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Deriving a Frozen Area Fraction From Metop
ASCAT Backscatter Based on Sentinel-1

Helena Bergstedt™, Annett Bartsch, Anton Neureiter, Angelika Hofler,
Barbara Widhalm, Nicholas Pepin, and Jan Hjort

Abstract—Surface state data derived from spaceborne
microwave sensors with suitable temporal sampling are to date
only available in low spatial resolution (25-50 km). Current
approaches do not adequately resolve spatial heterogeneity in
landscape-scale freeze—thaw processes. We propose to derive a
frozen fraction instead of binary freeze-thaw information. This
introduces the possibility to monitor the gradual freezing and
thawing of complex landscapes. Frozen fractions were retrieved
from Advanced Scatterometer (ASCAT, C-band) backscatter on
a 12.5-km grid for three sites in noncontinuous permafrost areas
in northern Finland and the Austrian Alps. To calibrate the
retrieval approach, frozen fractions based on Sentinel-1 synthetic
aperture radar (SAR, C-band) were derived for all sites and
compared to ASCAT backscatter. We found strong relationships
for ASCAT backscatter with Sentinel-1 derived frozen fractions
(Pearson correlations of —0.85 to —0.96) for the sites in northern
Finland and less strong relationships for the Alpine site (Pearson
correlations —0.579 and —0.611, including and excluding forested
areas). Applying the derived linear relationships, predicted frozen
fractions using ASCAT backscatter values showed root mean
square error (RMSE) values between 7.26% and 16.87% when
compared with Sentinel-1 frozen fractions. The validation of
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the Sentinel-1 derived freeze-thaw classifications showed high
accuracy when compared to in situ near-surface soil temperature
(84.7%-94%). Results are discussed with regard to landscape
type, differences between spring and autumn, and gridding. This
article serves as a proof of concept, showcasing the possibility
to derive frozen fraction from coarse spatial resolution scat-
terometer time series to improve the representation of spatial
heterogeneity in landscape-scale surface state.

Index Terms— Advanced Scatterometer (ASCAT), freeze—thaw,
permafrost, Sentinel-1, surface state.

I. INTRODUCTION

ARGE parts of the Earth’s surface are characterized by

seasonal freezing and thawing processes. These processes
are especially important for the higher latitudes and moun-
tainous areas that are largely underlain by perennially frozen
ground (permafrost). Seasonal freezing and thawing cycles
have been shown to be an important driver of hydrological [1]
and ecological processes [2]. Accurate knowledge about the
extent, depth, and timing of freeze and thaw is an asset
for modeling approaches of climate, surface energy balance,
permafrost hydrology, and greenhouse gas emissions such as
methane (e.g., [3], [4]).

Multiple data sets containing surface state information
derived from microwave remote sensing have been published
in the past (e.g., [5], [6]). Microwave remote sensing has
been used for freeze—thaw retrieval in permafrost areas using
different approaches and data sources [7]-[10]. Both active
and passive microwave remote sensing platforms have been
employed to create algorithms and data products tailored
to monitoring of the ground surface state of high latitude
regions (e.g., [11]-[13]). The freeze—thaw retrieval algorithms
based on active systems [e.g., on the Advanced Scatterometer
(ASCAT)] utilize the dependence of microwave backscatter on
the dielectric constant of water contained within the ground.
The dielectric constant itself is influenced by the state of water
(frozen or liquid) contained in the ground and causes the
backscatter to change in relation to the freeze—thaw of the
ground surface. Scatterometers, such as the ERS scatterome-
ter or the NASA Scatterometer (NSCAT) (see [14]-[16]) as
well as Metop ASCAT (C-band) [10], have been successfully
used to retrieve and monitor freeze—thaw information in the
Arctic on a circumpolar scale. Due to its high temporal reso-
lution (approximately daily observations), ASCAT has shown
its potential for the monitoring of freeze—thaw cycles [10].
This data set has been demonstrated to be of value for the
estimation of mean annual ground temperature in permafrost
regions [17]. The coarse spatial resolution of scatterometer
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observations (25-50 km) does not allow for freeze—thaw
monitoring with rich spatial details. Synthetic aperture radar
(SAR) C-band instruments have been used for freeze—thaw
monitoring in Arctic environments and have been shown to
be applicable to freeze—thaw monitoring in multiple studies
(e.g., [13], [18], [19]). Attention has also been paid to
freeze—thaw retrieval in the mid-latitudes (e.g., [20]). SAR
instruments have a much higher spatial resolution (e.g.,
10 m for Sentinel-1) in contrast to the comparatively low
spatial resolution of scatterometer sensors (e.g., 25 km for
ASCAT). However, most available SAR platforms in the past
offered only infrequent observations [13]. This did, so far, not
allow for high temporal resolution and high spatial resolu-
tion analysis or near-real-time monitoring of highly dynamic
freeze—thaw cycles during transitional periods. Comparisons
of freeze—thaw data sets from scatterometer and SAR sensors
reveal significant differences in complex landscapes that are
either mountainous or lake-rich Arctic environments [21].

Although freeze—thaw information retrieved using ASCAT
time series is binary information (either a grid cell is
frozen or thawed), the backscatter signal itself shifts over time
from the average winter to summer value (see Fig. 6). Studies
have theorized that the gradual rise and fall in backscatter
could be linked to an increase or decrease in the fraction
of frozen surface area within the respective ASCAT grid cell
(see [21], [22]). It has been observed that the thawing process
within one ASCAT grid cell can last a full month (shown for a
study site in Alaska) [21]. A gradual shift occurring in L-band
SMOS brightness temperature has been linked to change in the
depth of the freezing front that gradually increases or decreases
over time during the transitional periods [23].

In this article, we investigate the gradual rising and falling
of backscatter values during transitional periods using scat-
terometer observations from ASCAT as well as SAR data
sets from the Sentinel-1 constellation. We hypothesize that
contrary to current literature, a gradual shift in freezing (or
thawing) of the ground surface of the area contained within
the respective ASCAT grid cell can be quantified instead
of a binary approach. Furthermore, we present an approach
to derive a fraction of frozen—thawed area per ASCAT grid
cell instead of the currently available binary, frozen/unfrozen
surface state information.

II. DATA AND STUDY SITES

A. Remote Sensing Data Sets

This article focuses on the C-band (5.2 GHz)
VV-polarized backscatter data sets from the ASCAT onboard
the Metop satellites. It offers a spatial resolution of 25-50 km
[24]. Backscatter data used in this article are provided by
EUMETSAT in a 12.5-km grid as part of the soil moisture
data product. The provided backscatter value has been
normalized to a 40° incidence angle. Data are continuously
available since 2007, providing global coverage with a
temporal resolution of approximately daily observations [25].

To be able to account for spatial variability in the
freeze—thaw process, we utilize Sentinel-1 C-band (5.4 GHz)
backscatter data. In this article, we employ data obtained in
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interferometric wide (IW) swath mode, as it is the predefined
mode over land areas. The Copernicus Sentinel-1 data were
obtained from the Alaska Satellite Facility’s (ASF) data portal
Vertex as Level-1 Ground Range Detected High Resolution
dual polarization products (GRD-HD, 10 x 10 m pixel
spacing). To ensure the best possible comparability between
ASCAT and Sentinel-1 observations, this analysis was limited
to the V-polarized bands of the Sentinel-1 data set.

Landcover is expected to influence the retrieval of freeze—
thaw information (e.g., [21]). Sentinel-2 multispectral obser-
vations from July to August 2018 were used for land-
cover classifications to mask out several landcover classes
(e.g., water, bedrock, and glaciers) from the analysis of
Sentinel-1 data. Sentinel-2A and 2B carry the Multispectral
Instrument (MSI) orbiting the Earth at 786-km altitude. The
spatial resolution varies among the spectral bands and ranges
from 10 m for the visible and the broad near infrared (NIR)
bands, 20 m for the red edge, narrow NIR and short wave
infrared (SWIR) bands, and 60 m for the atmospheric bands.
The bands 3 (green, 10 m), 4 (red, 10 m), 8 (NIR, 10 m),
11 (SWIR, 20 m), and 12 (SWIR, 20 m) have been shown to
be applicable, especially to Tundra and Arctic environments
and were, therefore, used in this analysis [26].

B. Study Sites

We focus on three study sites for which distributed near-
surface temperature measurements could be obtained (Table I).
They are affected by seasonal frost and noncontinuous per-
mafrost (sporadic or isolated). All study sites further feature
different shares of forested as well as sparsely vegetated
areas, bare rock, and boulder landforms. Additionally, all sites
include surface water in the form of lakes and rivers. Each
study site is approximately the size of one ASCAT grid cell of
the ASCAT soil moisture data product by EUMETSAT gridded
to 12.5 km.

Two study sites for this analysis, the Kevo and Kaldoaivi
sites, are located in northern Finland near and around the Kevo
Subarctic Research Station. The sites differ significantly from
the third one in the complexity of the terrain and the difference
in elevation within the grid cell (see Fig. 1). The Kevo and
Kaldoaivi sites differ in the amount of forested area. The Kevo
site features more and denser forest cover as well as a larger
river and a lake system (Kevojirvi) compared to the Kaldoaivi
site.

The third study site is located in the Hohe Tauern National
Park in the Austrian Alps around the Hoher Sonnblick moun-
tain. This site features multiple glaciers as well as areas of
permanent or multiyear snow cover.

C. In Situ Observations

Air temperature measurements for all study sites were used
to determine the backscatter thresholds for the freeze—thaw
algorithm. Air temperature measurements for the Hohe Tauern
site were obtained from the Zentralanstalt fiir Meteorologie
und Geodynamik (ZAMG) and were available in 10-min
resolution for the entire study period from 2016 to 2018 [29].
The air temperature measurements for the Hohe Tauern site
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Map showing an (a) overview of the three study sites as well as detailed maps of (b) Kaldoaivi, (c) Kevo, and (d) Hohe Tauern sites showing DEMs

(data sources: [27], [28]) with elevation in meter above sea level; including the distribution of measurement points for in situ near-surface ground temperature.

were obtained from the Hohe Sonnblick observatory located
on a summit within the grid cell.

Air temperature measurements for the Kaldoaivi site
(Finland) were acquired via an automated weather station.
In addition to the air temperature measurements, this site
offered borehole ground temperature measurements from
depths of 0.5, 0.75, and 1 m. This site is located at
the well-studied palsa site in the Vaisjeaggi palsa mire
(e.g., [30], [31]). This site used Onset TMC-HD temperature
sensors and HOBOS8 Ul2 data loggers for both air and
ground temperature. However, as the air temperature from
this location observations did not cover the time period of
interest to a sufficient amount, final calibration of the freeze—
thaw detection (determination of thresholds) for the Kaldoaivi
grid cell was done using the air temperature measurement from
the measurement site located in the Kevo grid cell. This site
is located approximately 5 km west from the Kaldoaivi grid
cell.

For the Kevo study site, air temperature measurements were
obtained from the measurement station located at the Kevo
Subarctic Research Station, located near the center of the
respective grid cell. The data set was obtained through the
National Oceanic and Atmosphere Administration (NOAA)
National Centers for Environmental Information data portal.

Near-surface ground temperature in situ measurements for
all study sites were used to verify and validate the results
obtained from the remote sensing data analysis. Extensive
near-surface soil temperature measurements were performed
from summer 2016 to summer 2018 in the Hohe Tauern site
(Austria) and the Kaldoaivi site (Finland). Temperature mea-
surements were obtained by distributing iButton temperature
loggers to cover different landscape types in the grid cells and
different elevations (for more details see Table II). The iButton
loggers were placed approximately 2-3 cm below the surface
to avoid direct warming influence by the Sun.

Near-surface temperature measurements in the Kevo site
were measured at 2-cm depth by Pendant UA-002-64/TidbiT
v2 dataloggers every 30 min. Continuous data were recorded
from 17 September 2011 to 31 August 2018. Most sites were
in soil/vegetated areas. Sites used in this article range from
lakeside (80 m above sea level) to freely draining slope sites
(146 m above sea level).

Additional in situ data have been collected in the Hohe
Tauern area in order to determine the accuracy of the adapted
landcover classification scheme. As this classification targets
the separation of areas with bedrock, special emphasis was on
collecting information from bedrock/boulder (25 data points)
versus soil/vegetation (18 points) covered areas.



BERGSTEDT et al.: DERIVING A FROZEN AREA FRACTION FROM METOP ASCAT BACKSCATTER

6011

TABLE I

OVERVIEW OF STUDY SITES (GRID CELLS) INCLUDING LOCATION, SURFACE WATER FRACTION, FRACTION OF PERMANENT SNOWCOVER/GLACIERS,
FRACTION OF BEDROCK/BOULDERS AS GIVEN BY THE LANDCOVER CLASSIFICATION. FRACTIONS GIVEN HERE
ARE MASKED OUT FROM THE ANALYSIS

Study site Latitude | Longitude | Surface water fr. % | Permanent snow/glacier fr. % | Bedrock/boulder fr. %
Hohe Tauern 47.05 12.99 1.65 4.59 36.7
Kevo 69.72 27.13 5.53 - -
Kaldoaivi 69.83 27.27 3.42 - -
TABLE II
OVERVIEW OF In Situ DATA SETS USED IN THIS ARTICLE
Grid cell In situ measurement sites Latitude | Longitude | measured Parameter
Kaldoaivi Va-1 Vaisjeaggil 69.82 27.17 Air temperature and ground temperature
Kaldoaivi Kaldoaivi-iButtons 69.83 27.27 Near-surface ground temperature
Kevo Utsjoki Kevo Kevojirvi 69.76 27.02 Air temperature
Kevo Hobo Pendant/TidbiT 69.72 27.13 Near-surface ground temperature
Hohe Tauern | Hoher Sonnblick Observatory | 47.05 12.96 Air temperature
Hohe Tauern | Hohe Tauern - iButtons 47.05 12.99 Near-surface ground temperature
III. METHODOLOGY (see Fig. 2). The accuracy of the classification approach
A. Sentinel-1 Preprocessing presented in [33] was determined using in sifu vegetation data
. . from central Yamal (tundra over continuous permafrost) and
Sentinel-1 GRD-HD was preprocessed using the

Sentinel Application Platform (SNAP) toolbox. In SNAP,
Sentinel-1 data were subjected to the application of the orbit
file, thermal noise removal, calibration, terrain correction,
and the conversion to decibel (dB). For the terrain correction,
we applied high-resolution digital elevation models (DEM)
for both the study site in Austria and the study sites in
Finland. For Austria, we used a 10-m spatial resolution
derived from laser scanning data from 2015 published by
the state of Salzburg (Austria) [27]. For both study sites in
Finland, DEMs of different spatial resolutions are available
(2 and 10 m). To have comparable data sets for all study
sites, all analyses were performed on data preprocessed
using 10-m DEMs [28]. The DEM for Finland is based on
topographic data published by the National Land Survey of
Finland with a 1.4-m elevation accuracy [28]. Sentinel-1 data
were normalized to a 40° incidence angle (in accordance with
the ASCAT backscatter being normalized to this incidence
angle) using the methodology presented in [32].

B. Landcover Classification

To distinguish different landcovers within the selected grid
cells, we created landcover classifications for all selected study
sites. For landcover classifications regarding the Kaldoaivi and
Kevo sites, we followed the classification approach presented
in [33] which was specifically developed for Arctic and per-
mafrost environments. As input data, Sentinel-1 observations
(VV-pol, IW mode) from December 2017 were combined with
Sentinel-2 acquisitions from July/August 2018. We performed
a maximum likelihood classification based on the signatures
published in [33]. They represent the modified results of an
unsupervised classification (k-means). This landscape classifi-
cation offers 21 possible classes including sparse vegetation,
different shrub types, forests as well as different water classes
of which the three water classes have been used for mask-
ing in this analysis. This classification approach also offers
grouped classes that are used to simplify the visualization

the northern Ural region (taiga—tundra transition zone over
discontinuous permafrost) [34]. Bartsch et al. [34] reported an
agreement on the vegetation classification with the in situ data
of 70%-94.1%.

For the Hohe Tauern area, this classification scheme has
been adapted to Alpine environments that also include exten-
sive bedrock and boulder areas as well as glaciers and per-
manent snowfields. Both polarization combinations available
from Sentinel-1 (VV and VH) have been used to exploit
the polarization-dependent backscatter response. Summer data
(July 2017) in addition to acquisition from frozen condi-
tions across the entire area of interest (January 2017) have
been included for the k-means classification. This results
in 19 classes including bedrock areas that are required for
masking of areas with too low water content. As the employed
algorithm relies on the backscatter changes caused by the
changing dielectric constant of the water contained in the
ground, these areas are not sensitive to this kind of backscatter
change.

C. Compatibility of ASCAT and Sentinel-1

To demonstrate the compatibility of ASCAT and
Sentinel-1 for freeze—thaw retrieval applications, we compared
the ASCAT backscatter time series with resampled Sentinel-1
backscatter time series. For this purpose, Sentinel-1 mean
values were calculated for each available acquisition from all
pixels contained within the respective ASCAT grid cell. This
was done for all grid cells used in this article. The created
Sentinel-1 mean value time series were compared to the
respective ASCAT time series visually (see Fig. 4), and by
their Pearson correlation for acquisition dates where values
for both Sentinel-1 and ASCAT were available.

D. Freeze—Thaw Retrieval Algorithm

The freeze—thaw algorithm used in this article was published
by Naeimi er al. [10] as the ASCAT surface state flag in
conjunction with the soil moisture algorithm for ASCAT.
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It was designed to derive the surface state and monitor
freeze—thaw events and was validated using surface
temperature and near-surface temperature measurements in
Siberia and Alaska as well as with air temperature from World
Meteorological Organization (WMO) meteorological stations
and modeled soil temperature data sets [ECMWF ReAnalysis
(ERA-Interim) and Global Land Data Assimilation System
(GLDAS)-Noah]. Naeimi er al. [10] reported an overall
accuracy between 80.26% and 91.79% for the comparison with
in situ soil temperature data, an overall accuracy of 81.93%
for the comparison with air temperature and an overall
accuracy with modeled soil temperatures of 83.09% and
83.86% for ERA-Interim and GLDAS-Noah, respectively. The
reported accuracy for the different data sets was different for
frozen, unfrozen, and transitional periods [10]. The algorithm
classifies ASCAT backscatter values into frozen, unfrozen,
unknown, and snowmelt/water on the surface using backscatter
thresholds. The thresholds are obtained through collocating the
backscatter data with the near-surface soil temperature from
the ERA-Interim data set due to the limited availability of in
situ data on a global scale. The backscatter level at the freeze—
thaw point (6"FTL, the blue line in Fig. 3) is determined as the
inflection point of a logistic function fit to ASCAT backscatter
collocated with ERA-Interim soil temperature data (red curve
in Fig. 3). An example of this is shown in Fig. 3. In addition
to the backscatter level of the freeze—thaw transition,
the algorithm relies on the mean backscatter during the
summer months (6°SM) and the backscatter at the snowmelt
level (O‘OSML, the green line in Fig. 3). Naeimi et al. [10] have
reported the best results of this process if the regression is
limited to values between +10 °C and —10 °C. This approach
has been reported to be applicable for Arctic regions.

In this article, instead of reanalysis data, we could employ
air temperature measurements obtained within or near the
studied grid cells for the extraction of the model parame-
ters. Naeimi et al. [10] reported similar validation results
of their surface state data product compared with mod-
eled soil temperature (83.09%) and air temperature data
(81.93%). By focusing on available in situ information,
we avoid possible uncertainties associated with reanalysis
data sets.

E. Quantifying Partial Freezing

To investigate the gradual rise and fall of ASCAT backscat-
ter values during transitional periods Sentinel-1 backscatter
was used to resolve spatial differences in freeze—thaw transi-
tions within one ASCAT grid cell. To calculate the frozen frac-
tion per ASCAT grid cell (fraction of frozen pixel) Sentinel-1
was classified following the same freeze—thaw retrieval
algorithm as introduced for ASCAT [10].

Sentinel-1 data were classified in frozen/unfrozen according
to the freeze—thaw retrieval algorithm on a pixelwise basis.
To decrease processing times Sentinel-1 data were resampled
to a 40-m pixel spacing from the original 10 x 10 m grid. The
classification of the Sentinel-1 time series was validated using
the in situ near-surface ground temperature measurements
described in Section II-C.

Landscape types associated with temporal or perma-
nent surface water coverage were masked out before the
freeze—thaw retrieval. Backscatter changes caused by freeze—
thaw transitions are linked to the state change of water
contained within the near-surface ground. Landscape types
known to be nonsensitive to this kind of backscatter change
due to a lack of near-surface water content of the ground (e.g.,
bedrock and large boulders) were masked from the analysis.
For the Alpine site landscape type glaciers and multiyear snow
cover were masked as well due to their different backscat-
tering behavior over time. Percentages of masked areas are
documented in Table I.

The resulting frozen fraction is expected to be linearly
related to the ASCAT backscatter of the corresponding grid
cell. Deviations may occur due to the omission of water
and snow areas in the Sentinel-1 time series. Following
this assumption, we performed a linear regression of val-
ues for frozen fraction and ASCAT backscatter for 75% of
the available data. The created linear equation was used to
calculate frozen fractions from ASCAT backscatter values
for the remaining 25% of the data set aside for validation.
The data were separated randomly into 75% and 25% to
avoid bias due to different years showing different numbers
in Sentinel-1 acquisitions. To avoid the influence of snowmelt
on the correlation and the calculation of frozen fraction from
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ASCAT backscatter, days with detected snowmelt conditions
in ASCAT backscatter were excluded from the correlation
analysis. To verify the validity of this classification, we com-
pared the retrieved surface state with near-surface ground
temperature time series.

It is known that forested areas cause uncertainties in surface
state retrieval with C-band backscatter (e.g., [13]). In our
study, the Hohe Tauern site shows areas of dense forest in
areas with low elevation included in the analyzed grid cell.
To quantify the influence of the forested areas on the overall
result, the analysis was done including as well as excluding
these areas to be able to compare the results.

F. Validation of Freeze—Thaw Classification

To verify the Sentinel-1 freeze—thaw classification, which
is the basis for quantifying the frozen fraction, classification
results were compared to in situ near-surface ground temper-
ature measurements for all three study sites. For comparison,
the Sentinel-1 backscatter time series for the pixels of all
available in situ measurement locations were extracted and
classified separately. To quantify the agreement of the clas-
sification and the in situ measurements, classification results
were separated into frozen, unfrozen, and melting periods and
compared to in sifu data from the corresponding time periods.

This was visualized in form of boxplots which represent
descriptive statistics including median, quartiles, and outliers.

IV. RESULTS

A. Surface State Retrieval From Sentinel-1

A comparison of the ASCAT backscatter time series with
resampled Sentinel-1 time series revealed high agreement of
ASCAT and Sentinel-1 observation of the respective grid
cells (see Fig. 4). Pearson correlations between ASCAT and
resampled Sentinel-1 time series were high for the Kaldoaivi
(0.97, 0.91) and Kevo sites (0.92, 0.89) for both ascending
and descending acquisitions. The Hoher Tauern site showed
slightly lower correlations with 0.55 and 0.70 for ascending
and descending acquisitions, respectively. For all three study
sites both ASCAT and the resampled Sentinel-1 time series
showed the typical behavior of lower backscatter during winter
months and higher backscatter during summer months with
especially low backscatter values during periods of snowmelt
(see Fig. 4). For the Kaldoaivi and Kevo sites, ASCAT shows
very similar backscatter values compared to the resampled
Sentinel-1 time series. While still following the typical tem-
poral pattern, values of ASCAT and resampled Sentinel-1 are
less similar for the Hohe Tauern site compared to the other two
study sites (see Fig. 4). For the Kaldoaivi and Hohe Tauern
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Fig. 4. Time series of ASCAT and Sentinel-1 backscatter (resampled to the ASCAT grid) for the three sites (a) Kaldoaivi, (b) Kevo, and (c) Hohe Tauern

for the studied time period.
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Fig. 5. Boxplots showing the agreement of in situ near-surface ground temperature time series with Sentinel-1-based pixelwise frozen, unfrozen, and melting
snow conditions classification. Measurement points are sorted by elevation from low to high. Boxplots show median, quartiles, and outliers (black dots).
Numbered measurement points represent locations instrumented with iButtons; Vaisjaeggi points (VJ) were instrumented with Onset TMC-HD temperature
sensors and HOBOSU12 data loggers; named points at the Kevo location were instrumented with Pendant UA-002-64/TidbiTv2 dataloggers. (a) Kaldoaivi.

(b) Kevo. (c) Hohe Tauern.

sites, ASCAT backscatter showed generally higher backscatter
values compared to Sentinel-1.

To calculate the frozen fraction of ASCAT grid cells,
the Sentinel-1 time series was classified as frozen/unfrozen
using the threshold algorithm presented in [10]. The agreement

of frozen/unfrozen from Sentinel-1 with near-surface ground
temperature is 94% for the Kaldoaivi site, 87% for the
Kevo site, and 84.7% or 85.6% for the Hohe Tauern site
including and excluding forested areas, respectively. This
is visualized in Fig. 5 which shows boxplots of classified
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Fig. 6. Time series of Sentinel-1 frozen fraction, ASCAT backscatter and air temperature for study sites (a) Kaldoaivi, (b) Kevo, and (c) Hohe Tauern.

Sentinel-1 observations and the respective in situ near-surface
ground temperature value for each in situ measurement
location within the respective study site (Kaldoaivi, Kevo,
and Hohe Tauern). For the Kaldoaivi and Kevo sites,
median values of near ground surface temperature fall
below 0 °C for all available in situ measurement points
during periods classified as frozen using Sentinel-1 data
(see Fig. 5). All in situ measurement points show outliers
(black dots in Fig. 5) above 0 °C during the period classified
as frozen by Sentinel-1 data. For the period classified
as unfrozen using the Sentinel-1 time series, both the
Kaldoaivi and Kevo sites exhibit median values between
5 °C and 10 °C for all available in sifu measurement points.
Comparison of in situ near—surface ground temperature
measurements  with  frozen/unfrozen classification of
Sentinel-1 data for the Hohe Tauern site shows several
in situ measurement points with median temperatures above
0 °C during periods classified as frozen (see Fig. 5). Sites
showing positive temperatures during as frozen classified
periods are those that are forested and are situated at lower
altitudes. Periods classified as melting snow from Sentinel-1
times series show in situ near-surface ground temperatures
with values both above and below 0 °C for all three study sites.

The frozen fraction for all three study sites was calculated
for all available Sentinel-1 acquisitions after masking with

landcover. The classification accuracy for the landcover clas-
sification for bedrock at the Hohe Tauern site is 86% and 75%
respectively (user accuracy and producer accuracy).

The resulting frozen fraction time series, as well as the
corresponding ASCAT backscatter and air temperature time
series, can be seen in Fig. 6. The time series of the frozen
fraction follows the time series of both ASCAT backscatter
and air temperature for all three sites (see Fig. 6). Differences
between the sites lie in the maximum of the as-frozen classified
fraction of the Sentinel-1 pixel. The Kaldoaivi and Kevo study
sites show long periods (on and off for between November to
May) of consistently high percentages of the frozen fraction
(above 90% frozen) for all years considered in this article. The
Hohe Tauern site shows lower overall frozen fractions as well
as smaller differences between summer and winter levels of
the frozen fraction (see Fig. 6). All three sites show differing
amounts of frozen fractions during the summer months with
the frozen fraction of the Hohe Tauern site exceeding the levels
compared to the other sites.

B. ASCAT Backscatter Versus Frozen Fraction From
Sentinel-1

The results of the linear regression for all three study sites,
including the Pearson correlation coefficient values, are shown
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Fig. 8. Comparison of Sentinel-1 Frozen Fraction with predicted Frozen Fraction based on ASCAT backscatter for study sites (a) Kaldoaivi, (b) Kevo, and

(c) Hohe Tauern. Solid black line represents 1:1 reference line.

in Fig. 7. For study sites Kaldoaivi and Kevo, strong neg-
ative Pearson correlations, —0.909 and —0.851, respectively,
could be found for ASCAT backscatter and Sentinel-1 derived
frozen fraction for freeze-up (autumn) periods (see Fig. 7).
The Kaldoaivi and Kevo sites show similar strong negative
correlations, —0.96 and —0.851 respectively, for the thaw

period in spring (see Fig. 7). For the Hohe Tauern site, Pearson
correlations are lower with —0.611 and —0.579, respectively,
for spring and autumn (see Fig. 7).

To validate our results the equations obtained through linear
regression (see Fig. 7) were applied to 25% of the data
set aside for validation. Results show good agreement of



BERGSTEDT et al.: DERIVING A FROZEN AREA FRACTION FROM METOP ASCAT BACKSCATTER

calculated and predicted frozen fraction for the Kaldoaivi
and Kevo study sites. Both validations data sets for the
Kaldoaivi and Kevo grid cells contain values for a range
of frozen fractions from low values below 10% frozen area,
to high frozen fractions of above 75% of the frozen area.
During spring, the Kaldoaivi and Kevo sites show root mean
square errors (RMSEs) of 11.71% and 14.3%, respectively
(see Fig. 8). During autumn the Kaldoaivi and Kevo sites
show higher RMSE values compared to spring of 12.15% and
16.97% respectively (see Fig. 8). The Hohe Tauern site shows
a smaller range of frozen fraction compared to the Kaldoaivi
and Kevo sites with RMSE values of 7.26% for spring and
9.13% for autumn (see Fig. 8).

V. CONCLUSION AND DISCUSSION

This article showed the possibility of utilizing the
Sentinel-1 time series to calculate a frozen fraction per grid
cell from ASCAT backscatter in different environments includ-
ing mountain ranges.

Nevertheless, the results showed clear differences in accu-
racy for different study sites as well as within study sites.
Validation of the threshold algorithm for surface state determi-
nation [10] applied to pixelwise Sentinel-1 time series shows
good agreement between the freeze—thaw classification and
the in situ near-surface temperature time series for all study
sites with exception of measurement points within forested
areas in the Alpine study site Hohe Tauern. Previous studies
have also reported problems concerning freeze—thaw retrieval
in forested areas via the C-band backscatter [13]. The overall
agreement of in situ measurements with the surface state as
determined by the threshold algorithm (between 84% and
94%) is slightly higher to values reported in [10] between
(80% and 92%). Although the overall agreement between near-
surface ground temperature measurements and the freeze—thaw
classification was high, outliers (black dots in Fig. 5) for all
measurement points were evident. Even though the high spatial
resolution of Sentinel-1 (gridded to 40 m in this article) brings
clear improvement compared to the coarse spatial resolution
of ASCAT, small scale local heterogeneity in freeze—thaw
progression as caused by vegetation, snow or ground properties
cannot be fully captured and lead to differences between field
and remote sensing observations.

As certain landcover types (e.g., bedrock) are not sensitive
to backscatter changes due to freeze—thaw processes, these
areas have been masked from the analysis of Sentinel-1.
Due to their nonsensitivity, these areas are assumed to have
only negligible influence on the ASCAT freeze—thaw retrieval;
however, this does not hold for other masked out areas such
as water bodies. Here, it can be assumed that the influence
of water bodies that is avoided in the Sentinel-1 analysis
through masking, influences the freeze—thaw retrieval using
ASCAT backscatter. This will also have an impact on the
found relationship between Sentinel-1 derived frozen fraction
and ASCAT backscatter and with that on the accuracy of the
frozen fraction derived from ASCAT backscatter. Our results
highlight the need for site-specific calibration of freeze—thaw
retrieval approaches as well as the importance of high qual-
ity landcover information. Additionally, differences between
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thawing and freeze-up periods are evident and require separate
calibration and analysis.

This analysis is focused on ASCAT data gridded to 12.5 km
and not on the shape or resolution of the original ASCAT
footprint. As the 12.5-km grid is widely used (e.g., [10], [17],
[35], [36]), it was chosen to make our results comparable to
existing literature. The difference between the geometry and
resolution of the grid used in our analysis and the original
ASCAT footprint is likely impacting the accuracy of our
results. This may also influence the slight differences between
ASCAT and Sentinel-1 backscatter as shown in Fig. 4. ASCAT
backscatter is also available in other grid spacings and higher
spatial resolutions (e.g., 4.45-km grid spacing in [37]) and
utilizing these kinds of data sets is likely to improve the
accuracy of the derived frozen fraction in future analysis.
The air temperature data used for parameterization in this
article are not available in high resolution similar to the near-
surface ground temperature measurements. The assumption
that air temperature data from one measurement location is
representative of a 12.5-km ASCAT grid cell might contribute
to uncertainties in deriving the thresholds used for freeze—thaw
retrieval, especially for the Hohe Tauern site.

Other factors such as temporal changes in surface rough-
ness, in the vertical distribution of the frost front and temporal
changes in moisture of vegetation and soil also influence
the behavior of backscatter and may contribute to the lower
accuracy in some locations as well as the observed RMSE of
our results.

The difference in the timing of ascending and descending
acquisitions may also influence the accuracy of our results.
During transitional periods where the surface state might vary
on a daily basis (thawing with higher temperatures at mid-
day and re-freezing at night) the difference in acquisition
timing contributes to the uncertainty of the derived surface
state information.

Currently, this analysis is limited to three sites in the
Subarctic and the Austrian Alps. Although these sites show a
wide range of surface types and were specifically instrumented
for this analysis, an extension of this research to additional
locations would be beneficial for further understanding. In par-
ticular, future studies in high Arctic environments would
contribute to strengthening this approach.

The ASCAT-derived frozen fraction has the potential to
improve monitoring of freeze—thaw transitions in tundra areas
on a circumpolar scale. The high temporal resolution of
ASCAT allows for daily monitoring of the circumpolar surface
state and the improved spatial information through the intro-
duction of the frozen area fraction aided by high resolution
Sentinel-1 data facilitates the more detailed observation of the
progression of surface state change on a landscape scale.
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