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Monitoring and Predicting Agricultural Droughts
for a Water-Limited Subcontinental Region by

Integrating a Land Surface Model and
Microwave Remote Sensing

Yohei Sawada , Toshio Koike, Eiji Ikoma, and Masaru Kitsuregawa, Fellow, IEEE

Abstract— Agricultural drought monitoring and prediction
technology are urgently needed. We applied an ecohydrological
land data assimilation system (LDAS), which can simulate soil
moisture and leaf area index (LAI) by data assimilation of
microwave brightness temperature into a land surface model
(LSM), to monitor and predict agricultural droughts in North
Africa. We successfully monitor nationwide crop failures, which
are characterized by the declines of the nationwide wheat
production, in Morocco, Algeria, and Tunisia using LAI and
soil moisture calculated by the LDAS. Our simulated LAI is well
correlated with the nationwide wheat production (r = 0.70, 0.65,
and 0.72 in Morocco, Algeria, and Tunisia, respectively). A gen-
eral circulation model (GCM)-based seasonal meteorological
prediction significantly contributes to accurately predicting LAI
and agricultural droughts in 2–3-month lead time. In addition,
it is found that initial conditions have an important role in
predicting LAI. We demonstrate the capability of our framework
to monitor and predict agricultural drought in North Africa. Our
proposed framework can contribute to mitigating the negative
impact of drought on agriculture in poorly gauged water-limited
subcontinental regions.

Index Terms— Drought, land data assimilation, passive
microwave remote sensing.

I. INTRODUCTION

MONITORING and predicting severe agricultural
droughts are the grand challenges in hydrometeorology.

In the twenty-first century, many severe droughts significantly
damaged national and regional crop production [1]–[3].
Agricultural drought monitoring and prediction technologies
to mitigate drought risks are urgently needed. In this article,
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we define agricultural drought as the scarcity of root-zone
soil moisture and the associated decline of the vegetation
growth rate and crop production.

We recommend three requirements which the agricultural
drought monitoring and prediction system should have. First,
the agricultural drought monitoring system needs to explicitly
simulate vegetation states and accurately reproduce regional
cereal crop production by a land surface model (LSM).
Although agricultural drought has been quantified by the lack
of soil water supply in [4] and [5], it is more useful to
monitor both root-zone soil moisture and vegetation states
simultaneously. Their estimated vegetation indices such as leaf
area index (LAI) in the LSM’s grid scale should be well
correlated with cereal crop production to develop the empirical
relationship for the prediction of regional and national crop
production. Extreme climate conditions such as precipitation
deficiency induce soil moisture deficiency causing plant water
stress, decline of vegetation growth, and agricultural drought
(see [4], [5]). To deliver appropriate information to deci-
sion makers, farmers, pastoralists, and others in the middle
of drought, this drought propagation which includes both
hydrological and ecological processes should be thoroughly
monitored.

Second, the agricultural drought prediction system needs
to dynamically forecast the conditions of soil moisture and
vegetation in 1–3-month lead time using GCM-based seasonal
prediction. Despite the intensive applications of seasonal pre-
diction products to predict crop production, there are signifi-
cant errors in the skill of GCMs to forecast drought onsets [6].
The applicability of the climate model’s seasonal predic-
tion to the simulation of vegetation growth related to cereal
crop production should be evaluated. Seasonal prediction of
vegetation conditions related to cereal crop production in
1–3-month lead time is beneficial to stakeholders who need
to prepare the drought adaptation plan.

Third, the role of initial conditions of vegetation and soil
moisture in agricultural drought prediction should be inves-
tigated. It is important for drought prediction to obtain an
accurate initial condition. The errors in land surface pre-
diction by LSMs arise from uncertainty of three factors:
initial land surface conditions (e.g., soil moisture), meteo-
rological forcings (e.g., precipitation), and model structure.
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Wood and Lettenmaier [7] evaluated the relative importance
of initial conditions and meteorological forcings in seasonal
hydrological prediction assuming that there are no errors in
model structure. They found that initial conditions are more
important than meteorological forcings for the streamflow
prediction skill for up to 5 months in some cases (see also
[8]). The agricultural drought monitoring system should be
designed to provide accurate current land surface hydrological
and ecological conditions which can be used as initial con-
ditions for LSM-based drought prediction. Even if estimated
meteorological forcings were perfect, it might be difficult to
dynamically predict vegetation conditions without accurate ini-
tial conditions of vegetation and soil moisture. In other words,
it is expected that in the medium-term (i.e., 1–3 months)
forecast, accurate initial conditions can mitigate the negative
effects of the biases in seasonal meteorological prediction.
It is important to quantify the predictability of agricultural
droughts for an operational application of the agricultural
drought prediction system.

Despite a lot of efforts to develop operational drought
monitoring systems, to our best knowledge, no operational
agricultural drought monitoring and prediction systems meet
the requirements stated above. Sheffield et al. [9] developed
the Princeton African Drought monitor which provides the
near-real-time monitoring of soil moisture, evapotranspiration,
runoff, and streamflow in Africa by driving the LSM. Although
this system monitors the complete set of land hydrological
states effectively, its LSM cannot explicitly predict vegetation
growth and senescence related to cereal crop production.
At this moment, the Princeton African Drought monitor pro-
vides the land surface hydrological prediction in 7-day lead,
which is not long enough to deliver the effective guidance
to prepare agricultural droughts. McNally et al. [10] devel-
oped the Famine Early Warning Systems Network Land Data
Assimilation System (FLDAS). The FLDAS drives multi-
LSMs by multi-meteorological forcing data sets to provide the
complete set of land hydrological states. However, ecological
modeling is not included in their LSM and no seasonal
prediction is provided in the FLDAS. In addition, there are
few studies which evaluated the role of initial conditions for
ecologic and cereal crop prediction in the previous literature.

While drought monitors cited above are based on LSMs,
satellite land surface observation is also an important technol-
ogy which has contributed to monitoring drought. Microwave
brightness temperature is sensitive to surface soil moisture
and vegetation water content (VWC) [11]–[13], both of which
are important variables for agricultural drought monitoring.
Microwave land surface observation has an all-weather capac-
ity (i.e., observations are not affected by atmospheric con-
ditions) so that land surface can be monitored frequently.
Therefore, the all-weather satellite microwave observations
were widely used for drought monitoring [14]. However,
root-zone soil moisture cannot be directly observed by satel-
lite observation although water dynamics in root-zone soil
is crucially important to monitor and predict agricultural
drought. In addition, it is generally difficult to predict the
future conditions of soil moisture and vegetation only by
the temporally coarse satellite observations. Therefore, it is

expected that the complete set of the vegetation condition and
the soil moisture’s vertical profile is accurately estimated as
the temporally continuous data by combining the LSMs and
satellite observations for agricultural drought monitoring and
prediction system.

An LDAS can effectively combine LSM simulations with
observations to obtain the accurate model states and/or LSM’s
unknown parameters. The LDAS is useful to improve the skill
to monitor droughts. In addition, the outputs of LDAS are
expected to be appropriate initial conditions for LSM-based
prediction. Recently, the LDAS technology was applied to
the LSMs which can simultaneously calculate soil moisture
and vegetation growth. Ines et al. [15] assimilated remotely
sensed soil moisture and LAI into an LSM using ensemble
Kalman filter (EnKF) to update model state variables and
improve the simulation of maize yields. Liu et al. [16]
assimilated active and passive microwave observations into an
LSM and provided a proof-of-concept synthetic experiment
to demonstrate the potential of assimilating both active and
passive microwave observations in the LDAS to accurately
simulate soil moisture and biomass in a rain-fed soybean agri-
cultural system. Barbu et al. [17] simultaneously assimilated
remotely sensed soil moisture and LAI observations into an
LSM and demonstrated the possibility to improve the skill
to monitor drought using the LDAS. Sawada and Koike [18]
and Sawada et al. [19] assimilated passive microwave bright-
ness temperatures observed by Advanced Microwave Scan-
ning Radiometer for Earth Observing System (AMSR-E) and
AMSR2, which are sensitive to both surface soil moisture and
VWC, into an LSM to improve the skill to simulate both
soil moisture and vegetation dynamics. These ecohydrological
LDASs which can simultaneously estimate soil moisture and
vegetation dynamics (i.e., LAI) related to cereal crop produc-
tion are promising tools to monitor and predict agricultural
droughts.

In this article, we drove the LDAS using observed and
predicted meteorological forcings to monitor and predict agri-
cultural droughts. Our objectives are to answer the following
questions: 1) can the LDAS reproduce the nationwide crop
production of the water-limited subcontinental region? 2) is
the state-of-the-art GCM seasonal prediction useful to predict
vegetation dynamics and agricultural droughts? and 3) how
important are initial conditions to predict vegetation conditions
during agricultural droughts compared with meteorological
forcing uncertainties?

II. METHODS AND MATERIALS

A. Coupled Land and Vegetation Data Assimilation
System (CLVDAS)

The CLVDAS [18], [19] has been developed to improve
the skill of an LSM to simultaneously simulate soil mois-
ture and vegetation dynamics. The LSM of the CLVDAS,
EcoHydro-SiB [18], can simultaneously simulate surface soil
moisture, root-zone soil moistures, and vegetation states. In a
microwave band, the permittivity of liquid water is much
higher than that of dry matter. Emissivity in the microwave
region strongly depends on soil wetness and VWC so that
passive microwave brightness temperatures, surface physical
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temperatures multiplied by emissivity, in C- and X-bands are
sensitive to liquid water in soil and vegetation (see [11]–[13],
[20]–[22]). The all-weather capability of microwave remote
sensing to observe terrestrial water and vegetation is useful
to be assimilated to improve the skill of an LSM. Using a
radiative transfer model (RTM) as an observation operator,
the CLVDAS can assimilate passive microwave brightness
temperatures observed by AMSR-E and AMSR2 into the
LSM. The particle filter (PF) data assimilation method can
improve the skill of the LSM to simulate surface soil moisture,
root-zone soil moisture, and LAI by using the relationships
between state variables from ensemble simulations.

1) Land Surface Model: EcoHydro-SiB: EcoHydro-SiB is
the LSM of the CLVDAS. EcoHydro-SiB solves vertical
interlayer water flows using a 1-D Richards equation [23]

∂θ(z, t)

∂ t
= −∂qvertical

∂z
+ r(z, t) (1)

qvertical = −K (θ, z)

�
∂ψ(θ)

∂z
− 1

�
(2)

where t is the time, z is the distance from the surface with pos-
itive values increasing vertically downwards (m), θ(z, t) is the
volumetric water content (m3/m3), r(z, t) is the source or sink
by evaporation and transpiration, qvertical is the soil moisture
flux in the vertical direction (m3s−1m−2), ψ(θ) is the capillary
suction (m), and K (θ, z) is the hydraulic conductivity (m/s).
Capillary suction and hydraulic conductivity are calculated by
the van Genuchten’s water retention model [24]

ψ(θ) = 1

α
(S1/m)1/n (3)

K (θ, z)/Ks(z) = S1/2[1 − (1 − S1/m)m]2 (4)

S = (θ − θr )/(θs − θr ) (5)

m = 1 − 1/n (6)

where Ks is the saturated hydraulic conductivity (m/s), θr is
the residual water content (m3/m3), and θs is the saturation
water content or porosity (m3/m3). α and n are the model
parameters.

EcoHydro-SiB estimates vegetation growth and senescence.
In the grassland and cropland case, carbon-pool dynamics are
modeled by the following equations:

dCleaf

dt
= aleaf NPP − (dleaf + γ + λ)Cleaf (7)

dCroot

dt
= aroot NPP − drootCroot (8)

where Cleaf and Croot are the carbon pools of leaves and
roots, respectively [kg/m2], aleaf and aroot are the carbon
allocation fractions of leaves and roots, respectively, and
aleaf + aroot = 1. NPP is the net primary production (mol
m−2 s−1), dleaf and droot are the normal turnover rates of
leaves and roots, respectively, and γ and λ are the water-
and temperature-related stress factors for leaves, respectively.
NPP is calculated by the SiB2 photosynthesis-conductance
model [25]. NPP obtained by photosynthesis is allocated into
aboveground (Cleaf) and belowground Croot biomass by the
carbon allocation fractions (aleaf and aroot). Our carbon allo-
cation fractions are calculated following the method of [26].

Both aboveground biomass and belowground biomass are
decreased by the normal turnover. In addition, the aboveground
biomass is decreased if the water-related and/or temperature-
related stress exists.

The water-related stress factor is derived from the vertical
distribution of soil moisture following the method of [27]:
βT (i) = min

�
1,max

�
0,
θi − θw

θo − θw

��
(9)

βTOT =
N�

i=1

βT (i)× [Y (	zi × i)− Y (	zi × (i − 1))] (10)

Y (d) = 1 − Bd (11)

where βT (i) is the Soil Moisture Index (SMI) of the i th soil
layer, θi is the volumetric soil moisture of the i th soil layer,
θw is the wilting point, and θo is the point of stress onset.
To obtain θw and θo, we specify the corresponding suction
value and inversely solve (3) and (5). βTOT is calculated by
aggregating the SMI in the soil layers, weighted by the root
biomass fraction, Y, as in the model of Jackson et al. [28] given
by (11). N is the number of soil layers, and 	zi is the depth
of each. Y (d) is the cumulative root fraction from the surface
to depth d (cm), and B is an empirical parameter that is <1.
Please note that a root zone is not set to a specific single soil
layer in the EcoHydro-SiB. The contributions of soil moisture
in each soil layer to vegetation dynamics are calculated using
the cumulative root fraction function. The water-related stress
factor, γ , is calculated by

γ = γmax(1 − βTOT)
4 (12)

where γmax is the maximum stress loss (see [27]).
EcoHydro-SiB uses the empirical linear relationship

between a carbon pool of leaves and LAI suggested by
Calvet et al. [29]

LAI = SLA × Cleaf (13)

where SLA is the specific leaf area that indicates leaf thick-
ness (m2/kg). Passive microwave observations are sensitive to
VWC, and LAI cannot directly be observed by microwave
remote sensing. Therefore, it is necessary that LAI is converted
to VWC in order to improve the skill to simulate LAI by
assimilating microwave signals. Paloscia and Pampaloni [20]
proposed the empirical relationship between LAI and VWC

VWC = exp

�
LAI

y

�
− 1. (14)

This relationship has been validated in the previous literature
by using in situ observation data (see [13]). It has been found
that (14) can be applied to the VWC retrieval from microwave
brightness temperature in a semiarid region [22]. However,
there is the uncertainty in parameter y, which depends on
the structure of vegetation, and we chose the value proposed
originally by [20] (=3.3). This value has also been used by
the previous studies on CLVDAS [19], [20].We used (14) to
calculate VWC which is one of the input variables in the RTM
(see the following).

Soil hydraulic parameters (Ks , θs , α, n,) are retrieved from
a soil database (see Section II-B). The other parameters related
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to vegetation dynamics such as dleaf, droot, γmax , θw, θo, and
SLA are retrieved based on [27] (see also [5, Table 1]).

In each timestep, the original SiB2 submodels of aerody-
namics and phosynthesis conductance [24] are first driven to
obtain the water source term r(z, t) (i.e., transpiration and
evaporation), NPP, and the other heat fluxes. Then, stress
factors are calculated by solving (9)–(12) with a soil moisture
vertical profile at the previous timestep. (Note that how to
calculate the temperature stress factor is omitted in this article
since the temperature stress is not important in our study area.)
The carbon allocation fractions are also calculated. By using
NPP, stress factors, allocation fractions, and normal turnover
rates, we solve (7) and (8) by the forward Eular method
and update the carbon biomass. The soil moisture state is
also updated by numerically solving (1)–(6) with the water
source term r(z, t) which has been calculated by the SiB2
submodel [24]. The complete description of the LSM can be
found in [18] and [19].

2) Radiative Transfer Model: To directly assimilate bright-
ness temperatures into the model instead of assimilating
derived soil moisture and vegetation products, an RTM is
needed to convert the land surface conditions to microwave
brightness temperatures. The inputs of the RTM are surface
soil moisture, surface soil temperature, canopy temperature,
and the VWC. All of them are calculated by the LSM,
EcoHydro-SiB.

The microwave radiative transfer of a land surface and
a vegetation canopy is calculated by the omega-tau model
proposed by Mo et al. [30]:
T p. f

b = T p, f
bs exp(−τc)+ (1 − ωc)Tc(1 − exp(−τc))

+ Rp, f (1 − ωc)Tc(1 − exp(−τc)) exp(−τc) (15)

where T p, f
b is the brightness temperature at radiometer level

(note that we neglect atmospheric contributions), T p, f
bs is

the brightness temperature at ground level T p, f
bs = (1 −

Rp, f )Ts , Ts and Tc are the physical land surface and canopy
temperatures, respectively, ωc is the single scattering albedo
of the canopy, Rp, f is the reflectivity of the land surface,
and subscript p and f indicates the polarization (vertical or
horizontal), and frequency, respectively. τc is the vegetation
optical depth (VOD), which is calculated using

τc = b�λx
c VWC

cos θ
(16)

where b� is the vegetation parameter that does not depend on
wavelength (λc), x is a parameter that shows a dependence
on wavelength (in shorter wavelength, microwave is easier
to be attenuated by the vegetation water content), and θ
is the incident angle. Equation (16) relates the vegetation
dynamics calculated by the LSM with microwave brightness
temperature. This linear relationship between VOD and VWC
was found by [31]

Land surface emissivity (= 1 − Rp, f ) is calculated by an
advanced integral equation model (AIEM) with the incorpo-
ration of a shadowing effect [32]. Since the AIEM calculates
the dielectric constant of the soil–water mixture, land surface
emissivity is the function of surface soil moisture. This part

of the RTM relates the surface soil moisture calculated by the
LSM with microwave brightness temperature.

3) Data Assimilation: First, the CLVDAS optimizes the
unknown parameters of the RTM and EcoHydro-SiB. The
parameter optimization module of the CLVDAS searches
the optimal parameters by minimizing the cost function
defined as a squared difference between simulated and
observed brightness temperatures. The shuffled complex evo-
lution method [33] is used as an optimization method. In this
module a long time window (>1 year) is chosen, because
model parameters do not change in a short period of time.
Sawada and Koike [18] provided a detailed description of
the parameter optimization scheme. Porosity, hydraulic con-
ductivity, a parameter n of the van Genuchten formula [see
(6)], maximum rubisco capacity of top leaf, and correlation
length of surface soil roughness were optimized (see [18],
[19] for the detail description of these parameters). Sawada and
Koike [18] found that simulated passive microwave brightness
temperatures were sensitive to these parameters in the semiarid
region. Although Sawada and Koike [18] proposed the parame-
ter selection algorithm which can quantitatively estimate the
sensitivity of the model parameters to estimated microwave
brightness temperatures, this algorithm was not used in this
article since it is computationally intensive.

Second, the CLVDAS sequentially adjusts the model states,
which are soil moistures of all soil columns and LAI. A PF is
used as a data assimilation method. In this module, a short time
window (5 days) is chosen. The same observations are used
twice in the parameter optimization scheme and PF. Please
see Sawada et al. [19] for complete descriptions of the data
assimilation method.

In comparison with the Kalman filter, including the EnKF,
the advantage of the PF is that the prior and posterior distri-
bution of the model state can be represented by Monte Carlo
samples and the Gaussian assumption is not needed. The PF is
more robust than the KF when the model physics is nonlinear.
Although the disadvantage of the PF is its high computational
cost, it is feasible to apply the PF to a 1-D LSM. In essence,
the PF is simply a Monte Carlo estimation of Bayes’ theorem

p(xt |y1:t ) ∝ p(yt |xt)p(xt |y1:t−1) (17)

where p(xt |y1:t) is the probability of the state x at time t ,
given all observations up to time t . The prior knowledge,
p(xt |y1:t−1), based on the model estimation is updated using
the likelihood with the new observation at time t, p(yt |xt),
to obtain the posterior PDF of the state. In the PF, the two
factors in the right hand side of (17) are obtained by an
ensemble calculation of a numerical model f

p(xt |y1:t−1) ≈ 1

N

N�
i=1

δ(xt − f (xi
t−1)) (18)

p(yt |xt ) = g(yt |xt) (19)

where N is the ensemble size, xi is the realization of the
state provided by the ensemble member i, and δ() is the Direc
delta function. The function g is the potential function. In the
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CLVDAS, the non-Gaussian potential function is chosen as g

g = exp(−COST) (20)

COST = 1

Nobs

�
t∈twindow

�
p=V ,H

�
f =6.9 GHz,10.7 GHz,18.7 GHz�

T p, f
b,est − T p, f

b,obs

�2

�
σ + �

T p, f
b,est − T p, f

b,obs

�2� (21)

where Nobs is the total number of satellite scans in the
assimilation window, twindow is the temporal length of the
assimilation window (5 days in this article), T p, f

b,est and T p, f
b,obs

are model-estimated [by (15) and (16)] and satellite-observed
brightness temperatures, respectively. We chose the Geman–
McClure type estimator [34] for the potential function. Para-
meter σ is set to 10 in this article. An observation error is
not explicitly prescribed in this estimator. We can adaptively
reduce the impact of assimilating observations if there are
large deviations between initial guess and observation so that
this estimator is relatively robust to outliers of observations
compared to the Gaussian likelihood function (see in [19,
Fig. S1]).

In the CLVDAS, the sampling-importance-resampling (SIR)
filter is adopted to implement the analysis update of (17).
Normalized weights are evaluated for each ensemble member
by

wi
t = p

�
yt |xi

t

�
	S

i=1 p
�

yt |xi
t
� . (22)

Then, the posterior is

p(xt |y1:t) ≈ 1

N

N�
i=1

wi
t δ

�
xt − f

�
xi

t−1

��
. (23)

Ensemble members which simulate microwave brightness
temperature more accurately [smaller COST in (21)] get larger
weights. The posterior is generated by resampling the ensem-
ble members according to their weights. In the resampling
step, the ensemble members with larger weights are sampled
more frequently than those with smaller weights. In addition
to this resampling step, the generic selection algorithm is
adopted to reject ensemble members which do not reproduce
observations very well before the resampling step. To prevent
the degeneracy phenomenon, in which all but one ensemble
member have negligible weights, we add the fluctuation to the
state variables of each ensemble member after the resampling
process. See Sawada et al. [19] for details of the implemen-
tation of the PF in the CLVDAS.

It should be noted that the state vector, x, includes soil
moisture of all soil layers and LAI

xi
t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
θ2
θ3
.
.
.
.
θrn

L AI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where θn is the nth soil moisture layer and rn (= 20 in this
article) is the total number of soil layers from the top of the
soil to the bottom of the root zone. As described above, surface
soil moisture θ1 and LAI are inputs of the RTM and sensitive
to passive microwave brightness temperature. By assimilating
microwave brightness temperature, we can modify surface soil
moisture and LAI in the data assimilation step. Although soil
moistures in the other soil layers, θ2,........,rn do not directly
affect microwave brightness temperature through the radiative
transfer process, the dynamics of surface soil moisture and
vegetation growth are strongly affected by root-zone soil
moisture in the LSM, as discussed above. Therefore, it can
be expected that the reasonable correlation between observable
variables (i.e., surface soil moisture and vegetation) and unob-
servable variables (i.e., deeper-layer soil moistures) is sampled
by ensemble members so that we can also modify the deeper-
layer soil moistures which are not directly observed.

B. Data

To obtain the initial guess of the model’s unknown soil
and vegetation parameters, the International Satellite Land
Surface Climatology Project 2 soil data [35] and the Food
and Agricultural Organization global dataset [36] were used.

The observed brightness temperatures are from the
AMSR-E L3 product from 2003 to 2010, which can be down-
loaded at https://gcom-w1.jaxa.jp/auth.html. We resampled the
data from a native resolution (0.1◦) to a resolution of 0.25◦ in
order to match it to the resolution of the meteorological forcing
dataset and the LSM (see below). Brightness temperatures at
6.925, 10.25, and 18.9 GHz were used since they are sensitive
to surface soil moisture and vegetation water content with
small atmospheric effects (see [37]). Both horizontally and
vertically polarized observations were used. We used only
descending pass (night scene) data in order to reduce the
effects of surface temperature errors. Although the observation
of AMSR-E has been stopped, it is expected that the long
record of microwave brightness temperature observations is
obtained by AMSR2, which may be useful for the future
operational applications (see Section IV-D).

To evaluate the skill of the CLVDAS to simulate phenology
(i.e., a yearly vegetation cycle), the Global Land Surface Satel-
lite LAI (GLASS LAI) [38] from 2003 to 2010 was used. The
data can be downloaded at http://www.glcf.umd.edu/data/lai/.
These LAI data are used just to evaluate the skill of our system
to simulate LAI and not used as input of the system. The
GLASS LAI is generated from Moderate Resolution Imaging
Spectroradiometer (MODIS) visible and infrared observations.
The native resolution of the GLASS LAI is 1 km, and we
resampled it to 0.25◦.

The nationwide crop production data for Morocco,
Algeria, and Tunisia were downloaded from FAOSTAT
(http://www.fao.org/faostat/en/#home) to detect country-scale
crop failures. The total wheat production of Morocco, Algeria,
and Tunisia from 2003 to 2010 was used. Since the simulated
LAI in each pixel cannot directly be compared with this
country-scale crop production data, we spatially averaged
the simulated LAI to be compared with wheat production.
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The relationship between the nationwide crop production and
the simulated LAI by the CLVDAS was evaluated.

As observed meteorological forcings to drive the CLVDAS,
the Global LDAS (GLDAS) v2.1 data [39], [40] from 2003 to
2010 were used. The GLDAS data can be downloaded
at http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings. The
GLDAS provides the complete set of meteorological forcings
to run LSMs. The meteorological forcing data of the GLDAS
have been widely used in the previous studies (see [41]–[45]).
The meteorological forcings used in this article are surface
pressure, precipitation, surface air temperature, relative humid-
ity, incoming shortwave radiation, incoming longwave radia-
tion, and wind speed. The horizontal resolution of these data
is 0.25◦. We linearly interpolated the 3-h data into hourly data.

To predict agricultural droughts using the LSM (EcoHydro-
SiB), the atmospheric seasonal prediction is needed. The Geo-
physical Fluid Dynamics Laboratory (GFDL) hindcast product
was used. Ensemble hindcasts were generated from 1980 to
present by driving the GFDL’s coupled ocean-atmospheric
model [46]. The hindcasts are initialized at the first day of
each month with 12-month lead time. This product provides
12 ensemble forecasts. This hindcast is a member of the North
American Multi-Model Ensemble (NMME) [47]. The data can
be downloaded at http://data1.gfdl.noaa.gov. We resampled the
monthly precipitation data from the native resolution to a
resolution of 0.25◦ using the bilinear interpolation method
[48], [49]. To use the GFDL monthly precipitation as the
input of the LSM which needs hourly meteorological forcings,
we corrected the GLDAS 3-h precipitation to match the GFDL
monthly precipitation every month, as done by [45] (see also
Section II-D).

C. Study Area

We applied the CLVDAS to North Africa including
Morocco, Algeria, and Tunisia (Fig. 2). Wheat is the major
cereal product in these three counties. The growing season of
wheat in the three counties is from January to May. Although
there are the irrigation activities, the rain-fed agriculture is
dominant.

D. Agricultural Drought Monitoring and Prediction

The study period was from 2003 to 2010. The spatial and
temporal resolutions of the LSM were set to 0.25◦ and 1 h,
respectively. The vertical resolution of the soil column was set
to 0.1 m, but the depth of the first surface soil layer was set
to 0.05 m, because the microwave land surface emissivity is
sensitive to the soil condition at the depth of less than 0.05 m

First, we optimized the unknown parameters of the
EcoHydro-SiB. We run the EcoHydro-SiB in the each model
grid from 2003 to 2010. Next, we implemented the sequential
data assimilation. The data assimilation module of the CLV-
DAS (see Section II-A) sequentially adjusted soil moistures
of the every soil column and LAI every 5 days. We used
256 ensemble members, which are shown to be a sufficiently
large ensemble size by [19], and the ensemble mean is shown
in this article as the other previous studies did (see [45],
[50]). In this article, the simulation with the data assimilation

is called reanalysis. On the other hand, the simulation with-
out any sequential data assimilations but with the parameter
optimization is called open loop (OL). We also used the
result of the simulation with no parameter optimization and
no sequential adjustment (NoDA) to discuss how the data
assimilation improves our simulation skill.

We validated the skill of the reanalysis to reproduce past
agricultural drought events by comparing the model-simulated
LAI with the nationwide wheat production data and the
satellite-observed LAI. Past agricultural drought events in
North Africa were identified by the yearly total wheat pro-
duction data of Morocco, Algeria, and Tunisia. The wheat
production was analyzed in this article since it is highly
sensitive to water availability. Then, we evaluated if these
country-scale agricultural droughts can be characterized by the
negative anomalies of the simulated LAI by the reanalysis in
the harvest season (April) assuming our simulated dynamics
of LAI is correlated with the nationwide wheat production.
We spatially averaged the simulated LAI to be compared
with the country-scale wheat production. In addition, we com-
pared the simulated LAI and the satellite observed LAI to
validate the skill of the data assimilation to improve the
simulation of vegetation dynamics. We discussed how data
assimilation improves the skill to simulate vegetation dynam-
ics by comparing the results of the OL and the NoDA with
those of the reanalysis.

To discuss the predictability of vegetation dynamics and
agricultural droughts, several hindcast experiments were
implemented. In these experiments, we assumed that soil mois-
tures and LAI simulated by the reanalysis were the surrogates
of the truth. Therefore, the skill of forecast experiments can
be evaluated by their deviation from the reanalysis timeseries
(smaller deviations mean better forecasts). First, we drove the
LSM with the initial conditions from the reanalysis using the
observed meteorological forcings [perfect prediction (PP)]. In
the PP, we assumed that the perfect initial conditions and the
perfect meteorological prediction were available.

Second, we drove the LSM with the initial conditions
in the targeted year from the reanalysis using the observed
meteorological forcings (i.e., GLDAS) of every year’s record
from 2003 to 2010 but the targeted year [Ensemble Stream
Prediction (ESP); see [7]]. In the ESP, we assumed that
the perfect initial conditions were available while there was
no skill to predict the future meteorological conditions and
forcings to land surfaces. Therefore, the prediction skill of
ESP is brought only by the initial condition.

Third, we drove the LSM with the initial conditions from
every year’s record from 2003 to 2010 using the observed
meteorological forcings in the targeted year [reverse ESP
(rESP); see [7]]. The initial condition in the targeted year
was not used. In the rESP, we assumed that the perfect
meteorological prediction was available while there was no
information about the initial conditions. The prediction skill
of rESP is brought only by the meteorological forcings.
By evaluating the skill of the ESP and the rESP, we can
discuss the importance of the initial conditions compared with
the predicted meteorological forcings for agricultural drought
prediction.
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TABLE I

SUMMARY OF FORECAST EXPERIMENTS

Fig. 1. Schematics of forecast experiments. (a) PP. (b) ESP. (c) rESP. See also Section II and Table I for details of these three experiments.

Finally, we implemented the Real Prediction (RP) in which
we drove the LSM using the GFDL seasonal prediction.
We used only GFDL monthly precipitation and every forcing
but precipitation is from the GLDAS because the temporal
resolution of GFDL data is too coarse to drive the LSM,
and there are not all necessary meteorological forcings in the
GFDL data. We corrected the GLDAS 3-h precipitation to
match the GFDL monthly precipitation every month, as done
by Sawada and Koike [45].

Table I summarizes the settings of our prediction experi-
ments, and Fig. 1 shows the schematics of the PP, ESP, and
rESP. As discussed above, we assumed that the reanalysis
can be considered as accurate land surface conditions. Since
satellite observations are assimilated into the model-estimated
water and vegetation, the reanalysis might be accurate enough

to be used as a surrogate of the truth. We specified the
time when the forecast was initiated. In the PP and ESP,
we sampled the initial conditions from the reanalysis at the
forecast initial time [green dots in Fig. 1(a) and (b)]. Then,
we started the forecast from this initial condition. In the PP,
we drove the LSM by the GLDAS meteorological forcings
which are also used to generate the reanalysis. Please note
that the results of PP are not identical to the reanalysis since
satellite observations are not assimilated in the PP. In the ESP,
we also used the observed meteorological forcings (GLDAS).
However, we did not use the targeted forecast period’s meteo-
rological forcings. Instead, the other year’s forcings were used.
The ESP prediction is expected to be accurate at the beginning
of the forecast period since the forecast is initiated from the
accurate observed initial conditions. On the other hand, it is
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TABLE II

SCORES OF NODA, OL, AND REANALYSIS TO SIMULATE LAI FROM 2003 TO 2010a

Fig. 2. Anomaly of monthly LAI [m2/m2] in the reanalysis averaged in (a) April 2007, (b) April 2008, and (c) April 2010. Black, green, and purple boxes
are the areas where we evaluated nationwide statistics of LAI and soil moistures in Morocco, Algeria, and Tunisia, respectively.

expected that the skill is degraded at the end of the forecast
period because the meteorological forcings to the LSM spread
around the climatology [see black lines in Fig. 1(b)]. In the
rESP, the initial conditions are sampled from the reanalysis,
but the data in the forecast initial time are not used [see green
circles in Fig. 1(c)]. The rESP may have no skill of predicting
land surface conditions at the beginning of the forecast period
since its initial conditions are significantly biased. On the other
hand, it is expected that the skill is improved as the forecast
time proceeds since we used the “perfect” meteorological
forcings as we used in the PP and the impact of the initial
conditions’ biases become small [see red lines in Fig. 1(c)].

The drought prediction framework described above was
applied to the 2007 Morocco drought. We started the pre-
diction in January and February 2007 and evaluated the skill
to simulate vegetation conditions at the end of the growing
season (April).

III. RESULTS

We used the estimated LAI in April, which corresponds to
the vegetation condition at the end of the growing seasons
and the harvest season of wheat crop, as the indicator of
agricultural drought in the study area. Fig. 2 shows the
anomaly of LAI simulated by the reanalysis in April of 2007,
2008, and 2010 when the declines of wheat production are
found in the nationwide crop production data. Fig. 2 indicates
that there are large negative anomalies of the reanalysis LAI
in the place where the country-scale crop failures are found.
Fig. 3 shows the timeseries of the nationwide wheat production
and the spatially averaged monthly LAI anomalies in Morocco,
Algeria, and Tunisia in April. In 2007, the significant crop
failure (i.e., reduction of wheat production) in Morocco can

be found in the FAOSTAT data [Fig. 3(a)]. The vegetation
degradation in Morocco is simulated by the reanalysis in 2007
[Fig. 2(a)]. The nationwide wheat production data indicate that
in 2008, the severe agricultural drought hits all three countries
and caused the crop failure in the study region [Fig. 3(a)–(c)].
The reanalysis can reproduce this crop failure in all three coun-
tries [Fig. 2(b)]. The wheat production of Tunisia in 2010 was
worst in our study period [Fig. 3(c)]. In the reanalysis
LAI, the large negative anomaly can be found in Tunisia
on April 2010 [Fig. 2(c)]. Correlation coefficients between
the anomaly of simulated LAI and the nationwide wheat
production in Morocco, Algeria, and Tunisia are 0.70, 0.65,
and 0.72, respectively. Overall, the LAI anomaly simulated
by the reanalysis can reproduce the country-scale agricultural
droughts identified by the nationwide wheat production data.

Fig. 4 shows the mean yearly cycle of LAI in the reanalysis,
the OL, the NoDA, and the satellite observation. Temporal
means of the satellite observed LAI in Morocco, Algeria, and
Tunisia are 0.52, 0.66, and 0.52, respectively. Fig. 4 indicates
that the data assimilation has the added value to improve
the skill of an LSM to simulate vegetation dynamics. In all
three countries, the reanalysis can reproduce the satellite-
observed seasonal cycle of LAI better than the NoDA and the
OL, which indicates that the parameter optimization and the
sequential adjustment of soil moistures and LAI can improve
the simulation of vegetation dynamics. Table II shows root-
mean-squared error (RMSE) and correlation coefficient (R)
between satellite-observed and simulated LAI from 2003 to
2010. Table II indicates that the skill of the reanalysis to
reproduce the observed seasonal cycle of LAI is better than
those of the OL and the NoDA in all three countries. The
parameter optimization reduces RMSE, and the sequential
state adjustment further reduces RMSE and increases R.
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Fig. 3. Timeseries of the nationwide wheat production [Mt] (red) and the anomaly of monthly LAI [m2/m2] on April in the reanalysis (green) in (a) Morocco,
(b) Algeria, and (c) Tunisia. The anomalies of LAI are spatially averaged in the area of 33N-35N; 10W-2W (Morocco), 35N-37N; 2W-8E (Algeria), and
34N-37N; 8E-12E (Tunisia). See boxes in Fig. 2(a).

Fig. 4. Climatology of LAI [m2/m2] simulated by the reanalysis (green), OL (red), and NoDA (blue) and observed by satellite (black) in (a) Morocco,
(b) Algeria, and (c) Tunisia. The climatology of LAI is spatially averaged in the area of 33N-35N; 10W-2W (Morocco), 35N-37N; 2W-8E (Algeria), and
34N-37N; 8E-12E (Tunisia). See boxes in Fig. 2(a).

The simulated LAI by the reanalysis is useful to monitor
vegetation dynamics and agricultural droughts. The high cor-
relations between observed and simulated LAI can be found
in the coastal region by the pixel-to-pixel comparison (not
shown). Since the reanalysis is used as initial conditions for
prediction, the data assimilation system can also contribute
to predicting agricultural droughts. Please note that the desert
pixels are excluded in our analysis [see boxes in Fig. 2(a)]
since the variabilities of estimated and observed LAI are
extremely small and there may be no agricultural activities in
the desert. It should also be mentioned that the meteorological
forcings in the desert pixels are unreliable due to the lack of
in situ observation data there.

One of the advantages of the CLVDAS-based agricultural
drought monitoring is that the root-zone soil moistures, which
cannot be directly observed by satellite sensors, can be quan-
titatively estimated by integrating the simulation of the LSM
and the land surface observations (i.e., surface soil moisture
and vegetation water content). Fig. 5 shows the timeseries of
the standardized anomalies of spatially averaged LAI and soil
moistures in different soil layers. The standardized anomaly
of surface soil moisture (2.5 cm) often recovers from negative
to positive variables after precipitation events in the middle
of drought. Although satellite observed surface soil moisture

products are widely available, it is difficult to develop the
early warning system by only surface soil moisture data since
the negative anomaly of shallow layers’ soil moisture is not
persistent in the middle of severe droughts. On the other
hand, soil moistures in deeper layers (i.e., below 22.5 cm)
and LAI have the persistent negative standardized anomalies
for the entire drought period in the five drought events of three
North African countries. Root-zone soil moisture and LAI are
important variables to be monitored for drought early warning
because of their persistency. Figs. 2, 3, and 5 indicate that
there are substantial declines of the vegetation growth rate,
crop production, and root-zone soil moisture in all identified
events so that our identified events meet the definition of
agricultural droughts described at the beginning of this article
(i.e., the scarcity of root-zone soil moisture and the associated
decline of the vegetation growth rate and crop production).

We applied the drought prediction framework described in
Section II-D to the 2007 Morocco drought. Fig. 6 shows the
timeseries of the simulated LAI by the reanalysis in 2007, PP,
ESP, rESP, RP, and climatology calculated from the reanalysis
(see Section II-D). The PP can correctly reproduce the LAI
timeseries of the reanalysis [Fig. 6(a) and (b)]. The deviation
between the PP and the reanalysis indicates the LSM’s sys-
tematic bias and here it is minimal. The ESP cannot simulate
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Fig. 5. Standardized anomalies (anomalies divided by standard deviations) of LAI [m2/m2] (bold red line) and soil moistures [m3/m3] at the depth of
2.5 cm (thinned blue line), 12.5 cm (thinned green line), 22.5 cm (thinned red line), 32.5 cm (thinned cyan line), and 42.5 cm (thinned magenta line) in
(a) 2007 Morocco drought, (b) 2008 Morocco drought, (c) 2008 Algeria drought, (d) 2008 Tunisia drought, and (e) 2010 Tunisia drought. The standardized
anomalies of LAI and soil moistures are spatially averaged in the area of 33N-35N; 10W-2W (Morocco), 35N-37N; 2W-8E (Algeria), and 34N-37N; 8E-12E
(Tunisia). See boxes in Fig. 2(a).

the small LAI at the beginning of the harvest season (April)
in the case of predictions starting from both January and
February [Fig. 6(c) and (d)]. Even if the perfect initial condi-
tion was available, it is difficult to correctly predict vegetation
dynamics 2–3 months before without qualified meteorological
seasonal prediction. In addition, the rESP fails to simulate the
degradation of LAI at the beginning of April [Fig. 6(e) and (f)].
This result indicates that the initial condition, 2–3 months
before, has a crucial role in predicting vegetation dynamics.
Fig. 6(g) and (h) indicates that the RP can reproduce the
negative anomaly of LAI at the beginning of April although the
recovery from the severe drought is not correctly simulated.
Our simulated LAI is significantly affected just by replacing
the precipitation of the GLDAS with that of the GFDL, which
indicates that precipitation is more important than the other
meteorological forcings to predict agricultural droughts.

In 2007, FAOSTAT shows the average wheat production in
Algeria [Fig. 3(b)], and there is the positive anomaly of LAI in
the reanalysis [Fig. 2(a)]. The PP correctly simulates this pos-
itive anomaly of LAI with the small model bias [Fig. 7(a) and
(b)]. In Algeria case, both the ESP and the rESP have the rea-
sonable skills to reproduce the reanalysis LAI [Fig. 7(c)–(f)].

The reanalysis LAI is within the range of one standard
deviation of the ensembles of the ESP and the rESP at the
beginning of the harvest season (April). The RP can predict
the reanalysis LAI although the skill is degraded in the case
of the prediction starting from February [Fig. 7(g) and (h)].

In 2007, FAOSTAT shows the average wheat production
in Tunisia [Fig. 3(c)], and there is no large anomaly in the
reanalysis LAI of Tunisia [Fig. 2(a)]. The PP overestimates
LAI due to the model systematic bias in Tunisia [Fig. 8(a)
and (b)]. In Table II, the difference of R between the OL
and the reanalysis in Tunisia is slightly larger than those
in the other two countries. It indicates that the LSM has
a relatively large bias in Tunisia since there are the large
deviation between the free run of the LSM and the reanalysis
which we assumed to be observation. The effect of the model
systematic bias decreases as the forecast lead time decreases.
This model systematic bias also causes the overestimation of
LAI by the ESP [Fig. 8(c) and (d)]. The rESP also significantly
overestimates LAI [Fig. 8(e) and (f)]. In 2007, LAI of Tunisia
is smaller than climatology from the beginning of January to
the beginning of March and it rapidly increases in the middle
of March. The rESP overestimates the initial condition of
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Fig. 6. Timeseries of LAI [m2/m2] in the 2007 Morocco drought. Green and red lines are the reanalysis LAI in 2007 and the climatology of LAI calculated
from the reanalysis LAI in 2003–2010, respectively. Yellow, black, purple, and blue lines are LAI of PP, ESP, rESP, and RP (see Section II for the definitions),
respectively. (a), (c), (e), and (g) Forecast starting from January 1. (b), (d), (f), and (h) Forecast starting from February 1. Bold and dashed lines show the
ensemble means and the ranges of one standard deviation, respectively. The simulated LAI is spatially averaged in the area of 33N-35N; 10W-2W. See boxes
in Fig. 2(a).
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Fig. 7. Timeseries of LAI [m2/m2] in the 2007 Algeria drought. Green and red lines are the reanalysis LAI in 2007 and the climatology of LAI calculated
from the reanalysis LAI in 2003–2010, respectively. Yellow, black, purple, and blue lines are LAI of PP, ESP, rESP, and RP (see Section II for the definitions),
respectively. (a), (c), (e), and (g) Forecast starting from January 1. (b), (d), (f), and (h) Forecast starting from February 1. Bold and dashed lines show the
ensemble means and the ranges of one standard deviation, respectively. The simulated LAI is spatially averaged in the area of 35N-37N; 2W-8E. See boxes
in Fig. 2(a).
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Fig. 8. Timeseries of LAI [m2/m2] in the 2007 Tunisia drought. Green and red lines are the reanalysis LAI in 2007 and the climatology of LAI calculated
from the reanalysis LAI in 2003–2010, respectively. Yellow, black, purple, and blue lines are LAI of PP, ESP, rESP, and RP (see Section II for the definitions),
respectively. (a), (c), (e), and (g) Forecast starting from January 1. (b), (d), (f), and (h) Forecast starting from February 1. Bold and dashed lines show the
ensemble means and the ranges of one standard deviation, respectively. The simulated LAI is spatially averaged in the area of 34N-37N; 8E-12E. See boxes
in Fig. 2(a).
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Fig. 9. RMSE between the reanalysis and the predictions in (a) Morocco, (b) Algeria, and (c) Tunisia during April. The predictions include the ESP (black),
rESP (purple), RP (blue), and PP (yellow) starting from January 1 to February 1.

LAI and the LAI rapidly increases further in the middle of
March. Therefore, the rESP has the tremendous positive bias
of simulating LAI in Tunisia. The RP can reproduce the
reanalysis LAI even better than the PP. This is because the
GFDL prediction underestimates the monthly precipitation,
which mitigates the positive bias of simulated LAI shown in
the PP. Therefore, it should be noted that the successful LAI
prediction by the RP is obtained by the wrong process.

Fig. 9 summarizes the skills of PP, ESP, rESP, and RP.
First, the RP outperformed the ESP and the rESP in the every
case but the case of the prediction starting from February in
Algeria. The state-of-the-art seasonal meteorological predic-
tion is useful for agricultural drought prediction if accurate
initial conditions are obtained. Second, the skill of the rESP
is worse than that of the ESP in the every case but the
case of the prediction starting from January in Tunisia. This
result indicates that the initial conditions of soil moisture and
LAI have an important role in predicting agricultural droughts
in 2–3-month lead time compared with the uncertainties in
meteorological forcings.

IV. DISCUSSION

A. Can the LDAS Reproduce the Nationwide Crop
Production of the Water-Limited Subcontinental Regions?

This article verifies that our LDAS-based framework is
useful to monitor and predict the nationwide crop production
and agricultural droughts. We find that our simulated LAI at
the end of the growing seasons is well correlated with wheat
production and the data assimilation improves the skill of an
LSM to reproduce the satellite-derived phenology so that the
LDAS can reproduce the nationwide crop production of the
water-limited region. Our simulated root-zone soil moisture
is also useful to monitor agricultural droughts because of its
persistency.

Considering the large footprint size of satellite passive
microwave observations, it is difficult to make our current
spatial resolution (i.e., 0.25◦) finer, which limits the capa-
bility of the LDAS-based drought monitoring framework.

All variables estimated by the LDAS-based framework should
be recognized as the averaged variables in the grids with the
coarse resolution and any phenomena whose scales are smaller
than the 0.25◦ cannot be explicitly simulated. The LDAS-
based framework cannot directly predict a wide variety of crop
yields since regional agricultural activities cannot be explicitly
simulated by the LSM with coarse grid sizes. It is also difficult
to predict vegetation dynamics and crop failure in a scale
smaller than the model grid size. However, the spatiotemporal
resolution adopted in this article is appropriate considering
the scale of our targeted phenomena and the purpose of our
drought monitoring. In general, drought is a climatological
phenomenon which has large spatial (larger than 100 km) and
temporal (longer than 1 month) scales. Therefore, our drought
monitoring system can reasonably resolve drought as a natural
phenomenon. In addition, our primary purpose is to provide
useful information for stakeholders to consider drought adap-
tation strategy in national and regional scales, which can be
resolved in our system. Note that the existing regional drought
monitors also chose the similar spatiotemporal resolutions
([9], [10]).

In the previous literature, statistical models were constructed
to estimate the yields of specific regional crops from
precipitation and other land surface variables (see [51]). The
root-zone soil moisture and LAI simulated by the LDAS-
based framework can be used as inputs of the statistical
models to predict the yields of the specific crops, which
might be useful for local farmers. In addition, the drought
severity classification can be made using the outputs of the
CLVDAS. The U.S Drought Monitor issues classified drought
categories (from D0 to D4) using a wide variety of criteria (see
http:// droughtmonitor.unl.edu/ AboutUs/ ClassificationScheme.
aspx). The classified drought categories generated from the
drought monitoring system might be useful information for
local stakeholders.

Although data assimilation substantially improved the skill
of the LSM to simulate LAI, there is much room to further
improve the skill to simulate vegetation dynamics. The timing
of the annual peak of simulated LAI is delayed compared
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with that of the satellite-derived LAI. Note that the time lag
of the annual peaks between simulated and observed LAI has
also been found in the previous studies (see [52]). Although
assimilating microwave brightness temperature observations
can mitigate this model bias, the parameterization of veg-
etation growth in its infancy and the die-off in the end of
growing season should be improved to completely eliminate
this bias. In addition, the optically observed phenology (i.e.,
LAI) is not completely identical to the phenology derived by
microwave signals and the source of the difference between
optical and microwave observed vegetation dynamics has
not been completely identified [18], [53], [54]. In Algeria
and Tunisia, the time lag of the LAI annual peaks between
the simulation and the satellite optical observation cannot
be completely eliminated by data assimilation because the
phenology observed by microwave signals are also delayed
compared with that observed by GLASS LAI (not shown).
Since our simulated phenology by the reanalysis is constrained
to microwave observed phenology, our simulated LAI cannot
be completely adjusted to optically observed LAI by data
assimilation. In our current LSM, simulated LAI corresponds
to vegetation water content one-to-one by (14). We should
enable the LSM to separately simulate LAI and vegetation
water content in order to reproduce the differences between
the optical and microwave vegetation observations.

Please note that there are processes which are important to
monitor agricultural droughts but not included in the LSM.
Although the declines of crop production detected in this
article correspond to the declines of observed precipitation
(not shown) and estimated root-zone soil moisture, the decline
of agricultural production may be able to occur even if there
is no precipitation decline. Agricultural activities can also be
damaged by floods, which are not modeled in the current LSM.
Political and economic factors sometimes affect agricultural
production. In the future operational application, these factors
should be carefully considered when the outputs of our system
are interpreted.

B. Is the State-of-the-Art GCM Seasonal Prediction Useful to
Predict Vegetation Dynamics and Agricultural Droughts?

We revealed that the GCM-based seasonal meteorological
prediction is useful to accurately predict LAI and agricultural
droughts in 2–3-month lead time. The ensemble mean of ESP,
which starts the forecasts from the accurate initial conditions
using the observed meteorological forcings of past record,
is the “business-as-usual” scenario. If we do not have any
information about future atmospheric conditions, it is rea-
sonable to assume climatological atmospheric conditions to
forecast the future land surface conditions. In the case of the
2007 Morocco drought, the LAI prediction by the GCM-based
seasonal meteorological prediction significantly outperforms
the ESP. Our result indicates that the seasonal prediction
data set has the benefit to accurately predict the land surface
conditions and agricultural droughts. Please note that the error
source of our prediction experiments is only precipitation since
the other variables of the GCM-based seasonal meteorological
prediction are not used in this article.

As Yuan and Wood [6] revealed, the skill of the GCM to
predict precipitation is poor in some regions. Although our
results are encouraging toward predicting agricultural droughts
using the LDAS and the seasonal meteorological prediction,
the prediction skill should be thoroughly evaluated in the other
regions.

C. How Important Are Initial Conditions to Predict
Vegetation Conditions During Agricultural Droughts
Compared With Meteorological Forcing Uncertainties?

Following [7], we implemented the ESP and rESP experi-
ments in the framework of agricultural drought prediction to
separate the source of the prediction skill into the accuracy of
initial conditions and that of meteorological forcings. The ESP
assumes that the accurate initial conditions are available while
there are no information about the future meteorological condi-
tions. Therefore, the prediction skill of ESP is brought only by
the initial condition. On the other hand, the rESP assumes that
there are no information about the initial conditions while the
perfect meteorological forcings are available. The prediction
skill of rESP is brought only by the meteorological forcings.

We concluded that initial conditions are important to pre-
dict vegetation conditions during agricultural droughts. In the
2007 Morocco drought, the ESP outperformed the rESP to
predict LAI. It reveals that the initial conditions are more
important than the meteorological forcings (i.e., seasonal
meteorological predictions) to predict agricultural droughts in
2–3-month lead time. Even if the perfect seasonal atmospheric
prediction was available, the accurate agricultural drought
prediction could not be possible without accurate initial con-
ditions of root-zone soil moisture and LAI. This result encour-
ages to develop a sequential data assimilation system, which
improves the drought monitoring and the initial conditions
for prediction by combining the numerical simulation and
observations up to forecast start time, in order to accurately
predict agricultural droughts.

To our knowledge, we evaluated the source of predictability
of land surface vegetation conditions in the real-world drought
event for the first time. The importance of the initial condition
to predict vegetation dynamics may strongly depends on the
regional climate. The role of soil moisture’s initial conditions
found in the water-limited regions cannot be directly applied
to wetter regions. More holistic analyses on the predictability
of vegetation dynamics should be implemented in the future.

D. Toward the Operational Agricultural Drought Monitoring
and Predicting System

Our proposed agricultural monitoring and prediction system
can be applied operationally. Fig. 10 shows the proposed
agricultural drought monitoring and prediction system which
can be operationally applicable to the global water-limited
area. Our proposed system supports both drought monitor and
prediction functions.

In the drought monitor module [Fig. 10(a)], we generate
“reanalysis” land surface soil moisture and LAI, which are
used as an initial condition for the drought prediction module.
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Fig. 10. Schematic of our proposed operational agricultural drought monitoring and prediction system. (a) Drought monitoring module. (b) Drought prediction
module. (c) Cycle of monitoring and prediction procedures considering the latency of the input data. See Section IV-D for details.
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TABLE III

SUMMARY OF THE DIFFERENCES BETWEEN THIS ARTICLE AND THE EXISTING DROUGHT MONITORS IN AFRICA.
BOLD LETTERS SHOW THE ADVANTAGES OF OUR PROPOSED METHOD

We drive the CLVDAS using GLDAS data as observed mete-
orological forcings and satellite-observed passive microwave
brightness temperatures as land surface observation data to be
assimilated into the LSM. Although the AMSR-E operational
observation was stopped, we can use the observations from its
successor, AMSR2 [37]. The other passive microwave satellite
observations, such as SMOS and SMAP, can also be used in
our system. Since we directly assimilate the brightness tem-
perature (not derived products), assimilating the other passive
microwave observation in our framework is straightforward.

In the drought prediction module [Fig. 10(b)], we drive the
LSM from the “reanalysis” land surface soil moisture and
LAI obtained by the drought monitoring module. We use the
GFDL seasonal prediction data to drive the LSM. Replacing
the GFDL seasonal prediction dataset with the other seasonal
prediction datasets is straightforward. Since the GFDL and
other seasonal forecast datasets do not always provide the
complete set of meteorological forcing data necessary to
run the LSM, some empirical models (see [55]) are needed
to prepare the complete meteorological forcings. It is also
promising that we use the past record of the GLDAS and the
precipitation of the GLDAS is scaled by the GFDL monthly
precipitation seasonal forecast to drive the LSM to predict
the future land surface conditions. We believe that the ESP is
also useful so that the LSM is driven by the past record of
the GLDAS meteorological forcings. The PP and rESP were
implemented in this article for the research purpose and cannot
be operationally done since they need “observations in the
future.”

Since this drought monitoring and prediction system uses
data provided by the other data centers, the latency of the input
data should be considered to make our system operational.
Satellite microwave brightness temperature observations can
be obtained near-real time. The GFDL seasonal prediction is
issued every month. The latency of the GLDAS is 1.5 month
which is the longest latency in the data sets used in our
framework. Optical LAI data are not needed in our framework.
Fig. 10(c) shows the schematic illustration of the drought
monitoring and prediction cycle. Let us assume that today is
September 15. The GLDAS 3-h meteorological forcing dataset
from August 1 to August 31 is provided this day. We will

download it and drive the CLVDAS using this GLDAS data
and AMSR2 satellite observation data to extend our “reanaly-
sis” to 00UTC September 1 for monitoring purpose. The
“reanalysis” at 00UTC September 1 is used as an initial con-
dition for the drought prediction module. The GFDL seasonal
prediction whose forecast start time is 00UTC September 1 has
already been available so that we will drive the LSM using
this data to provide the 3.5-month drought prediction from
September 1 (3-month prediction from September 15).

E. Comparison With Existing Operational Systems

The drought monitoring and prediction framework devel-
oped in this article are suitable to be applied to poorly gauged
water-limited subcontinental regions. In previous studies, sev-
eral drought monitors have already been developed to apply
the African region. Here, we compare our newly proposed
system with two existing drought monitoring frameworks,
the Princeton African Drought monitor [9] and the Famine
Early Warning Systems Network LDAS (FLDAS) [10]. Please
note that we will focus only on their capability to produce
the land surface variables related to drought quantification
although they also have the functions to visualize the mete-
orological datasets which are not made by themselves. The
summary of this comparison is shown in Table III.

In the Princeton African Drought monitor, the variable
infiltration capacity (VIC) land surface hydrological model
[56] is used to provide soil moisture, evapotranspiration,
runoff, and streamflow. The real-time simulation is forced
by a combination of precipitation from the Tropical Rainfall
Measurement Mission (TRMM) Multisatellite Precipitation
Analysis (TMPA) [57], temperature and wind speed from
the National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS), and the other variables from
the empirical model (see [55]). No land surface observations
are sequentially assimilated to the VIC in this model update.
The VIC is also driven by GFS 7-day forecast to provide the
future land surface condition.

In the FLDAS, the VIC and Noah LSM [58] are used to
provide soil moisture, evapotranspiration, runoff, and stream-
flow. The models are driven by a combination of precipitation
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from the African Rainfall Estimation version 2.0 (RFE2) [59]
and the Climate Hazards group Infrared Precipitation with
Stations (CHIRPS) [60] data set, and the other meteorological
forcings from National Oceanic and Atmospheric Adminis-
tration (NOAA) Global Data Assimilation System (GDAS)
and Modern Era Reanalysis for Research and Applications
version 2 (MERRA-2). Drought conditions from the multi-
LSM driven by multi-data set are useful to obtain the reli-
able information of land surface conditions. No land surface
observations are sequentially assimilated into LSMs in the
FLDAS. No predictions are carried out in the FLDAS so that
the FLDAS is the pure monitoring system.

The advantage of our framework against the Princeton
African Drought monitor and the FLDAS is that the LSM,
EcoHydro-SiB, can directly simulate the vegetation condition
(i.e., LAI) which is strongly correlated to the regional cereal
production. Although the skill of the existing LSM to simulate
vegetation dynamics is limited, we maximize the performance
by assimilating satellite microwave observations into the LSM.
Because vegetation dynamics has the better predictability (i.e.,
initial conditions are sometimes more important than the mete-
orological prediction) than the other land surface variables,
we make it possible to predict vegetation dynamics in longer
lead time (3 months). The disadvantage of our framework
against the Princeton African Drought monitor and the FLDAS
is that streamflow cannot be monitored and predicted since the
LSM does not have any river routing schemes. In addition,
while the Princeton African Drought monitor provides all
information almost real time, our proposed framework needs
the longer latency (see Section IV-D).

V. CONCLUSION

We applied the LDAS to monitor and predict agricultural
droughts in North Africa. Our proposed monitoring framework
can detect the historical nationwide crop failures in Morocco,
Algeria, and Tunisia. The state-of-the-art seasonal meteoro-
logical prediction is useful to predict vegetation dynamics
in 2–3-month lead time. We analyzed the predictability of
vegetation dynamics using ESP and rESP and identified the
importance of initial conditions compared to the meteorolog-
ical forcings to predict LAI. Therefore, we can conclude that
for agricultural drought prediction based on ecological vari-
ables, LDAS is not optional. It is extremely important to get
the initial conditions of root-zone soil moistures and vegetation
states by combining an LSM with observation data. We suc-
cessfully provide a proof-of-concept numerical experiment for
an operational agricultural drought monitoring and predicting
system based on LDAS in North Africa. Since our proposed
framework does not rely on any intensive in situ observation
networks, it might be useful in the other ungauged regions.
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