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Abstract

Remote sensing observations, products and simulations are fundamental sources of information to
monitor our planet and its climate variability. Uncovering the main modes of spatial and temporal
variability in Earth data is essential to analyze and understand the underlying physical dynamics
and processes driving the Earth System. Dimensionality reduction methods can work with spatio-
temporal datasets and decompose the information efficiently. Principal Component Analysis (PCA), also
known as Empirical Orthogonal Functions (EOF) in geophysics, has been traditionally used to analyze
climatic data. However, when nonlinear feature relations are present, PCA/EOF fails. In this work,
we propose a nonlinear PCA method to deal with spatio-temporal Earth System data. The proposed
method, called Rotated Complex Kernel PCA (ROCK-PCA for short), works in reproducing kernel
Hilbert spaces to account for nonlinear processes, operates in the complex kernel domain to account
for both space and time features, and adds an extra rotation for improved flexibility. The result is an
explicitly resolved spatio-temporal decomposition of the Earth data cube. The method is unsupervised
and computationally very efficient. We illustrate its ability to uncover spatio-temporal patterns using
synthetic experiments and real data. Results of the decomposition of three essential climate variables are
shown: satellite-based global Gross Primary Productivity (GPP) and Soil Moisture (SM), and reanalysis
Sea Surface Temperature (SST) data. The ROCK-PCA method allows identifying their annual and
seasonal oscillations, as well as their non-seasonal trends and spatial variability patterns. The main
modes of variability of GPP and SM match expected distributions of land-cover and eco-hydrological
zones, respectively; the inter-annual component of SM is shown to be highly correlated with El Niño
Southern Oscillation (ENSO) phenomenon; and the SST annual oscillation is perfectly uncoupled in
magnitude and phase from the global warming trend and ENSO anomalies, as well as from their mutual
interactions. We provide a working source code of the presented method for the interested reader in
https://github.com/DiegoBueso/ROCK-PCA.

Index Terms

Spatio-temporal data, feature extraction, principal component analysis (PCA), kernel methods, Gross
primary productivity (GPP), soil moisture (SM), Sea Surface Temperature, El Niño Southern Oscillation
(ENSO), Soil Moisture and Ocean Salinity (SMOS).

I. INTRODUCTION

In the last few decades, we have witnessed an ever growing availability of Earth system
data: along with improved remote sensing observational data, a plethora of products, climate
simulations and reanalysis data are now widely available. Yet, data does not necessarily mean
information, and thus extracting the most important components (features) of the data is an urgent
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need, as well as a matter of very active research. Earth observation data is often described in both
space and time (i.e. data cubes), and extracting their spatio-temporal components and patterns
is one of the main goals in the geoscience and climate science communities. Such patterns are
essential to analyze and understand the underlying physical dynamics and processes driving the
Earth system [1], [2].

Natural processes, however, are usually masked by complex spatio-temporal feature relations,
which makes the problem of identifying modes of variability specially challenging. The challenge
is to derive spatial and temporal components that summarize the information content of the data
cubes, while being physically meaningful and interpretable. Traditional techniques of feature
extraction, such as the removal of mean seasonality, temporal trends, parametric fitting or
harmonic decomposition are practical and commonly used [3]–[7]. However, they require prior
knowledge and assumptions, and therefore impose expected relations that could not necessarily
be found in data. This is probably the main reason why data driven decomposition methods have
been largely adopted in geosciences and climate science in the last decades [8]–[15].

Machine learning in general and dimensionality reduction in particular may help in extracting
spatial and temporal components automatically. Dimensionality reduction methods can generally
deal with data cubes and find the main features (components) efficiently. The application of such
methods may help in uncovering relevant spatial patterns and dynamics of the underlying physics
governing the Earth system. These techniques are also very useful to summarize (compress) the
data into a reduced set of informative components1. The analysis of the extracted components can
shed light in the understanding of the Earth system because the intrinsic components may reveal
correlations with known physical processes. Indeed, dimensionality reduction is widely used in
the analysis of climate dynamics and teleconnections, and it is a key first step in observational
causal discovery [13], [18].

Principal Component Analysis (PCA), also known in geophysics as Empirical Orthogonal
Functions (EOFs), is widely used to obtain compact representations of the signal, and has been
widely exploited to obtain spatio-temporal features in climatological studies [8]–[10]. Many
extensions of PCA have been presented to deal with different specificities and applications in
geophysics, including the extended EOF, the Multivariate EOF [4] or the Principal Oscillation
patterns [19] (see also a review in [20]). Interestingly, the Singular Spectrum Analysis (SSA)
introduced the possibility of extracting spatial patterns at multiple time scales [21], but at the cost
of introducing a delay parameter which makes the decomposition very sensitive to this parameter.
A number of approaches not strictly related with EOF have also been proposed, such as the
ones based on temporal domain periodicities and adaptations (e.g. [22], [23]) or time-frequency
transformations [24], [25]. In recent years, machine learning decomposition approaches have
emerged, mainly based on Gaussian Processes [26], Bayesian reconstruction [14], and on low-
rank tensor learning [27]. Most of these methods, however, assume orthogonality, periodicity,
linearity or are not computationally affordable to deal with high dimensional problems. To
deal with the spatio-temporal decomposition of Earth system data cubes, it is desirable that
the methods i) are able to extract features which are potentially correlated –since real physical
processes are usually coupled– , ii) are able to unveil the natural nonlinear relationships present
in the data, and iii) do not assume any arbitrary parametric response function [28].

In this paper, we introduce a nonlinear PCA based on kernel methods [16] that addresses
the main shortcomings found in the existing literature of spatio-temporal data decomposition.

1Here the term ‘information’ is used loosely and refers to sensible criteria to drive dimensionality reduction methods, such as
retaining most of the variance (like in PCA), correlation (like in cross-correlation analysis, CCA) or covariance (like in partial
least squares, PLS) [16], [17]
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The proposed method, called Rotated Complex Kernel PCA (ROCK-PCA for short), has the
following properties:
• Nonlinear. The method works in reproducing kernel Hilbert spaces to account for nonlinear

processes [29]. Kernel methods have excelled in many problems in remote sensing, geo-
sciences and climate sciences, mainly in classification and parameter retrieval, yet also for
feature extraction and dimensionality reduction [16], [17], [30].

• Flexible. An extra rotation is included to improve the flexibility and physical interpretation
of the decomposition. Typically, this has been addressed by means of the Varimax rota-
tion [31]. Here we propose the Promax oblique method for improved versatility [32]. This
rotation method alleviates the orthogonality constraint, and makes the principal components
physically interpretable.

• Space and time decoupling. The method operates in the complex (kernel) domain to account
for space and time features [8], [10], [33], [34]. The spatial and temporal modes are treated
via the Hilbert transform [35], thus leading to spatial and temporally explicit eigendecom-
positions easy to analyze. Information about the amplitude and phase of the spatio-temporal
features is extracted.

• Unsupervised. The criteria of maximum projection kurtosis is implemented as an automatic
means to estimate a suitable value for the three parameters of our method i.e. the kernel
hyperparameters, the specific rotation and the number of extracted components. The choice
of maximum tailedness of the probability distributions was previously explored in feature
extraction methods based on independent component analysis (ICA) [36].

• Computational efficiency. The method is computationally very efficient. It exploits the fact
that the eigendecomposition of the covariance and the Gram matrix return the same results,
and hence the computational cost can be drastically reduced from quadratic O(n2t) to linear
O(t2n) in the number of pixels (grid cells n) and timestamps t [37]. This is of special
interest in Earth sciences, where where usually t� n. The use of the Gram matrix instead
of the covariance matrix is not incidental, allowing the direct kernelization of the method
to derive a fast nonlinear spatio-temporal PCA [16].

The remainder of the paper is organized as follows. In Section II, we fix notation and review the
different PCA-based methods, as well as the main steps needed to develop our proposed method.
Section III introduces the ROCK-PCA method and its main characteristics, illustrating how the
kurtosis criterion is used to automatically find the set of the kernel parameters, specific rotation
and number of principal components with a simple simulated example. Section IV shows the
results of a real application to three Essential Climate Variables (ECV): global Gross Primary
Productivity (GPP) from MODIS, global Soil Moisture (SM) from SMOS, and Sea Surface
Temperature (SST) data from the HadISST1 data reanalysis. Conclusions and perspectives from
this work are given in Section V.

II. PRINCIPAL COMPONENT ANALYSIS METHODS FOR SPATIO-TEMPORAL DATA ANALYSIS

This section reviews the main ingredients of our method for nonlinear PCA-based analysis of
spatio-temporal data. After fixing the notation of linear PCA, we will describe the advantages of
working in a complex domain, and of using an extra rotation transformation that makes data not
necessarily orthogonal. Seeking for non-orthogonality can be useful to better meet the particular
characteristics of physical variables. Then we will introduce the nonlinear extension to PCA
using kernel methods, which can further enhance flexibility.
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A. Notation and PCA
Let us define a spatio-temporal data cube X ∈ Rt×r×c, defined in a r × c spatial grid and

n = r × c time series observations, xi ∈ Rt×1, i = 1, . . . , n. The cube can be reshaped into
matrix form as X̃ = [x1, . . . ,xn] ∈ Rt×n, where the tilde indicates the column-wise centering
operation. PCA serves our purpose of analyzing the feature relations contained in the data
and proceeds by diagonalizing the data covariance matrix, C = 1

n−1X̃
>X̃ ∈ Rn×n. However,

given the high number of (pixel) observations, n, obtaining the eigenvalues and eigenvectors
involves a high computational cost. An efficient alternative is to decompose the Gram matrix:
G = 1

t−1X̃X̃> ∈ Rt×t, which returns exactly the same solution up to a projection on the data
for the first t eigenvectors. This is known as the dual solution of PCA in machine learning or
the Q-mode in statistics [38]. Making the eigendecomposition of the Gram matrix, we obtain
the eigenvalues, λ ∈ Rt×1, which represent the explained variance by each principal component,
and the eigenvectors V ∈ Rt×t, which account for the directions retaining most of the variance
when sorted according to λi, i = 1, . . . , t. It is customary to retain a subset c of the top variance
eigenvectors, which leads to a truncated eigenvectors matrix Vc ∈ Rt×c, c ≤ t. Once the top
c components are chosen, we can use them to project the data and obtain the spatial maps of
main covariation easily by X̃c = V>c X̃ ∈ Rc×n.

B. Complex PCA
One of the shortcomings of the standard PCA approach, even in the more computational

convenient dual version, is that eigenvectors and eigenvalues do not have a clear, physically mean-
ingful interpretation in terms of spatial and temporal coordinates in the projection space [39]. A
common alternative that allows treating space and time separately is known as complex PCA [34].
The complex PCA returns a more accurate decomposition and interpretable eigenvectors for
geophysical data analysis than the plain PCA version since it allows expressing the spatial and
temporal components in terms of magnitude and phase [33].

Formally, the complex PCA applies the Hilbert transform H to a signal x(t):

xh(t) :=H(x(t)) =
1

π

∫ +∞

−∞

x(τ)

t− τ
dτ.

The Hilbert-transformed point is now expressed as xH(t) = x(t) + iH(x(t)), and hence the
centered Hilbert-transformed data matrix becomes:

X̃H = X̃ + iX̃h,

Now, one can easily demonstrate that the Gram matrix of Hilbert-transformed data reduces to

GH = X̃HX̃H

H = G̃ + iG̃h ∈ Ct×t,

where the tilde symbol represents the column-wise matrix centering, and we define the Hermitian
of XH ∈ Ct×n as XH

H ∈ Cn×t, and orthogonality holds, x(t) ⊥ xh(t), which we will use for the
sake of a convenient spatial-temporal fast eigendecomposition.

C. Rotated PCA
In the rotated PCA/EOF (RPCA/REOF) [11] an extra rotation transformation is added. Rotated

PCA is based on the Varimax rotation [31] to maximize the Varimax criterion related with the
fourth moment of probability distribution, and is implemented as a linear rotation B = RV,
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where R is the rotation matrix being B = [b1, ...,bt] and R ∈ R
t×t. An extension of the

Varimax rotation is the so-called Promax rotation [32] which introduces the transformation

b′p = bp/‖bp‖,

and is applied to each component and where the power p ∈ Z+ drives the components towards
a “sparse” solution. Therefore, unlike in PCA or factor analysis, the basis now contains many
zeros. The Promax rotation is equal to the Varimax rotation for p = 1. We define the Varimax
rotated matrix as B′p = [b′1, . . . ,b

′
t].

D. Kernelized PCA
Working with complex and rotated PCA is often beneficial but the derived decompositions can

only cope with linear feature relations. Working with nonlinear versions of PCA allows dealing
with more complex data structures, avoiding the adoption of otherwise arbitrary orthogonality
constraints [39], which is generally the case when using the rotated PCA [11]. Working with
Gram matrices instead of covariances allows us to directly derive a nonlinear version of PCA
by means of the kernel trick to derive the kernel PCA(KPCA) [29], [40].

Let us define a feature map into a Hilbert space, φ : xi 7→ φ(xi) ∈ H, which is endorsed
with a dot, scalar product called kernel function, k(xi,xj) = 〈φ(xi),φ(xj)〉 ∈ R. The (centered)
kernel matrix groups all dot products into a matrix defined as K̃ = Φ̃Φ̃

> ∈ Rt×t, where the
tilde represents the feature centering in Hilbert space2. The kernel function essentially computes
similarities between feature vectors. Similarly, a kernel feature vector contains all similarities
between a test point x∗ and all the points in the training dataset, and is defined as k∗ :=
[k(x∗,x1), . . . , k(x∗,xn)]

> ∈ Rn×1. Then, it simply follows from the application of the Hilbert
transform and the orthogonality property that the corresponding kernelized complex PCA reduces
to eigendecompose

K̃H = Φ̃HΦ̃
H

H = K̃ + iK̃h ∈ Ct×t,

and thus we can analyze the signal in nonlinear terms, and separately in space and time
components as a classic kernel PCA [40].

A bottleneck in kernel methods is the selection of the kernel function k. The most standard
functions are polynomial and radial basis function (RBF) kernels because of their generality,
ease of use and just one hyperparameter involved. In the case of working with complex algebra,
however, one has to design kernel functions to deal with magnitude and phase and account for
circularity. In our work we use the following complex kernel function introduced in [41] and
further studied in [42] defined as

kH(x,y) = exp

(
− ‖x− y∗‖2

2σ2

)
, (1)

where x,y ∈ Ct×1, and the ∗ is the conjugate operator. This kernel function allows us to deal
with data in the complex domain, that is without losing the complex information and distribution
properties, as for example the circularity.

2Centering in feature space can be done implicitly via the simple kernel matrix operation K̃← HKH, where Hij = δij− 1
n

,
δ represents the Kronecker delta δi,j = 1 if i = j and zero otherwise.
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III. ROCK-PCA: ROTATED COMPLEX KERNEL PCA
Our proposed ROCK-PCA is essentially the combination of the previous PCA-based methods.

Algorithm 1 gives the pseudocode of the algorithm. ROCK-PCA performs the eigendecomposi-
tion of the kernel matrix in (1) using data in the complex domain mapped using the Hilbert trans-
form [35], and further rotated with a Promax transform [32]. Complex-valued processes return us
more useful components, as for example, the interpretation of phase-modulation decomposition
against only the real part returned by regular PCA. Kernel PCA introduces the possibility of
searching for a nonlinear decomposition by mapping the original data into the Hilbert space. The
Promax rotation redistributes the variance onto a more interpretable subset of components while
avoiding the orthogonality constraint. Note that all parameters (number of components c, kernel
hyperparameter σ, extra Promax rotation parametrized with p) are chosen by maximizing the
kurtosis κ of the Promax-rotated components. It is important to remark that, by using specific
hyperparameters, one can retrieve standard methods in the literature, such as Varimax and the
kernel PCA, Varimax, and plain PCA, which demonstrates that ROCK-PCA generalizes them.
For example, using a rotation power p = 1 and a sufficiently large σ parameter, ROCK-PCA
reduces to the Varimax rotation. Also, using only the real part of the Hilbert transform and
avoiding the rotation, ROCK-PCA translates into kernel PCA. We provide source code of the
presented method and a working demo in https://github.com/DiegoBueso/ROCK-PCA.

A. Optimization by maximizing kurtosis
In order to select the optimal set of parameters, we maximize the kurtosis of the projections.

This is a standard criterion in the ICA literature [43]–[46], which has given good performance
in a wide range of applications: from speech separation to non-stationary phase estimation and
outlier cluster identification [46]–[48]. Adopting the kurtosis of the projections is useful to
seek for data separability, and it is a simple descriptor to account for the density shape [49].
Actually the Varimax rotation is linearly related with the kurtosis, Varimax = σ4(κ − 1). In
our case, we maximize the kurtosis κ to automatically set the ROCK-PCA parameters. In
particular, after computing the projections VH ∈ Ct×c for a set of parameters (σ, c, p) [steps
3-5], we estimate its kurtosis as κ = t

c

∑t
i=1(
∑c

j=1[VH]
4
ij)/(

∑t
j[VH]

2
ij)

2 [step 6]. The maximum
κ value determines the best combination of parameters, (σ∗, c∗, p∗) [step 7]. Intuitively, we are
seeking for parameters leading to non-Gaussian components, and as for ICA [43], this leads
to more independent components and in turn to a more compact feature representation (i.e. a
lower number of more informative components are needed to describe the signal). With this
optimization the computational complexity of the method increases linearly with the number of
parameters tried. Smarter greedy selection of parameters could show improved speed up and
will be matter of further research.

B. Spatial and temporal components
The proposed method decomposes the data across the temporal dimension and returns c

temporal components in B′p ∈ Ct×c. This allows us to project the data along time. Nevertheless,
it is customary and desirable to obtain the corresponding spatial components and the explained
variance by each component too. We would need to use the kernel function and the Promax
rotation to do so. However, note that this is not possible even if we forget about the extra Promax
rotation and work with a plain KPCA strategy. This is because when using nonlinear kernels there
is no mapping between n and d objects in RKHS (reproducing kernel in Hilbert spaces), unlike
in the linear case where there is a primal-dual equivalent solution between X̃H and its hermitic
X̃H

H . Actually, that would be only possible for symmetric data matrices, which is meaningless. A

6
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Algorithm 1 ROCK PCA.

1: Apply Hilbert transform: X̃ ∈ Rt×n → X̃H ∈ Ct×n

2: Build Kernel matrix: KH ∈ Ct×t

3: for Each set of (σ, c, p) do
4: Eigen-decomposition KH to obtain VH ∈ Ct×t

5: Promax rotation onto c components: B′p ∈ Ct×c

6: Compute kurtosis κ = κ(R[B′p])
end

7: Select optimal parameters: (σ∗, c∗, p∗) = argmaxσ,c,p[κ]
8: Extract temporal components: B′p → B′p,c∗ ∈ Ct×c∗

9: Extract spatial components: Sc∗ = B′Hp,c∗X̃H ∈ Cc∗×n

10: Compute explained variance: σ2
i = ‖[Sc∗]i‖2/‖[B′p,c∗ ]i‖2

possible workaround would be to compute (big) spatial and temporal kernel matrices, decompose
them, and then compute pre-images of the projected data, which is a very complex and unstable
results [50], [51]. We alternatively propose here to use the covariance between the computed
temporal components B′p and the spatial data X̃H, so the extracted spatial components in ROCK-
PCA are defined as Sc∗ = B′HX̃H ∈ Cc∗×n

p,c∗ , which summarize the covariation between the spatial
data and the nonlinear temporal components extracted by ROCK-PCA.

This in turn allows us to define the explained variance by each component i = 1, . . . , c. Note
that in ROCK-PCA the obtained eigenvalues do not necessarily carry information about the
explained variance as in (K)PCA because the extra rotation regroups the variance inside a subset.
Using our Gram matrix approach and the complex formulation, one can obtain the equivalent
equation to retrieve the variance as a function of estimated time series into the Hilbert space as

σ2
i =

‖[S]i‖2

‖[B′p]i‖2
, i = 1, . . . , c

where the variance is not equal to the eigenvalues from a KPCA decomposition as it does not
preserve the Hermitian properties, and we also need a normalization because the Promax rotation
breaks the orthogonal property VH

HVH = I.

C. Synthetic spatio-temporal experiments
This section illustrates and compares ROCK-PCA to other similar methods in literature. Let

us define the following toy example:

f(x, y, t) = e−|t|cos(kr) + gtcos(ky) + sin(kxy − w0t),

which represents a spatio-temporal signal with three additive time series (e−|t|, sin(w0) and gt)
and distinct spatial dynamics, and where r =

√
x2 + y2, and gt = −αgt−1 + et is an auto-

regressive (AR) model, being k = 0.5 rad/m, w0 = 4.5 rad/s and α = 2.
Figure 2 shows the evolution of the kurtosis for the three optimization parameters in ROCK-

PCA: the kernel hyperparameter σ, the Promax power p and the number of extracted components
c. Results confirm the robustness of the maximum kurtosis criterion to attain a stable solution
in an unsupervised manner. In general, c and p response curves are less sensible than σ, and
present clear local maxima. Choosing high σ values means tending towards a linear solution as
expected [16]. In this case, there is a maximum at a relatively small σ value, which suggests
that the problem has a nonlinear solution.

7
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Fig. 1: Comparison of dimensionality reduction methods (M-SSA, PCA, Varimax PCA, kernel PCA and the proposed
ROCK-PCA) in the example of section III-C. We show the estimated time series in red and the original signal that
better correlates in blue, and indicate the explained variance (in %, top), as well as theoretical variance per signal
in the composition in the right top table. Time series without blue lines represent signals with high variance but
unrelated with the original signals.

Kernel σ × 104 Power p Components c

Fig. 2: Kurtosis response curve for the three method parameters: kernel hyperparameter σ, Promax power p and
number of extracted components c.

Figure 1 shows the results of applying PCA, varimax PCA, MSSA, kernel PCA and our
proposed method ROCK-PCA. All methods are able to decompose a linear separable data set and
yield components sorted according to their signal variances. Regular PCA, however, cannot find
the pure sinusoidal temporal mode and therefore cannot decompose the data correctly. A common
alternative to PCA is the addition of a Varimax rotation. Note that the solution provided by
Varimax, even though it regroups variability, the second component accounts for 21.31% overall
variance but it is unrelated with the original signal (see table in the top right). Multivariate
Singular Spectral Analysis (MSSA) [52] efficiently identifies the three components, yet an
intensive search over the lag parameter was needed over the second component. Results indicate
that MSSA cannot reconstruct a robust set of time series with an interpretable explained variance.
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Fig. 3: Spatial covariation patterns from estimated time series for the original signals (left), MSSA method (middle)
and the proposed method (right).

Our proposed ROCK-PCA method reproduces properly the real variances, its decomposition is
not contaminated by components unrelated with the original signals (the top three components
match the intrinsic components, and account for 92.81% of the variance), and describes perfectly
the input data.

More accurate explained variance and sharper components are clearly extracted by our method,
especially when nonlinear processes are involved, such as for the sin(w0t) and exp(−|t|)
components, while no differences are observed for the simpler autoregressive process. Besides,
ROCK-PCA does not need to post-process the components by lag adjustment. Figure 3 shows
the spatial covariation patterns. The ROCK-PCA patterns represent the real part of the complex
estimation. ROCK-PCA spatial patterns better reflect the original spatial patterns unlike on MSSA
spatial patterns.

IV. EXPERIMENTAL RESULTS

The main goal of the proposed method is to extract information about relevant natural sub-
processes that, although captured or modeled in Earth system products, are hidden under the
variability of stronger modes such as the seasonal or the annual trends. The total variability
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of a signal -including minor but relevant modes– can be represented as a combination of
components or modes with different temporal scales (e.g. interannual trends, seasonal resonances
and anomalies) and spatial patterns.

In subsection A we illustrate the spatio-temporal feature extraction capability with GPP and
SM data. In subsection B we show the complex spatial skills with SST data.

A. Spatio-temporal variability recognition
We here present experiments with two essential climate variables (ECVs): global Gross Pri-

mary Production (GPP) and Surface Soil Moisture (SM). We present their respective spatial and
temporal decompositions with ROCK-PCA, and use the MODIS IGBP land cover classification
[53] and the Köppen-Geiger climate classification [54] for interpretation of results.

Both GPP and SM data sets are defined in a regular grid, and are restricted to latitudes lower
than 60◦. The extracted components include two pieces of information: a temporal feature in
the complex domain (with magnitude and phase) that accounts for the subprocesses explaining
the temporal dynamic variability, and its corresponding spatial covariation which accounts for
its spatial amplitude and phase. The spatial amplitude is useful to identify regions where the
dominant mode is substantial. Using as significance threshold the median of the spatial amplitude
with one positive standard deviation, we can mask the significant regions for each variability
mode. The used range for the parameters is the same for all experiments. Maximum promax
power p∗ is set on 10 and the maximum number of components c∗ is set on 20. Hyperparameter
σ∗ is searched in a range between 0.1 of the mean distance and 10 of maximum distance among
all examples.

1) Global GPP decomposition: Gross primary productivity (GPP) is defined as the overall
rate of fixation of carbon through the process of vegetation photosynthesis. It is a key parameter
for carbon cycle and climate change research. It is used to quantify the amount of biomass
(Carbon mass) produced within an ecosystem over a unit of time and is usually expressed in
units of gC/m2/day. Quantitative estimates of the spatial and temporal distribution of GPP at
regional and global scales are essential for understanding the ecosystems response to increased
atmospheric CO2 level, and are thus critical for sustainability and decision making. A major
contribution of CO2 variability comes from GPP, as the photosynthesis process is vulnerable to
droughts, heatwaves, floods, frost and other types of disturbances [55]–[57]. Here, we consider
the GPP FLUXCOM product, obtained by upscaling FLUXNET [58] eddy-covariance obser-
vations by machine learning regression methods [59]–[61]. The FLUXCOM GPP product has
global coverage and is provided as an eight-day composite with and spatial resolution of 5
arc-minutes (∼10 Km).

Figure 4 shows the ROCK-PCA decomposition results for GPP data from years 2001 to 2012.
A total of six components are identified, with the 99.1% explained variance being contained in
the first four. The MODIS IGBP global land cover classification is used to spatially compare the
distribution of the extracted modes among main Earth’s vegetation types. A visual examination of
Figure 4 reveals the annual oscillation (first component) is stronger at high latitudes and equatorial
zones. This responds to the high variability of the freezed latitudes, which are annually coupled
with the variability at the equator. The second temporal component shows a six-month seasonality
with a similar spatialization that represents subcycles of vegetation as monsoon oscillations. This
result illustrates that ROCK-PCA is able to extract two different types of dynamics from similar
regions, owing to the oblique rotation approach. The first and second components capture mainly
the needleleaf forest variability and, to a lesser extent, the variability of certain croplands with
related climatic conditions i.e. crops which phenology is characterized by a short period of Gross
Primary Production stopped by the boreal/austral winter [62]. The third component covers major
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Fig. 4: Global GPP decomposition results. Left: Spatial covariation for each component, which shows the spatial
distribution of the amplitude signal. Middle: Composition of each extracted components in terms of vegetation land
cover classification. Right: component as representative time series of each dynamic process. Vegetation regions
differentiation is shown as well, and their common dynamics as for example croplands and needle leaf forest with
oscillation periods of 12, 6 and 4 months.

croplands, defined as a combination of a six-, four- and three-month periodic oscillation, resulting
from the distinct growing season length of global agro-ecosystems, characterized by the crop
type(s), planting and harvesting times, managerial activities and crop rotation techniques [63].
The tropical vegetation is captured by the fourth temporal component. It represents the well-
known GPP variance of tropical broadleaf forests, where the peak indicates their depletion during
the spring season [64]. Note that inside each GPP mode, we capture all plant diversity, assuming
equatorial and boreal homogeneous representation in a single dynamical mode, representing a
multi-composed time series. A relevant result is that the majority of the variance (99.1%) is
represented in the top four components which cover global vegetation seasonal dynamics. Short-
term and inter-annual variability is represented by the fifth and sixth components, which account
for approximately the 0.9% of the explained variance of the global GPP (not shown).

2) Global SM decomposition: Figure 5 shows the decomposition of the global Soil Moisture
(SM) product from the SMOS Barcelona Expert Center (BEC). Since its launch in 2010, SMOS
provides global maps of the Earth’s surface soil moisture (top 5 cm) every 3-days with a spatial
resolution of ∼50 km and a target accuracy of 0.04 m3·m−3. For this work, we selected the
first seven years of SMOS observations, after its commissioning phase (from May 2010 to May
2017). Soil Moisture is an ECV closely related with other relevant land climate variables as
surface temperature or vegetation indexes3. Knowledge of the spatio-temporal distribution of
global SM and its changes is crucial for hydrological, ecological and climate models. It links
the water and energy cycles over land and is an important driver of ecosystem variability [65],
[66].

The application of ROCK-PCA to the SM product yielded an optimal decomposition with
seven components. The explained variance of the top four components accounts for 98.5% of the

3https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-data-access-matrix
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Fig. 5: Global SM decomposition results. Left: Spatial covariation for each component, which shows the spatial
distribution of the amplitude signal masked by significant amplitude. Middle: Composition of each extracted
component in terms of KG global climate regions classification. Right: Temporal components of each dynamic
process. Different time scales is show as annual, seasonal and interannual trends as well, classified in the principal
climate regions.

overall variance, in line with a previous study focused in the spectrum of SM and its compression
[67]. As we show in Fig. 5, the first component (70.5%) returns an annual oscillation with a
12-month period and a global spatial distribution, it represent the dominant mode of annual SM
variability. The second (13.5%) and fourth components (4.3%) are cast as ‘resonances’ of the
annual SM cycle with six- and four-month periods, respectively, which correspond to subcycles
of global SM as the Inter-tropical Convergence Zone (ITCZ) oscillation (second component) or
the seasonal transition (fourth component). First, second and fourth components contain tropical
monsoon oscillations, representing periodic sub-annual processes.

Interestingly, the third component (10.2%) shows a non-seasonal oscillation with a large
period of about 4.5 years which can be interpreted as a long-term change in the global SM
distribution. Comparing the spatial distribution of the amplitudes with the Köppel-Geiger climate
classification [54], we can see that the annual and the half-year oscillation (first and second
component) are distributed mostly in tropical latitudes and high latitudes, representing the
oscillation of ice-covered lands. The fourth component partially contains these regions and also
includes the transition between arid and wet regions. The inter-annual component is widely
related with warmer (and wetter) regions representing approximately the 10.2% of total global
variability, and highlight the role of these regions as hot-spots for climate change research.
These dry/wet regions reproduce the well-known ENSO anomalies (2 − 8 years [68]) induced
precipitation patterns [15], [69], [70], and teleconnections [5]. This remarks the close relation of

12



c©IEEE. ACCEPTED FOR PUBLICATION IN IEEE TGRS. DOI: 10.1109/TGRS.2020.2969813

satellite-based global soil moisture variability with ENSO, in line with previous research [10],
[71]–[73].

B. Nonlinear phase dynamics for SST and ENSO analysis
The proposed method works in the complex plane so magnitude as well as phase components

can be extracted. We illustrate this capability with the decomposition of global Sea Surface
Temperatures (SST) from the MetOffice renalysis HadISST1 [74]. We used a global SST 1◦

gridded and monthly sampled cube between years 1871-2014. We focus on latitudes lower than
45◦ and center the analysis in tropical and middle latitudes dynamics. This is customary to avoid
interference of other variables, such as the ice cover variability in high latitudes that otherwise
masks the SST dynamics of middle latitudes.

Fig. 6: Global SST decomposition results. Spatial distribution of the first (a) and second (b) components for both
the spatial covariation amplitude normalized to one (top row), the spatial covariation phase (middle row), and the
temporal component (bottom row). ENSO regions are also shown.

Figure 6 shows the obtained spatio-temporal decomposition in magnitude and phase. A total of
five features accounted for 99.8% of the variance. The first component shows clearly the annual
north-south oscillation (88.01%), while the second component is more related to the interdecadal
variability (3.61%). The Three following components are related to inter-annual variability as
different ENSO anomalies, they are modes third to fifth representing 8.18% variability (not
shown). We focus here on the magnitude-phase characteristics of the first two components
and their relation with ENSO, leaving the study of the inter-annual components for further
studies. It can be seen that the spatial amplitude and phase of the selected components uncover
extra dynamical patterns, such as for example the annual oscillation (first component) which
is represented by a two opposed-phase regions conforming a north-south oscillation boundary,
representing faithfully the ITCZ line and its annual displacement (see Fig. 6.a). The second
component represents the inter-decadal temperature trend, where we can observe the recent rise
of global SST with an approximate homogeneous spatial distribution that can be interpreted as
the sea global warming (SGW) [75]. Interestingly, the phase map shows that the ENSO region
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is disturbed by a positive phase in opposition to the rest of the oceans, which suggests a positive
phase coupling between ENSO and SGW. This is further analyzed in Fig. 7, representing a time
dependence and, in extension, a variance dependence of ENSO events with SGW [76]. This
shows well-known patterns where ENSO events variability are related with the ocean temperature
raise but with a positive time delay [12], [77], [78]. Note that in negative phases (respectively,
cooling regions), there is generally a low amplitude response.

Fig. 7: Comparison of inter-decadal trends of SST: mean SST Had1SST product (black line with +/- standard
deviation in shaded gray), average of the second mode of variability obtained with ROCK-PCA (PC2, red line),
average of PC2 extracted from ENSO index regions in Fig.6 (green line). The SST Had1SST product is highly
correlated with the total average of the second variability mode. The ENSO-region SST presents a different variability
trend and a lagged response with respect to the other two.

V. CONCLUSIONS

In this paper we proposed a nonlinear dimensionality reduction method for spatial-temporal
analysis of Earth observation data. The proposed method is based on kernel methods to deal
with nonlinear processes and feature relations, it operates in the complex kernel domain to
account for both space and time features, and adds an extra rotation that makes the components
non-orthogonal to allow recovering correlated features. The method is also very efficient com-
putationally since it can work in the dual space, which is convenient in the usual case where the
amount of available pixels is larger than the number of temporal observations. If we encounter
the contrary case, the formulation could be easily adapted to work in the primal for efficiency.
The method contains three parameters to tune: kernel parameter, shape of the rotation transform,
and number of components to extract. To make the method unsupervised and less sensible to
their selection, we proposed the optimization of the fourth moment (kurtosis) of the distribution
of projections, following similar motivations in ICA approaches to signal decomposition.

We showed performance in synthetic experiments, and three real data cubes involving land
and ocean applications: global GPP, SM, and SST. The method allows identifying in a general
way, annual and seasonal oscillations, as well as their non-seasonal trends and spatial variability
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patterns. The main modes of variation of GPP and SM are shown to match expected distributions
of land-cover and eco-hydrological zones, respectively; GPP decomposition represents faithfully
the principal vegetation land cover dynamics in a compressed way; the spatialization of the inter-
annual component of SM reproduce accurately the global ENSO teleconnection patterns and
possible novel dry/wet patterns; the SST annual oscillation is perfectly uncoupled in magnitude
and phase from the global warming trend and ENSO anomalies, showing his mutual interaction
as ENSO and global warming trend coupled system.

One of the current limitations is that the input data set has to be sampled on a regular grid
in space and time, so it cannot properly performed with gaps in the data. Some alternatives
exist in the literature to resolve this, such as gap-filling the data, missing-data PCA methods, or
more recent approaches based on graphs. Given our kernel-based approach, replacing the kernel
matrix with a graph Laplacian would allow to resolve this problem in an elegant way. Recent
literature has actually combined Laplacian eigenmaps with Takens embedding for spatio-temporal
data analysis [79], which we will explore in the future too. Interestingly, note that ROCK-PCA
extracts meaningful features even without a time embedding.

Perhaps the most important limitation is about the interpretability of the results, as it is
definitively challenging to identify first the number of components which describe the data well
and then to assign them to particular physical processes and events. While we propose here
the use of kurtosis as a sensible criterion for the first, the physical interpretation (and eventual
teleconnections) of the extracted components is still an unsolved problem and matter of current
and active research.

It is acknowledged that the method is general enough to work with arbitrary spatio-temporal
data. The method is applicable to all kind of variables, and generalizable to work with multiple
variables, not just a single one [80]. We foresee a wide range of applications to exploit the
gridded information in Earth cube initiatives, such as the Earth System Data Cube (ESDC)4.
Spatio-temporal data structures are not only encountered in Earth sciences. We anticipate appli-
cations of the method in many other fields: from epidemics, neurosciences, social sciences to
economics.
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N. Viovy, Y.-P. Wang, U. Weber, S. Zaehle, and N. Zeng, “Compensatory water effects link yearly global land CO2 sink
changes to temperature,” Nature, vol. 541, no. 7638, pp. 516–520, Jan 2017.

[58] FLUXCOM Global Energy and Carbon Fluxes. (2018) Max planck institute for biogeochemistry, Jena, Germany.
[Online]. Available: http://www.fluxcom.org/

[59] G. Tramontana, M. Jung, G. Camps-Valls, K. Ichii, B. Raduly, M. Reichstein, C. R. Schwalm, M. A. Arain, A. Cescatti,
G. Kiely, L. Merbold, P. Serrano-Ortiz, S. Sickert, S. Wolf, and D. Papale, “Predicting carbon dioxide and energy fluxes
across global fluxnet sites with regression algorithms,” Biogeosciences Discussions, vol. 2016, pp. 1–33, 2016.

[60] G. Tramontana, K. Ichii, G. Camps-Valls, E. Tomelleri, and D. Papale, “Uncertainty analysis of gross primary production
upscaling using random forests, remote sensing and eddy covariance data,” Remote Sensing of Environment, vol. 168, pp.
360 – 373, 2015.

[61] G. Camps-Valls, M. Jung, K. Ichii, D. Papale, G. Tramontana, P. Bodesheim, C. Schwalm, J. Zscheischler, M. Mahecha,
and M. Reichstein, “Ranking drivers of global carbon and energy fluxes over land,” Geoscience and Remote Sensing
Symposium (IGARSS), 2015 IEEE International, 2015.

[62] B. Byrne, D. Wunch, D. B. A. Jones, K. Strong, F. Deng, I. Baker, P. Khler, C. Frankenberg, J. Joiner, V. K. Arora,
B. Badawy, A. B. Harper, T. Warneke, C. Petri, R. Kivi, and C. M. Roehl, “Evaluating GPP and respiration estimates
over northern midlatitude ecosystems using solar-induced fluorescence and atmospheric CO2 measurements,” Journal of
Geophysical Research: Biogeosciences, vol. 123, no. 9, pp. 2976–2997, 2018.

[63] A. Noormets and J. Chen and L. Gu and A. Desai, Phenology of Ecosystem Processes. Springer, 2009.
[64] L. Xu and S. S. Saatchi and Y. Yang and R. B. Myneni and C. Frankenberg and D. Chowdhury and J. Bi, “Satellite

observation of tropical forest seasonality: spatial patterns of carbon exchange in amazonia,” Environmental Research
Letters, vol. 10, no. 8, p. 084005, 2015.

17

http://www.landcover.org/
http://koeppen-geiger.vu-wien.ac.at/present.htm
http://www.fluxcom.org/


c©IEEE. ACCEPTED FOR PUBLICATION IN IEEE TGRS. DOI: 10.1109/TGRS.2020.2969813

[65] S. I. Seneviratne, T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, “Investigating
soil moistureclimate interactions in a changing climate: A review,” Earth-Science Reviews, vol. 99, no. 3, pp. 125 – 161,
2010.

[66] R. D. Koster, S. P. P. Mahanama, T. J. Yamada, G. Balsamo, A. A. Berg, M. Boisserie, P. A. Dirmeyer, F. J. Doblas-Reyes,
G. Drewitt, C. T. Gordon, Z. Guo, J.-H. Jeong, W.-S. Lee, Z. Li, L. Luo, S. Malyshev, W. J. Merryfield, S. I. Seneviratne,
T. Stanelle, B. J. J. M. van den Hurk, F. Vitart, and E. F. Wood, “The second phase of the global landatmosphere coupling
experiment: Soil moisture contributions to subseasonal forecast skill,” Journal of Hydrometeorology, vol. 12, no. 5, pp.
805–822, 2011.

[67] G. G. Katul, A. Porporato, E. Daly, A. C. Oishi, H.-S. Kim, P. C. Stoy, J.-Y. Juang, and M. B. Siqueira, “On the spectrum
of soil moisture from hourly to interannual scales,” Water Resources Research, vol. 43, no. 5, 2007.

[68] L. Yuan, Z. Yu, Z. Xie, Z. Song, and G. L, “ENSO signals and their spatial-temporal variation characteristics recorded
by the sea-level changes in the northwest pacific margin during 1965–2005,” Science in China Series D: Earth Sciences,
vol. 52, no. 6, 2009.

[69] B. Lyon and A. G. Barnston, “ENSO and the spatial extent of interannual precipitation extremes in tropical land areas,”
Journal of Climate, vol. 18, no. 23, pp. 5095–5109, 2005.

[70] S.-W. Yeh, W. Cai, S.-K. Min, M. J. McPhaden, D. Dommenget, B. Dewitte, M. Collins, K. Ashok, S.-I. An, B.-Y. Yim,
and J.-S. Kug, “ENSO atmospheric teleconnections and their response to greenhouse gas forcing,” Reviews of Geophysics,
vol. 56, no. 1, pp. 185–206, 2018.

[71] D. G. Miralles, M. J. V. D. Berg, J. H. Gash, R. M. Parinussa, R. A. M. D. Jeu, H. E. Beck, T. R. H. Holmes, C. Jiménez,
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