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Abstract—Advances in deep learning have allowed for the
development of more complex and powerful neural architectures.
The adoption of deep convolutional-based architectures with
residual learning (ResNets) has reached state-of-the-art perfor-
mance in hyperspectral image (HSI) classification. Traditionally,
ResNets have been considered as stacks of discrete layers,
where each one obtains a hidden state of the input data. This
formulation must deal with very deep networks, which suffer
from an important data degradation as they become deeper.
Moreover, these complex models exhibit significant requirements
in terms of memory, due to the amount of parameters that need
to be fine-tuned. This leads to inadequate generalization and
loss of accuracy. In order to address these issues, this paper
redesigns the ResNet as a continuous-time evolving model, where
hidden representations (or states) are obtained with respect to
time (understood as the depth of the network) through the
evaluation of an ordinary differential equation (ODE), which
is combined with a deep neural architecture. Our experimental
results, conducted with four well-known HSI datasets, indicate
that redefining deep networks as continuous systems through
ODE:s offers flexibility when processing and classifying this kind
of remotely sensed data, achieving significant performance even
when very few training samples are available.

Index Terms—Hyperspectral images (HSIs), deep learning
(DL), ordinary differential equations (ODEs), residual networks
(ResNets).

I. INTRODUCTION

EMOTE sensing techniques have been widely employed
for detecting, measuring and monitoring the physical
behaviour and/or characteristics of large areas of the Earth
through the acquisition and measurement of radiation emitted
or reflected by the terrestrial materials that compose the
observed surfaces, and which is captured by specific sensors
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located on airborne or spaceborne platforms [1]. The inter-
pretation of the obtained measurements can be beneficial to
human activity [2], [3]. There is a wide range of remote
sensing data, where each one exhibits different spatial and
spectral properties depending on the type of employed sensor
and measured radiation. Moreover, current Earth observation
missions are already collecting an extremely large volume
of remotely sensed data from satellites and airborne systems
[4]. Hyperspectral images (HSIs) are collected by passive
spectrometers that measure the reflected solar radiation from
the observed areas, creating huge data cubes composed by
hundreds of narrow and continuous spectral wavelengths. As
a result, a HSI given by X € R™t*"2X"ands jg composed
by two spatial components that determines the image’s width
and height (n; X n3) and one spectral component that indicates
the number of channels or spectral bands (nygnqs)- As a result,
each pixel of X can be interpreted as a detailed spectral signa-
ture or spectral vector x; € R™ands = {g; 1 -+ 2, 1
which allows for an accurate characterization of the surface
materials [5]. This has attracted the attention of many re-
searchers that employ HSIs into a wide range of applications,
including precision agriculture [6], environment and natural re-
sources management [7], mineralogy [8], forestry [9], disaster
monitoring [10], urban planning [11], and defense applications
[12], among others.

A large variety of algorithms have been developed to
process and extract useful information from HSI data cubes. In
this regard, HSI classification methods can greatly benefit from
the rich spectral information contained in each pixel x;. In
fact, the classification of these images aims to assign a single
category (or label) to each pixel in the image. In mathematical
fashion, the goal of a classifier is to approximate a mapping
function of the form f(-,#), which depends on parameters 6,
to map the pixels in the original HSI X C R"sem»ies to those
labels contained in a set of categories Y C N, i.e., f: X — ).
In the particular case of HSI classification, the procedure
consists of mapping each pixel x; in X = {x1, -, Xpn_ ., 000
(with nggmples = M1 - n2) to an unique numerical label of
Nelasses Possible classes y; = {1, ,Neasses}, extracted
from the set Y = {y1,"* ,Yn.empies J» Creating pairs of
{x,yi}i24m""* for each spectral pixel.

Traditional HSI classification methods are based on the
analysis of the each pixel x; independently, without consider-
ing spatial information. For instance, unsupervised clustering
techniques such as k-means [13] and supervised or semi-
supervised methods, as the widely-used support vector ma-
chine (SVM) [14] or multinomial logistic regression (MLR)
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[15], among others [16], [17]. Artificial neural networks
(ANNs) [18], [19] have acquired great popularity due to their
flexibility concerning learning modes (unsupervised, super-
vised and semi-supervised) and available architectures (shal-
low, deep, fully or local connected). Moreover, ANNs work
as universal approximators [20], [21], being able to extract
representative features and to discover nonlinear relationships
from the input data.

Advances in deep learning [22], [23] have allowed for the
implementation of deeper and more complex ANNs, known as
deep neural networks (DNNs). These networks are composed
by groups of neurons organized into a hierarchy of multiple
nonlinear layers, which are stacked one by one. As a result,
DNNs are composed by one input and one output layer, with
several hidden layers in-between them. The original data goes
through the hierarchy of layers, where a different level of
data representation is obtained at each layer. These representa-
tions are composed by highly expressive features that encode
complex patterns and nonlinear relationships in the data. At
the end of the network, highly abstract and discriminative
information is obtained, which can be employed to enhance
classification tasks. In the following, we briefly review some
recent deep learning works in the literature (focusing on those
based on convolutional and residual architectures for HSI data
classification), and then we discuss some shortcomings and
limitations of these works and the solutions adopted in this

paper.

A. Recent Trends in Deep Learning for HSI Classification

DNNss traditionally follow a biological neural model, imple-
menting a fully-connected (FC) topology where all the neurons
in a layer are totally connected with all the neurons of the
previous and following layers, as in the multilayer perceptron
(MLP). In this way, each neuron applies a dot product between
the outputs of previous neurons and the connection weights,
simulating synaptic weights. The obtained result is filtered
by a threshold function, also known as nonlinear activation
function, which encodes the nonlinearities of the data and
triggers (or not) the activation of a given neuron. In fact, DNN
approaches adopt the same strategy as traditional pixel-wise
classifiers. For HSI data, they take as input the spectral pixels
of the HSI data cube [18]. In this regard, spectral-based DNNs
are quite sensitive to variations in the spectral signatures.
It should be noted that HSI data are characterized by their
high intra-class variability and inter-class similarity (due to
perturbations and disturbances in the data collection process
at the spectrometer, atmospheric conditions, etc.) Also, HSI
data normally exhibit low spatial resolution, which means that
a single pixel often contains multiple materials, resulting in
mixed spectral signatures. These shortcomings, coupled with
the curse of dimensionality and the Hughes phenomenon [24]
(which establishes the need for a reasonable balance between
the number of training samples and the number of spectral
bands in order to ensure a reliable classification [25], [26])
are important challenges to deploy the full potential of HSI
technology with traditional pixel-based DNN approaches.

A significant evolution in deep learning techniques was
the adaptation of biological visual cortex neurons into DNN

architectures, with the implementation of convolutional neural
networks (CNNs) [22]. Inspired by the local receptive field of
such visual cortex neurons (activated or not in the presence
of certain types of visual stimuli), CNN-based models rely on
the application of a sliding n-dimensional kernel on the input
data of each layer. This allows for the exploitation of the visual
properties of an image, learning features at certain positions
of such image, and applying these features as filters to the
rest of the image in order to obtain a feature-activation map
[27], [28]. In this sense, the contextualization provided by the
spatial components n; X no of the HSI data cube X can greatly
reduce the variability of spectral samples by interpreting the
data surrounding the pixels as belonging to the same class,
which reinforces the information contained in the target pixel,
reducing also the well-known “salt & pepper” noise of spectral
classifiers.

CNN models exhibit excellent performance in HSI data
classification through the development of a wide range of
architectures, from traditional spectral-based ones (CNN1D)
to spatial (CNN2D) and spectral-spatial (CNN3D) models.
For instance Hu et al. [29] implemented a five-layer CNN1D
to classify HSI data in the spectral domain, and Yue et al.
[30] developed a CNN3D to classify HSI data taking into
account spectral-spatial information. Zhao et al. [31] exploited
a CNN2D model as a highly confident spatial feature extractor.
Chen et al. [32] reviewed CNN1D, CNN2D and CNN3D mod-
els for deep HSI feature extraction and classification. In order
to enhance the classification results, several improvements
have been added to the CNN architecture. For instance, Yu et
al. [33] implemented a three-layer CNN2D model with 1 x 1
kernels, inspired by the network in network (NIN) model [34]
in order to overcome the presence of highly correlated bands
in the HSI data cube. He et al [35] combined the information
contained in HSI-extracted covariances with a CNN2D model.
The authors in [36] presented a faster end-to-end CNN3D that
improved the classification accuracy taking into account the
full spectral signatures contained in HSI data.

Despite the aforementioned results, CNN models still face
certain limitations related to the intrinsic characteristics of
HSI data and the (high) number of parameters and the depth
of the network. In particular, CNNs need a large amount
of training data to properly adjust their weights [37]. They
also require some variability in the data in order to extract
more features [28]. Although HSI data often exhibits a wide
variety of samples, very limited labeled data are often available
due to their high cost, which in the end hampers the feature
extraction process and leads to over-adjustment (overfitting) in
the convolutional model’s parameters.

In addition, the implementation of very deep CNN models
through the stacking of successive layers has proved to be
inefficient itself [38], since a significant degradation can be
observed in both the forward propagation of the data and
the back-propagation of the gradient signal through the layers
(vanishing gradient problem) [39], [40]. To overcome these
issues, the residual learning aims to facilitate data re-usability
through identity functions implemented by skip or residual
connections. Residual networks (ResNets) [38] and other
residual-based architectures (such as highway networks [41],
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DenseNets [42] or ResNets of Resnets -RoRs- [43]) have
emerged as the current state-of-the-art in image processing
[44], allowing for the development of highly complex and
deep architectures, using hundreds to thousands of layers [45].
These techniques, aimed at enhancing the propagation of data
through the network, have been successfully adopted in several
HSI classification works [46], [47], [48].

However, ResNets exhibit some shortcomings in terms of
architecture optimization. In fact, residual-based models for
HSI classification are quite sensitive to minor architectural
changes, in particular, the selection of an appropriate kernel
size has a significant impact on the final classification ac-
curacy, due to the low spatial resolution of HSI data cubes
[47]. In contrast, at certain levels of depth, adding more or
less layers to the network does not impact the classification
result significantly [48]. In turn, this obviously affects the
number of parameters that must be stored and trained. The
understanding of the optimal number of parameters required
by a certain architecture (number of layers, kernel sizes, etc.)
is quite critical, but it is often hand-crafted and adjusted by
trial and error.

B. Re-thinking the ResNet model for HSI classification

DNNs (in general) and ResNets (in particular) have been
interpreted as a discrete sequence of L stacked layers, where
each one applies its transformation to the input data until
reaching a final classification decision, which is performed by
the last layer. This implies that the ResNet model is evaluated
at fixed intervals of “time”, defined by the layer depth. Also,
assuming that each layer has the same number of neurons
Nneurons (Which can be interpreted as the kernel’s size in the
convolutional architecture), the number of trainable parameters
depends directly on L, so the complexity of the network (and
its memory consumption) grows linearly with O(L) order,
which could have an impact on the model’s overfitting. Under
the same assumption, the computation time of the inference
stage also depends on L.

The aforementioned implications provide an idea of the
importance of the model’s depth. As a result, the selection of L
must be carefully done. In fact, the main goal of the present
work is focused on two important aspects: i) checking the
effects of the depth when L — oo, and ii) analyzing strategies
to provide the network with constant and low memory cost (in
terms of the number of parameters). In this context, the feature
extraction (FE) function applied by each residual unit can be
interpreted as the explicit Euler discretization of a continuous-
time transformation [49], [50]. Following this interpretation,
the entire ResNet model can be described through an ordinary
differential equation (ODE) [51], [52], whose evaluation at
different times will determine the model’s solution [53], [54].

With the aforementioned ideas in mind, the main contri-
bution of this work is to redefine the traditional architecture
of the ResNet model (in the context of HSI data classifi-
cation) by means of a continuous-time vision using ODEs,
developing a residual-based DNN with a significantly reduced
number of trainable parameters (thus effectively dealing with
overfitting issues) and constant and low memory cost. These

are important advantages in the area of HSI classification.
More specifically, this work proposes for the first time in the
literature the implementation of a continuous-depth ResNet
with a parameterized spectral-spatial ODE in order to perform
HSI data classification.

The remainder of this paper is organized as follows. Section
II introduces our newly developed model (called hereinafter
ODEnet). Section III validates the newly proposed model by
providing a detailed discussion of the results obtained using
four widely-used HSI data sets. Finally, section IV concludes
the paper with some remarks and hints at plausible future
research lines.

II. METHODOLOGY
A. Residual Units as Discrete Steps of Blocks

DNN architectures are stacks of L hidden blocks [55] F}
to Fr, where each one Fj is given by the following mapping
function:

xW = R, (Xufl)’W(z)’b(z)) , (1)

where X~ and X are the input and output data, respec-
tively, and W) and b() are the weights and biases of the
I-th mapping function Fj. In order to address the classification
problem f : X — ), the DNN model assigns a classification
map Y € R"samples to the given input X € R™sampies XMbands
by applying L sequential operations defined by Eq. (1). In this
sense, the classification function f(-,) can be re-interpreted
as the concatenation of the processing at each each layer
processing as follows:

Y:f(Xve):

FFL(Fpa(--- Fi(X)---)), (@
being X the original input data, Fj(-) the mapping function
performed by the I-th network’s block, and £(-) the final clas-
sification layer, while 6 comprises the network’s parameters
[49]. In this regard, instead of considering the classification
mapping as a global problem, the DNN model splits it into
L mapping functions Fj, where the goal of the classification
is to learn the parameters of each F; that better minimize the
convex loss function given by Eq. (3):

Nsamples

Z | f(Xi,0) = Xi |2 - (3)

=1

1
FE =

Nsamples

If we focus on convolutional-based models, the data trans-
formation defined by Eq. (1) is tailored in a FE stage defined
by a kernel operation [36], which allows to easily combine the
spatial-contextual information with the spectral information.
In this context, the CNN maintains the original 3-dimensional
data structure, adding a lot of flexibility to the model and
a natural way to include the spectral-spatial information.
Moreover, the internal structure of the CNN’s layers and their
operations (based on local receptive fields) have promoted it
as a highly accurate feature extractor.

Two main parts can be observed in an end-to-end CNN
classifier network: i) the FE stack, which obtains high-level
representations of the input data (also feature maps) and is usu-
ally composed by a hierarchy of convolutional, nonlinear and
subsampling layers, among others, and ii) the FC classifier,
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which actually labels the data from the previously obtained
feature maps and is implemented as a standard MLP.

Focusing on the FE stack, it is usually adopted to implement
an architecture of several hierarchically stacked extraction and
detection stages, where the [-th stage defines the [-th mapping
function Fj, following the notation of Eq. (1). Moreover, each
Fy is usually composed by: i) the convolutional layer, ii)
the nonlinear layer, iii) the normalization layer, and iv) the
pooling layer, as Eq. (4) shows, although both the order and
the type of layers may vary from one CNN architecture to
another (even from one stage to another).

AD = (WO sy XUV 450 (4a)
< A® — mean [A(l)]
AW = v+ 8 (4b)
var [AD] + €
AD =y <A<”) (40)
X0 =P (AV) @)

The convolutional layer performs the basic FE task of the
model. The spectral-spatial convolutional layer of the F;
mapping function is composed by a group of K filters, with
WO e RF*kXq weights and b() biases, being k x k X ¢
the local receptive field of the layer. In consequence, each
layer creates a linear kernel that slides (following a stride s)
and overlaps the input data, convolving () its filters on local
patches of the data, as Eq. (4a) indicates. As a result, the
obtained output volume is composed by K feature maps.

Identity X -1 Convolutional layer [
ReLU [
( l Batch-norm layer [
(-1)
GX")

X(H) X(1)=X1-1)+g (X(I-IJ)

Fig. 1. Graphical representation of the I-th residual unit architecture, F?,
composed by two feature extraction and detection stages. Each stage is com-
posed by normalization, nonlinear and convolutional layers. The application
of these stages gives as a result the output volume G (X(l_l)), to which an
identity mapping is added at the end of the residual unit, obtaining the final
residual output volume X() = X (=1 4 g(x(-1)),

After the convolutional layer, it is common to include a
batch normalization layer, which imposes a Gaussian distribu-
tion on the obtained feature maps with the aim of preventing
the data degradation and vanishing gradient problems (mainly
due to the covariance shift that the data suffers). Eq. (4b)
gives the regularization expression, where € is a parameter that
allows a certain numerical stability and v and 3 are learnable
parameters.

Following the normalization layer, a nonlinear layer #(-)
defined by Eq. (4c) is introduced in order to extract the
activation maps from the convolutional output volume. In
fact, this layer embeds a nonlinear activation function, which
encodes the detector stage of the network [56], learning the
nonlinear representations and relationships inside the data.
Many activation functions can be selected, such as the tanh,
sigmoid or rectified linear unit (ReLU) [57], which allows
a faster training of the model due to its high computational
efficiency.

Finally, the extraction and detection stage ends with the
pooling layer Pixx(-) given by Eq. (4d), which performs a
downsampling strategy with the aim of reducing the spatial
dimensions of the output volume by applying, for instance, a
max, average, or sum operation on the spatial receptive field
of dimensions k x k.

Based on the CNN architecture, the success of the ResNet
model lies in the skip and residual connections, in which
grouped operation layers (i.e. convolutional, pooling and
normalizing layers) and nonlinear activation functions com-
pose the basic blocks for data mapping [47], as shown in
Fig. 1. These residual units allow for the development of
deeper architectures, where the inputs and outputs of each
unit are connected through a residual connection, performing
an additional identity mapping that allows to propagate the
information from previous blocks to the rest of the network.
In this context, for the [-th residual unit, the feature extraction
and detection stage given by Eq. (4) can be reformulated as
follows:

AD —xX0-1) 4 g (Wm’ X1, B(l))
X0 — ’H(A(l))

(5a)
(5b)

where G(-) comprises all the operations applied over the
residual unit’s input data, i.e. all the convolutions, poolings,
normalizations and activations applied over X, being W)
and B" the weights and biases of the layers involved in the
residual block, respectively. Moreover, the additive residual
mapping function added to G(-) allows to recycle the features
obtained at the previous level of abstraction.

Following Eq. (2), the ResNet defines each mapping func-
tion Fj through Eq. (5). In this context, the neural model can be
interpreted as a discrete sequence of L hidden units or mapping
functions, dividing the classification process into L steps, so
that each F; defines a hidden state of the process, which
becomes more manageable, with simple and detailed steps
that allow for a more accurate final classification. However,
this implies that the quality of the model depends on its
trainable parameters, and the number of trainable parameters
depends directly on L. This has two main implications.
On the one hand, the memory consumption grows linearly
[with O(L) order] and there is an increment of training data
that the model must assume in order to properly learn the
network’s parameters, avoiding the overfitting problem. On
the other hand, although the residual connections alleviate the
aforementioned problem, each new unit that is added to the
model introduces a small error [38], [58], which may hinders
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the model’s overall performance. These issues are particularly
critical when dealing with highly variable HSI data sets.

B. Residual Units as Discrete Steps of ODEs

Our goal is to develop a residual model with constant
and low memory cost, through a significant reduction of the
number of trainable parameters. We follow the premise of
traditional optimization models: solving a lot of small steps is
often better than solving fewer and more complex ones [50]. In
this sense, and following Eq. (2), we propose to implement a
ResNet model for HSI data classification in which the forward
problem is composed by infinitesimal steps, i.e. L — oo
[54]. Each of these steps performs Eq. (5), which describes
an explicit Euler discretization step of the ODE [51], [52].
Below, the mathematical relationship between ResNet models
and ODE:s is described in detail.

We focus on first-order ODE expressions. Following Euler’s
solving method, any first-order ODE can be expressed as an
initial value problem (IVP) of the form:

dz(t)

dt

where ¢; is an independent variable defined in terms of time
in an observation interval {0,...,T}, f(z(t),t,0) is a known
and continuous function with parameters 6, and z(t) is the
unknown function that must be approximated, with initial state
Zo at time to. In fact, the goal of any ODE function is to
recover the closest and most accurate value z; of the unknown
function z(¢;) at each observation point ¢;.

From a geometric point of view, knowing z(tg) = zo, an
approximation of z(t;) = z; in any step ¢; can be performed
by drawing the tangent line from previous-known points as
follows:

= f(t,Z(t), 0), with Z(to) = Zo, (6)

Z1 = Zg + f(to, Zo, 9)(t1 — to) (7a)
2, = Zi—1 + f(tic1,2i-1,0)(t; — tic1) (7b)
zr = z7_1 + f(tr—1,27-1,0)(tr —tr—1) (7c)

Generalizing the discrete steps defined above, it can be stated
that any z(¢;) can be approximated by Eq. (7b). Assuming
that the i-th observation point is connected to the first one
(following the relation ¢; = ty+«-i, where « is a step-size), the
Euler discretization method claims that each point ¢; is related
to the immediately preceding one, t;_1, through the step-size
a as follows: t; = t;_1 + . Including this relationship in Eq.
(7b), the Euler’s method gives a solution for z(¢;) as:

2; = 2i—1 + f(tic1,2i-1,0) - (LT + o — £=7) (8a)
z; =21+ o f(ti—1,2i-1,0) (8b)

At this point, it is easy to observe the relationship between
the ResNet model and the first-order ODE. Focusing on Eq.
(5), we can simplify it into a more condensed form:

X® =X 4 g(xY,6)) ©)

The similarities between Eq. (8b) and Eq. (9) are evident.
In fact, Eq. (9) defines an explicit Euler discretization step of
a first-order ODE, where the step-size is set to a = 1 and the
known function is implemented by the extraction and detection

stages G(-) of the residual unit, being parameterized by the
weights and biases of the layers that compose the residual
unit 6, = (WO, BW). In other words, the ODE function is,
in fact, a CNN.

Following this intuition, we can replace the discrete block-
by-block performance of a ResNet model by a continuous-time
ODE function. In particular, we assume a residual model with
L — oo equal residual units. In this sense, each mapping func-
tion Fj has to perform the same extraction and detection stages
in G(-), so each unit has the same number of parameters 6 and
works in the same feature space Fi,---,F; € R"1xn2x7ns,
where n1 X fig X Nig are the spatial-spectral dimensions of the
feature maps.

In this way, the successive transformations given by Eq.
(2), F1,--- , Fr, can be interpreted as the continuous mapping
function F'(t), evaluated at different times (with a relationship
between layers and time). So, at the i-th observation time,
we can obtain F(t;) = X;. As a result, the residual model
can be reformulated as the ODE in Eq. (10), which gives the
discretization step of Euler’s method and the expression of the

first-order ODE:
X; =Xi-1+G(ti—1,Xi-1,0), (10a)

where

dF(t

dzE ) =G (t,F(t),0), with F(tg) = Xo. (10b)
As it can be observed, the ODE is implemented by the neural
network defined by G(-), and parameterized by 6.

C. Proposed ODEnet for HSI Classification

We propose, for the first time in the literature, to reinterpret
the ResNet model (for HSI data classification) as a continuous
transformation given by the first-order ODE described in Eq.
(10). Fig. 2 gives a general overview of the proposed ODEnet,
which receives as input the HSI data cube with dimensions
X € R¥*dXmwanas [n fact, the model is fed with hyperspectral
patches cropped from the original HSI cube, composed by
d x d pixels and npengs spectral bands, where the label
corresponds to the central pixel of the patch. Also, in order
to take advantage of border pixels, a mechanism for mirroring
the image edges has been implemented [36].

The proposed network architecture is divided into the FE-
layers and the final classification layers. Focusing on the FE-
layers, they are grouped in three categories: i) FE-head, ii) FE-
body, and iii) FE-tail. The FE-head performs a downsampling
of the data, reducing noise and cleaning the information
contained in the input. It is composed by a convolutional
layer F) and a residual unit F5. F} prepares the input data,
extracting the initial features from the HSI cube, which are
fundamental to the performance of the rest of the layers.
During the training process, these features will become more
and more robust and discriminative, being decisive for the
final classification. F, has been implemented following the
pre-activation architecture proposed in [45], performing data
downsampling and it is composed by two FE and detection
stages with normalization, nonlinear and convolutional layers,
adding a convolutional layer on the skip connection to main-
tain the data shape.
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D Convolutional layer QTF(I), L 6)

B ReLU
. Bach normalization I I H I I H I
. Average pooling

Stage | Stage 2 Stage 3

! Residual connection

/
/
.’//’
)
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Fig. 2. Architecture of the proposed ODEnet for HSI data classification.
The feature extractor part is composed by three well-differentiated parts: (i)
a pre-processing step that filters the spatial-spectral noise and extracts low-
level feature representations, (ii) the ODE solver, that evaluates the function
G(+) defined by a neural network and whose output, after being refined (iii),
is employed to perform the final classification, implemented by two fully-
connected layers.

1l

| Stage 1 Stage2

The obtained features are sent to the FE-body, which is
implemented by a continuous-time ResNet. In this context,
the ODE implemented by Eq. (10) has been parameterized
by a CNN model. As Fig. 2 shows, this model follows the
pre-activation architecture [45] and has three stages, where
each one is composed by normalization, nonlinear and con-
volutional layers (stages 1 and 2), and a normalization layer
(stage 3). This ODE is solved from some initial time ¢g to
some ending time ¢r, creating an integration time interval
[0, T']. Furthermore, during each forward-pass, the traditional
discrete-layer execution of the model is eventually replaced by
L evaluations of Eq. (10), performed by a black-box solver in
the interval [0, T], which receives as the initial condition Xq
the output of F5, the known function G(-) and its parameters
6, in addition to the integration time interval, and a tolerance
threshold of the estimated error, tol:

F(tr) = X7 = ODEsolver (Xo,G, 0, [to, tr], tol)  (11)

Eq. (11) can be performed by any off-the-shelf ODE solver.
There is a great variety of methods for this purpose, grouped in
different categories depending on their internal characteristics
and working modes [59], being some of the methods framed
within the Runge-Kutta family the most well-known:

e Forward Euler. This is the most popular numerical ex-
plicit method for solving first-order ODEs. It is also the
simplest method to implement, where the new states are
obtained through previously known ones by the intersec-
tion of tangent lines, as Eq. (8) shows. Given the first-
order ODE of Eq. (6), and using « as the step-size, the
approximation error of Euler’s discretization method will
be proportional to O(a?).

o Explicit midpoint method, also known as modified Euler
method. Given Eq. (6) the evaluations are made at «/2,
so this method determines the value z(t;) = z; as the

following approximation:

a
z; =2z 1+a-f (ti—l + %,Zi—l tg- kl) (13a)

k1= f(ti—1,2i—1) (13b)

This method reduces the estimation error when the

Euler’s step-size is too high and the tangent needs to be
elongated to find the intersection point.
Fourth-order Runge-Kutta method (RK4). This is the most
widely used method of the Runge-Kutta family. Inspired
by the midpoint method, the basic idea is that, given two
equidistant points t; = ¢;_1 + «, the function z(¢;) = z;
can be approximated as the sum of the previously known
value and the weighted average of s slopes [60]:

S
zi=2i 1+ bnkn (142)
n=1

ki =oaf(ti—1,2i-1) (14b)

n=1

n—1
kn =af (ti—l +cna,zi 1 + Z an,ﬁkﬁ> (14c¢)

where a,, 5, b, and c, are weighted coefficients. In
this sense, given Eq. (6), the RK4 method determines
the value at ¢; as an approximation of the previously
known z;_; and the weighted average of four increments:
(k1 + 2ko + 2ks + k4) /6, which are calculated on certain
points of the slope defined by f(z(t),t,8), in particular,
the starting, ending and midpoints [61]:

1
Zi:Zi71'6<k‘1+2'k2+2'k3+k4) (15a)
ki =af(ti—1,2i-1) (15b)
k
ky = af(ti—1 + E,Ziq + *1) (15¢)

2 2
k
ks =af(ti—1 + %,Zi—l + 52) (15d)

ks =af(ti—1 +a,2z,—1 + k3) (15¢e)

Following Eq. (15), the approximation error is propor-
tional to O(a*), being more precise than the two previous
methods.

e Dormand-Prince method (DOPRIS5). This is an explicit

and adaptive Runge-Kutta method to calculate fourth
and fifth-order solutions. In fact, following Eq. (14), it
calculates seven slopes: ki, ko, k3, k4, k5, k¢ and k7,
which are employed to calculate two approximations of
z(t;) = z; by two different linear combinations. Eq.
(12a) gives the first approximation, with O(a*) order,
while Eq. (12b) gives the second approximation, with
O(a®) order. An interesting aspect of DOPRIS solver is
its ability to adapt the step-size « to keep the estimated
error |Z; —z;| below a pre-defined threshold. The updating
of the optimal step-size o, is obtained as:

. 3
s [ tobo (16a)
2|Zi — ZZ"

Qopt = S+ Q (16b)
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TABLE 1
PROPOSED NETWORK TOPOLOGY
Feature extraction network
Module ID Sub-module Norm. Activation Kernel Stride Padding Pooling
Fy - - - 64 X 3 X3 X nsg 1 - -
Stage 1 Yes (64) ReLU 64 X 3 x 3 x 64 2 Yes
FE-head Fy Stage 2 Yes (64) ReLU 64 x 3 X 3 x 64 1 -
Skip connection - - 64x1x1x64 2 -
Stage 1 Yes (64) ReLLU 64 X 3 x 3 x 64 1 Yes
FE-body G(+) Stage 2 Yes (64) ReLU 64 x 3 x 3 x64 1 Yes
Stage 3 Yes (64) - - - -
FE-tail F3 Stage 1 Yes (64) ReLLU Average (1 x 1)
Classification network
Layer Neurons Activation
MLP Fy 64 ReLLU
Fj5 Nelasses Softmax

where tol defines the tolerance level, which provides
robustness and reliability to the model.

In addition to obtaining the corresponding state Xp =
F(tr) at tr (forward-propagation), the ODEsolver should
optimize the network’s parameters associated to the differential
equation G (¢, F(t),0) by back-propagating the internal error
signal F,q.(+), defined by the following expression:

E (F(to) +/t:T Gt F(t),0) dt) (17)

This optimization can be implemented by two methods:
i) traditional integration through a Runge-Kutta integrator,
for instance, or ii) employing the adjoint method [54], [62].
The first one directly integrates the operations of the forward
pass and still presents an important memory requirements in
the sense that, for L evaluations, the memory cost grows to
the order of O(L). However, the adjoint method allows to
optimize the parameters of G(-) while significantly reducing
their management, keeping constant the memory cost in the
order O(1) [54].

Eode (F(tT)) =

Finally, the FE-layers end with the FE-tail, which receives
X, the estimated output of the ODEsolver at evaluation time
tr, and performs a final processing. This entails a FE and de-
tection stage, denoted as F3, which comprises normalization,
nonlinear, and average pooling layers. The obtained feature
maps are then reshaped and sent to the classifier, which has
been implemented as an MLP with two FC layers: F; and Fj,
where the last one produces the final classification.

Table I gives the topology details of the proposed ODEnet.
Moreover, our ODEnet model has been trained by the Stochas-
tic Gradient Descend (SGD) optimizer to minimize the clas-
sification loss given by Eq. (3), with input patches of 11 x 11,
using 160 epochs and 0.1 as learning rate, taking into account
a momentum of 0.9 and learning rate decay, and a batch-size
of 128, while the ODEsolver is implemented via the DOPRIS
solver with a tolerance fixed to tol = 1e—3 and an integration
time interval of [0, 1], which directly controls the number of
evaluations L of the model by obtaining the optimal step-size
o.
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Color Land-cover type Samples | Color Land-cover type Samples | Color Land-cover type Samples | Color  Land-cover type Samples
Background 10776 Background 164624 Background 56975 Background 309157
Alfalfa 46 Asphalt 6631 Brocoli-green-weeds-1 2009 Scrub 761
Corn-notill 1428 u Meadows 18649 Brocoli-green-weeds-2 3726 Willow-swamp 243
H Corn-min 830 u Gravel 2099 H Fallow 1976 u CP-hammock 256
| Corn 237 Trees 3064 u Fallow-rough-plow 1394 u Slash-pine 252
u Grass/Pasture 483 Painted metal sheets 1345 u Fallow-smooth 2678 Oak/Broadleaf 161
Grass/Trees 730 Bare Soil 5029 Stubble 3959 Hardwood 229
Grass/pasture-mowed 28 u Bitumen 1330 Celery 3579 Swap 105
Hay-windrowed 478 u Self-Blocking Bricks 3682 Grapes-untrained 11271 Graminoid-marsh 431
Oats 20 u Shadows 947 Soil-vinyard-develop 6203 Spartina-marsh 520
Soybeans-notill 972 Corn-senesced-green-weeds 3278 [ Cattail-marsh 404
Soybeans-min 2455 Lettuce-romaine-4wk 1068 u Salt-marsh 419
H Soybean-clean 593 H Lettuce-romaine-5wk 1927 u Mud-flats 503
| Wheat 205 | Lettuce-romaine-6wk 916 u Water 927
u Woods 1265 u Lettuce-romaine-7wk 1070
u Bldg-Grass-Tree-Drives 386 u Vinyard-untrained 7268
u Stone-steel towers 93 u Vinyard-vertical-trellis 1807
Total samples 21025 Total samples 207400 Total samples 111104 Total samples 314368

Fig. 3. Number of available labeled samples in the Indian Pines (IP), University of Pavia (UP), Salinas Valley (SV) and Kennedy Space Center (KSC) HSI

datasets.

III. EXPERIMENTAL RESULTS
A. Experimental Environment

In order to study the performance of the proposed ODEnet
for HSI classification, an implementation has been developed
and tested on a hardware environment with a 6th Genera-
tion Intel® Core™i7-6700K processor with 8M of Cache
and up to 4.20GHz (4 cores/8 way multi-task processing),
installed over an ASUS Z170 pro-gaming motherboard. The
available memory is 40GB of DDR4 RAM with serial speed
of 2400MHz and a Toshiba DTO1ACA HDD with 7200RPM
and 2TB of storage capacity. Also, a graphic processing unit
(GPU) NVIDIA GeForce GTX 1080 with 8GB GDDRS5X of
video memory and 10 Gbps of memory frequency is available.
In order to provide an efficient implementation, the proposed
model has been parallelized over the GPU using CUDA 9.0
and cuDNN 7.1.1 language over the Pytorch framework, with
Ubuntu 18.04.1 x64 as operating system.

B. Hyperspectral Datasets

Fig. 3 presents the four real HSI datasets that have been con-
sidered in our experiments: Indian Pines (IP), Salinas Valley
(SV) and Kennedy Space Center (KSC) scenes, acquired by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor [63], and the University of Pavia (UP) scene, captured

by the Reflective Optics System Imaging Spectrometer (RO-
SIS) sensor [64]. A detailed description of these images is
provided below.

The IP scene comprises an area with different agricultural
fields in Northwestern Indiana, USA, imaged during a
flying campaign of the AVIRIS sensor in 1992. The scene
contains 145 x 145 samples, where each one comprises
20 meters, and the spectral information consists of 200
bands in the wavelength range from 0.4 to 2.5 um, after
the removing 24 noisy and corrupted bands. As it can
be observed in Fig. 3, the ground-truth of the IP scene
contains a total of 16 different classes.

The UP image was acquired in 2001 by the ROSIS sensor
over the University of Pavia, Northern Italy, capturing an
urban area of 610 x 340 pixels, where each one comprises
1.3 meters, and with spectral (103 bands, after elimination
of noisy and corrupted bands) in the wavelength range
from 0.43 to 0.86 pum. The number of different classes
contained in the UP scene is 9.

The SV image was captured during a flying campaign
of the AVIRIS sensor in 1998 over the agricultural area
described as Salinas Valley in California, USA. The data
comprises 512 x 217 pixels, with spatial resolution of
3.7 meters per pixel and 200 spectral bands in the range
from 0.4 to 2.5 pm (200 bands, after elimination of the
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noisiest bands). The available ground-truth for the SV
scene contains 16 classes.

Finally, the KSC scene was also gathered by the AVIRIS
instrument in 1996, over the Kennedy Space Center in
Florida, USA. In this scene, 512 x 614 pixels were
obtained with spatial resolution of 20 meters per pixel.
The data comprises 176 spectral bands in the range range
from 0.4 to 2.5 pm, after the removal of noisy bands.
The available ground-truth for this scene comprises 13
different classes.

C. Experimental Setting

To evaluate the classification performance of the proposed
ODEnet for HSI classification, three widely used quantitative
metrics have been considered: the overall accuracy (OA),
average accuracy (AA), and Kappa coefficient. Moreover, the
number of model’s parameters and execution times have also
been measured, to determine the volume of data to be trained
and the computational cost. In this regard, with the aim of
providing a complete and detailed experimentation, several
experiments have been carried out:

1)

2)

3)

Our first experiment evaluates the performance of the
proposed ODEnet by implementing it with different
ODEsolvers, in particular: forward Euler (EULER), ex-
plicit midpoint (MIDPOINT), RK4 and DOPRIS. For
this experiment the IP dataset has been considered,
selecting randomly 10% of the available labeled samples
for training and using the remaining 90% of the samples
for testing, setting the tolerance threshold to tol = le—3.
Each experiment has been executed 10 times, and the
average and standard deviations have been reported.
Our second experiment focuses on the DOPRIS5 solver,
due to its ability to adapt the step-size «, adapting in turn
the number of evaluations L contained in the defined
integration time interval [to,¢7] to the complexity of
the function, as opposed to the EULER, MIDPOINT
and RK4 methods that set a fixed-size for «, making
the same number of evaluations in each step. In this
regard, our second experiment analyzes the behaviour of
the DOPRIS solver with different tolerance thresholds,
in particular: tol = {le-1, le-2, le-3 le-4, 1e-5}. For
this purpose, the OA values, the number of evaluations
during the forward and backward steps, and the training
execution times have been measured. Again, in this
experiment we randomly select 10% of the available
labeled samples of the IP dataset for training and use the
remaining 90% for testing. Each experiment is executed
10 times and the average and standard deviations are
reported.

Once the model’s behaviour has been evaluated with
different solvers and tolerance levels, our third exper-
iment performs several comparisons between the pro-
posed ODEnet and the traditional ResNet model for
spectral-spatial HSI data classification. In this context,
this experiment compares the robustness of the models,
analyzing their performance based on the amount of
available training data, the number of parameters used

4)

5)

by each model, and the evolution of the accuracy in
each epoch. For a fair comparison, the ResNet has been
implemented in the same way as the ODEnet, using the
topology in Table I, and changing the ODEsolver by six
residual units composed by exactly the same stages as
the proposed ODEnet’s FE-body, but adding the corre-
sponding residual connections. Moreover, the proposed
ODEnet has been implemented with the DOPRIS5 solver,
employing Runge-Kutta integration and adjoint methods
and a tolerance threshold of le-3. These models have
been tested with all the available scenes. For the IP and
KSC scenes, we have randomly selected 5%, 10% and
15% of the available labeled samples for training and
used the remaining samples for testing. The fact that we
consider larger training percentages for these two images
is due to the low spatial resolution and highly mixed
nature of these scenes, which exhibit high intra-class
variability. In turn, for the UP and SV scenes (which
exhibit much larger spatial resolution), we have ran-
domly selected 1%, 5% and 10% of the available labeled
samples for training, using the remaining samples for
testing. In all cases, we have executed each experiment
10 times and the average and standard deviations are
reported.

The fourth experiment compares the behaviour of the
proposed ODEnet models and the ResNet depending on
different network configurations. In particular, the spatial
windows size of the network’s input data and the depth
of the convolutional filters. In this sense, the proposed
models have been implemented with DOPRIS during
the forward pass, while employing both Runge-Kutta
integrator and the adjoint method during the backward
step. For each experiment, the 10% of IP and KSC and
the 5% of UP and SV datasets have been considered to
perform the training of the models.

Regarding to the first experiment, it compares the per-
formance of the neural models when different amounts
of spatial information conform the network’s input data.
In this context, different windows sizes have been con-
sidered, in particular input patches of 5 x 5, 7 x 7,
9x9, 11 x 11, 13 x 13 and 15 x 15 pixels have been
tested. Separately, the second experiment compares the
networks’ behaviour when the number of convolutional
filters grows. In this regard, convolutional layers have
been implemented with 8, 16, 32, 64 and 128 filters.
Our last experiment conducts a comparison of the pro-
posed ODEnet with other widely used HSI classifiers.
In this context, eight different classification methods
have been selected to conduct the experimental vali-
dation. Specifically, three pixel-wise classifiers (MLR,
SVM with radial basis function kernel and MLP), one
deep spatial classifier (CNN2D) and four spectral-spatial
deep architectures (CNN3D, ResNet and the proposed
ODEnet) have been considered. In this experiment, we
have randomly selected 15% of the available labeled data
from the IP and KSC scenes, and used the remaining
85% of the labeled data for testing. Considering the
higher spatial resolution of the UP and SV scenes, we
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Fig. 4. Overall accuracy values (and corresponding standard deviations)
obtained by the proposed method (implemented with four different solvers
with Runge-Kutta integration and adjoint methods) for the IP scene.

have randonly selected 10% of the available labeled
samples for these scenes, and used the remaining 90%
for testing. As in previous experiments, we repeated
each experiment 10 times and report the average and
standard deviations. Moreover, for the spatial (CNN2D)
and the spectral-spatial (CNN3D, ResNet, and ODEnet)
methods, the original HSI scene has been cropped into
patches of 11 x 11. In the case of the CNN2D, principal
component analysis (PCA) has been used to reduce
the number of spectral bands to a single principal
component. All the hyperparameters of the considered
methods have been optimally fixed to obtain the best
possible performance for each method.

D. Experiment 1: testing different ODEsolvers

The performance of the proposed ODEnet depends on two
main aspects: i) the solver that performs the forward eval-
vation, and ii) the backpropagation method that implements
the reverse-mode differentiation. In this experiment, the fixed-
a solvers: EULER, MIDPOINT and RK4, and the adaptive
solver: DOPRIS have been compared using the IP dataset,
testing each one with Runge-Kutta integration (simply referred
to ODEnet hereinafter) and the adjoint method (ODEnetAdj
hereinafter).

Fig. 4 gives the obtained OA results and the standard
deviations for each considered model. As a general comment,
it should be noted that all methods achieve an OA greater
than 94%, with small differences between them. Specifically,
the difference between the implementation of each solver with
Runge-Kutta integration and adjoint method is very small,
achieving very similar results.

If we compare the fixed-a solvers (EULER, MIDPOINT
and RK4) with the adaptive DOPRIS solver, it can be observed
that DOPRI5 reaches the best OA values for both back-
propagation methods, Runge-Kutta integration and adjoint,
exceeding 95% OA with very low standard deviation, due to
its capability of adapting the evaluations to the problem’s com-
plexity. Furthermore, MIDPOINT and RK4 exhibit the worse
OA scores when implemented using Runge-Kutta integration

and adjoint methods, respectively. In particular, the MID-
POINT method implemented with Runge-Kutta integration
exhibits the highest standard deviation, because the adopted
approximation strategy performed by calculating the midpoint
of the slope is not the most approapriate for complex data such
as HSI scenes.

E. Experiment 2: testing different tolerance thresholds for
DOPRIS5 solver

The DOPRIS5 solver is able to adapt the step-size « that
controls the number of evaluation points (IA/) carried out
inside the integration time interval [to, t7], providing a flexible
mechanism to adapt the ODE resolution to the complexity of
the considered HSI data. In this sense, five different values
for the tolerance threshold have been considered: {le-1, le-2,
le-3 le-4, le-5}.

Fig. 5 shows the obtained results, comparing the obtained
OA values [see Fig. 5(a)], the training runtimes [see Fig. 5(b)],
and the number of evaluations performed during the forward
and backward steps (for each tolerance value) [see Fig. 5(c)].
If we focus on Fig. 5(a), it can be observed that the tolerance
threshold does not have a relevant impact on the OA values,
in the sense that the differences are very small and the slight
variations are mainly due to the random procedure used for
the selection of training samples.

However, if we focus on [see Fig. 5(b)] it can be clearly
observed that, for lower tolerances, the execution times grad-
ually increase, being the implementations with DOPRI5 and
adjoint method the slowest ones. This is due to the number
of evaluations L that need to be carried out, both in the
forward evaluations and in the backward propagation. To
further investigate this issue, Fig. 5(c)] focuses on the DOPRI5
solver implementation with the adjoint method. In general, the
number of forward and backward evaluations in this case is
high in the early epochs, with the aim of adjusting them to
minimize the approximation error, descending abruptly until
the number becomes stable in subsequent epochs. In addition,
for lower tolerances it can be observed that the number of
evaluations is higher than for tolerance values of le-1 and le-
2, where the difference is minimal. With the aforementioned
observations in mind, we consider a tolerance of le-3 as a
good choice, in the sense that it provides a good balance
between performance and training times, together with a
sufficiently high number of evaluations.

F. Experiment 3: comparing ODEnet with ResNet

In this experiment we illustrate the benefit of implementing
a ResNet-inspired model as a continuous function defined
by an ODE. Fig. 6 shows the OA evolution of the pro-
posed ODEnet when different amounts of training samples
are available. In general, the proposed method, implemented
either with DOPRIS and Runge-Kutta integrator (ODEnet) or
with the adjoint method (ODEnetAdj) exhibits the best OA
results for all the considered HSI scenes, regardless of the
training percentage employed. The differences between our
ODEnet/ODEnetAdj models and the ResNet become partic-
ularly evident when very few training samples are available,



JOURNAL OF KTEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

11

= proposed
= proposed_adjoint

= proposed
= proposed_adjoint

98

96

94

Overall Accuracy (%)

E

9.

El

le-2 le-3

Tolerance

(a)

—— Flel === Fle2 === Fle3 = Fled Fles
== B_le-] === B le-} === B_le-3 === B le-d == B le-5

Value

1le3 20 4 60 100 120 140 160

Tolerance

(b)

le-4 B‘O
Epoch

(©)

Fig. 5. Performance of ODEnet (on the IP scene) with the DOPRIS solver, using Runge-Kutta integration and adjoint methods, considering different tolerance
values. Specifically, we analyze the impact on the overall accuracy (a), the training runtimes (b), and the number of evaluations per epoch (c) during the
forward and backward steps of the DOPRIS solver implemented with the adjoint method.

Overall Accuracy (%)

3 & 8 8
Overall Accuracy (%)
8 £ 8 8

— ResNet
Proposed
75 = Proposed_Adjoint

— ResNet
—— Proposed
= Proposed_Adjoint

Overall Accuracy (%)

8 8 3 8 8 8 9
Overall Accuracy (%)
& 8 8 8 ¢ 8 8

— Reshet
—— Proposed
—— Proposed_Adjoint

— ResNet
Proposed
= Proposed_Adjoint

15 1 10

s
Training percent

(b)

10
Training percent

(a)

)

10 5
Training percent

(d)

s
Training percent

()

Fig. 6. Evolution of the overall accuracy reached by ResNet (blue), the proposed ODEnet with DOPRI5 solver and Runge-Kutta integration (orange), and

the proposed ODEnet with DOPRIS solver and adjoint method (green), considering different amounts of training data.

IP (a), UP (b), SV (c¢) and KSC (d) scenes.

— ResNet —— Proposed — Proposedad) — ResNet —— Proposed — Proposedadj

Overall Accuracy (%)

3 £ 2 3
Overall Accuracy (%)
& 8 3 3 8 8

0 20 4 60 80

Epoch
(@)

00 120 140 160 0 20 4 e 8

Epoch

00 120 140 160

(b)

We report the results obtained for the

— Restet —— Proposed — Proposedad] — ResNet —— Proposed — Proposedadj

Overall Accuracy (%)
Overall Accuracy (%)

o 20 4 60 80

Epoch

(c)

00 120 140 160

60 80

Epoch
(d)

100 120 140 160
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KSC (d) scenes.

with the proposed models exhibiting the most robust results.
Again, the observable differences between the Runge-Kutta
integrator and the adjoint method are quite small, being the
adjoint method better for KSC and SV scenes with low training
percentages.

The aforementioned results clearly illustrate the impact that
the overfitting of learnable parameters has on the ResNet
model, which needs more training data to achieve the same
performance as our ODEnet models. Moreover, Fig. 7 illus-
trates that this overfitting problem happens at early epochs of
the classifiers. Specifically, it can be observed in this figure
how the OA obtained by ODEnet inceases faster than that
achieved by ResNet in the earliest epochs, in particular when
complex scenes (such as IP and KSC) are classified.

These observed benefits confirm the following introspec-
tions: the ability of the DOPRIS solver to adapt the model’s
learning to the complexity of the problem, and the significant
reduction that can be achieved in terms of the required number

TABLE II
NUMBER OF TRAINABLE PARAMETERS FOR THE STANDARD RESNET
MODEL AND THE PROPOSED METHOD, IMPLEMENTED WITH DOPRI5
SOLVER AND RUNGE-KUTTA INTEGRATION (ODENET), AND WITH THE
ADJOINT METHOD (ODENETADI).

Dataset | ResNet ~ODEnet ODEnetAdj Reduction
1P 638416 268624 268624 2.38
UP 582089 212297 212297 2.74
SV 640720 270928 270928 2.36

KSC 624397 254605 254605 245

of parameters. The latter important benefit is quantitatively
measured in Table II, where the number of required model
parameters are displayed for each HSI dataset. Specifically,
the proposed ODEnet and ODEnetAdj models are able to
overcome the performance of the traditional ResNet model by
using less than half of its training parameters, avoiding quite
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Fig. 9. Evolution of the overall accuracy reached by ResNet (blue), the proposed ODEnet with DOPRIS solver and Runge-Kutta integration (orange), and
the proposed ODEnet with DOPRIS solver and adjoint method (green), considering different number of filters in each block. We report the results obtained

for the IP (a), UP (b), SV (¢) and KSC (d) scenes.

effectively the overfitting problem.

G. Experiment 4: testing different network configurations

In this experiment, we report the results obtained by the
proposed ODEnet considering different configurations of the
model, in particular the initial amount of information em-
ployed by the ODEnet, ODEnetAdj and ResNet by testing
different spatial sizes of the models’ input data-patch, and the
number of features extracted and processed by the convolu-
tional layers.

On the one hand, Fig. 8 shows the obtained results in terms
of OA considering input patches composed by 5x5, 7x7, 9x9,
11 x 11, 13 x 13 and 15 x 15 pixels. As we can observe, the
proposed models exhibit very similar behaviours, being able
to outperform the accuracy reached by the ResNet in every
scene, in particular when the spatial windows are very small.
Moreover, the improvement in the OA’s values increases as the
spatial windows size increases. However, while the difference,
in terms of accuracy, between small spatial windows is very
pronounced (for instance, between windows of 5 x 5 and
9 x 9 pixels, there are approximately 10 percentage points
of improvement in IP and KSC, and 4 percentage points
in UP and SV), between bigger windows the difference is
noticeably smaller (for instance, between windows of 11 x 11
and 15 x 15). In this sense, as the amount of information
to be processed increases with the dimensions of the input
data-patch, increasing also both memory requirements and
computation times, we consider pathes of 11 x 11 pixels as an
optimal input data size, with a good ratio between performance
and computing time.

On the other hand, Fig. 9 shows the obtained results in
terms of OA too, considering input patches of 11 x 11
and convolutional layers with 8, 16, 32, 64 and 128 filters.

As we can observe for each dataset, the OA increases its
value as more filters are added. In particular, the best OA is
reached with 64 filters, remaining quite similar with 128 filters.
Actually, the OA is improved very slightly with 128 filters,
however the computational cost of this network’s configuration
is considerably higher than with 64 filters. For this reason
we consider 64 to be the optimum number of filters for each
convolutional layer.

H. Experiment 5: testing different HSI classifiers

Our final experiment compares our proposed ODEnet mod-
els with some widely-used classifiers available in the HSI
classification literature. Figs. 10 (IP), 11 (UP), 12 (SV) and
13 (KSC) show the classification maps obtained by each
considered method, while Tables III (IP), IV (UP), V (SV) and
VI (KSC) give the individual class accuracies and the global
OA, AA and Kappa values obtained by each classifier with
the corresponding standard deviations, respectively, including
also the obtained runtimes of each experiment.

As a general comment, the improvement introduced by
spatial and spectral-spatial models over pixel-wise classifiers
is remarkable. For instance, CNN2D introduces around 2%
points of improvement in OA when compared to the most
accurate spectral model, i.e. the SVM (for UP and SV) and
the MLP (for IP), with an exception in the KSC scene,
in which the spatial information appears to be not enough
discriminatory enough to carry out an accurate classification,
as we can observe on Table VI and the corresponding clas-
sification maps on Fig. 13. The limitations of pixel-wise and
spatial-based classifiers can be easily overcome by spectral-
spatial classifiers, where the combination of spectral and
spatial-contextual information is able to significantly reduce
the uncertainty and data variability of HSI pixels, as it can



JOURNAL OF KX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

=

a) MLR (78.19%) b) SVM (83.63%)

c) MLP (84.03%) d) CNN2D (87.16%)
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f) ResNet (96.55%) h) ODEnetAdj (97.55%)

¢) CNN3D (95.45%)

) ODEnet (97.61%)

Fig. 10. Classification maps obtained for the IP scene by different classifiers (see Table III). Note that the overall classification accuracies are shown in

brackets and the best result is highlighted in bold font.

a) MLR (89.89%) b) SVM (94.40%) ¢) MLP (94.39%) d) CNN2D (96.02%)

h) ODEnetAdj (99.69 %)

¢) CNN3D (99.02%)

/) ResNet (99.54%) £) ODEnet (99.67%)

Fig. 11. Classification maps obtained for the UP scene by different classifiers (see Table IV). Note that the overall classification accuracies are shown in

brackets and the best result is highlighted in bold font.

a)MLR (92.37%)  b) SVM (93.65%)  ¢) MLP (93.15%)

d) CNN2D (95.27%) e) CNN3D (98.45%) f) ResNet (99.28%) g) ODEnet (99.42%) h) ODEnetAdj (99.41%)

Fig. 12. Classification maps obtained for the SV scene by different classifiers (see Table V). Note that the overall classification accuracies are shown in

brackets and the best result is highlighted in bold font.

a) MLR (92.74%) b) SVM (92.92%) ¢) MLP (90.22%)

] d) CNN2D (66.04%)

¢) CNN3D (98.10%) A f) ResNet (98.39%) g) ODEnet (99.24%) };) ODEnetAdj (99.03%)

Fig. 13. Classification maps obtained for the KSC scene by different classifiers (see Table VI). Note that the overall classification accuracies are shown in

brackets and the best result is highlighted in bold font.

be observed on complex datasets such as IP (see Table III)
and, particularly, KSC (see Table VI). This results in better
classification maps, where the “salt & pepper” classification
noise is practically removed. However, it is interesting to focus
on the classification maps produced by the spatial-spectral
CNN3D classifier (for instance in Figs. 11 and 13), where
multiple patches has been wrongly labelled, obtaining visually
noisy classification maps. This can be observed in the lower-
leftmost corner of the KSC scene (see Fig. 13), where the
vast majority of pixels have been miss-classified as Salt-marsh.
These deficiencies are highlighted by the differences between
the OA and AA values, where the AA is several percentual

points lower, indicating the existence of an overfitting problem
(see Tables III and VI).

Adding residual learning via ResNet can improve the ac-
curacy results, reducing the gap between the OA and AA
on some HSI datasets such as UP (see Table IV), SV (see
Table V) and KSC (see Table VI), and improving the visual
appearence of the corresponding classification maps. However,
this gap between the OA and AA scores cannot be reduced
by ResNet in the IP scene (in fact, for this scene the gap
becomes larger). In turn, the proposed ODEnet models are
able to reach very similar OA, AA and Kappa values in all
cases, exhibiting very good consistency in terms of model
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TABLE III
CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE IP DATASET, USING 15% OF THE AVAILABLE LABELED DATA FOR TRAINING
AND 11 X 11 INPUT SPATIAL PATCH SIZE.

Class MLR SVM MLP CNN2D CNN3D ResNet ODEnet ODEnetAdj
0 74.59+0.48 81.36+0.42 81.23+0.96 85.61£1.09 95.34£0.72 96.07£0.55  97.28+0.34  97.2140.38

1 33.33£10.51  56.92+12.96  65.38%£13.96  75.38%17.7 80.77+£15.44 86.41£9.87  93.08£5.13  93.59+5.29

2 76.36%+1.9 81.12+1.09 78.9242.09 84.63£2.56 94.68+1.84 94.15£1.02  96.02+1.43  96.08+0.97

3 57.3£2.15 74.034+2.01 68.14+3.81 77.63%3.52 95.32+1.44 94.4£2.79 97.15+1.44  97.09%1.69

4 43.03+6.83 61.29+4.81 73.78+4.65 84.13£5.09 91.84+3.68 96.77+£2.48  96.62+2.61 96.324+2.72

5 86.731+3.94 89.71+3.83 88.461+2.8 83.29+5.47 96.15£2.07 97.24+1.21 96.63£1.7 97.63£2.86

6 96.23+0.9 97.0£1.13 95.13£1.66 90.4742.48 99.11+0.47 97.71£1.08  99.18+0.38  98.76+0.59

7 54.78+7.33  77.39£10.07  82.61£7.78  84.784+16.53 80.87£17.95 | 80.87£12.17  96.52+5.43  96.96+4.37

8 98.45+0.96 97.73+1.87 98.69+1.13 97.174+2.27 99.7340.58 99.43+1.09 99.9+0.16 99.9+0.16

9 18.24+13.27  50.59£11.22  64.71+£13.67 85.88%£11.53 83.53+17.41 67.65£18.27  82.94+10.0  77.65+9.41

10 65.3+2.2 76.42£1.97 78.98£3.67 78.75£3.78 94.49£2.55 95.33£1.79  97.53+1.35  96.38+1.46

11 79.87£1.71 84.21+£1.65 83.25+2.19 90.48+1.53 96.87+1.19 97.77£0.72  98.23+0.47  98.26+0.43

12 61.23+2.31 77.64+£2.14 79.58+4.16 76.25+3.54 89.48+4.18 94.01£1.81 94.11£2.46  95.32%1.49

13 98.51+0.64 98.33£1.13 98.1£1.06 98.33+1.13 99.89+0.23 99.54+0.5 99.25+0.85 99.6+0.45

14 94.99£1.31 94.51£1.71 95.794+0.92 97.4£0.95 98.91+0.47 99.09+0.87  99.23%+1.07 99.29+0.7
15 63.2+3.62 62.93+4.7 65.88+£3.48 89.7£3.71 91.68£4.25 97.13£2.58  97.65+£1.45  96.55+2.62

16 86.08+2.59 87.47+£4.22 94.05+4.57 93.4245.39 98.48+2.18 93.9245.18  96.84+3.93 95.743.81
OA (%) 77.87£0.42 83.68+0.38 83.57£0.85 87.43+0.95 95.9240.63 96.55+0.48 97.61+0.3 97.55£0.33
AA (%) 69.6£0.59 79.21£1.49 81.97£1.76 86.73£1.91 93.24+1.61 93.21£1.45 96.3+0.87 95.94+1.09
Kappa (x100) | 74.5910.48 81.36+0.42 81.23+0.96 85.61£1.09 95.34+0.72 96.07£0.55  97.284+0.34  97.2140.38
Runtime (s) | 5.99+£1.03 0.28£0.01 99.49£5.46 66.55+4.16 172.89£15.73 | 81.63£0.13 192.6+0.19  257.55+£2.62

TABLE IV

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE UP DATASET, USING 10% OF THE AVAILABLE LABELED DATA FOR TRAINING
AND 11 X 11 INPUT SPATIAL PATCH SIZE.

Class MLR SVM MLP CNN2D CNN3D ResNet ODEnet ODEnetAdj

0 86.42+0.2  92.56+0.14 92.4240.25 94.72+0.29 99.08+0.13 99.39+0.11 99.56+0.1 99.59+0.11
1 92.31+£0.62  94.4610.58 94.98+0.72 95.12+0.99 99.19+0.38 99.44+0.25 99.64+0.17 99.59+0.3

2 96.07+£0.36  98.3140.18 97.82+0.3 98.21+0.33 99.89+0.06 99.87+0.09 99.931+0.06 99.89+0.05

3 74.0+£1.86  79.37+1.84 80.32+2.92 90.33£1.45 96.88+0.79 98.3£1.18 98.89+0.52 99.08£0.65

4 88.49+0.96  94.55+0.58 93.59+1.65 97.61+0.54 99.18+0.39 99.23+0.38 99.2240.38 99.13+0.44

5 99.31+£0.27  99.28+0.18 99.5410.15 99.16+0.49 100.0£0.0 99.98+0.05 99.98+0.05 99.98+0.05

6 77.42+0.84  88.86+1.06 89.93+1.62 92.01+0.96 99.88+0.14 99.62+0.37 99.8240.18 99.87+0.22

7 57.03+£3.04  85.4142.02 85.98+1.94 83.54+3.16 93.85£2.17 98.08+0.74 98.48+1.2 98.77+1.04

8 86.77£0.76  90.67£1.11 89.43+1.83 96.63+0.77 98.84+0.24 99.37+£0.38 99.4+0.36 99.65+0.24

9 99.7710.1 99.91+0.1 99.89+0.1 98.92+0.87 99.82+0.18 98.98+1.1 99.331+0.75 99.72+0.24

OA (%) 89.841+0.16  94.41+0.1 94.3+0.19 96.02+0.22 99.31+0.1 99.54+0.08 99.6710.08 99.69+0.08
AA (%) 85.69+0.33  92.31+0.24 92.39+0.37 94.61£0.47 98.62+0.26 99.21+£0.19 99.41+£0.22 99.5240.1
Kappa (x100) | 86.42+0.2  92.56+0.14 92.4240.25 94.72+0.29 99.08+0.13 99.39+0.11 99.56+0.1 99.59+0.11

Runtime (s) [ 9.1T£1.57 0.410.01 439.55£22.77  306.69£19.04  409.88+£65.98 | 160.17£0.43  508.68+1.71  671.88+3.54

performance, with higher robustness on the obtained results.
As we can observe, the proposed method is able to reach the
best accuracy scores in all the considered datasets, visually
clean classification maps, where the number of miss-classified
patches is drastically reduced.

If we now focus on the execution times reported on Tables
I (IP), IV (UP), V (SV) and VI (KSC), it can be observed that
pixel-wise methods are faster than spatial and spectral-spatial
ones, being SVM the fastest classifier. The computational cost
of the proposed ODEnet model is higher when compared to
the other deep models (CNN2D, CNN3D and ResNet), mainly
due to the great optimization performed by the frameworks in
which these classifiers have been implemented. In this regard,
it is necessary to conduct an effort to optimize the code of
the ODEsolver in order to provide a more efficient version,
although (as shown in our second experiment), the use of
higher tolerance values allows for a significant reduction of
computation times.

IV. CONCLUSIONS AND FUTURE LINES

This work proposes, for the first time in the literature, a
redefinition of the traditional discrete-layer ResNet model as
a continuous-time evolving model through the implementation
of an ODE parameterized by a neural network, with the aim
of improving the classification of remotely sensed HSI data
by producing better and more robust feature representations.

The obtained experimental results, conducted using four
widely-used HSI datasets, demonstrate the significant benefits
and improvements introduced by the proposed method, which
is able to reach consistently higher accuracy values in compar-
ison with the traditional ResNet model, at the same time that it
significantly reduces the number of parameters that need to be
used and fine-tuned, providing a highly efficient mechanism
to address the problems of overfitting and data degradation
in very deep networks. Moreover, the integration of adaptive
solvers such as DOPRIS offers great flexibility when process-
ing and classifying complex HSI scenes, allowing the model
to obtained highly refined features for classification purposes.
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TABLE V

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE SV DATASET, USING 10% OF THE AVAILABLE LABELED DATA FOR TRAINING
AND 11 X 11 INPUT SPATIAL PATCH SIZE.

Class MLR SVM MLP CNN2D CNN3D ResNet ODEnet ODEnetAdj
0 91.55+0.11  92.9440.16 92.3710.17 94.721+0.49 98.231+0.21 99.240.18 99.35+0.16 99.35+0.19
1 99.491+0.24  99.57+0.28 99.524+0.37 97.24+2.3 100.0£0.0 99.8440.24 99.91+0.1 99.9110.1
2 99.924+0.06  99.79+0.13 99.89+0.11 98.96+1.04 99.98+0.04 99.91+0.13 99.86+0.21 99.88+0.19
3 99.45+0.25  99.58+0.16 99.1510.51 96.66+3.15 99.9410.07 99.85+0.14 99.91+0.17 99.84+0.25
4 99.25+0.21  99.3£0.38 99.311+0.34 99.79+0.39 99.67+0.28 99.4410.62 99.68+0.43 99.83+0.17
5 99.07+£0.23  98.69+0.47 99.131+0.26 98.75+1.29 99.2440.38 99.86+0.16 99.83+0.25 99.85+0.16
6 99.94+0.05  99.85+0.09 99.86+0.14 99.35+0.46 100.0+0.01 100.0£0.0 100.0£0.0 100.0£0.01
7 99.68+0.17  99.71+0.16 99.62+0.25 99.511+0.36 99.7440.28 99.88+0.11 99.97+0.05 99.92+0.11
8 87.57+0.6  88.38+0.63 87.1£1.06 92.47+1.43 96.5410.5 98.4240.39 98.8240.38 98.62+0.41
9 99.8+0.15  99.72+0.13 99.87+0.17 99.131+0.44 99.96+0.08 99.98+0.02 99.96+0.07 99.96+0.04

10 95.41+0.88  96.161+0.71 96.3410.81 96.66+1.03 99.1940.34 99.5940.25 99.754+0.32 99.48+0.64
11 97.54+091  97.8+0.81 98.3+1.65 97.64+1.14 99.56+0.23 99.84+0.31 99.69+0.51 99.440.48
12 99.68+0.2  99.74£0.21 99.731+0.16 97.76+1.41 100.0£0.0 99.97+0.07 99.9940.02 99.9940.02
13 99.14+0.4  98.68+0.68 98.39+1.37 98.68+0.77 99.65+0.79 99.58+0.6 99.6240.54 99.82+0.29
14 96.87+1.07 96.23+1.87 96.81+1.41 97.65+1.18 99.17+0.64 99.69+0.41 99.8940.28 99.85+0.19
15 67.47+0.57  75.4£1.08 73.242.13 85.05+2.24 94.79+1.13 97.91+0.67 98.08+0.47 98.49+0.73
16 98.641+0.42  98.761+0.37 98.79+0.43 93.37+1.94 99.514+0.35 99.58+0.45 99.7940.18 99.7640.19
OA (%) 92.4240.1  93.66+£0.14 93.15+0.15 95.26£0.44 98.41+£0.19 99.28+0.16 99.42+0.14 99.41+£0.18

AA (%) 96.184+0.08  96.7140.09 96.56+0.18 96.79+0.24
Kappa (x100) | 91.55+0.11  92.94+0.16 92.37+0.17 94.7240.49

99.1840.1 99.584+0.12 99.67+0.09 99.6640.09
98.234+0.21 99.240.18 99.354+0.16 99.354+0.19

Runtime (s) [ 50.49£0.22 1.34+0.02 689.03+29.61  457.914+12.95

826.381£58.19 | 239.64+0.18  730.73£36.55  972.9436.21

TABLE VI

CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS FOR THE KSC DATASET, USING 15% OF THE AVAILABLE LABELED DATA FOR TRAINING
AND 11 X 11 INPUT SPATIAL PATCH SIZE.

Class MLR SVM MLP CNN2D CNN3D ResNet ODEnet ODEnetAd;j

0 91.57£0.76  92.52+0.57  88.87%0.55 61.8£1.35 98.22+0.27 | 98.2£0.59 99.16£0.24  98.93+0.42

1 95.0+£0.96  95.574+1.31 96.53+0.98  96.35+1.93 100.0+0.0 | 99.47+£0.82 100.0+£0.0 99.83+0.26

2 93.01+£2.24  91.55+£3.06 84.76£2.08  37.23+6.03  95.78+2.86 | 96.7£2.74 98.93+1.55  99.221+0.66

3 88.99£1.73  88.89+3.52  88.06+3.62  21.15%8.09 97.37£1.6 | 96.314+3.35  99.12+1.33  96.59+3.74

4 71.17£5.63  7491£4.73  60.84£5.86  21.26+7.13 86.4+3.18 88.79+2.1 95.09+1.91 94.49+4.34

5 71.1£6.49  73.75+4.89  59.56£5.35  57.87£5.07 90.0£4.45 91.99+8.4 90.51£5.11 92.06+£5.44

6 70.77£7.17  74.79£4.34  58.09+2.73  40.26+14.57  96.6%2.14 98.2+1.09 98.92+1.41 98.81+1.56

7 81.57+£5.8 86.18+5.1 84.04£4.71  30.794£29.78  99.21£1.33 | 97.87£2.22  99.89+0.34  99.33£1.68

8 91.72+1.84 92.76£2.49  88.5+0.87 3541+£4.06  98.93+1.22 | 98.91+1.05  99.73+£0.35  99.86£0.18

9 96.54£1.18  96.92+1.54  96.04+1.43 71.0+4.87 99.91+0.21 | 99.32£0.93  99.59£0.38  99.68+0.61

10 96.27+£1.52  97.32+£1.91 93.62+1.91 52944582  99.851+0.44 | 99.62+0.39  99.91+0.19  99.56£1.04

11 97.58£0.92  96.99+2.22  96.99+1.24  95284+2.07  99.97+0.08 | 99.89+0.34  99.924+0.25  99.554+0.69

12 94.54+3.19  96.21+£1.31 92.22+1.16  61.45+6.42  99.65+0.42 | 99.02+1.17  99.93+0.15  99.51£0.74

13 100.0+0.0 100.0£0.0  99.72+0.34  91.3943.37 100.0+£0.0 100.0+£0.0 100.0£0.0 100.0+£0.0

OA (%) 92.43+0.68  93.29+0.51 90.02+0.5 66.03+1.23 98.4+0.24 | 98.394+0.53  99.24+0.21 99.03+0.37
AA (%) 88.33+1.0  89.68+0.87  84.54+0.87 54.8+£2.42 97.21£0.48 | 97.39+0.93  98.58+0.49  98.35+0.71
Kappa (x100) | 91.574+0.76  92.524+0.57  88.87+0.55 61.84+1.35 98.22+0.27 | 98.240.59 99.16+0.24  98.931+0.42
Runtime (s) [ 2.89£0.24 0.0540.01 87.98+3.74  6691+4.63  73.17£1.36 [ 57.47£0.08 114.57£0.17 154.55£7.2

Encouraged by the good results obtained in terms of model’s

[2] X.-L. Chen, H.-M. Zhao, P-X. Li, and Z.-Y. Yin, “Remote sensing

accuracy, in the future we will develop an optimized and par-
allelized implementation of the proposed ODEnet, exploring
other solver algorithms in order to reduce the computational  [3]
complexity.
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