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Abstract—The lack of high-resolution digital elevation model 

(DEM) data presents one major limitation for deformation mapping 

using synthetic aperture radar interferometry (InSAR) techniques 

with high-spatial-resolution radar imagery (e.g. TerraSAR-X). This 

paper presents a baseline linear combination (BLC) approach to 

generate interferograms with nearly-zero-baselines so as to 

minimize the effects of the uncertainties in the DEM used. It 

incorporates the baseline combination method with adjacent 

gradient networking to successfully unwrap the interferograms even 

in abruptly discontinuous areas, which in turn can be used to 

estimate a high-resolution DEM. The BLC approach does not 

require any deformation model; instead, it utilizes nearly-zero-

baseline interferograms to assist with 3D phase unwrapping. 

Application of the BLC approach to the TerraSAR-X dataset in 

Shenzhen city, China shows that the BLC derived DEM agrees  with 

the digital surface model (DSM) obtained from light detection and 

ranging (LiDAR) with a correlation coefficient of 0.998 and a root 

mean square error (RMSE) of 2.05m, demonstrating the 

effectiveness of the BLC approach. Note that the BLC approach is 

not only able to be employed in urban areas with high buildings, but 

also in mountain areas with steep slopes. 

 
Index Terms—3D phase unwrapping, digital elevation model 

(DEM), multitemporal synthetic aperture radar interferometry 

(MTInSAR)  

I. INTRODUCTION 

EPEAT-PASS interferometric synthetic aperture radar 

(InSAR) has been widely used to monitor surface 

displacements caused by natural hazards such as earthquakes, 

landslides and volcanoes, and by anthropogenic processes such 

as groundwater extraction, coal mining, and building load. 

Three-pass differential InSAR (DInSAR), without the need of 

topography information, has been proven a powerful approach 

for deformation monitoring [1]. More generally, an external 

digital elevation model (DEM) is required to remove the 
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topographic contributions in SAR interferograms (IFMs), 

particularly for those with a large spatial baseline (i.e. satellite 

separation). A range of DEMs such as the shuttle radar 

topography mission (SRTM) DEM, advanced spaceborne 

thermal emission and reflection radiometer global DEM 

(ASTER GDEM), and TanDEM-X DEM are freely available, 

but their spatial resolutions and accuracies are far from 

satisfactory for high-resolution InSAR applications, leading to 

the desperate demand for accurate DEMs with high resolution 

to precisely measure the surface displacements. Multitemporal 

InSAR (MTInSAR) has been developed to minimize the 

impacts of atmospheric disturbance and decorrelations, among 

which permanent scatterer InSAR (PS-InSAR) [2]-[4], small 

baseline subset (SBAS) [5], [6], and the combination of both 

techniques [7]-[9], have been proved powerful tools for DEM 

retrievals and deformation mapping. Major advances in 

MTInSAR have been made in recent years, including the 

development of SqueeSAR [10] and persist scatterer pair (PSP) 

[11]-[13]. 

 Phase unwrapping is a vital step to resolve the 

interferometric phase ambiguity for both DEM generation and 

surface deformation mapping [14]. It can be straightforward 

when the Itoh smoothness condition is satisfied [15], i.e. the 

absolute value of the phase gradient is less than π. However, in 

the MTInSAR system, this condition is often violated due to the 

presence of big surface movements, strong atmospheric effects 

and/or large spatial gradients. A robust 3D phase unwrapping 

approach is needed for MTInSAR applications. Stanford 

method for PSs (StaMPS) [9], [16], [17] uses the phase 

evolution in the temporal dimension to guide unwrapping in the 

spatial dimension. It fully considers the temporal phase 

discontinuities caused by atmospheric effects and it has been 

successfully employed in many cases [18]-[20]. However, its 
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capability to reserve the height discontinuities is limited 

especially in urban areas where large phase gradients occur. In 

addition to StaMPS, a range of phase unwrapping and/or DEM 

retrieval approaches have been developed to handle the MT-

InSAR data. Some of them are based on statistical estimation 

techniques, such as maximum likelihood (ML) [21]-[24] and 

maximum a posteriori (MAP) Bayesian estimation [25], [26]. 

For the ML approaches, exploiting both amplitude and phase 

information, multichannel phase and amplitude regularization 

(MCPAR) [27] reconstructs DEMs based on a new graph-cut 

optimization algorithm. It overcomes the heavy time 

consumption and memory occupation problems in the previous 

multichannel phase unwrapping (MCPU) [25], [28]. However, 

the assumptions of zero ground deformation and statistically 

independent IFMs, do not always hold true. MAP is 

characterized by good performances [25], [26]; MAP combined 

with Markov random fields [29] can recover topographic 

profiles affected by strong height discontinuities and noise can 

be rejected efficiently, yet is limited by the heavy 

computational burden. 

Other techniques, such as minimum cost flow (MCF), 

Kalman filter (KF), and cluster analysis (CA), also have been 

developed and applied. The extended minimum cost flow 

(EMCF) and its improved versions [30], [31], make use of two 

Delaunay triangulations (in the temporal/spatial-perpendicular 

baseline plane and the azimuth/range plane) to successfully 

unwrap the phase in time and in space with MCF. However, it 

requires a deformation model and a priori information about 

topographic errors and velocities. The extended Kalman filter 

(EKF) approach has been adapted to work with multichannel 

interferometric stacks [32]-[34] but with difficulties handling 

the sharp height discontinuity issue because of its smooth 

surface hypothesis. [35] attempted to overcome the sharp 

discontinuity problem by implementing height discontinuity 

detection and postprocessing steps, but the non-deformation 

and distance related height gradient assumptions might not be 

consistent with the reality. The CA method is an approach for 

multibaseline phase unwrapping [36]-[38], which firstly 

clusters the pixels into groups and then finds for each group an 

ambiguity vector to unwrap the phases. It does not require any 

assumption on deformation model or phase gradients, but the 

N-dimensional-search to find optimal ambiguity vectors is 

computationally demanding and error-prone. Moreover, it 

requires a large number of pixels to ensure its accuracy.  

Most recently, based on the work in [39], an integrated 

MTInSAR estimator [40] that combines the coherent point 

detection and phase unwrapping into a single step has been 

demonstrated. It can avoid the requirement of a priori 

deformation model, but its high computation burden brought 

about by the pixel-wise processing and freely connect network 

(FCN) checking is quite discouraging. 

 In this paper, for the first time, we present a non-model 

based approach to unwrap phase and to retrieve urban DEMs 

through the baseline linear combination (BLC) of IFMs with 

different spatial baselines. Baseline combination (BC) method 

was firstly proposed to reduce atmospheric effects on InSAR 

observations so as to generate high-resolution DEMs [41]. 

However, by summing up IFMs, the system is vulnerable to the 

increased noise for atmospheric estimation, and worse still it 

also requires unwrapped IFMs. The BC approach also shows 

potential for the estimation of ice motion in Antarctica, but still, 

accurate unwrapped IFMs are required and a constant 

displacement model is adopted [42]. The BLC method in this 

paper integrates the small baseline IFMs and the linear-

combined ones with nearly-zero baselines to limit the phase 

errors caused by the inaccurate DEM. It avoids the use of 

inaccurate deformation model in the phase unwrapping steps 

and incorporates unwrapping and topography calculation with 

full resolution in a single operation. 

The BLC approach starts with a phase unwrapping procedure, 

which is based on a two-step (1D temporal + 2D spatial) 

processing method, similar to the MCF phase unwrapping 

method. In particular, the key idea is to first carry out, for each 

arc connecting neighboring coherent pixels (CPs) or PS 

candidates (PSCs), a temporal phase unwrapping operation for 

temporally adjacent IFMs, based on the real and equivalent 

combined “IFMs” with very small baselines. The second step 

relies on the use of these results as a starting point for spatial 

phase unwrapping performed on each temporally adjacent IFM. 

In these steps, no a priori information is required. IFMs with 

very small baselines are generated using BLC to suppress the 

DEM-introduced topographic errors and the spatial differences 

between neighboring CPs and/or PSs are calculated to eliminate 

atmospheric errors. Furthermore, an outlier detection is 

implemented to make sure that all the remaining arcs and PS 

points are reliable. It involves the networking approach to 

define how to carry out the spatial differences. We propose an 

enhanced Delaunay triangular network (EDTN), with high 

reliability and acceptable computation burden. Finally, with the 

3D unwrapped phase, the DEM errors can be easily retrieved. 

Comparing our results with digital surface model (DSM) 

obtained by light detection and ranging (LiDAR), a high 

correlation of 0.998 and a low RMSE of 2.07m are obtained.  

The paper is organized as follows. Section II briefly explains 

the formulation of the proposed algorithm. Section III 

thoroughly describes the processing chain. Section IV is 

dedicated to the experimental results. In Section V, discussions 

are addressed. Finally, conclusions are presented in Section VI. 

II. ALGORITHM FORMULATION 

A. Interferometric phase and SBAS time series 

We start here with the standard IFM formulation. After 

flattening the Earth and removing local topography, the 

unwrapped interferometric phase at pixel (x, r) computed from 

the SAR acquisitions at tM (for the master image) and tS (for the 

slave image), can be modeled as the summation of the phase 

contributions caused by deformation, topographic residual, 

atmospheric delay and other noise [1]. The topographic 

contribution can be written as follows 
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where λ is the radar wavelength, R is the sensor-target distance, 

θ  is the local incidence angle, BtM,tS
⊥  is the perpendicular 

baseline, and ε (x, r) is the topographic error present in DEM 

used in the interferometric processing. Note that the 

dependence on (x, r)  variables is hereinafter not explicitly 

mentioned as the proposed technique implies a pixel-wise 

temporal analysis. 

Referring to Equation (1), the DEM-introduced error is 

proportional to the perpendicular baseline and DEM error. To 

mitigate the spatial decorrelation phenomena, IFMs with small 

baselines are preferred to be used in time series analysis to 

minimize the effects of decorrelation and inaccuracies in the 

DEM used, i.e. SABS. Considering N+1 single look complex 

images (SLCs) in the SAR stack and arranged chronologically 

as SLC0, SLC1, …, SLCN, [𝑡0, 𝑡1, … , 𝑡𝑁]𝑇  the corresponding 

vector of SAR acquisition dates, we have M wrapped IFMs 

φ = [φ0, φ1,… φM]T . With the unwrapped IFMs  𝚽 =
[𝜙0, 𝜙1, … , 𝜙𝑀]𝑇, the components of the deformation and the 

DEM error can be jointly estimated in a least square (LS) sense 

[5] 
 

                                       , c =BM Φb p                                 (2) 

 

where B is an 𝑀 × 𝑁 matrix linking the velocity vector and the 

IFMs stack, 𝐌  is the matrix models the deformation, 𝒃𝑇 =

(4𝜋/𝜆)[𝐵1
⊥/𝑟 sin 𝜗 , … , 𝐵𝑀

⊥ /𝑟 sin 𝜗 ] , and 𝒑𝑐 = [𝒑𝑣
𝑇 , 𝜀]  is a 

vector contains parameters accounting for the mean velocity 

and DEM error. The design matrix 𝐁 is with the generic (𝑝, 𝑞) 

element 𝐁(𝑝, 𝑞) = 𝑡𝑞+1 − 𝑡𝑞  for 𝐼𝑆𝑝 ≤ 𝑞 ≤ 𝐼𝐸𝑝 , ∀𝑝 =

1, … , 𝑀 and 𝐁(𝑝, 𝑞) = 0 elsewhere, where 𝐼𝑆𝑝 and 𝐼𝐸𝑝 are the 

time-indexes of the slave and master images forming the 𝑝𝑡ℎ 

IFM, respectively.  

B. Baseline combined IFM 

IFMs with small baselines are often exploited for the 

convenience of phase unwrapping and mitigation of 

decorrelation. Unfortunately, small baseline IFMs are not 

always available. Here we introduce a baseline linear 

combination (BLC) method to generate small baseline IFMs so 

as to suppress the DEM-introduced topographic errors. Besides 

the IFMs with small baselines, the “combined” or “equivalent” 

IFMs with small baselines are also considered. To illustrate it, 

we have the combined IFMs as 
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where 𝐵̃𝑗
⊥  is the linear combination of the perpendicular 

baselines of two IFMs with 𝐵̃𝑗
⊥ = 𝑚𝐵𝑘

⊥ + 𝑛𝐵𝑙
⊥  and 𝑑̃𝑗  is the 

sum of the line of sight (LOS) displacements with 𝑑̃𝑗 = 𝑚𝑑𝑘 +

𝑛𝑑𝑙 . Theoretically, 𝐵̃𝑗
⊥ can be infinitely approximated to 0 if the 

integer m/n is not restricted. In reality, to minimize the noise 

propagation, only the combinations with 𝑚, 𝑛 = ±1  are 

recommended, i.e. summing or subtracting two IFMs, if the 

data stack permitted; please see  the detail on how to choose 

𝑚 𝑎𝑛𝑑 𝑛 in the last paragraph of this section. Without loss of 

generality, hereafter IFMs are referred to both types of IFMs, 

namely the original IFMs with small baselines, and the newly 

generated IFMs by BLC, if not specifically declared. 𝜙̃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

mainly consists of atmospheric delays and thermal noise. 

Atmospheric delays can be largely canceled by differencing the 

phase between neighboring pixels [2], [3], and the differenced 

phase (phase along the arcs) can be expressed as 
 

def topo APS noise     =  +  +  +  .            (5) 

 

When the two pixels are close enough (say 𝑑 < 1 km), the 3rd 

and 4th terms on the right hand of Equation (5) can be 

considered in a residual phase as 
 

def topo residual    =  +  +  .                   (6) 

 

For each given arc, what we can observe are the M wrapped 

gradients of the interferometric sequence 

𝚫φ=[Δφ1,  Δφ2, …, ΔφM]T . If the wrapped phases are 

successfully unwrapped, Equation (6) can be easily obtained in 

a least square (LS) sense. Unfortunately, in urban areas, 

especially in big cities with high-rise buildings, DEM errors can 

be up to hundreds of meters, thus leading to dense phase fringes 

even with a relatively small baseline (say 100m), which makes 

phase unwrapping a big challenge. In the BLC case, the 

(equivalent) spatial baseline can always be small enough so that 

Δ𝜙 can be considered within half a fringe, namely |Δ𝜙𝑡𝑜𝑝𝑜| <

𝜋. Assuming that there is no earthquake, landslide or something 

similar during the whole time span,  Δ𝜙𝑑𝑒𝑓  can be considered 

small. For the above-mentioned reasons, we can simply 

consider Δ𝜙 ≜ Δ𝜑 . Note that Δ𝜙𝑑𝑒𝑓  can exceed π in both 

orginal and combined IFMs if large displacements happen. To 

deal with this, an outlier detection is adopted to check the 

continuity, as will be shown in Section III-B. As we focus on 

urban applications in this paper, large displacements will then 

 
 

Fig. 1. Flowchart of the proposed baseline linear combination method. Dashed boxes imply the main steps characterizing the proposed method.  
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not be considered in the rest of this paper. 

For a dataset constituting of M IFMs (including M1 original 

IFMs and M2 combined IFMs) constructed from (N+1) 

acquisitions, the unknown temporally adjacent phase difference 

of each arc 𝚫𝜃 =     [𝚫𝜑1 − 𝚫𝜑0, 𝚫𝜑2 − 𝚫𝜑1, … , 𝚫𝜑𝑁 −

𝚫𝜑𝑁−1]𝑇 and 𝚫𝜑 can be linked by a design matrix H, as shown 

by 
 

noise  = +H                         (7) 
 

where 𝐇𝑇 = [𝐇1
𝑇 , 𝐇2

𝑇]  with 𝐇1  and 𝐇2  the design matrices 

describe the formulation of the original and the combined IFMs, 

respectively. The generic (𝑝, 𝑞) element of 𝐇1 is 𝐇1(𝑝, 𝑞) = 1 

for 𝐼𝑆𝑝 ≤ 𝑞 ≤ 𝐼𝐸𝑝 , ∀𝑝 = 1, … , 𝑀1 , and 𝐇1(𝑝, 𝑞) = 0 

elsewhere. 𝐇2  is regarded as the linear combination of 2 

matrices 𝐇21 and 𝐇22 with the same structure as 𝐇1 . The LS 

solution of the temporally adjacent phase difference can be 

obtained as 
 

 
1ˆ ( ) ( )T T −= H H H  . (8) 

Equation (8) requires the full rank of H to ensure the 

nonsingularity of the system. In Equation (3), theoretically, m/n 

can be any integer wanted, but ±1 and ±2 are recommended to 

minimize the noise propagation (please refer to the negative 

effects resulted from the large m and/or n values in Section V-

C). Actually, the values of m/n greatly depend on one’s own 

data stack, especially the baseline distribution, the number of 

SAR acquisitions, and the baseline span. Here, we give a brief 

guidance on how to carry out the combination with a given data 

stack (Table I). Firstly the combination is conducted under 

m/n=±1 only. If the nonsingularity requirement is not met, m/n 

is then enlarged until H is nonsingular. With the nonsingular H, 

combination optimization can be carried out by abandoning 

some unnecessary combinations in Step 4. It is easy to 

understand that once H is nonsingular, there will be many 

redundant combinations. Some of them can be abandoned if 

their equivalent temporal baselines (𝑡̃ = |𝑚𝑡𝑘| + |𝑛𝑡𝑙|) are too 

long. Of course, the abandonment could only be done when the 

nonsingularity and robustness of H is ensured. The robustness 

means that with any single combination abandoned, H is still 

nonsingular. The nonsingularities of H can vary from one data 

stack to another, and the readers can refer to the simulated 

results in Appendix B, where the nonsingular probability of H 

is given under different numbers of SAR acquisitions and 

baseline spans. 

III. PROCESSING CHAIN 

 In this section, we summarize the main processing elements 

of the proposed baseline linear combination chain (Fig. 1). 

A. Temporal coherent pixel (TCP) detection 

Points of interest are those deemed coherent throughout all 

the IFMs used in the time series, including PSs and distributed 

scatterers (DSs). For simplicity, we only consider PSs in this 

paper as the dense PS distribution in the urban area is adequate 

for the processing. Of course, DSs can also be considered if 

there are not enough PSs, which is beyond the scope of this 

paper. The methods used for PS detection basically follow the 

amplitude dispersion index (ADI), namely standard deviation 

(SD) to mean ratio, proposed by Ferretti et al. [3]. Empirically 

a pixel is considered a PS candidate (PSC) only with an ADI 

less than 0.25. With these PSCs, a ‘mask’ map can be generated 

at this stage (see Fig. 5(b)).  

B. Initial network formation and outlier detection 

An initial Delaunay triangulation is computed, involving the 

arcs connecting the neighboring pixels of the selected PSCs in 

the azimuth/range plane. A first refinement is conducted by 

limiting the Euclidian distance of arcs within a given threshold 

(usually no more than 1km). Such a triangulation may involve 

the arcs relevant to SAR data pairs with large residuals (refer to 

Equation (9)). For each arc, the temporally adjacent phase of 

each arc can be obtained by Equation (8), and the residual phase 

becomes 
 

 ˆ ˆ
res  =  −  . (9) 

 

Note that, Equation (8) holds true only when the assumption 

|𝚫𝜙𝑗| < 𝜋 is satisfied. If the residual is large,  
 

 ˆmax{| |}
resres T   (10) 

  

it is likely that the assumption is violated, and the corresponding 

arc should be discarded. Accordingly, to avoid these 

undesirable effects without losing the triangulation 

representation, a straightforward solution is to remove the arcs 

with large residuals [39] [43]. Here we prevent an unwrapping 

path with phase ambiguity instead of the path between 

singularities. The problem left here is to choose the residual 

phase threshold. 

The design matrix 𝐃 linking SLCs and IFMs can be obtained 

as  
 

 
1 21 22[ , ]T T T T= D D D D                      (11) 

  

where the generic element of 𝐃1,21/22(𝑝, 𝐼𝑆𝑝) = −1 , 

𝐃1,21/22(𝑝, 𝐼𝐸𝑝) = 1 with 𝐼𝑆𝑝 and 𝐼𝐸𝑝 the time-indexes of the 

slave and master images forming the original IFMs, 𝐃(𝑝, 𝑞) =
0 elsewhere. Noted that ∑ 𝐃(𝑝, 𝑞)𝑝 = 0. 

For PS points involved in the system, the noise covariance 

can be expressed as 𝐕𝑛𝑜𝑖𝑠𝑒
𝑖 = 𝜎𝑃𝑆

2 𝐈𝑁+1 , if identical and 

uncorrelated noise is assumed, where 𝜎𝑃𝑆 is the noise level of a 

single PS point and I is the identity matrix. Then the noise 

TABLE I 
PROCEDURE OF THE BASELINE COMBINATION 

1. Initialize m/n=±1. 

2. System formation. Do the baseline combination, choose the ones with 

|𝐵 ̃𝑗⊥|<B, and get H. 

3. Singularity check. If H is singular, enlarge m/n=±(|m/n|+1), and jump 
to Step 2. 

4. Combination optimization. Eliminate redundancies according to one’s 

own need. 
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variance of the M IFMs can be written as 
 

 2IFM i T T

PS noise PS= =V DV D DD .  (12)  
 

The noise variance of the arc doubles as 𝐕(𝚫𝜑) = 2𝜎𝑃𝑆
2 𝐃𝐃𝑇. 

From Equations (7) and (8),  𝚫𝜑̂ = 𝐇𝐇̃𝚫𝜑  can be obtained, 

where 𝐇̃ ≜ (𝐇𝑇𝐇)−𝟏𝐇𝑇, and its variance can be written as 
   

 2ˆ( ) 2 T T T

PS =V DD                     (13) 
 

Often the threshold 𝑇𝜙𝑟𝑒𝑠
 is  

 

 ˆmax( ( )) 2 max( ( ))
res

T c  = +V V   (14) 

 

where constant c can be chosen as 3 or 4 [44], [45]. When 

Equation (14) is reached, the arc is regarded as an outlier at 95% 

confidence level.  

C. PS network formation: Enhanced Delaunay Triangular 

(EDTN) 

Such an outlier detector described above may cause 

disconnected triangulation, bringing about either isolated points 

or isolated islands only internally connected (see the blue dots 

and green subnetworks in Fig. 2(a) respectively). To construct 

a fully connected network, here we introduce an enhanced 

Delaunay network (EDTN) method as follows.  

After the outlier detection, the remaining arcs and points are 

denoted by Σ  and Π  separately, among which, there are 3 

categories, Σ0
𝑀and Π0

𝑀 of the main network (red lines and their 

vertexes in Fig. 2(a)), Σ0
𝑆 = {Σ0

𝑆𝑖}𝑖=1,..,𝐾0
 and Π0

𝑆 = {Π0
𝑆𝑖}𝑖=1,..,𝐾0

 

of the secondary networks (green lines and their vertexes in Fig. 

2(a)), and Π0
𝐼  the isolated points (blue dots in Fig. 2(a)). Note 

that only one part of the studied scene is shown here for 

demonstration purposes.  

Firstly, we connect the points in each  Π0
𝑆𝑖 to the nearest K 

points (for computational reasons, K < 100) in Π0
𝑀 followed by 

an outlier detection. If at least two points with arcs remaining 

(to ensure the triangular), then all the points Π0
𝑆𝑖 are connected 

to the main network by the arcs Σ0
𝑆𝑖 and the newly added arcs 

Σ0
+1 . If all the newly connected arcs are denied as outliers, 

enlarge K as α𝐾  (α > 1)  and iterate until at least two arcs 

remain or no arc remains for a specified number of consecutive 

attempts. Secondly, repeat the same procedure for the points in 

Π0
𝐼 . If successful, the corresponding points are connected to the 

main network by the newly added arcs Σ0
+2. Let Σ0

+ = Σ0
+1 +

Σ0
+2 , Π0

+ = Π0
+1 + Π0

+2 . Then update Σ1
𝑀 = Σ0

+
, Π1

𝑀 = Π0
+ , 

Σ1
𝑆 = Σ0

𝑆 − ∑ Σ0

𝑆𝑝
𝑝 , Π1

𝑆 = Π0
𝑆 − ∑ Π0

𝑆𝑝
𝑝 , Π1

𝐼 = Π0
𝐼 − Π0

+2 , and 

iterate the connections until no more points can be added or a 

certain computation burden has been reached. The final 

network is Σ𝑀 = Σ0
𝑀 + ∑ Σ𝑗

+
𝑗 , Π𝑀 = Π0

𝑀 + ∑ Π𝑗
+

𝑗 ; please refer 

to the red lines and their vertexes in Fig. 2(b). All the other 

points and arcs will be abandoned, i.e. the green lines and their 

vertexes for the remaining secondary networks, and the blue 

dots for the remaining isolated points. 

Table II shows the quantitative comparison between the 

traditional DTN and the proposed EDTN. With DTN, we have 

to abandon 769 points out of 9,007 (8.5%) with DTN, while the 

number of abandoned points is 66 with EDTN (0.73%). One 

 
Fig. 2. Network illustration (a) DTN after outlier detection. (b) EDTN after re-network. Red lines and their vertices denote the arcs and points of the main network, 

the green lines and their vertices present the arcs and points of the subnetworks, and the blue points are the isolated points. Green and blue dots are the abandoned 

points. Note that only a small part of study scene is shown here for demonstration purposes. 

 

TABLE II 
COMPARISON BETWEEN DNT AND EDTN 

 Method DTN EDTN  

Before 
closure 

detection 

Main network 
Arcs 21,982 24,151 

Points 8,238 8,941 

Secondary 

network 

Number 60 8 

Points 635 22 
Isolated points 134 44 

Abandoned points 769 66 

Residues per interferogram 0.42 0.5 

After 

closure 

detection 

Remained points 8238 8941 

Remained arcs 21,978 24,146 
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further concern is that the EDTN may not be able to ensure 

more links which can meet the phase continuity assumption (i.e. 

the phase difference between two neighboring pixels cannot be 

greater than pi). Owing to the outlier detector introduced in 

Section III.B, almost all the remaining arcs can meet the phase 

continuity assumption, see Equations (9)~(14). To illustrate it, 

a statistical analysis has been carried out to compare the 

numbers of the residues (phase integration on each edge closure) 

of the DTN and EDTN (see Table II). The DTN shows a good 

consistency with very few residues (0.42 per interferogram), 

and the residues of the EDTN are slightly bigger (0.5 per 

interferogram). To further guarantee the reliability of the 

remaining arcs, a closure detection is implemented at triangular 

loops and a residual threshold of 1 radian is adopted [20]. After 

closure detection (without residues for both networks), there are 

2168 more arcs and 703 more points reserved by the EDTN than 

the DTN (see Table II). Therefore, the EDTN makes phase 

unwrapping easier and more reliable because it offers a greater 

spatial coverage than the DTN. Note that the DTN can also be 

used in the BLC approach if there is no special requirement on 

the spatitial coeverage. 

D. Temporally adjacent phase unwrapping and DEM 

retrieval 

After removing the outliers, a spatial integration is performed 

to unwrap the temporally adjacent phase. Let P and L the 

numbers of PS points and the arcs involved in the final network 

respectively, and we have the relationship as  
 

 ̂= θ   (15) 
 

where 𝚪 is dimensioned 𝐿 × 𝑃, the design matrix linking the 

point temporally adjacent phase 𝜽  and the arc temporally 

adjacent phase 𝚫𝜽̂. Obviously, 𝚪 is a sparse matrix with the 

generic element 𝚪(𝑙, 𝑖) = −1, 𝚪(𝑙, 𝑗) = 1 representing that the 

lth arc starts with the ith PS and ends with the jth PS, and 0 

otherwise. Equation (15) has a LS solution as  
 

  
1ˆ ˆ=( ) ( )T T −    . (16) 

 

The LS may bring about fringe non-congruency, but actually 

it is statistically optimal if there is no residue which is already 

guaranteed by the outlier detection. Like the other 𝐿𝑝 -norm 

phase unwrapping methods (𝑝 > 0), such as MCF, it is not 

congruent either as the necessity to suppress noise, which has 

been widely understood and accepted [14]. As described in 

Section II-A, the unwrapped phase comprises the topographic 

error, the deformation signal, atmospheric delays, and other 

thermal noise. The generic equation linking the design matrix 

and unknown variables is shown as 
 

  U =X θ  (17) 
 

where 𝐔  is the design matrix with 𝐔 = [𝒃, 𝑓(𝑻)] , and 𝑿 

embodies the unknown variables with  𝑿 = [𝜀, 𝑓−1(𝒗)]T. 𝑻 =
4𝜋 𝜆[𝑡1 − 𝑡0, 𝑡2 − 𝑡1, … , 𝑡𝑁 − 𝑡𝑁−1]T⁄  is the time temporally 

adjacent vector, and 𝒃  is the baseline vector with 𝒃𝑇 =
(4𝜋/𝜆)[𝐵1

⊥/𝑟 sin 𝜗 , … , 𝐵𝑀
⊥ /𝑟 sin 𝜗 ] . 𝑓(∗)  is dependent on 

different deformation models. We have the LS solution as 
 

 
1( )T T−= U U UX θ . (18) 

 

The dimension of U is N*(1+F), where F is the number of 

parameters describing deformation model. System (17) is 

nonsingular if U is column full rank, namely rank 1+F. Note 

that F is typically small (F<<N), so this condition can always 

be met if the spatial and temporal baseline distributions are not 

fully coherent (it holds true almost in all cases). 

As the main goal of this paper is to generate DEMs, we can 

leave the deformation in the residual as noise for later 

processing. Theoretically, after removing the contributions of 

the DEM error, followed by appropriate filtering [2], the LOS 

displacements and atmospheric artifacts can be estimated, 

however, it is out of scope in this paper and will be left for 

future research.  

IV. EXPERIMENTAL RESULTS 

A. Study area and data used in this study 

 Located in the southern coast of China, Shenzhen is one of 

the fastest developing cities and is highly urbanized with many 

high-rise buildings and dense infrastructures [46], [47]. A 

dataset of 26 scenes 0.25m-resolution spotlight TerraSAR-X 

images (see the parameters in Table III) were acquired on the 

descending orbit over Shenzhen, China during the period from 

January to December 2016. To collaboratively process all the 

images, a referenced image (20160710, with format 

YYYYMMDD) was selected while the others were all 

coregistered to it. The spatial and temporal baseline 

distributions are shown in Fig. 3, where the referenced one is 

labeled as a red five star and the others denoted as blue 

diamonds. 

TABLE III 
PARAMETERS OF TERRASAR-X 

Symbol Description Values 

R0 Sensor-to-target distance 645639 m 

f Operating frequency 9.65 GHz 

θ Local incidence angle 39.5° 

 

 

 
 

Fig. 3. The spatial/temporal baselines of the TerraSAR-X image used in this 

study  
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B. Unwrapped temporally adjacent phase 

  As mentioned earlier, one of the major challenges in 

InSAR-TS is 3D phase unwrapping. Following the 

triangulation steps described in Section III-C, we identify the 

sequence of InSAR IFMs to be generated for implementing the 

proposed BLC algorithm. For convenience, the “original” IFMs 

are from the temporal adjacent SLCs and temporal interval 

SLCs, i.e. 
 

  1 2,k i i i i + +=  −   −  . (19) 

 

In the Shenzhen case, we computed 108 IFMs with 15 

original IFMs and 93 combined IFMs, with a maximum 

(equivalent) baseline of 10m (see the justification of the 10m 

threshold in Section V-B).  

Here we compare the phase unwrapping results obtained 

from the proposed BLC approach with those from StaMPS [48], 

a popular InSAR time series package with 3D phase 

unwrapping capabilities. Fig. 3 (a)~(e) show the unwrapped 

phase derived from the proposed BLC approach whilst Fig.3 

(f)~(g) are the corresponding results derived from StaMPS, 

respectively. Note that only one-fifth of the IFM coverage is 

shown as space is limited, and the color indicates the 

unwrapped phase with respect to a point located at the road with 

a height of 0 m, denoted as black crosses. From left to right, the 

baselines are -173m, -160m, 110m, -104m and 50m. 

By comparison, in areas without sharp discontinuities, these 

two methods showed similar patterns. However, where there 

are discontinuities, StaMPS failed to unwrap the phase, but the 

proposed BLC method still provided satisfactory results. To see 

the difference quantitively, 3 pairs of points are chosen (see the 

plus signs in Fig. 4), denoted as A-A’, B-B’ and C-C’ (marked 

in Fig. 4(c)). Each pair of points are located closely in the SAR 

images, one from the building roof and the other from the 

ground (sharply discontinuous). If we calculate the phase 

gradient for each point pair and then eliminate the topography 

contribution with a LiDAR-derived digital surface model 

(DSM), theoretically the phase residual contains the 

contributions from deformation, atmospheric noise, and other 

thermal noise. Because of the strong spatial correlation of these 

components, the residual is expected to be small if the phase is 

correctly unwrapped. Therefore, RMS (root mean square) of the 

phase residual is set as a quality index and a large RMS 

(e.g. >2π) is definitely an indicator of incorrect phase 

unwrapping. RMSs derived from BLC and from StaMPS are 

listed in Table IV. The overall RMSs derived from BLC and 

from StaMPS are 0.79 rad and 11.59 rad respectively, implying 

that the BLC approach outperforms StaMPS when sharp 

discontinuities exist. As a result, the proposed BLC approach 

offers InSAR-TS, like SBAS, a robust 3D phase unwrapping 

approach.  

C. Estimated DEM Error 

On the basis of 3D phase unwrapping, the DEM errors can 

be estimated and then added to the DEM used in the 

interferometric processing step. Let’s focus on the stadium 

located in the central left of the scene (the red box and the 

zoomed image in Fig. 5(a)), between whose inner and outer ring, 

very low heights were detected, not consistent with the truth of 

40m-around-tall stadium. This is mainly for two reasons. Firstly, 

the side-looking satellite makes some seats detectable in far 

range due to the specific ring structure, while the nearly 

orthographic LiDAR only measures the roof height. Secondly, 

unlike the residential or office buildings, the 

polytetrafluoroethylene membrane employed in the stadium 

roof [49] is much thinner and easier to be penetrated for X-band 

TerraSAR-X radar signals. Instead, the airborne LiDAR carries 

TABLE IV 
RMSS OF THE PHASE RESIDUAL OBTAINED BY BLC AND STAMPS 

Method  
Points pair Overall 

RMS (rad) A-A’ (rad) B-B’ (rad) C-C’ (rad) 

BLC 0.83 0.78 0.78 0.79 

StaMPS 14.25 8.85 11.04 11.59 

 

  

 
 

Fig. 4. Comparisons of 3D phase unwrapping results between the BLC approach and StaMPS. (a)~(e) Unwrapped phase obtained by the proposed BLC approach 
with baselines of -173m, -160m, 110m, -104m and 50m, respectively. (f)~(j) the corresponding unwrapped phase from StaMPS. Only one-fifth of the IFM coverage 

is shown, with color indicating the relative phase with respect to the cross marked point. The plus signs are the points pairs chosen from the building roof and the 

ground respectively for quantitative analysis in Table IV. 
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near infrared (micrometer) signals, which hardly has a 

penetrating capability. According to the zoomed image in Figs. 

4(a) and (b), it is inferred that the satellite signal penetrates or 

side-looks the stadium roof and the points detected with lower 

heights are the seats. The lower height ranges from 30m to 15m, 

well matching the heights of the seats, providing strong 

supporting evidence for the conclusion about the penetration of 

the radar signals.  

After eliminating the pixels with penetrating effects, we 

compared the BLC-derived heights with those derived from 

LiDAR. The accuracy of the estimated DEM can be found out 

by the comparative analysis of setting LiDAR-derived DSM as 

 

Fig. 5. Validation of the BLC-derived DSM using a LiDAR DSM. (a) Optical image from Google Earth with the zoomed view of the stadium. (b) PSC (in red) 

superimposed on the mean SAR amplitude image. PSCs are mainly on infrastructure especially on buildings, and scarcely on vegetation. (c) Geocoded results of 

the superposition of estimated height on SRTM. (d) Height differences between LiDAR and the estimated heights. (e) Histogram of (d). (f) The correlation between 
the LiDAR and radar derived heights with a total correlation of 0.998 and an RMSE of 2.05m. The red line represents a regression line that best fits the plotted set 

of points with a slope of 1.01 and an intercept of -0.67. The points in red rectangles denoting the building profiles with geocoding error. (g) Height ambiguity of 

the data stack with a highest height ambiguity of 17.8m.  
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a reference, see the difference map in Fig. 5(d). A total of 

127,346 PS points were detected in the study area with a density 

of 231,500/km2, among which 6665 points (5.2%) were 

observed with height differences over 5m, 59 points (0.046 %) 

with height differences over 15m, and the rest points (94.8%) 

with height differences within [-5m, 5m] (see the histogram in 

Fig. 5(e)). 

The consistency between LiDAR and radar-derived heights 

was also assessed using a correlation analysis as shown in Fig .5 

(f), where the red line represents the regression line with a slope 

of 1.01±1.75e-4, and an intercept of -0.67±8.41e-3 m. A high 

correlation coefficient, 0.998, was obtained between the two 

data sets with an RMS of 2.05m. Note that the radar images 

used here have a very limited baseline range of 357m (Fig. 3), 

suggesting a low height sensitivity. Using the height ambiguity 

equation 𝐻𝑎 = 𝜆𝑅 sin 𝜃 2𝐵⊥⁄ [50], the system has the highest 

sensitivity with an 𝐻𝑎 of 17.8m (Fig. 5(g)). According to the 

height error equation in [50], 𝐻𝑒𝑟𝑟𝑜𝑟 is derived as  
 

 . / 2error aH H  =  (20) 

 

with 𝜎Ф being the phase standard deviation of the IFM, which 

can be described as follows [51] 
 

 

2
2

2

1 1

2 LN







−
=  (21) 

 

where 𝑁𝐿 is the number of looks (𝑁𝐿 = 1 in this study) and 𝛾 is 

the IFM coherence. As all the pixels studied here are PSs and/or 

TCPs, 𝛾 = 0.85  is a reasonable value (refer to [52]). 

Employing the error propagation theory, the autocovariance of 

the DEM error can be obtained as 
 

 var( ) var( ) T

error error=DEM A H A    (22) 
 

where var(𝐇𝑒𝑟𝑟𝑜𝑟) is the autocovariance of the error height for 

the original IFMs, and A is the design matrix linking the 

original IFMs and the combined IFMs. Finally, an error height 

of 2.66m is obtained, which is close to the 2.05m RMS. Another 

explanation is that according to [3], small values of the 

amplitude dispersion index 𝐷𝐴 is a good estimation of the phase 

stand deviation, i.e. 𝜎Ф = 𝐷𝐴=0.25. Using this approximation, 

DEM𝑒𝑟𝑟𝑜𝑟 = 1.52𝑚, also agrees with the RMS well. 

The validation experiment conducted in this paper is only a 

coarse result as only one track of TerraSAR-X data is exploited. 

Surely, results with even higher accuracy can be obtained if 

more tracks of data are available. 

Besides the stadium, the height differences were also found 

caused by geocoding process, especially near building profile 

or edges (the Y-axis parallel lines aligned by blue points in Fig. 

5(f)), which will be analyzed in detail in Section V-C. Except 

for some noise (few isolated points with big height differences 

in Fig. 5(f)), the error caused by geocoding, and the limitation 

of the essential resolution, the BLC-derived results match the 

reality well.   

V. DISCUSSIONS 

A. FCN or DTN 

There are two commonly used networking methods, namely 

DTN and freely connected network (FCN). The latter is 

preferable in recent literature because of its stronger connection 

and higher reliability and accuracy [53]-[55]. But when 

processing big scenes, the computational demand is too high to 

be acceptable. Let P the number of points involved. The FCN 

approach has to connect all the PSCs by C𝑃
2 = 𝑃 × (𝑃 − 1) 2⁄  

arcs (if there is no limit on the distance) and then checks all the 

arcs, while the number of arcs required to be connected and 

checked by DTN approach is only 𝑂(𝑃 log 𝑃) [54]. Therefore, 

the computational complexity of FCN is 𝑂(𝑃1−1 𝑛⁄ 2⁄ )  times 

greater than that of DTN. Here for the first time, we propose 

EDTN with a high reliability and an acceptable computation 

burden.  

 The light computational demand is one of the reasons to 

choose DTN. More importantly, with the EDTN described in 

Section III-C, most of the PSCs are kept in the network and little 

information is lost with an acceptable computation burden. To 

illustrate it, we take a small area from the study scene, the same 

area demonstrated in Section III-C (Fig. 3). Originally 9,007 

PSCs were selected. EDTN kept 8975 PS points and 25,060 arcs, 

while FCN kept 8984 PS points (only 0.1% improvement) at the 

cost of 28,228,098 arcs (1000 times greater) for checking. Using 

a desktop with 4 cores at 3.5GHz and 64GB RAM, it cost 7.76 

and 709.86 seconds for EDTN and FCN processing respectively. 

The comparison between FCN and DTN/EDTN is listed in Table 

V. From the theoretical respect, FCN has quadratic complexity, 

while DTN just has quasilinear complexity. Consequently, 

EDTN is a good compromise in terms of both computation 

burden and reliability. 

B. BLC IFMs or SBAS 

As described in Section IV-B, we only consider one and/or two 

IFMs for combined IFMs to minimize the propagated noises, 
 

 1 2 3 4 1,2,3,4

1 2 3 4 2 3 1 4

( ), 0,1,2,...,

, , , , {0,1}

k k k k kp k N

k k k k k k k k p

 =  −  +  −  

    
.  (23) 

 

For a dataset with N+1 images, if no baseline constraint is applied, 

the number of IFMs is C𝑁
2 = 𝑁(𝑁 + 1) 2⁄  and the number of 

combined IFMs can be up to C𝑁+1
2 × C𝑁−1

2 + C𝑁+1
2 × C𝑁

2 =

𝑁2(𝑁2 − 1) 4⁄ , with an increase of nearly 𝑁2/2 times. For the 

dataset used in this study, with baseline constraints of 10m and 

0.2y, the numbers of IFMs for SBAS and BLC are 15 and 497 

respectively. Even if we are more tolerant of the baseline 

separation, say |𝐵⊥| < 40𝑚 and |𝑡| < 0.4𝑦, only 65 IFMs are 

selected for SBAS case and 1 SLC has to be abandoned because 

none of the IFMs composed by the abandoned one meets the 

baseline requirements. Therefore, the combined IFMs have many 

more redundancies than the conventional SBAS approach.  

For typical SAR sensors, taking TerraSAR-X for example, 

whose parameters are shown in Table III, with which the 

topographic phase error is 𝜙𝜀 = 3.13𝜋𝐵⊥𝜀 × 10−4 . As the 

buildings with an absolute height of >300m are defined as 
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supertall skyscrapers (no more than 100 worldwide), and the low-

resolution DEM used can only eliminate the topography of the 

ground, the maximum value of the residual height ε equals to or 

is just less than the absolute height. Without loss of generality, ε 

can be upper limited to 300m. To guarantee |𝜙𝜀| < π , |𝐵⊥| 
should be limited to 10m, which is the reason for the baseline 

threshold in Section IV-B.  

Let’s focus on the spatial difference between neighboring 

pixels. Adopting very small and normal baselines, say 10m and 

150m respectively, the corresponding maximum gradient 

residual height Δ𝜀 are 300m and 20m to keep |Δ𝜙𝜀| < 𝜋. In the 

normal baseline case, most of the arcs with a height difference 

greater than 20m will be dropped at the outlier detection step 

described in Section III-B, leading to a very spare network. 

Comparatively, in the very small baseline case, the deleted arcs 

are mostly the ones with big stratified distributed atmospheric 

artifacts. Namely, the dropped arcs in the 10m-baseline IFMs 

are only affected by the atmospheric effects, while in the 150m-

baseline case, they are deleted due to big residual topographic 

contributions and large atmospheric residuals. This is also the 

reason why in the previous work [40], [54]-[56], normal 

baseline IFMs adopt FCN at the cost of heavy computation 

burden to ensure that enough arcs remain after the outlier 

detection. The BLC method utilizes the light computationally 

burdened EDTN to ensure that there are sufficient arcs for 

further analysis (see Table V). 

It is worth mentioning that there is a special scenario with all 

the baselines being regularly distributed, which rarely happens 

in real life. The generic ith SLC has a baseline of 𝐵𝑖
⊥ = 𝐵0

⊥ +

(𝑖 − 1)𝑏̅ with 𝑏̅ the even baseline separation, and the baseline 

of the combined IFM can be written as 𝐵̃𝑘
⊥ = (𝑘1 − 𝑘2 +

𝑝(𝑘3 − 𝑘4))𝑏̅. If (𝑘1 − 𝑘2 + 𝑝(𝑘3 − 𝑘4) = 0 , i.e. 𝐵̃𝑘
⊥ = 0, the 

topographic phase is totally canceled; in other words, the 

combined IFM won’t be influenced by the DEM error anymore, 

whether in continuous or sharply discontinuous case.  

C. Noise Analysis 

In the outlier detection process, it is important to decide the 

residual threshold, which has already been addressed and 

described from a statistical perspective in Section III-B. As a 

matter of fact, a simple decision can be made according to the 

PS noise. Assuming that noise is identical and uncorrelated, the 

most disadvantageous case is the combination of 2 IFMs 

sharing one SLC, 

 
1 2 1 3 1 2 3

( ) 2k k k k k k k k =  −  +  −  =  −  −   (24) 

whose noise is 6𝜎𝑝𝑠
2  ((2𝜎𝑝𝑠)2 + 𝜎𝑝𝑠

2 + 𝜎𝑝𝑠
2 ), while only 4𝜎𝑝𝑠

2   

for the other combined IFMs,  

 
1 2 3 4

( )k k k k k =  −  +  −    (25) 

and 2𝜎𝑝𝑠
2  for the original IFMs (or taken as one SLC canceled) 

 
1 2 3 1 3 2

( )k k k k k k k =  −  +  −  =  −    (26) 

For convenience, only the most disadvantageous case is 

considered, i.e. each arc shares a noise level of  12𝜎𝑝𝑠
2 . If we 

expect an accuracy of  5m (smaller than the height sensitivity 

in Section IV-C) for the estimated DEM (for TerraSAR-X 

satellite 𝜎𝐷𝐸𝑀 = 0.049𝑟𝑎𝑑 provided that baseline is limited to 

10m), as a result 𝜎𝑎𝑟𝑐 = 0.17𝑟𝑎𝑑  and the threshold 𝑇𝜙𝑟𝑒𝑠
 in 

Equation (14) can be set as 0.17 rad.  
One should note that, except for infecting 𝑇𝜙𝑟𝑒𝑠

 value, the 

increased noise also deteriorates the system. The general linear 

combination case is then investigated. Similar to Equation (24),  

 
1 2 1 3

1 2 3

( ) ( )

( )

k k k k k

k k k

m n

m n m n

 =  −  +  − 

= +  −  − 
 (27) 

whose noise 𝜎𝜙̃𝑘
≜ β𝜎𝜙 , where 𝜎𝜙  is the noise standard 

deviation of the original interferogram and β  is the noise 

TABLE V 

COMPARISON OF FCN AND DTN/EDTN 

Method FCN DTN/EDTN 

Theoretical computationa (𝑃 × (𝑃 − 1))/2 O(𝑃 × log𝑃) 

Original PS points 9,007 9,007 

Arcs before outlier detection 40,558,521 26,928 

PS points after outlier detection 8,984 8,975 

Arcs after outlier detection 28,228,09 25,060 

Time consumed in totalb 709.9 s 7.8 s 

aP is the PS points in total, big O(n) notation means the algorithm has an 

order of n time complexity; bs = second 

 

 
Fig. 6. Statistical results of the geocoding errors caused by the uncertainties in DSM, realized by adding Gaussian noise with 0 mean and 5m standard deviation, 

processed by 1000 times of Monte Caro simulations. (a) Mean value. (b) Standard deviation.   
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amplification factor with β = √𝑚2 + 𝑛2 + 𝑚𝑛 ( here 𝑚𝑛 ≥ 0). 

Similar to Equations (25) and (26), the general cases are 

 
1 2 3 4

( ) ( )k k k k km n =  −  +  −   (28) 

 
1 2 3 1

1 3 2

( ) ( )

( )

k k k k k

k k k

m n

m n m n

 =  −  +  − 

= −  +  − 
 (29) 

whose noise amplification factors are β = √𝑚2 + 𝑛2 and β =

√𝑚2 + 𝑛2 − 𝑚𝑛, respectively.  

From the above analysis, compared with the conventioanl 

InSAR techniques, the combined interferograms are interfered 

by heavier noise (up to β = √𝑚2 + 𝑛2 + 𝑚𝑛). For example, for 

m/n=±1, β = √3, and for m/n=±2, β = 2√3. This is the reason 

why we would like to limit m and n to the smallest values in the 

premise that the system is nonsingular. 

Due to the inaccurate orbit knowledge, the geocoding error 

should also be investigated for the estimated DSMs. Generally, 

for flat areas, if the deviation is small and the offset can be 

controlled within some pixels, the geocoding error can be 

neglectable. Unfortunately, in the case with large 

discontinuities over the layover area, it is very sensitive to the 

geocoding error. To illustrate this, we performed simulations on 

the LiDAR data used in Section IV-C. Firstly, the LiDAR DSM 

was back-geocoded to the radar coordinate and Gaussian noises 

with 0 mean and 5m standard deviation were attached. Note that 

the 5m standard deviation is our targeted accuracy. Then the 

noise-added DSM was forward-geocoded to the geodetic 

coordinate. After 1000 times of Monte Caro simulation, the 

statistical results of the geocoding error relative to noise-free 

geocoded results are shown in Fig. 6, with (a) and (b) the mean 

and standard deviation respectively. It is clear in Fig. 5 that, in 

the flat areas, the mean error and standard deviation are mostly 

around 0 and 5m, while the mean error is over 20m and the 

standard deviation can be over 10m near the building edges 

where sharp discontinuities exist, corresponding to the high 

height differences in Fig. 5(d). As the building façades 

constitute quite a large proportion of the detected PS, it is 

sensible that the ratio of PSs with big height difference in Fig. 

5(d) exceeds that of presented in Fig. 6. More detailed factors 

affecting geocoding errors are depicted in Appendix A.  

VI. CONCLUSIONS 

A baseline linear combination (BLC) method has been 

demonstrated in this paper. By combining two IFMs, IFMs with 

very small baselines (nearly zero) can be constructed, with 

which 3D phase unwrapping can be easily done. The 

application of BLC approach to the TerraSAR-X data over 

Shenzhen city suggests a high correlation of 0.998 between 

LiDAR and TerraSAR-X derived heights with a low RMSE of 

2.05m, demonstrating the effectiveness of the proposed method. 

In addition, the approach proposed is extremely suitable for 

urban areas with high-rise buildings which will encounter phase 

unwrapping errors by conventional InSAR methods. 

Nevertheless, when applied to small towns just with sparse 

infrastructures, its superiority cannot be fully made use of. 

Worse still, it can hardly be applied to heavily vegetated areas 

as this method is TCP-processed based and there would not be 

enough TCPs in those areas. Also, the orbit tightly controlled 

TerraSAR-X, with a very lower elevation resolution, may 

hinder the validation of the method. It will be helpful if more 

data stacks with a larger baseline span are available. 

It is worth mentioning that the BLC method is originally 

designed for urban areas, but actually it is perfectly applicable 

whenever big height differences exist (e.g. layover and/or 

 
Fig. A1.  Mean value of the statistical results of geocoding error caused by DSM error, realized by adding Gaussian noise with 0 mean, processed by 1000 times 

of Monte Caro simulations by 1m, 5m and 10m LiDAR from left to right.  The upper row is with noise of a standard deviation 1m, while the bottom row is with 
noise of a standard deviation of 5m.  
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shadow areas) and wherever TCP exists. One possible 

application is for steep mountains or cliffs, especially with 

rocks and not heavily vegetated ones. Also, this can be applied 

in certain geological hazards, like the monitoring of volcano 

craters and faults whose activity is closely related to 

earthquakes.  

APPENDIX A 

This appendix illustrates the geocoding errors caused by 

DSM with different spatial resolutions and at different noise 

levels, as a supplement of Fig. 6. The corresponding mean and 

standard deviation results are shown in Figs. A1 and A2 

respectively, with the same experimental condition but with 

different noise levels and spatial resolutions. (a)~(c) are with 

1m noise standard deviation and (d)~(f) are with 5m noise 

standard deviation. (a) and (d) are with 1m DSM resolution, (b) 

and (e) are with 5m DSM resolution and (c) and (f) are with 

10m DSM resolution, respectively. From the figures, a 

conclusion can be drawn that the higher the spatial resolution 

and the lower the noise, the better performance. When the 

resolution of the DSM is low, say lower than 10m, the 

geocoding performance dramatically deteriorates. Similarly, 

high noise can severely deteriorates the geocoding performance.  

APPENDIX B 

This appendix aims to validate that the combination 

method is feasible by Monte Carlo simulation. 

It is assumed that the position of satellite distributes 

randomly in the space, and with a specific perpendicular 

baseline span 𝐵⊥, whose typical value is 400m for TerraSAR-

X and 2000m for CosmoSky-Med. We can assume that the 

perpendicular baseline obeys the normalized distribution 

b~N(0, σ𝑏
2) (relative to the master acquisition). According to 

Pauta criterion (3σ criterion), the perpendicular baseline b 

distributes within (−3σ𝑏 , 3σ𝑏) with a probability of 99.7%. σ𝑏  

can be set as 
1

6
𝐵⊥ so as to make b distribute within (-

𝐵⊥

2
,

𝐵⊥

2
) 

with a high probability of 99.7%. If the design matrix H is full 

rank (i.e. a nonsingular system) with a probability equaling to 

or greater than 99.7%, the system can be considered 

nonsingular. Although the analytical solution of the nonsingular 

probability of H is difficult to realize, it can be evaluated by 

Monte Carlo simulations. Based on 10,000 MC simulations, the 

baseline span with different 𝑁𝑠𝑙𝑐  versus nonsingular probability 

are plotted in Fig. B1 (as here we only set m/n=±1, and H only 

contains elements 0,±1,±2, its rank can be obtained quickly and 

accurately). From Fig. B1, it is clear that the systematic 

nonsingularity increases with the number of SAR acquisitions 

𝑁𝑠𝑙𝑐  while decreases with the perpendicular baseline 𝐵⊥. When 

 

Fig. B1. Perpendicular baseline span versus nonsingular characteristic under 

different numbers of SAR acquisitions with m/n=±1.  

  

 
Fig. A2. The corresponding standard deviations of Fig. A1.  
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𝑁𝑠𝑙𝑐 ≥ 26 , the system is always nonsingular when 𝐵⊥ ∈
[200,2000]. For our case of 𝐵⊥ = 400m and 𝑁𝑠𝑙𝑐 = 26, the 

system nonsingularity can be ensured. 

Note that, the above-discussed nonsingularity is based on 

the assumption 𝑏~N(0, σ𝑏
2 ). However, it is possible that one 

acquisition stays further away from the others (we call it the 

isolated acquisition). Thus 𝑏~N(0, σ𝑏
2 ) does not hold, and 

neither the lines in Fig. B1. Following the guidance in the last 

paragraph in Section II-B, m/n can be enlarged to ±2. And if 

after the enlargement, the system is still singular (though rarely 

happens), one can simply abandon the isolated acquisition.  
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