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Abstract—This work introduces the Rayleigh autoregressive
moving average (RARMA) model, which is useful to interpret
multiple different sets of remotely sensed data, from wind
measurements to multitemporal synthetic aperture radar (SAR)
sequences. The RARMA model is indeed suitable for continuous,
asymmetric, and nonnegative signals observed over time. It
describes the mean of Rayleigh-distributed discrete-time signals
by a dynamic structure including autoregressive and moving
average terms, a set of regressors, and a link function. After
presenting the conditional likelihood inference for the model
parameters and the detection theory, in this work a Monte
Carlo simulation is performed to evaluate the finite signal length
performance of the conditional likelihood inferences. Finally,
the new model is applied first to sequences of wind speed
measurements, and then to a multitemporal SAR image stack
for land-use classification purposes. The results in these two test
cases illustrate the usefulness of this novel dynamic model for
remote sensing data interpretation.

Index Terms—land-use classification, machine learning,
Rayleigh distribution, SAR, time series, wind speed.

I. INTRODUCTION

Gaussian distributions are widely employed in remote sens-
ing data analysis [1]–[3] and classical statistical signal process-
ing [4]. Accordingly, in case of image stacks or multitemporal
data sets, autoregressive integrated moving average (ARIMA)
models [5] are currently used [6]–[8]. However, although the
Gaussian assumption provides a reasonable model for signals
of interest in many situations [4], [9], it has been recognized
that Gaussianity is too restrictive for many applications [10],
[11].

A possible solution is to transform the data prior to the mod-
eling step. However, this solution presents some drawbacks,
such as the fact that the output values will be interpreted in
terms of the mean of the transformed signal and not of the
mean of the signal of interest [12]. For this reason, the interest
in non-Gaussian time series models has increased [12]–[16].
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In many cases of remote sensing data sets the signal of
interest is continuous, asymmetric, and nonnegative, and the
Rayleigh distribution is a better fit for signal and image mod-
eling [17] than the Gaussian distribution. Rayleigh-distributed
signals describe magnetic resonance imaging [18], wind speed
[19], radar scattering [20] and speckle distribution [21], and
they have been specifically used for synthetic aperture radar
(SAR) data [17], [22], [23]. In fact, the Rayleigh distribution is
capable to describe all the modalities that use coherent imaging
in the amplitude mode, such as SAR, laser, ultrasound, sonar,
and others [24].

Despite its importance for these and other several applica-
tions, in the current state of the art technical literature there
is no mention of a dynamic model capable of modeling a
sequence of Rayleigh-distributed discrete-time signals. For this
reason, this research proposes a novel Rayleigh-based dynam-
ical model, called Rayleigh autoregressive moving average
(RARMA) model, which fills this gap, and allows modeling
Rayleigh-distributed time series. In this context, we explore
two applications of RARMA model in remotely sensed data
sets, namely: wind speed estimation and multitemporal SAR
data interpretation. They have been selected due to their
relevance.

As for SAR multitemporal data, data sequence interpretation
has increased in recent technical literature [38]–[41]. SAR
sequences and image stacks have been used in different
Earth observation (EO) applications, such as change detection
and land-use classification [8], [42]–[44]. In a SAR image
observed over time, each pixel can be seen as an univariate
time series [8]. As the Rayleigh distribution is suitable for
modeling the amplitude values of SAR images, the univariate
time series of each pixel can be modeled as a Rayleigh-
distributed discrete-time signal. This work provides evidences
that, by using the proposed RARMA model and its associated
inference and diagnostic tools, it is possible to extract relevant
features from SAR multitemporal data. These features can be
then used as input to machine learning classifiers such as
support vector machines [45], k-nearest neighbor [46], and
random forest [47], [48]. Developing methods for extracting
information from multitemporal remote sensing data to be used
together with machine learning classifiers is a hot topic in EO
science [42], [49], [50].

Accordingly, the contribution of this work is two-fold. First,
the Rayleigh regression model in [17] is extended, introducing
the novel RARMA model. Like other non-Gaussian dynamic
models [12], [14], [16], the RARMA model describes the
mean of Rayleigh-distributed discrete-time signals by a dy-
namic structure including autoregressive and moving average
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terms, a set of regressors, and a link function. The second
contribution is the use of this new model to improve the
interpretation of two sets of remotely sensed data, enabling
(i) the possibility to provide forecasts, i.e. to generate future
values for remotely sensed signals, and (ii) the capability
to understand the stochastic behavior of these signals and
extract interesting features. To prove these statements, the
proposed RARMA model is used in this work to model
and forecast wind speed time series. Moreover, it is used to
extract multitemporal features from a sequence of SAR images
recorded by the European Space Agency (ESA) Sentinel-1
satellite over Beijing, P.R. China. These features are exploited
to classify land-use, and specifically urban area extent, in the
imaged scene by means of different machine learning methods
[49], [50].

The paper is structured as follows. First, in Sections II–
V the theoretical concepts of the new statistical model is
discussed. Specifically, in Section II, the RARMA model is
introduced. Then, Section III presents closed-form expressions
for the score vector, large data record results, and other
details about the conditional likelihood inference. Section IV
discusses some diagnostic measures as well as the forecasting
method. In Section V, we present a Monte Carlo simulation
study, in order to evaluate the finite signal length inference
performance. Finally, Section VI explores and discusses the
application of the proposed methods to remotely sensed data.
The conclusions of this work can be eventually found in
Section VII.

II. THE PROPOSED MODEL

Let’s consider a discrete-time signal {y[t]}t∈Z, where each
y[t] assumes values in R+ and F [t − 1] is the previous
information set of observations up to time t. Assuming that,
conditionally to F [t − 1], each y[t] is distributed according
to a Rayleigh distribution with conditional mean µ[t], the
conditional probability density function of y[t], with the mean-
based parametrization used in [17], is given by

f(y[t]|F [t− 1]) =
πy[t]

2µ[t]2
exp

(
−πy[t]2

4µ[t]2

)
, (1)

where y[t] > 0 and µ[t] > 0. The cumulative distribution
function and quantile function are, respectively,

F (y[t]|F [t− 1]) = 1− exp

(
−πy[t]2

4µ[t]2

)
and

F−1(u|F [t− 1]) = 2µ

√
− log(1− u)

π
.

The conditional mean and variance of y[t] are given by

E(y[t]|F [t− 1]) = µ[t] (2)

and

Var(y[t]|F [t− 1]) = µ[t]2
(

4

π
− 1

)
.

The Rayleigh regression model proposed in [17] is given
by a linear predictor η[t] related to the mean µ[t] through a

strictly monotonic and twice differentiable link function g(·),
where g : R+ → R, by the following regression structure:

η[t] = g(µ[t]) = x>[t]β,

where β = (β1, . . . , βl)
> is a set of unknown parameters,

and x[t] = (x1[t], . . . , xl[t])
> is a vector of l deterministic

independent variables (covariates).
As done in [12], [14] for other classes of models, we extend

the Rayleigh regression considering an additional dynamical
component, τ [t], that allows the inclusion of autoregressive
(AR) and moving average (MA) terms in the linear predictor.
Thus, the structure of the Rayleigh autoregressive moving
average model is given by

g(µ[t]) = η[t] = x>[t]β + τ [t],

where τ [t] =
p∑
i=1

φiA(y[t − j],x[t − i],β) +
q∑
j=1

θjM(y[t −

j], µ[t− j]),
with AR and MA terms represented by functions A

and M, respectively. The AR coefficients are defined as φ =
(φ1, . . . , φp)

>, and the MA coefficients as θ = (θ1, . . . , θq)
>,

where p and q are the orders of the model. There are different
options for A and M. For the AR term, A, we consider the
structure as in [15] and for the MA term, M, as in [16]. This
way, a more parsimonious structure for RARMA(p, q) model
is given by

g(µ[t]) = η[t] = ζ + x>[t]β +

p∑
i=1

φig(y[t− i]) (3)

+

q∑
j=1

θjr[t− j],

where ζ ∈ < is the intercept, and r[t] = g (y[t]) − g (µ[t])
is the MA term on the predictor scale. Additionally, the
conditional mean of y[t] is a function of the past observed
signals y[t − i], with i = 1, . . . , p, covariates x[t], and
moving average error terms. Note that the link function g(·)
connects the linear predictor η[t] to the mean µ[t] of data
y[t]. As µ[t] > 0, a common choice for the link function
is the log function, η[t] = log([µ[t]) [14], [17]. As usual
in the context of ARMA modeling [51], we assume that the
AR and MA characteristic polynomials do not have common
roots and the AR characteristic polynomial does not have unit
roots. Invertibility and causality conditions for the ARMA
component of the proposed model are not required.

The use of the RARMA model for modeling asymmetric
and nonnegative signals avoids the need to transform the
signal. Moreover, when the signal is Rayleigh distributed, e.g.,
like the amplitude values of SAR image pixels, the usual
Gaussian-based inference is not appropriate. The RARMA
model naturally accommodates asymmetries and the autocor-
relation of the signal.

III. CONDITIONAL LIKELIHOOD INFERENCE

The proposed RARMA(p, q) model is given by specifica-
tions in (1) and (3). Given an observed discrete-time signal
of length T , y1, . . . , yT , the problem is to estimate the
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(l + p + q + 1)-dimensional vector of unknown parameters,
γ = (ζ,β>,φ>,θ>)>. To this aim, as in [12], [16], [52]
for other dynamical models, we shall consider the conditional
maximum likelihood estimation.

The logarithm of the conditional likelihood function for the
vector parameter γ, conditional on F [t − 1] and null for the
first m = max(p, q) values of t, is

`(γ) =

T∑
t=m+1

log f(y[t] | F [t− 1]) =

T∑
t=m+1

`[t](µ[t]), (4)

where

`[t](µ[t]) = log
(π

2

)
+ log (y[t])− log

(
2µ[t]2

)
−
(
πy[t]2

4µ[t]2

)
.

The conditional maximum likelihood estimators (CMLE) are
obtained upon maximizing the conditional log-likelihood func-
tion. Hence, the CMLE of γ can be written as:

γ̂ = arg max
Θ

`(γ), (5)

where Θ is the parametric space. To this aim, we need to
define the score vector, as presented in the next section.

A. Score Vector and Numerical Optimization

By differentiating the conditional log-likelihood function
in (4), with respect to each j-th element of the parameter
vector γ, for j = 1, . . . , (l+p+q+1), the following equations
are obtained:

∂`(γ)

∂γj
=

T∑
t=m+1

d`[t](µ[t])

dµ[t]

dµ[t]

dη[t]

∂η[t]

∂γj
.

Note that
d`[t](µ[t])

dµ[t]
=
πy[t]2

2µ[t]3
− 2

µ[t]
,

and
dµ[t]

dη[t]
=

1

g′(µ[t])
,

where g′(·) is the first derivative of the link function g(·). In
particular, for log link we have g′(µ[t]) = µ[t]. Thus, we can
write

∂`(γ)

∂γj
=

T∑
t=m+1

(
πy[t]2

2µ[t]3
− 2

µ[t]

)
1

g′ (µ[t])

∂η[t]

∂γj
.

The derivatives of η with respect to ζ, and each element of β,
φ, and θ are given, respectively, by

∂η[t]

∂ζ
= 1−

q∑
s=1

θs
∂η[t− s]

∂ζ
,

∂η[t]

∂βk
= x>[t]−

q∑
s=1

θs
∂η[t− s]
∂βk

,

∂η[t]

∂φi
= y[t− i]−

q∑
s=1

θs
∂η[t− s]
∂φi

,

∂η[t]

∂θj
= r[t− j]−

q∑
s=1

θs
∂η[t− s]
∂θj

,

with k = 1, . . . , l, i = 1, . . . , p, and j = 1, . . . , q.
Therefore, we can write the score vector in matrix form as

U[γ] =
(
U [ζ],U[β]>,U[φ]>,U[θ]>

)>
,

where

U [ζ] = a>Tv, U[β] = M>Tv,

U[φ] = P>Tv, and U[θ] = R>Tv,

with v =
({

πy[m+1]2

2µ[m+1]3 −
2

µ[m+1]

}
, . . . ,

{
πy[T ]2

2µ[T ]3 −
2

µ[T ]

})>
,

T = diag
{

1/g′ (µ[m+ 1]) , . . . , 1/g′ (µ[T ])

}
, and a =(

∂η[m+1]
∂ζ , . . . , ∂η[T ]

∂ζ

)>
. The (i, j)-th elements of matrices

M, P, and R with dimensions (T − m) × l, (T − m) × p,
and (T −m)× q, respectively, can be defined as

M[i, j] =
∂η[i+m]

∂βj
, P[i, j] =

∂η[i+m]

∂φj
,

R[i, j] =
∂η[i+m]

∂θj
.

The CMLE of the RARMA(p, q) model parameters in (5)
are thus obtained by solving the nonlinear system U[γ] = 0,
where 0 is a null vector with dimension l + p + q + 1.
Since there is no closed-form solution, numerical methods are
necessary. In the present work, the Broyden-Flether-Goldfarb-
Shanno (BFGS) algorithm [53] with analytic first derivatives
is considered. However, since the iterative BFGS algorithm
requires initial values for the constant (ζ), the autoregres-
sive (φ) parameters, and the regressors coefficients (β), they
are selected by an ordinary least squares estimate via a linear
regression, where Y = (g(y[m + 1]), . . . , g(y[T ]))> are the
responses and the covariate matrix is given by:

X=


1x1[m+ 1] · · · xl[m+ 1] g(y[m]) · · · g(y[m+ 1− p])
1x1[m+ 2] · · · xl[m+ 2]g(y[m+ 1]) · · · g(y[m+ 2− p])
...

. . .
...

...
...

. . .
...

1 x1[T ] · · · xl[T ] g(y[T − 1]) · · · g(y[T − p])

.
Instead, as in [16], [52], the initial values for the moving
average (θ) parameters are set to zero.

B. Large Data Record Inference

Under usual mathematical regularity conditions [9], [54],
the maximum likelihood-based estimators are consistent and
satisfy the following conditions:

γ̂
d−→ N

(
γ,K−1(γ)

)
, (6)

for T → ∞, where d−→ means convergence in distribution,
N
(
γ,K−1(γ)

)
denotes a multivariate Gaussian distribution

with mean vector γ and covariance matrix K−1(γ), and
K(γ) is the Fisher information matrix. In order to obtain the
Fisher information matrix we need to compute the expected
values of all second order derivatives of the conditional log-
likelihood function. These analytical results are presented in
the Appendix.

Additionally, the CMLE asymptotic distribution can be used
to construct confidence intervals for the j-th component of γ,
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γj , j = 1, . . . , l + p + q + 1, with confidence approximately
100(1− α)% as in [54]:[

γ̂j − z1−α/2ep(γ̂j); γ̂j + z1−α/2ep(γ̂j)
]
,

where ep(γ̂j) =
√
K−1
jj (γ̂) is the estimated standard error of

γ̂j , K−1
jj (γ̂) is the j-th element of the diagonal of K−1(γ̂), α

is the significance level, and z% is the % quantile of the standard
normal distribution.

Finally, to test hypotheses over the RARMA model param-
eters, the likelihood-based detection theory [54], [55] can be
considered. Let γ0

j be a given hypothesized value for the true
parameter γj . To test{

H0 : γj = γ0
j ,

H1 : γj 6= γ0
j ,

we can apply the Z statistic, given by [54]

Z =
γ̂j − γ0

j

ep(γ̂j)
.

Based on (6), and under H0, the limiting distribution of Z
statistic is standard normal. Therefore, the test is performed
by comparing the calculated Z statistic with the usual quantiles
of the standard normal distribution for the desired probability
of false alarm α. Other commonly applied statistics to test
more general restrictions over the model parameters are the
Wald (W ), likelihood ratio (LR), and Rao’s score statistics (S)
[55], [56]. The statistics W , LR, and S are all asymptotically
chi-squared distributed under the null hypothesis.

IV. DIAGNOSTIC AND FORECASTING

Typically, time series analysis aims at studying and describ-
ing the inherent dynamic structure of an interested signal.
Diagnostic measures are useful to evaluate the accuracy of
the fitted model to describe the interested signal and obtain
accurate out-of-signal forecasting [57]. To this aim, in this
work residuals and information criteria are used.

The behavior of residuals is useful to evaluate the accuracy
of the fitted model [15]. Different types of residuals are
considered in literature for several classes of models. The
quantile residual [58] is given by

e[t] = Φ−1 (F (y[t]; µ̂[t])) , (7)

where Φ−1 denotes the standard normal quantile function and
µ̂[t] is the estimated value of µ[t] using the CMLE of γ, γ̂ in
the dynamic structure (3).

In a good model adjustment, the residuals should display
white noise behavior, i.e., they should follow a zero mean and
constant variance uncorrelated process [15]. To verify such
conditions, the standard Ljung-Box [59] test and the residual
correlograms can be used.

Information criteria are important tools for automatic
model comparison/selection [60]. In order to help in the
selection of the most suitable RARMA model, some stan-
dard information criteria, such as Akaike’s (AIC) [61] and
Schwartz’s (SIC) [62], can be obtained from the maximized

conditional log-likelihood function. Among a set of compet-
itive models with different orders, the best model is the one
minimizing the considered information criteria.

The other important aspect of dynamic models is their
ability to predict variables. This is specifically significant
for geophysical variables, since it is mandatory to develop
accurate approaches that can represent and propagate predic-
tion uncertainties [50]. Long-term forecasting, for instance
of climate variables, are crucial to model future scenarios
and subsequent adaptation policies. Forecasts in the proposed
RARMA(p, q) model can be produced using the theory of
traditional ARIMA models [5]. Let H denote the forecast
horizon: accordingly, the mean response estimate at T + h,
with h = 1, . . . ,H , can be obtained as

µ̂[T+h] = g−1

(
ζ̂ + x>[T + h]β̂ +

p∑
i=1

φ̂i{g(y[T + h− i])}

+

q∑
j=1

θ̂j{r[T + h− j]}

 ,

where

{g(y[T + h− i])} =

{
g(µ̂[T + h− i]), if i < h,
g(y[T + h− i]), if i ≥ h,

{r[T + h− j]} =

{
0, if j < h,

r̂[T + h− j], if j ≥ h,

and r̂[t] = g(y[t])− g(µ̂[t]).

V. MONTE CARLO EXPERIMENTS

This section presents a Monte Carlo simulation performed
to assess the finite signal length performance of the conditional
likelihood inference applied to the RARMA model parameters.
All the implementations were carried out using the R language
[63]. The theory validation based on synthetic signals is
important for applications in actual remote sensed signals.

The synthetic signal y[t] was generated from a Rayleigh
distribution by (1) with the dynamical structure of a
RARMA(p, q) model in (3). For simulations, we considered
two scenarios in a similar way as in [16], [64]. The parameter
values in each scenario guarantee that the AR and MA
characteristic polynomials do not have common roots and the
AR characteristic polynomial does not have unit roots. First,
the RARMA(1, 1) with one covariate was simulated with the
following parameter values: ζ = 0.50, φ1 = 0.45, θ1 = −0.30,
and β1 = 0.60. The covariate was generated from the uniform
distribution (0, 1) and considered constant for all Monte Carlo
replicas. Second, the RARMA(2, 2) with the following param-
eter values: ζ = 0.40, φ1 = 0.40, φ2 = −0.20, θ1 = 0.35,
θ2 = 0.25, and without covariates was considered. The number
of Monte Carlo replicas was set to 5, 000 and the signal length
was set to T ∈ {100, 300, 500, 1000, 3000, 5000}.

In order to evaluate the point estimators, the mean, percent-
age relative bias (RB%), and mean square error (MSE) of the
CMLE were computed. The RB is defined as the ratio between
the bias and the true parameter value times 100. To evaluate the
interval estimator, the coverage rates (CR) of the confidence
interval with a significance level of 5% was computed, too.
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TABLE I
MONTE CARLO SIMULATION RESULTS FOR POINT AND INTERVAL

ESTIMATION FOR THE RARMA(1, 1) MODEL WITH ONE COVARIATE

Parameter ζ φ1 θ1 β1
Value 0.500 0.450 −0.300 0.600

T = 100
Mean 0.567 0.391 −0.256 0.605
RB (%) 13.425 −13.169 −14.690 0.847
MSE 0.120 0.065 0.081 0.035
CR 0.863 0.842 0.831 0.946

T = 300
Mean 0.526 0.429 −0.282 0.602
RB (%) 5.197 −4.695 −6.008 0.299
MSE 0.031 0.015 0.019 0.010
CR 0.928 0.919 0.915 0.952

T = 500
Mean 0.515 0.438 −0.290 0.602
RB (%) 2.970 −2.747 −3.463 0.296
MSE 0.017 0.009 0.011 0.006
CR 0.932 0.925 0.923 0.941

T = 1, 000
Mean 0.508 0.443 −0.294 0.602
RB (%) 1.681 −1.613 −2.123 0.407
MSE 0.008 0.004 0.005 0.003
CR 0.941 0.926 0.925 0.956

T = 3, 000
Mean 0.503 0.448 −0.298 0.601
RB (%) 0.523 −0.535 −0.643 0.172
MSE 0.002 0.001 0.002 0.001
CR 0.951 0.933 0.932 0.952

T = 5, 000
Mean 0.502 0.448 −0.299 0.601
RB (%) 0.343 −0.361 −0.451 0.156
MSE 0.002 0.001 0.001 0.001
CR 0.948 0.938 0.935 0.951

TABLE II
MONTE CARLO SIMULATION RESULTS FOR POINT AND INTERVAL

ESTIMATION FOR THE RARMA(2, 2) MODEL

Parameter ζ φ1 φ2 θ1 θ2
Value 0.400 0.400 −0.200 0.350 0.250

T = 100
Mean 0.328 0.574 −0.288 0.165 0.208
RB (%) −17.941 43.388 44.115 −52.763 −16.953
MSE 0.031 0.219 0.049 0.238 0.048
CR 0.756 0.700 0.746 0.689 0.790

T = 300
Mean 0.371 0.470 −0.231 0.278 0.228
RB (%) −7.256 17.380 15.627 −20.533 −8.749
MSE 0.013 0.102 0.021 0.105 0.018
CR 0.845 0.801 0.822 0.800 0.847

T = 500
Mean 0.383 0.441 −0.219 0.308 0.238
RB (%) −4.199 10.200 9.606 −11.950 −4.737
MSE 0.007 0.052 0.012 0.053 0.009
CR 0.888 0.865 0.874 0.865 0.901

T = 1, 000
Mean 0.393 0.419 −0.209 0.331 0.245
RB (%) −1.782 4.684 4.692 −5.456 −1.945
MSE 0.003 0.022 0.006 0.023 0.004
CR 0.913 0.903 0.913 0.904 0.923

T = 3, 000
Mean 0.399 0.403 −0.202 0.347 0.249
RB (%) −0.373 0.850 0.828 −0.964 −0.350
MSE 0.001 0.007 0.002 0.007 0.001
CR 0.943 0.936 0.939 0.937 0.944

T = 5, 000
Mean 0.399 0.402 −0.201 0.348 0.250
RB (%) −0.209 0.376 0.512 −0.455 −0.097
MSE 0.001 0.004 0.001 0.004 0.001
CR 0.943 0.938 0.941 0.935 0.945

The CR is given by the percentage of Monte Carlo replicas in
which the parameter is within the confidence interval.

The simulation results are presented in Tables I and II. It is
possible to observe that the performance of the CMLE is good,
except for the smallest sample size, as expected, in the scenario
without covariate. For T ≥ 300 the mean of the estimate are
close to the true parameter values, presenting small relative
bias values. The RB and MSE are greatly reduced as the
signal length increases. For T > 1000 all RB are smaller than
1%, and MSE are close to zero. These figures are numerical
evidences of the CMLE consistency.

Regarding the confidence interval evaluation, the CR values
are close to the nominal coverage level (0.95) in the first
scenario (Table I). In the more complex scenario, considering
the RARMA(2,2) in Table II, the CR values are close to the
nominal value for T ≥ 1000. As expected by the asymptotic
normality of the CMLE, the CR converges to the nominal
level as the signal length increases. In general, the numerical
results show that the overall performance of the CMLE for the
RARMA model is very good.

VI. REMOTE SENSING DATA INTERPRETATION USING THE
RARMA MODEL

As the proposed RARMA model can be used to model con-
tinuous and nonnegative discrete-time signal, it can be applied,
as mentioned in the Introduction, to many different remote
sensing data sets. In this work, we focus our attention on
wind speed measurements, presented in Section VI-A, and on
multitemporal SAR data sequences, discussed in Section VI-B.

A. Wind Speed Modeling

Wind speed is an important parameter for studies about at-
mospheric systems [29], ocean-atmospheric mechanisms [31],
and especially for wind energy applications. Indeed, wind
power is a sustainable alternative to conventional energy
sources such as fossil fuels. To understand how to fully exploit
this potential, several works have been studying wind speed
distributions [32]–[37], and specifically the Rayleigh model
have been considered for these models. We expect that the
novel approach presented in this paper, in Sections II–IV,
capable to capture dynamic behaviors, will be better suited
than already proposed ones to model and forecast wind speed.

To this aim, we considered two different sets of wind speed
data. The primary time series used in this analysis is the mean
of 13 altimeter records already used in [31] for evaluating
trends in oceanic wind speeds. The occurrences considered
here are related to the Southern Ocean site on 40◦S, 250◦E and
is graphically presented in Fig. 1. The ocean wind speeds range
from 4.759 to 12.611 m/s with the unconditional sample mean
equals to 8.636 m/s in the period from August 1990 to July
2017. The second one is the monthly mean wind speed data
for Yenagoa, Nigeria, and covering the period from January
2013 to December 2017. The dataset was obtained from [19]
and is presented in Fig. 2. The signal unconditional mean is
equal to 1.719 m/s ranging from 0.579 to 3.392 m/s. The
unconditional mean could not be representative, because, as
discussed in [19], the wind speed can be different in each
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Fig. 1. Observed (solid line) and fitted (dashed line) Southern Ocean (40◦S,
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Fig. 2. Observed (solid line) and fitted (dashed line) Yenagoa wind speed
values.

month (seasonality). In addition, the autocorrelation function
(ACF) and partial ACF (PACF) of both time series (y) (Fig. 3
and Fig. 4) show significant autocorrelations. Accordingly,
the proposed RARMA has a big potential for modeling the
conditional mean (2) of the wind speed over time in these two
situations.

Fig. 3 and Fig. 4 make the seasonal patterns of the
measurements quite evident because, as discussed in [19],
the wind speed depends on the month of the year. To take
into account the seasonality in both signals, the covariate
xt = cos(2πt/12), with t ∈ 1, . . . , T +H , has to be
considered, like in a harmonic regression approach [65]. If
the p-value of the β1 in the fitted model in Table III, which is
the parameter related to the seasonal covariate xt, is smaller
than a significance level, then the presence of seasonality is
statistically significant. To select the best RARMA model to
each wind speed signal, different p and q orders have been
systematically checked, eventually selecting the p and q values
whose AIC and SIC present the smallest values, all parameters
in dynamic structure were significant (at 10% significance
level), and the residual autocorrelations are null. To check
the residual autocorrelations, the Ljung-Box test and residual
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Fig. 3. Correlograms of the Southern Ocean (40◦S, 250◦E) wind speed time
series.
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TABLE III
FITTED RARMA MODELS FOR THE WIND SPEED DATA IN SOUTHERN

OCEAN AND YENAGOA

Ocean data
Estimate Standard error Z stat p-value

ζ 0.9793 0.2786 3.5145 0.0004
φ1 0.5197 0.1365 3.8080 0.0001
θ1 −0.5363 0.2311 2.3203 0.0203
β1 0.1066 0.0391 2.7243 0.0064

AIC= 1615.8713 SIC= 1634.7750
Ljung-Box (p-value) = 0.2628 (with 12 lags)

Yenagoa data
Estimate Standard error Z stat p-value

ζ 0.2843 0.1416 2.0084 0.0446
φ3 0.3164 0.1871 1.6907 0.0909
θ1 0.3772 0.1945 1.9393 0.0525
θ2 0.3741 0.2011 1.8600 0.0629
β1 0.2511 0.1434 1.7512 0.0799

AIC= 124.6298 SIC= 137.1959
Ljung-Box (p-value) = 0.9756 (with 12 lags)

TABLE IV
MSE AND MAPE FOR IN-SAMPLE PREDICTED VALUES FROM DIFFERENT

MODELS IN DIFFERENT SIGNALS

Ocean data Yenagoa data
Model MSE MAPE MSE MAPE
RARMA 1.9937 12.9332 0.3116 29.8738
Holt-Winters 38.7448 56.5354 2.0110 71.2778
ETS 1.0911 9.8263 0.4359 36.5884

correlograms have been considered. The estimates, standard
errors, Z statistics and their associated p-values for the fitted
RARMA model in the two considered test cases are presented
in Table III. The AIC, SIC, and the results of Ljung-Box test
with 12 lags are also presented in the same table. For the ocean
times series the RARMA(1, 1) model was eventually selected,
while the RARMA(3, 2), with φ1 and φ2 not significant, was
found the most suitable for the Yenagoa wind speed signal.

The residual ACF (Fig. 3(c) and Fig. 4(c)) and the residual
PACF (Fig. 3(d) and Fig. 4(d)) of the adjusted models for the
Southern ocean and Yenagoa signals, respectively, evidence
the goodness of fit of the models, enabling the possibility to
perform predictions based on the adjusted RARMA models.
The predicted (in-sample) and twelve predicted values steps
forward (out-of-sample forecast) are presented in Fig. 1 and
Fig. 2. We can see that the predicted values are close to
the actual values and the forecast values capture the seasonal
behavior of the signals. As the signals of interest are asym-
metric and nonnegative, the Gaussian-based ARIMA models
are not recommended to fit them. For comparative purposes,
we adjusted the nonparametric exponential smoothing Holt-
Winters (additive) model for each signal using the forecast
R package [66] and the state space framework (ETS) by ets
package [67], [68]. Table IV presents the mean square error
(MSE) and the mean absolute percentage error (MAPE) com-
puted for each methodology in each signal. It is noteworthy
that the RARMA predictions outperforms the Holt-Winters
model according to both criteria in both signals and presents
competitive results with ETS approach.

B. SAR Land-use Classification

A second set of measurements for which the novel model
enable the possibility to capture complex dynamic behaviors is
composed by time series of SAR images. These sequences are
currently used for land-use classification and change detection,
an increasing important topic in Earth observation [42], [69],
[70]. Indeed, although several methods have been proposed
to extract features for accurate classification and change de-
tection, there is no paper, to the best of our knowledge, that
exploits parametric non-Gaussian time series for SAR time
series analysis.

The test sequence used in this work is composed by 53 ESA
Sentinel-1 acquisitions between 2015 and 2016 over the city
of Beijing, P.R. China. The SAR images include both VV and
VH polarizations, and have been used in past works to achieve
a binary classification between urban and non-urban areas,
e.g., in [42]. The selected Beijing subset has 900× 626 pixels
and presents 28.79% urban points. For classification purposes,
known urban points were randomly split into training and
validation sets with a 10%-90% proportion. Fig. 5(a) shows
the actual map of the urban extents for the considered scene,
to be compared with the classification maps extracted by the
proposed approach, presented in the same figure.

The RARMA model is used to extract attributes from the
SAR sequence, following the procedure described by these
steps:

1) In the training set, 500 urban pixels and 500 non-urban
pixels are randomly selected.

2) For each of these 1,000 time series (each pixel), a
RARMA(2,2) model is fitted.

3) The average of the estimated parameters are computed
for urban and non-urban areas. Let’s define γ̂u the
average of the parameter vector estimates for urban
pixels, and γ̂n the average of the estimates for non-urban
pixels.

4) For each pixel in the validation dataset, the log-
likelihood function of γ̂u and γ̂n is evaluated. Thus,
a binary variable is created:

I =

{
1, if `(γ̂u) > `(γ̂n) (urban is more likely),
2, if `(γ̂u) < `(γ̂n) (non-urban is more likely).

5) For each pixel, the quantile residuals (7) are extracted,
evaluating the model at γ̂u and γ̂n. Based on the resid-
uals of the model for the urban training points, γ̂u, the
mean (mu), the standard deviation (su), the coefficient
of skewness (au), and the coefficient of kurtosis (ku)
are computed. The same is performed for the non-urban
area training points, obtaining the same values, labeled
mn, sn, an, and an, respectively.

Finally, each pixel is represented by a vector of 11 features:
I , `(γ̂u), `(γ̂n), mu, su, au, ku, mn, sn, an, and kn. Until
this step, all the theoretical concepts developed in Sections II–
IV have been used. This vector is eventually input to support
vector machine (SVM) [45], [71], k-nearest neighbor (KNN)
[46], [72], and random forest (RF) [47], [48], [73] classifiers,
with the aim to extract urban area extents.
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TABLE V
ACCURACY EVALUATION FOR THE MULTITEMPORAL SAR URBAN EXTENT

EXTRACTION RESULTS

Method Acc Sens Spec Prec F1
RARMA+SVM 0.9285 0.9566 0.8588 0.9437 0.9501
RARMA+KNN 0.9163 0.9280 0.8872 0.9531 0.9404
RARMA+RF 0.9291 0.9548 0.8655 0.9461 0.9504
IT+RF [42] 0.9249 0.9496 0.8771 0.9371 0.9433
IT+PO [42] 0.9387 0.9389 0.9385 0.9671 0.9528

(a) Urban extents (b) RARMA+SVM

(c) RARMA+KNN (d) RARMA+RF

Fig. 5. (a) Ground truth (GT) map for urban extents in the Beijing sub-
set used in this paper. Urban and non-urban areas are shown in white and
black, respectively. The GT should be compared with the classification maps
achieved by (b) RARMA+SVM, (c) RARMA+KNN, and (d) RARMA+RF.

Specifically, to implement the classifier through SVM, the
C classification method with default parameters of R func-
tion ksvm [71] was used. For classification through KNN,
4-nearest neighbors according to Euclidean distance were
considered. Finally, RF was also considered, because it is
known to have the computationally most effective procedures
to improve unstable estimates, especially in complex problems
[74]. In this work a set of 500 regression trees was used.

For the evaluation of the resulting classification maps, stan-
dard quantitative measures (overall accuracy (Acc), sensitivity
(Sens), specificity (Spec), precision (Prec), and F1 score) were
considered. Eventually, to perform a benchmarking compar-
ison, the two state-of-the-art information theory-based (IF)
classification methods proposed in [42] were used.

The results show that all the methods present very accurate
performances, with F1 score greater than 0.94. Specifically,
the performance of the method based on RARMA is similar
to those introduced in [42]. We emphasize that the method
presented here is not specific for feature extraction in land-
use classification problems. It is just one possible application
of the RARMA model. The fact that results are accurate even
if the procedure was not designed just for urban extents ex-
traction provides an important conformation that the approach
is promising and competitive.

In order to evaluate the computational efficiency of the
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Fig. 6. Execution time for the proposed feature extraction/classification
method versus the number of pixels of the input data set.

proposed feature extraction method, we considered subsets
of the original sequence with different image sizes, namely:
400 × 300, 900 × 626, 1700 × 1200, and 3265 × 2448. The
five steps of the proposed method were implemented in R and
run on a laptop with 64 bits Intel i7-3537U 2.00 GHz CPU
core and 8 GB RAM. The execution times for each image
size (i.e., number of pixels) are presented in Fig. 6. From the
graph it is clear that the proposed method is efficient, and
its computational cost increases linearly with the image size.
Accordingly, the use of a RARMA model is compatible with
the use of platform with limited performances.

VII. CONCLUSION

This paper introduces a novel dynamic regression model,
the Rayleigh autoregressive moving average model (RARMA).
RARMA is a non-Gaussian dynamic model for Rayleigh-
distributed discrete-time signals. This paper discusses how to
to estimate the model parameters by means of conditional
maximum likelihood approach, and introduces closed form
expressions for the score vector and the conditional Fisher
information matrix. Monte Carlo simulations were used to as-
sess the finite signal length performance of inference methods
applied to the RARMA model parameters. These simulations
show that maximizing the conditional log-likelihood function
is an adequate choice for parameter estimation, even in case
of moderate signal length.

Since the model was developed for remote sensing applica-
tions, two tests on remotely sensed data have been introduced.
The first one is related to wind speed modeling, which could
be useful for wind power production projects and polices.
The results show that the RARMA model is able to detect
the wind speed behavior providing accurate predicted values.
The second test involves multi-temporal SAR data for land-
use classification. In this context, the RARMA model proved
to be a competitive tool for the extraction of SAR sequence
attributes for urban extent extraction

Both example and the previous theoretical analysis show
that the RARMA model is a flexible and useful alternative for
modeling asymmetric and nonnegative discrete-time signals,
and that it has application to accurate forecasts of, and feature
extraction from, different classes of remotely sensed time
series data.
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APPENDIX
CONDITIONAL INFORMATION MATRIX

In this Appendix we introduce the conditional Fisher infor-
mation matrix for the RARMA(p, q) model. To this aim, let’s
compute the expected values of all second order derivatives:

∂2`

∂γi∂γj
=

T∑
t=m+1

∂

∂µ[t]

(
d`[t](µ[t])

dµ[t]

dµ[t]

dη[t]

∂η[t]

∂γj

)
dµ[t]

dη[t]

∂η[t]

∂γi

=

T∑
t=m+1

[
d2`[t](µ[t])

dµ[t]2
dµ[t]

dη[t]

∂η[t]

∂γj

+
d`[t](µ[t])

dµ[t]

∂

∂µ[t]

(
dµ[t]

dη[t]

∂η[t]

∂γj

)]
dµ[t]

dη[t]

∂η[t]

∂γi
.

As shown in [17], E (d`[t] (µ[t]) /dµ[t]|F [t− 1]) = 0, hence

E

(
∂2`

∂γi∂γj

∣∣∣∣F [t− 1]

)
=

T∑
t=m+1

E

(
d2`[t] (µ[t])

dµ[t]2

∣∣∣∣F [t− 1]

)

×
(
dµ[t]

dη[t]

)2
∂η[t]

∂γi

∂η[t]

∂γj
.

The derivatives ∂`[t](µ[t])/∂µ[t], dµ[t]/dη[t] and ∂η[t]/∂γj
have been defined in Section III. The second derivative
of `[t] (µ[t]) with respect to µ[t] is given by

d2`[t] (µ[t])

dµ[t]2
=

2

µ[t]2
− 3πy[t]2

2µ[t]4
.

Computing the conditional expectation, the result is

E

(
∂2`

∂γi∂γj

∣∣∣∣F [t−1]

)
=

T∑
t=m+1

−4

µ[t]2

(
1

g′ (µ[t])

)2
∂η[t]

∂γi

∂η[t]

∂γj
.

Let V[i, j] = diag
(
−4
µ[1]2

(
1

g′(µ[1])

)2

, . . . , −4
µ[T ]2

(
1

g′(µ[T ])

)2
)
,

the conditional Fisher information matrix for γ is

K = K(γ) = −


K(ζ,ζ) K(ζ,β) K(ζ,φ) K(ζ,θ)

K(β,ζ) K(β,β) K(β,φ) K(β,θ)

K(φ,ζ) K(φ,β) K(φ,φ) K(φ,θ)

K(θ,ζ) K(θ,β) K(θ,φ) K(θ,θ)

 ,
where K(ζ,ζ) = a>Va, K(β,ζ) = M>Va, K(φ,ζ) =
P>Va, K(θ,ζ) = R>Va, K(ζ,β) = a>VM, K(β,β) =
M>VM, K(φ,β) = P>VM, K(θ,β) = R>VM, K(ζ,φ) =
a>VP, K(β,φ) = M>VP, K(φ,φ) = P>VP, K(θ,φ) =
R>VP, K(ζ,θ) = a>VR, K(β,θ) = M>VR, K(φ,θ) =
P>VR, K(θ,θ) = R>VR.
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