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Multipass SAR Interferometry Based on Total
Variation Regularized Robust Low

Rank Tensor Decomposition
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Abstract— Multipass SAR interferometry (InSAR) techniques
based on meter-resolution spaceborne SAR satellites, such as
TerraSAR-X or COSMO-SkyMed, provide 3D reconstruction
and the measurement of ground displacement over large urban
areas. Conventional methods such as persistent scatterer inter-
ferometry (PSI) usually requires a fairly large SAR image stack
(usually in the order of tens) to achieve reliable estimates of these
parameters. Recently, low rank property in multipass InSAR
data stack was explored and investigated in our previous work
(J. Kang et al., “Object-based multipass InSAR via robust
low-rank tensor decomposition,” IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 6, 2018). By exploiting this low rank prior,
a more accurate estimation of the geophysical parameters can
be achieved, which in turn can effectively reduce the number
of interferograms required for a reliable estimation. Based on
that, this article proposes a novel tensor decomposition method
in a complex domain, which jointly exploits low rank and
variational prior of the interferometric phase in InSAR data
stacks. Specifically, a total variation (TV) regularized robust low
rank tensor decomposition method is exploited for recovering
outlier-free InSAR stacks. We demonstrate that the filtered
InSAR data stacks can greatly improve the accuracy of geo-
physical parameters estimated from real data. Moreover, this
article demonstrates for the first time in the community that
tensor-decomposition-based methods can be beneficial for large-
scale urban mapping problems using multipass InSAR. Two
TerraSAR-X data stacks with large spatial areas demonstrate
the promising performance of the proposed method.

Index Terms— Inteferometric SAR (InSAR), low rank,
synthetic aperture radar (SAR), tensor decomposition, total
variation (TV).
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I. INTRODUCTION

A. Multipass InSAR

W ITH respect to different scattering cases, i.e., point
scatterers and distributed scatterers, methods for the

retrieval of geophysical parameters (namely elevation and
deformation parameters) for large areas can be accordingly
split into two categories: persistent scatterer interferometry
(PSI) [2]–[11] and distributed scatterer interferometry (DSI)
[12]–[18]. Those methods are the backbone of data analysis
based on multipass InSAR stacks and widely exploited for 3D
urban reconstruction and surface displacement monitoring.

Generally, the key steps of PSI [2]–[11], [19], [20] involve
PS candidate identification and parameter estimation. For
example, PS pixels can be selected according to ampli-
tude dispersion index, which can be calculated by the ratio
between the temporal standard deviation (SD) and mean of
the amplitudes [2]. By exploiting the spatial correlation of
phase measurements, Stanford method for persistent scatter-
ers (StaMPS) [21] is applicable for selecting PS in areas
undergoing nonsteady deformation without prior knowledge.
Likewise, based on spatial correlation analysis, PS pairs are
identified via the construction of PS arc in [22]. Sublook
coherence approach is proposed in [23] for point-like scatterer
identification without the requirement of a certain number of
temporal SAR images. Methods for estimating geophysical
parameters such as topography height and linear deformation
rates from PS are usually based on the maximum likelihood
estimator (MLE) [2]. In order to describe the precision of the
estimated parameters, least squares ambiguity decorrelation
(LAMBDA), which is originally developed for the ambiguity
resolution of GPS signal, is adapted to parameter estimation
for PS signals in [24]. When layover phenomenon is taken
into account, differential SAR tomography (D-TomoSAR)
[25]–[31] was proposed for efficiently reconstructing the real
3-D structure of the scene. Such a technique mainly contains
two steps: identification of pixels with multiple PSs and
parameter estimation based on tomographic inversion.

In order to extract geophysical information from nonurban
areas with DS, interferometry techniques for parameter estima-
tion from such stochastic signals have been extensively carried
out since a decade ago. Normally, statistically homogeneous
pixel (SHP) selection for covariance matrix estimation and
optimal phase history retrieval from such covariance matrices
are the two key steps in DS interferometry. As introduced
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in [12], SqueeSAR exploits Kolmogorov–Smirnov (KS) test
for selecting SHP with the assumption that the statistics of
amplitude data can be seen as a proxy for phase stability.
Composed of KS, Anderson–Darling (AD), Kullback–Leibler
divergence, and generalized likelihood-ratio test (GLRT),
different amplitude-based methods for selecting SHP are
evaluated in [32]. Estimating optimal phase histories from
covariance matrices built by the selected SHP is the second
key step in DSI. The construction of covariance matrices
can be considered as the generation of multimaster (MM)
interferograms. In order to link all the available interfero-
metric phases, optimal phase histories, i.e., SM phases, are
then estimated from such covariance matrices. It is also
well-known as phase linking or phase triangulation [12], [16],
[17], [33]. Then, the corresponding geophysical parameters
can be reconstructed in a similar processing chain of
PS signals.

Although those conventional techniques for geophysical
parameter estimation do exploit information from multiple
neighboring pixels, no explicit semantic and geometric infor-
mation that might be preserved in the images has been
utilized. Recently, several multipass InSAR techniques have
been developed based on exploiting semantic and geometric
information preserved in SAR images for improving geophysi-
cal parameter estimation. Zhu et al. [34] demonstrated that by
introducing building footprints from OpenStreetMap (OSM)
as prior knowledge of pixels sharing similar heights into
frameworks based on joint sparse reconstruction techniques,
a highly accurate tomographic reconstruction can be achieved
using just six interferograms, instead of the typically required
20–100. Ferraioli et al. [35] proposed a method for multibase-
line InSAR phase unwrapping based on combining nonlocal
denoising methods and the total variation (TV) regularized
spectral estimation method. In our previous work, a general
framework for object-based InSAR deformation reconstruction
based on a tensor model with a regularization term is proposed.
It makes use of external semantic labels of various objects
like bridges, roofs, and façades, as an input for the support
of the TV regularizer [36], [37]. However, it requires explicit
and fairly accurate semantic labels for a reliable performance.
Therefore, [1] investigated the inherent low rank property
of multipass InSAR phase tensors. It allows loose semantic
labels, such as a rectangle covering the major part of an object,
for object-based geophysical parameter reconstruction in urban
areas.

As a follow-on work, we seek to develop a novel method
for parameter retrieval from multipass InSAR data stacks by
jointly considering the variational prior [36] and the low rank
property [1] of InSAR stacks. To this end, a TV regularized
robust low rank tensor decomposition method in a complex
domain is proposed in this article in order to recover outlier-
free InSAR data stacks.

B. Contributions

The contributions of this article are summarized as
follows:

1) Based on the prior knowledge of low rank and smooth-
ness of multipass InSAR data stacks, a novel tensor
decomposition method in a complex domain is proposed,
i.e., a TV regularized robust low rank tensor decompo-
sition, for recovering outlier-free InSAR data stacks.

2) The proposed method not only takes advantages of both
variational prior [36] and the low rank property [1] of
InSAR stacks, but also it can avoid the requirement
of explicit semantic labels for object-based geophysical
parameter reconstruction.

3) This article first presents tensor-decomposition-based
methods that can be beneficial for large-scale urban
mapping problems, including 3-D reconstruction and
surface displacement monitoring.

C. Structure of This Article

The rest of this article is organized as follows. Section II
introduces the notations utilized in this article and recaps
our previous work. In Section III, the proposed TV regu-
larized robust low rank tensor decomposition in a complex
domain is introduced, together with its optimization proce-
dure. Simulated experiments are conducted in Section IV.
Case studies of large-scale real data in Berlin and Las Vegas
are performed in Section V. Section VI draws the conclusion
of this article.

II. BACKGROUND KNOWLEDGE

A. Notations and Tensor Model of Multipass
InSAR Data Stacks

A tensor can be considered as a multidimensional array. The
order of a tensor is the number of its modes or dimensions.
A tensor of order N in the complex domain can be denoted as
X ∈ CI1×I2×···×IN and its entries as xi1,i2,...,iN . Specifically,
vector x is a tensor of order 1, and matrix X can be represented
as a tensor of order 2. Fibers are the higher-order analogy of
matrix rows and columns, which are defined by fixing every
index but one. Slices of a tensor are obtained by fixing all but
two indices. Matricization, also known as unfolding, is the
process of reordering the elements of a tensor into a matrix.
Specifically, the mode-n unfolding of tensor X is defined
by X(n) that is obtained by arranging the mode-n fibers as
the columns of the matrix. The utilized tensor notations are
summarized in Table I.

As proposed in our previous work [1], [36], an InSAR
data stack can be represented by a three-mode tensor:
G ∈ CI1×I2×I3 , where I1 and I2 represent the spatial dimen-
sions in range and azimuth, and I3 denotes the number of SAR
interferograms. The InSAR data tensor can be modeled by

G(S, P) = A� exp

{
− j

(
4π

λr
S⊗ b+ 4π

λ
P⊗ τ

)}
(1)

where G is the modeled InSAR data tensor, A denotes the
modeled amplitude tensor, b ∈ RI3 is the vector of the
spatial baselines, τ ∈ RI3 is a warped time variable [28],
i.e., τ = t for a linear motion, and τ = sin(2π(t − t0))
for a seasonal motion model with temporal baseline t and
time offset t0. S ∈ RI1×I2 and P ∈ RI1×I2 are the unknown
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TABLE I

MATHEMATICAL NOTATION

elevation and deformation maps to be estimated, respectively,
λ is the wavelength of the radar signals and r denotes the
range between radar and the observed area.

B. Multipass InSAR With TV Regularizer

By integrating smoothness prior knowledge of deformation
map into the parameter retrieval, Kang et al. [36] introduced
a joint reconstruction model of object-based deformation
parameters by exploiting TV regularization. Correspondingly,
the object-based model can be summarized as

{Ŝ, P̂} = argmin
S,P

1

2
‖W � (G − G(S, P))‖2F + η f (S, P) (2)

where G is the observed InSAR data stack, W denotes a
weighting tensor, η is the penalty parameter for balancing
the two terms in (2), and f (S, P) denotes the penalty term
which represents the spatial prior of S and P. Specifically,
smoothness prior, such as TV norm, can be considered for
urban area reconstruction.

C. Low Rank Tensor Decomposition in Multipass InSAR

Moreover, seeking to magnify the power of object-based
method for multipass InSAR, we investigate the low rank
property inherent in InSAR data stacks [1], according to the
following information.

1) It can be generally assumed that the elevation and
deformation maps, S and P,follow certain regular struc-
ture or homogeneous pattern because of the regular man-
made structures in urban areas.

2) The observed SAR images of urban object areas are
usually highly correlated along the temporal dimension.

By exploiting the low rank property, object-based InSAR data
stacks can be robustly recovered based on robust low rank
tensor decomposition

{X̂ , Ê} = argmin
X ,E

‖X‖∗ + γ ‖E‖1, s.t. X + E = G (3)

where X̂ and Ê are the recovered outlier-free InSAR data ten-
sor and the estimated outlier tensor, respectively. Based on this
model, Kang et al. [1] demonstrated that reliable parameter
estimation can be maintained, given loose semantic labels of
objects. However, smoothness structures of multipass InSAR
data stacks are not exploited in the model 3. As introduced

in [36], [38], [39], geophysical parameter estimation can be
enhanced by considering smoothness structures of elevation
and deformation maps.

III. COMBINING TV REGULARIZED ROBUST LOW

RANK TENSOR DECOMPOSITION

A. TV Regularized Robust Low Rank Tensor Decomposition

To this end, we develop a novel tensor decomposition
method in a complex domain, which jointly optimizes low
rank and TV terms for recovering outlier-free InSAR data
stacks. Given the observed InSAR data tensor G, it can be
decomposed into two parts: a low rank tensor X and a sparse
outlier tensor E . To maintain smoothness structure of InSAR
stacks, the decomposition can be regularized by a TV term.
Correspondingly, the proposed TV regularized robust low rank
tensor decomposition method is described by

{X̂ , Ê} = argmin
X ,E

α‖X‖3DT V + β‖X‖∗ + γ ‖E‖1
s.t. G = X + E (4)

where ‖X‖3DTV is the 3-D TV term for the three-mode tensor,
‖X‖∗ denotes the tensor nuclear norm, ‖E‖1 is the tensor L1
norm of sparse outliers and α, β and γ are the associated
parameters for controlling the balance of the three terms. ‖X‖∗
can be calculated by the sum of the N nuclear norms of the
mode-n unfoldings of X , i.e., ‖X‖∗ =∑

n ‖X(n)‖∗. The 3-D
TV term can be defined as

‖X‖3DT V :=
∑

i1,i2,i3

|xi1,i2,i3 − xi1,i2,i3−1|

+ |xi1,i2,i3 − xi1,i2−1,i3 | + |xi1,i2,i3 − xi1−1,i2,i3 |.
(5)

B. Optimization by Alternating Direction
Method of Multipliers

In order to solve the optimization problem with a TV
term, we first introduce auxiliary variables Z and F , and
rewrite (4) as

{X̂ , Ê} = argmin
X ,E

α‖F‖1 + β‖X‖∗ + γ ‖E‖1
s.t. G = X + E

X = Z, D(Z) = F (6)
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Fig. 1. Simulated groundtruth maps of linear deformation rate and elevation, along with the estimated results by PSI, RoMIO [1], and the proposed method.
Uncorrelated complex circular Gaussian noise was added to the simulated InSAR stack with an SNR of 0 dB, i.e., according to PS model. To simulate sparse
outliers in the stacks, 20% of pixels randomly selected from the stack were replaced with uniformly distributed phases. It can be seen that most points cannot
be correctly estimated by PSI. Especially for the estimates of the ground deformation, the increasing trend from top left to the bottom right corner is not
clearly visible in the PSI result. As a comparison, both the patterns of elevation and deformation maps from RoMIO and the proposed method are more
clearly displayed than PSI. However, without TV regularization, the reconstruction of some “building blocks” is more blurred in RoMIO than the proposed
method, i.e., the area indicated by the red circle.

Fig. 2. Plot of the estimation accuracy with respect to different numbers of
interferograms. As the number of interferograms utilized for the reconstruction
decreases, the performances of all the methods decline, but our method can
still maintain the best enhancement of the estimation accuracy.

where D(·) = [Di1 (·); Di2 (·); Di3(·)] is the 3-D difference
operator and Din (·)(n = 1, 2, 3) is the first-order difference
operator with respect to the in dimension of InSAR data stack.

The optimization problem (6) can be solved by the frame-
work of alternating direction method of multipliers (ADMM)
[40]–[42]. The corresponding constraint optimization problem
can be converted into an augmented Lagrangian function,
yielding

L(X , E,F ,Z,T1,T2,T3)

= α‖F‖1 + β‖X‖∗ + γ ‖E‖1
+〈T1,G − X − E〉 + 〈T2,X − Z〉 + 〈T3, D(Z)− F〉
+ μ

2

(‖G − X − E‖2F + ‖X − Z‖2F + ‖D(Z)− F‖2F
)
(7)

Fig. 3. Plot of the estimation accuracy with respect to different values
of SNR. As SNR grows, the efficiency improvement of RoMIO is less
prominent than the proposed method. One plausible reason may be owing to
the mitigation effect of Gaussian noise by TV regularization in the proposed
method.

where T1,T2,T3 are the introduced dual variables and μ is
the penalty parameter. ADMM takes advantage of splitting
one difficult optimization problem into several subproblems,
where each of them has a closed-form solution. Accordingly,
the minimization of L(X , E,F ,Z,T1,T2,T3) with respect
to each variable can be solved by optimizing the following
subproblems:

1) X Subproblem: By fixing the other variables, the
subproblem of L with respect to X is

min
X

β‖X‖∗ + μ

2
‖X − 1

2

(
G − E + Z + T1 − T2

μ

)
‖2F . (8)
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Fig. 4. Plot of the estimation accuracy with respect to different percentages
of outliers. It can be seen that both RoMIO and the proposed method can
robustly estimate geophysical parameters.

Fig. 5. Plot of the estimation accuracy with respect to different parameter
settings of α and β. The optimal α and β for this simulation are around 0.11
and 1, respectively.

It can be solved by the singular value thresholding (SVT)
operator [43], [44] on the mode-n(n = 1, 2, 3) unfolding of the
tensor (1/2)(G − E + Z + (T1−T2/μ)), where SVT operator
is defined as Sμ(A) := Udiag(max(σi − μ, 0))V with U, V
and σi obtained from singular value decomposition (SVD) of
the matrix A.

2) Z Subproblem: By fixing the other variables, the sub-
problem of L with respect to Z has the following form:
min
Z
〈T2,X − Z〉 + 〈T3, D(Z)− F〉

+ μ

2
(‖X − Z‖2F + ‖D(Z) − F‖2F ). (9)

Then, by calculating the gradient of L with respect to Z and
setting it to zero, we have:

(μI+ μD∗D)Z = T2 − D∗(T3)+ μX + μD∗(F) (10)

where D∗(·) is the adjoint operator of D(·). According to
the block-circulant structure of the matrix D∗D, this inverse
problem can be efficiently solved by exploiting 3-D fast
Fourier transform (FFT) and its inverse transform [45], [46].

3) F Subproblem: By fixing the other variables, the sub-
problem of L with respect to F can be written as

min
F

α‖F‖1 + μ

2
‖F − D(Z)− T3

μ
‖2F . (11)

This L1-norm-induced subproblem can be efficiently solved by
applying the soft-thresholding operator defined as Rγ (A) :=
sign(A) � max(|A| − γ, 0), where � denotes the element-
wise product (Hadamard product) of two tensors, and |A| =
sign(A)�A.

Fig. 6. Study area of Las Vegas shown by the mean amplitude (log scale)
of a TerraSAR-X InSAR stack.

Fig. 7. 2-D distribution of spatial and temporal baselines of the selected
11 interferograms for reconstruction. The master baseline is shown in red.

4) E Subproblem: By fixing the other variables, the sub-
problem of L with respect to E is

min
E

γ ‖E‖1 + μ

2
‖E − G + X − T1

μ
‖2F . (12)

Likewise, this subproblem can also be solved by soft-
thresholding operator.

5) Multiplier Updating: All the dual variables can be
updated by

T1 = T1 + μ(G − X − E)

T2 = T2 + μ(X − Z)

T3 = T3 + μ(D(Z)− F). (13)
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Fig. 8. Estimated elevation maps by PSI, RoMIO, and the proposed method with 11 interferograms of one area in Las Vegas. Consistent with the simulations,
the tensor-decomposition-based methods, i.e., RoMIO and the proposed method, can achieve more robust performances than PSI, since many noisy points are
observed in the result of PSI. For a detailed comparison, profiles of building façade (indicated by the white arrows) are plotted in Fig. 16.

Fig. 9. Estimated linear deformation rates by PSI and the proposed method with 11 interferograms of one area in Las Vegas. Obviously, tensor-decomposition-
based methods, RoMIO, and the proposed one, can better maintain the smoothness of the reconstructed deformation maps. The reconstruction results of the
convention center (white rectangular) are displayed in Fig. 10.

The detailed ADMM pseudocode for solving (6) is summa-
rized in Algorithm 1.

Using a predefined convergence condition, the solution
(X̂ and Ê) can be obtained, i.e., the outlier-free InSAR data
tensor and the sparse outlier tensor, respectively. To this
end, by applying conventional multipass InSAR techniques,
i.e., PSI [2], on X̂ , we can robustly retrieve the geophysical
parameters.

IV. SIMULATIONS

A. Simulation Results

We simulated a multipass InSAR data stack of
200× 250 pixels by 29 images with the true elevation
and linear deformation rate shown in Fig. 1. The simulation
is comparable to the real scenario of urban areas. The flat
background of the elevation map and different blocks on it
represent the ground and buildings with different heights,

respectively. Also, as shown by the simulated deformation
map, gradually increasing displacement is often observed
in real data. The linear deformation rates range from
−15 to 15 mm/year and elevations are from −100 to 100 m.
The spatial baseline and the temporal baseline were chosen to
be comparable to those of TerraSAR-X. Uncorrelated complex
circular Gaussian noise was added to the simulated stack
with a signal-to-noise ratio (SNR) of 0 dB, i.e., following the
PS model. To simulate sparse outliers in the stacks, 20% of
pixels randomly selected from the stack were replaced with
uniformly distributed phases.

As illustrated in Fig. 1, we compared the geophysical para-
meters estimated by PSI, Robust Multipass InSAR technique
via Object-based low rank tensor decomposition (RoMIO) [1],
and the proposed method. The parameters of the proposed
method are set to α = 0.1, β = 2, and γ = 0.48,
respectively. The parameter selection is discussed in the
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Fig. 10. Cropped zoomed-in areas of the results in Fig. 9 by the dashed white rectangular. Compared to RoMIO, the proposed method can better estimate
the flat roof areas, since the group of noisy points (indicated by red dashed circle) is eliminated in the result of the proposed method.

Fig. 11. Study area of Berlin shown by the mean amplitude (log scale) of
a TerraSAR-X InSAR stack.

following subsection. Furthermore, as shown in Fig. 2. in order
to test the capability of the proposed method for handling
small stacks, we calculated SD of the residuals between
the estimated parameters and the groundtruth with respect
to decreasing number of interferograms down to 9. Besides,
the performance of the proposed method against different
values of SNR and percentages of outliers were tested and
plotted in Figs. 3 and 4.

B. Parameter Selection

There are totally four parameters introduced in the proposed
method, i.e., α, β, γ, μ, where α, β, γ control the balances of
the three optimization terms and μ comes with the Lagrange

Fig. 12. 2-D distribution of spatial and temporal baselines of the selected
15 interferograms for reconstruction. The master baseline is shown in red.

multiplier terms. μ can be initially set as 10−2 and updated
in each iteration by μ := min(ημ,μmax), where η = 1.1.
As introduced in [45], [47], and [48], γ can be set to
100/
√

I1 I2. In our experience, α is selected in a range from
0 to 0.2 and β can be chosen between 0 and 10. As shown in
Fig. 5, based on the simulation of Fig. 4, we performed the
estimation accuracy of the parameters with respect to different
values of α and β. It can be seen that optimal α and β for
this simulation are around 0.11 and 1, respectively.

C. Performance Analysis

According to the visualization results shown in Fig. 1, under
SNR = 0 dB and 20% outliers, most points cannot be correctly
estimated by PSI. In particular, for the background of deforma-
tion map, the increasing trend from top left to the bottom right
corner is not clearly visible in the PSI result. As a comparison,
both the patterns of elevation and deformation maps from
RoMIO and the proposed method are more clearly displayed
than PSI. However, without TV regularization, the reconstruc-
tion of some “building blocks” is more blurred in RoMIO than
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Fig. 13. Estimated elevation maps by PSI, RoMIO, and the proposed method with 15 interferograms of one area in Berlin. Besides the reconstruction of
flat areas as Las Vegas, the proposed method can also achieve the robust retrieval of this complex area composed by building blocks and high-rise buildings.
For a better comparison of the three methods, one zoomed-in area and one road profile are displayed in Figs. 14 and 17, respectively.

Fig. 14. Cropped zoomed-in areas of the results in Fig. 13 by the dashed white rectangular. Compared to PSI, most outliers can be mitigated by the
tensor-decomposition-based methods.

the proposed method, i.e., the area indicated by the red circle
in Fig. 1, since piecewise smoothness cannot be maintained
by RoMIO. Besides, as displayed by the deformation results,
nonpiecewise smoothness information can also be preserved
in the proposed method. As shown in Fig. 2, under this
simulation, the improvement of the estimation accuracy by
both RoMIO and the proposed method can achieve ten times
better than PSI. Besides, as the number of interferograms
utilized for the reconstruction decreases, the performances of
all the methods decline, but our method can still maintain
the best estimation accuracy. Based on Figs. 3 and 4, we can
see that the proposed method can mitigate the influences from
both complex Gaussian noises and outliers in the InSAR stack
and accomplishes more accurate reconstruction than the other

two methods. As SNR grows, the efficiency improvement of
RoMIO is less prominent than the proposed method. One
plausible reason may be owing to the mitigation effect of
Gaussian noise by TV regularization in the proposed method.
It can also be observed that the performance of PSI is more
severely impacted by outliers than complex Gaussian noise.
The reason lies in the fact that the periodogram exploited in
PSI are only the MLE under complex Gaussian noise. It is not
robust to outliers.

V. CASE STUDY USING REAL DATA

A. Real Data Results

1) Las Vegas: The first study area is in Las Vegas,
as demonstrated in Fig. 6. The InSAR stack contains
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Fig. 15. Estimated amplitudes of seasonal motions by PSI, RoMIO, and the proposed method with 15 interferograms of one area in Berlin. Smoothness
structure can be well maintained in the reconstructed deformation map by the proposed method.

29 TerraSAR-X interferograms in total, with the spatial dimen-
sion of 1950×1950 pixels. In order to test the performance of
the proposed method under a low number of interferograms,
a substack with 11 interferograms were selected from the full
stack. The interferograms were selected so that their spatial
and temporal baselines are close to uniform distribution, which
is illustrated in Fig. 7. Since this spatial area is relatively large,
RoMIO and the proposed method were conducted in a sliding-
window manner, with a patch size of 100 × 100 pixels. The
parameters of our method were set to α = 0.12, β = 5,
and γ = 1. The estimated elevations and linear deformation
rates by PSI, RoMIO, and the proposed method are displayed
in Figs. 8 and 9, respectively.

2) Berlin: Another study area is in Berlin, as shown
in Fig. 11. The InSAR stack totally contains in total
41 TerraSAR-X interferograms, with the spatial dimension of
3000× 2500 pixels. A substack with 15 interferograms were
selected from the full stack and the associated baselines were
plotted in Fig. 12. Likewise, the patch size used in the sliding-
window processing is chosen as 200 × 200 pixels. For this
area, the parameters of our method were set to α = 0.12,
β = 3, and γ = 0.5. The estimated elevations and amplitudes
of seasonal motions by PSI, RoMIO, and the proposed method
are displayed in Figs. 13 and 15, respectively.

B. Performance Analysis

1) Las Vegas: As shown in Figs. 8 and 9, consistent
with the simulations, the tensor-decomposition-based methods,
i.e., RoMIO and the proposed method, can achieve more
robust performances than PSI. In particular, both of them
can maintain reliable reconstruction results with a substack of
11 interferograms. Illustrated by the deformation estimates of
Las Vegas Convention Center (see Fig. 10), many incorrectly
estimated pixels of the central area on the roof exist in the
PSI result. Compared to RoMIO, the proposed method can
better estimate the flat roof areas. As marked by the red dashed
circle, the group of noisy points is mitigated in the result of

Fig. 16. Extracted elevation profiles from the results shown in Fig. 8
(indicated by white arrows). Besides flat areas, the geometric structure of
building façade can also be well preserved by the proposed method. It also
gives us a hint that more accurate 3-D models of urban areas can be obtained
by the point cloud generated from our method.

the proposed method. Moreover, the geometric structure of
building façade can also be well preserved by the proposed
method. As illustrated in Fig. 16, the elevation profiles are
extracted from the results in Fig. 8 (indicated by the white
arrows). It is obvious that more noisy points exist in the
result of PSI than RoMIO and the proposed method. It also
gives us a hint that more accurate 3-D models of urban
areas can be obtained by the point cloud generated from our
method. Besides, the histograms of temporal coherences are
displayed in Fig. 18 (Left) based on the three reconstructed
results. We can see that the fitness between the filtered InSAR
data stack by our method and the model does apparently
increase and there are more highly coherent points in the
proposed method than RoMIO. Moreover, to further assess the
reconstruction quality of the proposed method, the parameters
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Fig. 17. Extracted elevation profiles from the results shown in Fig. 13 (indicated by red curve). Obviously, the proposed TV regularized tensor decomposition
method can better preserve piecewise smoothness for the 3-D reconstruction of roads than RoMIO.

TABLE II

QUANTITATIVE STUDY FOR THE RESULTS OF LAS VEGAS DATA. THE

PARAMETERS ESTIMATED BY THE PROPOSED METHOD ON THE FULL
INSAR STACK WERE REGARDED AS THE REFERENCE, IN ORDER

TO COMPARE THE RESULTS OF THE THREE METHODS

APPLYING ON A SMALLER INSAR STACK
WITH 11 INTERFERORGAMS

estimated by the proposed method on the full InSAR stack
were regarded as the reference, in order to compare the results
of the three methods applying on a smaller InSAR stack
with 11 interferograms. The performance is demonstrated
in Table II. It can be seen that the proposed method can achieve
more reliable estimates of geophysical parameters than both
RoMIO and PSI.

2) Berlin: From the study area shown in Fig. 11, we can
see that it is mainly composed of building blocks and high-
rise buildings. As demonstrated in Fig. 13 and one zoomed-in
area in Fig. 14, more outliers appear in the 3-D reconstruction
by PSI than RoMIO and the proposed method. Compared to
RoMIO, the proposed method can better reconstruct road areas
since smoothness structure is able to be preserved by TV
regularization. As an example shown in Fig. 13 (middle), one
road profile indicated by the red curve is extracted from the
results of RoMIO and the proposed method, respectively, and
displayed in Fig. 17. Obviously, piecewise smooth property
can be better maintained in the proposed method than RoMIO.
Moreover, Fig. 15 shows that the proposed method can pro-
duce the smoothest map of deformations than RoMIO and PSI,
which indicates that incorrectly estimates can be mitigated by
the proposed method. Consistent with the previous experiment,
the filtered InSAR stack by the proposed method can best

TABLE III

QUANTITATIVE STUDY FOR THE RESULTS OF BERLIN DATA. THE

PARAMETERS ESTIMATED BY THE PROPOSED METHOD ON THE
FULL INSAR STACK WERE REGARDED AS THE REFERENCE,

IN ORDER TO COMPARE THE RESULTS OF THE THREE

METHODS APPLYING ON A SMALLER INSAR
STACK WITH 15 INTERFERORGAMS

fit the model among the three comparing methods, which
is displayed by the histograms of temporal coherences in
Fig. 18 (right). Besides, the numerical analysis is done in
the same manner as the above experiment. As illustrated
in Table III, the estimates from the proposed method are much
closer than the other two methods given the estimates from the
full stack.

C. Comparison With Object-Based InSAR [36]

The object-based approach in [36] contains two separate
stages for the geophysical parameter estimation: tensor robust
principle component analysis and the TV regularized para-
meter estimation. Differently with the previous approach,
the proposed method integrates the two prior knowledge,
i.e., the variation and low rank, into a single-stage processing.
To compare the efficiencies of the two methods, we choose the
same real data set used in [36], i.e., one bridge in the central
area in Berlin. As illustrated in Fig. 19, it can be seen that
the two methods can achieve comparable performance. Such
a result, in turn, supports our motivation of this article: the
separated optimization steps of low rank tensor decomposition
and TV regularization in [36] can be merged into a single opti-
mization. Afterward, the estimation of height and deformation
can be done pixel by pixel, which can avoid the requirement of
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Fig. 18. Probability density functions (PDFs) of temporal coherences based on the estimated results by PSI and the proposed methods. (Left) Case of Las
Vegas. (Right) Case of Berlin.

Fig. 19. (Top) Amplitudes of seasonal motion estimation on one bridge in
Berlin based on the method in [36]. (Bottom) Result based on the proposed
method in this article.

explicit semantic masks required in [36]. This is an advantage
for code parallelization in large areas processing.

VI. CONCLUSION

This article proposed a novel tensor decomposition method
in a complex domain based on the prior knowledge of the low
rank property and smoothness structure in multipass InSAR

data stacks. Based on the proposed method, geophysical para-
meter estimation can be improved in real data cases, compared
with conventional methods, such as PSI, and also recently
proposed method—RoMIO. Demonstrated by the case study,
compared with PSI, the proposed method can improve the
parameter estimation by a factor of more than seven for Berlin,
and ten for Las Vegas. Furthermore, this work is the first to
demonstrate that tensor-decomposition-based multipass InSAR
techniques can be beneficial for large-scale urban mapping
problems using InSAR, including 3-D urban reconstruction
and surface displacement monitoring.

The proposed method introduces three parameters to be set,
i.e., α, β, and γ . They do not need to be tuned simultaneously
since one parameter can be set as a constant and the other two
can be adjusted with respect to it. Based on our experiments, γ
can be selected as a constant of 100/

√
I1 I2, the optimal α lies

in the range from 0 to 10, and the optimal β can be selected
from 0 to 0.2. From the results of the real data, the proposed
method is not only favorable for the 3-D reconstruction of
flat urban areas, such as Las Vegas, but also promising for
complicated European cities, such as Berlin. Moreover, for
large-scale processing, the proposed method can be easily
parallelized and operated in a sliding window manner.

Since the proposed method is based on the assumption
that the signals are similar both in spatial and time domains,
the reconstruction for irregular signals i.e., a breakpoint or a
sudden jump in deformation signals, may not be satisfied
with the proposed optimization model. The results based on
the proposed method favor the smoothness reconstruction
and such sparse signals may be “inpainted” according to the
neighboring signals in spatial and time domains.

As future work, we will combine the proposed method
with more advanced multipass InSAR method, such as
D-TomoSAR, in order to produce more accurate 3-D recon-
struction in urban areas. The improved 3-D reconstruction
can be a great input to the urban 3-D model reconstruc-
tion [49]. Moreover, since atmosphere phase screens (APS)
in multitemporal InSAR stack partly fulfill the assumption
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of the proposed model (i.e., APS is only spatially correlated
but not temporally), it would be interesting to systematically
investigate the performance of atmosphere signal removal
based on such tensor-decomposition-based method.

APPENDIX

ADMM SOLVER FOR (6)

Algorithm 1 Problem (6) solved by ADMM
Input: G, α, β, γ, N
1: Initialize X = E = Z = F = T1 = T2 = T3 = 0,

μmax = 1010, η = 1.1, μ = 10−2

2: for k = 0 to maxIter do
3: Update X (k+1) by SVT for mode-n unfolding matrix of

1
2 (G − E (k) + Z(k) + T (k)

1 −T (k)
2

μ ),
then mode-n folding of the results as N tensors and

average them by N :
X (k+1) ← 1

N

∑N
n=1 Sn,βN/μ( 1

2 (G(n) − E(k)
(n) + Z(k)

(n) +
T(k)

1(n)−T(k)
2(n)

μ )), where Sn,βN/μ(·) := foldn(SβN/μ(·)).
4: Update Z(k+1) by calculating HZ and TZ , where

HZ = T (k)
2 − D∗(T (k)

3 )+ μX (k+1) + μD∗(F (k)) and
TZ = |fftn(D1)|2 + |fftn(D2)|2 + |fftn(D3)|2,
Z(k+1) ← ifftn( fftn(HZ )

μI+μTZ ).
5: Update F (k+1) by element-wise soft-thresholding of

tensor D(Z(k+1))+ T (k)
3 /μ:

F (k+1) ← Rα/μ(D(Z(k+1))+ T (k)
3 /μ).

6: Update E (k+1) by element-wise soft-thresholding of ten-
sor G + T (k)

1 /μ− X (k+1):
E (k+1) ← Rγ /μ(G + T (k)

1 /μ− X (k+1)).
7: Update T (k+1)

1 , T (k+1)
2 and T (k+1)

3 by
T (k+1)

1 ← T (k)
1 + μ(G − X (k+1) − E (k+1)),

T (k+1)
2 ← T (k)

2 + μ(X (k+1) − Z(k+1)),
T (k+1)

3 ← T (k)
3 + μ(D(Z(k+1))− F (k+1)).

8: Update μ by μ← min(ημ,μmax).
9: if convergence then

10: break
11: end if
12: end for
Output: (X̂ , Ê)
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