference between the methods gradually becomes
apparent with the increase of ρg . The possible reason is that
the DDS mode cannot reduce the influence of noise, while
the average down-sampling operation in MDS can improve
the signal-to-noise ratio of data. Therefore, when the image
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Fig. 7. Results of the aliasing experiment. The legend “CSM(k)” indicates the number of iterations of the CSM algorithm. The results of the DFT method
are not plotted for a better visualization. (a) Mean error in the MDS case. (b) Max error in the MDS case. (c) Standard derivation in the MDS case. (d) Mean
error in the DDS case. (e) Max error in the DDS case. (f) Standard derivation in the DDS case.

Fig. 8. Results of the noise experiment. The legend “CSM(k)” indicates the number of iterations of the CSM algorithm. The results of the DFT method are
not plotted for a better visualization. (a) Mean error in the MDS case. (b) Max error in the MDS case. (c) Standard derivation in the MDS case. (d) Mean
error in the DDS case. (e) Max error in the DDS case. (f) Standard derivation in the DDS case.

is heavily corrupted by noise, more iterations in CSM are
required in the case of DDS to obtain a better result.

In addition, the computational time of all these methods
is demonstrated in Table III. All the algorithms mentioned
above are programmed in MATLAB on a computer with
3.0-GHz CPU and 8-GB memory. From the table, we can

see that: 1) the computational time required for all methods
is relatively short, and the computational complexity of DFT
is the lowest due to its simplicity and 2) the time cost of
CSM with k = 1 is comparable with other methods. And,
the computational time of CSM(k) grows linearly with the
number of iterations k.
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TABLE III

COMPUTATIONAL TIME OF DIFFERENT METHODS

Fig. 9. False color image of farmland data (R: 596.70 nm, G: 545.90 nm,
and B: 451.10 nm).

C. Real Hyperspectral Image

As mentioned above, there may exist sub-pixel offsets
between different bands in an image which is acquired by
the push-broom imaging spectrometer, so it is necessary to
estimate and calibrate the offset to prevent spectral distortion.
In this section, the hyperspectral image acquired by push-
broom hyperspectral imaging (PHI) in Japan is used to eval-
uate the performance of the CSM algorithm.

The PHI spectrometer was developed by the Shanghai
Institute of Technical Physics, Chinese Academy of Sciences.
The data are composed of 80 bands with the wavelength
ranging from 411.9 to 832.79 nm. The scene in the image
is covered by a variety of farmland and is thus referred to
as farmland data. The original size of the farmland data is
350 × 570 pixels and we crop a 129 × 129 pixels sub-image
to conduct the experiment. The false color image is shown
in Fig. 9.

The 4th and 35th bands of the farmland data are shown
in Fig. 10. As can be seen from the corresponding local
magnification images, compared to band 4, band 35 is slighter
higher in the vertical direction, and there is no obvious offset
in the horizontal direction.

The experimental process can be described as follows: we
first choose a certain band of the data as the reference image
A and choose another band as the image B to be matched.
Then, CSM (k = 5) is applied to these two images and we can
obtain the pixel offsets (xs, ys) in both the x- and y-directions.
Finally, we generate the calibrated image �B by cyclically
shifting the image B according to (xs, ys).

Fig. 10. Translation matching experiment between different bands for the
PHI farmland data. (a) Reference image A (band 4). (b) Local magnification
of A. (c) Image B to be matched (band 35). (d) Local magnification of B.
(e) Calibrated image �B (band 35). (f) Local magnification of �B

Fig. 11. Displacement between different bands for the PHI farmland data.
Band 4 is chosen as the reference band.

When selecting band 4 as the reference image A and
band 35 as the image B, the offset obtained by the CSM
method is (0.07, 1.24), which is roughly consistent with visual
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inspection. The calibrated image �B is shown in Fig. 10(e), and
it can be seen that image �B and the reference image A are well
aligned in both the horizontal and vertical directions.

Furthermore, we use band 4 as the reference image A and
calculate a series of offsets from band 5 to band 54. The result
is shown in Fig. 11. It can be seen that the displacement
between the image pairs gradually increases with the band
number. Therefore, in order to ensure the correctness of the
spectra, it is necessary to carry out the translation calibration
between different bands, and the presented CSM method will
be a good choice.

IV. CONCLUSION

In this paper, by introducing the cyclic shift matrix, we pro-
pose the CSM method to address the sub-pixel TMP. Then,
we give the necessary conditions on which the traditional
phase-based translation matching algorithms can achieve an
exact solution, that is, the images to be matched must have a
cyclic shift relationship. In addition, with the introduction of
the CSM, it is convenient for us to carry out the cyclic shift of
arbitrary sub-pixels, which motivates us to propose an iterative
version of CSM to further improve the matching accuracy.
Experiments with simulated and real data demonstrate the
superiority of the iterative CSM method. In addition, besides
the TMP, CSM could also be used to deal with the rotation
matching problem. We believe that the CSM will play an
important role in the image matching field.

ACKNOWLEDGMENT

The author (X. Geng) would like to thank his most respected
uncle Dekun Geng (1949–2019) for his long-term love and
encouragement. His uncle will live forever in his heart.

REFERENCES

[1] T. Heid and A. Kääb, “Evaluation of existing image matching methods
for deriving glacier surface displacements globally from optical satellite
imagery,” Remote Sens. Environ., vol. 118, pp. 339–355, Mar. 2012.

[2] H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase cor-
relation to subpixel registration,” IEEE Trans. Image Process., vol. 11,
no. 3, pp. 188–200, Mar. 2002.

[3] J. G. Liu and H. Yan, “Phase correlation pixel-to-pixel image co-
registration based on optical flow and median shift propagation,” Int.
J. Remote Sens., vol. 29, no. 20, pp. 5943–5956, 2008.

[4] Y.-H. Jiang, G. Zhang, X.-M. Tang, D. Li, W.-C. Huang, and
H.-B. Pan, “Geometric calibration and accuracy assessment of ZiYuan-3
multispectral images,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7,
pp. 4161–4172, Jul. 2014.

[5] S. Leprince, S. Barbot, F. Ayoub, and J.-P. Avouac, “Automatic and pre-
cise orthorectification, coregistration, and subpixel correlation of satellite
images, application to ground deformation measurements,” IEEE Trans.
Geosci. Remote Sens., vol. 45, no. 6, pp. 1529–1558, Jun. 2007.

[6] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: A technical overview,” IEEE Signal Process. Mag.,
vol. 20, no. 3, pp. 21–36, May 2003.

[7] C. Kuglin, D. A. Hines, C. Kuglin, C. D. Kuglin, D. C. Hines, and
D. Hines, “The phase correlation image alignment method,” in Proc.
Int. Conf. Cybern. Soc., 1975, pp. 163–165.

[8] I. E. Abdou, “Practical approach to the registration of multiple frames
of video images,” Proc. SPIE, vol. 3653, pp. 371–382, Dec. 1998.

[9] V. Argyriou and T. Vlachos, “A study of sub-pixel motion estimation
using phase correlation,” in Proc. Brit. Mach. Vis. Conf., Edinburgh,
U.K., Sep. 2006, pp. 387–396.

[10] J. Xie, F. Mo, C. Yang, P. Li, and S. Tian, “A novel sub-pixel matching
algorithm based on phase correlation using peak calculation,” Int. Arch.
Photogram. Remote Sens., vol. XLI-B1, pp. 253–257, Jul. 2016.

[11] J. Ren, J. Jiang, and T. Vlachos, “High-accuracy sub-pixel motion
estimation from noisy images in Fourier domain,” IEEE Trans. Image
Process., vol. 19, no. 5, pp. 1379–1384, May 2010.

[12] Q. Tian and M. N. Huhns, “Algorithms for subpixel registration,”
Comput. Vis. Graph. Image Process., vol. 35, no. 2, pp. 220–233, 1986.

[13] M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel
image registration algorithms,” Opt. Lett., vol. 33, no. 2, pp. 156–158,
2008.

[14] H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast
direct Fourier-based algorithm for subpixel registration of images,” IEEE
Trans. Geosci. Remote Sens., vol. 39, no. 10, pp. 2235–2243, Oct. 2001.

[15] J. G. Liu and H. Yan, “Robust phase correlation methods for sub-pixel
feature matching,” in Proc. 1st Conf. Syst. Eng. Auton. Syst., 2006,
p. A13.

[16] H. Foroosh and M. Balci, “Sub-pixel registration and estimation of local
shifts directly in the Fourier domain,” in Proc. Int. Conf. Image Process.,
vol. 3, Oct. 2004, pp. 1915–1918.

[17] W. S. Hoge, “A subspace identification extension to the phase corre-
lation method,” IEEE Trans. Med. Imag., vol. 22, no. 2, pp. 277–280,
Feb. 2003.

[18] Y. Keller and A. Averbuch, “A projection-based extension to phase
correlation image alignment,” Signal Process., vol. 87, no. 1,
pp. 124–133, 2007.

[19] O. R. Chum and J. Matas, “Optimal randomized RANSAC,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 8, pp. 1472–1482, Aug. 2008.

[20] X. Tong et al., “A novel subpixel phase correlation method using
singular value decomposition and unified random sample consensus,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4143–4156,
Aug. 2015.

[21] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm,
“USAC: A universal framework for random sample consensus,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 2022–2038,
Aug. 2013.

[22] H. Wang and D. Suter, “MDPE: A very robust estimator for model
fitting and range image segmentation,” Int. J. Comput. Vis., vol. 59,
no. 2, pp. 139–166, 2004.

[23] P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain
approach to registration of aliased images with application to super-
resolution,” EURASIP J. Adv. Signal Process., vol. 2006, no. 1, 2006,
Art. no. 071459.

[24] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

Xiurui Geng received the Ph.D. degree in hyper-
spectral remote sensing from the Institute of Remote
Sensing Applications, Chinese Academy of Sci-
ences, Beijing, China, in 2005.

He is currently a Professor with the Key Lab-
oratory of Technology in Geo-spatial Information
Process and Application Systems, Institute of Elec-
tronics, Chinese Academy of Sciences. His research
interests include pattern recognition, machine learn-
ing, and matrix theory.

Weitun Yang received the B.S. degree in electri-
cal engineering from Tsinghua University, Beijing,
China, in 2014, and the M.S. degree in signal
processing form the Institute of Electronics, Chinese
Academy of Sciences, Beijing, in 2017, where he is
currently pursuing the Ph.D. degree with the Key
Laboratory of Technology in Geo-spatial Informa-
tion Process and Application Systems.

His research interests include hyperspectral target
detection, image registration, and machine learning.


