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Abstract—Over the past few years making use of deep
networks, including convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), classifying hyperspectral
images has progressed significantly and gained increasing
attention. In spite of being successful, these networks need an
adequate supply of labeled training instances for supervised
learning, which, however, is quite costly to collect. On the other
hand, unlabeled data can be accessed in almost arbitrary
amounts. Hence it would be conceptually of great interest to
explore networks that are able to exploit labeled and unlabeled
data simultaneously for hyperspectral image classification. In this
article, we propose a novel graph-based semisupervised network
called nonlocal graph convolutional network (monlocal GCN).
Unlike existing CNNs and RNNs that receive pixels or patches
of a hyperspectral image as inputs, this network takes the whole
image (including both labeled and unlabeled data) in. More
specifically, a nonlocal graph is first calculated. Given this graph
representation, a couple of graph convolutional layers are used
to extract features. Finally, the semisupervised learning of the
network is done by using a cross-entropy error over all labeled
instances. Note that the nonlocal GCN is end-to-end trainable.
We demonstrate in extensive experiments that compared with
state-of-the-art spectral classifiers and spectral-spatial classifi-
cation networks, the nonlocal GCN is able to offer competitive
results and high-quality classification maps (with fine boundaries
and without noisy scattered points of misclassification).

Index Terms— Graph convolutional network (GCN), hyper-
spectral image classification, nonlocal graph, semisupervised
learning.

I. INTRODUCTION

YPERSPECTRAL images can be used to differentiate
various materials of interest by their abundant spectral
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bands. Hence, hyperspectral data classification has become
an active and crucial research topic in the remote sensing
community, and so far, a wide range of applications have
benefited from the development of this direction, to name a
few, urban planning, agriculture monitoring, and disaster relief
operations.

To achieve better classification results, plenty of approaches
have been developed over the past decades. On the one hand,
some efforts have explored more discriminative feature rep-
resentations, such as morphological features and texture fea-
tures [1], [2]. Apart from these handcrafted features, subspace
learning and sparse learning algorithms have also gotten much
attention in the community. These methods mainly concentrate
on transforming original spectral signatures into a learned, new
feature space [3]-[5]. On the other hand, better classifiers
from machine learning have also provided new insights for
hyperspectral image classification, for instance, random forest
and support vector machine (SVM).

Deep learning, which is mainly characterized by deep
networks, has been quite successful in solving a wide range
of problems (e.g., natural language processing [6]-[8],
computer vision [9]-[19], and remote sensing [20], [21]).
Recently, hyperspectral data classification has been
approached by means of convolutional neural networks
(CNNs) [20], [22]-[27] as well as recurrent neural networks
(RNNSs) [28]-[30]. At first, a very simple 1-D CNN, including
only one convolution layer, has been investigated in [22].
Makantasis et al. [23] made use of a 2-D CNN to perform
spectral-spatial classification. In [24], on the classification
problem of crop types, the authors compare the performance
of 1-D and 2-D CNNs and conclude that the 2-D CNN is
superior to the 1-D CNN, but several tiny objects in the
former’s classification map are a little oversmoothed and
misclassified. Following recent developments in 3-D CNN
for video analysis [31] where the third dimensionality is
usually the time axis, 3-D CNNs have also been studied in
hyperspectral data classification. Chen et al. [25] introduced
an (, regularized 3-D CNN for learning spectral-spatial
features, whereas [26] follows a similar idea for the purpose
of hyperspectral data classification. Furthermore, better
CNN architectures from computer vision, e.g., ResNet [13]
and DenseNet [14], also provide new insights for this
task [32]-[34].

Given that a pixel of a hyperspectral image can be deemed
as an orderly spectra sequence in the spectral domain, RNNs
are natural candidates to tackle such sequential data. A first,
attempt in this direction can be found in [28], where an RNN
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model equipped with a new activation function and a modified
gated recurrent unit is proposed for spectral classification.
Wu and Prasad [29] proposed a hybrid convolutional and
recurrent network, in which a couple of convolutional layers
first learn midlevel feature representations, and the following
recurrent layers are then used to model spectral contexts.

The aforementioned networks are both trained in a super-
vised fashion via backpropagation. In spite of the great success
of the supervised networks, there is a technical hurdle in the
application of supervised CNNs [20], [22]-[27], [35], [36]
or RNNs [28]-[30] to hyperspectral data classification tasks:
an adequate supply of manually annotated training samples as
fuel. However, different hyperspectral imaging sensors, com-
plicated atmospheric scattering conditions, and various cate-
gories of interest in different applications result in collecting
a large, labeled data set such as ImageNet in computer vision
for hyperspectral image classification being difficult. Also,
making the labeled data set larger and larger has diminishing
returns. In this case, it would be conceptually of great interest
to explore how to access arbitrary amounts of unlabeled data.

Unsupervised feature learning, which is capable of learn-
ing useful, informative feature representations from unlabeled
samples, is a solution and has attracted extensive attention
in the community. For instance, in a pioneer work [37],
the authors present an unsupervised CNN, and its weights are
estimated via a sparse learning algorithm in a greedy layerwise
fashion. Mou et al. [32] devised a residual learning-based
unsupervised conv—deconv network, which is trained end-
to-end by learning an identical mapping. Once these unsu-
pervised networks are well-trained using unlabeled instances,
they can be fine-tuned by a small amount of labeled data
for hyperspectral image classification tasks. However, in these
models, labeled and unlabeled data are separately involved
in two stages, which fails to access the relationship between
them. Hence, a question arouses our curiosity: can a network
be trained in a supervised way with labeled and unlabeled
instances simultaneously for the problem of hyperspectral
image classification?

Graph-based semisupervised learning [38]-[40] is possible
to provide a solution to the problem by harnessing the graph
or manifold structure of data. The cluster assumption is widely
used in most graph-based semisupervised learning approaches,
and it assumes that nearby vertices on the same graph are
apt to share the same class. Nevertheless, directly applying
conventional networks (e.g., CNNs and RNNs) to a graph
is quite challenging. Fortunately, several recent studies in
machine leaning (see Section II) make convolutions on graphs
possible. Now, graph convolutional networks (GCNs), which
generalize convolutions to graphs of arbitrary structures, have
gained increasing attention and have successfully been applied
to a number of natural language processing (NLP) tasks.
However, using GCNs to classify hyperspectral images has
rarely been addressed so far. In this article, inspired by
recent advances in GCNs and the nonlocal idea in vision
tasks [41]-[43], we propose a semisupervised nonlocal GCN
for hyperspectral data classification tasks. The network first
represents the whole hyperspectral image as a nonlocal graph
where each vertex in the graph represents a pixel in the image.
Given the graph representation, we perform reasoning on the
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Fig. 1. Examples illustrating the limitations of spectral classifiers (e.g., SVM)
and spectral-spatial classification networks (e.g., 2-D CNN). Classification
map produced by SVM suffers from a salt-and-pepper effect, while 2-D
CNN produces oversmoothed results. In contrast, our GCN framework-based
method not only removes scattered points of misclassification but also
preserves edge information well in classification results.

graph and infer the classification map of the whole image
by applying graph convolutions. Note that the whole network
is end-to-end trainable. The contributions of this article are
threefold.

1) We perform hyperspectral image classification via a

graph-based semisupervised network. Unlike existing
networks such as CNNs and RNNs, which receive local
portions of an image (e.g., pixels and patches) as inputs,
our network takes the whole hyperspectral image in.
Unlike CNNs whose receptive fields are local regions
in an image, the proposed method uses a nonlocal,
data-driven graph representation for hyperspectral image
classification tasks.
We carry out experiments on three benchmark data sets,
and empirical results show the competitive performance
of our network. Moreover, our network can offer higher
quality classification maps (see Fig. 1).

2)

3)

The remainder of this article is organized as follows. After
detailing deep learning in hyperspectral image classification
in Section I. Section II briefly introduces GCNs. Section III
details the proposed nonlocal GCN. Section IV verifies the
proposed approach and presents the corresponding analysis
and discussion. Finally, Section V concludes this article.

II. PRELIMINARIES AND RELATED WORKS

Several efforts have been made in machine learning for
generalizing networks to graph data structures. In this section,
we recall the basic principles of these works. The graph
networks involve both CNNs and RNNs, but this work is more
related to the former, i.e., GCNs. First, some notations used
throughout this article are given. We consider an undirected
graph, which can be encoded by G = (V, £, A). V denotes the
vertex set with |V| = N, and £ is the edge set of the graph.
A e R¥*N denotes the adjacency matrix, where if there is an
edge between vertex i and vertex j, entry a;; represents the
weight of the edge.

A. Graph Convolution From Spectral Perspective

We denote the diagonal degree matrix of A as D, whose
entry d;; = Zyzl ajj. Then, the Laplacian matrix of a graph
G can be defined as

L:=D - A. (1)

The corresponding symmetrically normalized Laplacian

matrix is as follows:
Lym:=I1—D 3AD? @)

where I is an identity matrix.
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Fig. 2. Network overview. Unlike 1-D or 2-D CNNs which take as input pixels or patches, our network takes the whole hyperspectral image as input and

performs information propagation by a couple of graph convolutions based on a learned nonlocal graph. Finally, a cross-entropy error over all labeled instances

is exploited for semisupervised classification.

Given a graph signal s € R" (a scalar for each node) and
a filter gg = diag(#) parameterized by § € RY, the spectral
convolution of s and gy can be performed by decomposing s
on the spectral domain and then multiplying each frequency
by go [441-[46]

3)

where U is the matrix of eigenvectors of Lgy, and can be
computed by Lgm = UAUT. A is the diagonal matrix
of eigenvalues of Lgyy,. In addition, UTs denotes the graph
Fourier transform of s. go can be framed as a function of the
eigenvalues of A, i.e., gg(A).

However, note that evaluating (3) requires explicitly calcu-
lating the Laplacian eigenvectors, which is not computationally
feasible for large graphs. To circumvent this problem, a pos-
sible way is to approximate the filter go by the Chebyshev
polynomials up to the Kth order. Hence, Hammond et al. [47]
proposed the following K -localized convolution on graphs:

goxs =UggUTs

K

8o xS~ Ze;ch(Lsym)s
k=0

“)

where T} is the Chebyshev polynomials.

Recently, Kipf and Welling [48] simplified (4) by limiting
K = 1 and further approximating the largest eigenvalue
Amax =~ 2. By doing so, (4) can be rewritten as

g9 xs ~0(I +D 2AD ?)s. (5)

Then, they consider a GCN with the following propagation
rule:

H™ = (D 2AD :HOW) (6)

where H® and H"*" are the input and output, respectively,
and W represents the weights.

Our work follows this spectral stream, particularly the work
of [48].

B. Graph Convolution From Spatial Perspective

Spatial graph convolution defines the convolutions directly
on graph vertexes and their neighbors. However, one challenge
for such methods is coming up with a way to handle different
sized neighbors for each vertex. The interested reader is
referred to [49]-[51] for more details of these algorithms.

III. METHODOLOGY

Our goal is to represent the whole hyperspectral image
(including labeled and unlabeled data) as a holistic graph
and perform reasoning on the graph for semisupervised
classification. Fig. 2 shows the overview architecture of the
proposed network.

A. Graph Representation in Hyperspectral Images

In a pioneer work [52] of making use of GCNs for hyper-
spectral data classification, the authors employ a fixed graph
G. However, regarding the construction of the graph, we have
the following observations.

1) In airborne or spaceborne hyperspectral images, the clas-
sification of a pixel probably benefits from remote
pixels instead of only its neighbors (see Fig. 3). Hence,
we think that for classifying hyperspectral data, the con-
nection relationship among the graph’s vertices should
not be constrained to adjacent nodes.

Hyperspectral images have intrinsic intraclass variations
(samples in the same category may have different spec-
tral signatures) and interclass similarities (samples in
different classes may share similar spectral signatures),
which means that there exists a semantic gap between
spectral information and high-level semantics. In this
case, a learnable graph, which helps to narrow the gap,
would be more desired than a fixed graph.

Some graph-based learning algorithms compute the
edges of a graph based on original spectra directly.

2)

3)
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Fig. 3. Illustration of nonlocal self-similarity in a hyperspectral image. For a
query pixel, the ten most similar pixels in the image are plotted. This shows us
that the classification of a pixel probably benefits from remote pixels instead
of only its neighbors. Note that the Gaussian distance is used to calculate the
similarities among the pixels.

This way, however, is sensitive to spectral signa-
ture changes and easily affected by intraclass varia-
tions and interclass similarities of hyperspectral images.
Therefore, doing so in a learnable latent space may be
a better option.

Therefore, we hope that the graph structure in our model is
nonlocal, data-driven, and can be adaptively learned in an end-
to-end way. To this end, we construct the graph by measuring
similarities between vertices (including labeled and unlabeled
pixels) in a feature space. In this graph, a high confidence
edge between two vertices indicates that: 1) the two pixels
belong to the same category or 2) they are highly correlated
for recognizing their labels. Note that the edges of this graph
are computed between any pair of vertices.

Formally, denote by X = {x,x2,...,xy} all pixels in a
hyperspectral image, where N represents the number of pixels,
and each pixel x; is a D-dimensional vector, where D is
the number of bands. In our method, the pairwise similarity
between every two hyperspectral pixels x; and x; can be
modeled as

S(xi,x;) =¢(x;) p(x)) (7

where ¢ and ¢ indicate two individual transformations, which
map original spectral features to latent feature spaces.

Once the edges of the nonlocal graph are computed, a nor-
malization is performed on each row of the adjacency matrix
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TABLE I

IMPLEMENTATION OF THE GRAPH LEARNING MODULE USING
THE EMBEDDED GAUSSIAN

Layer Configuration Output Shape Connected to
conv_¢ 1x 1,256 H x W x 256 input
reshape_¢ - HW x 256 conv_¢
conv_yp 1x 1,256 H x W x 256 input
reshape_¢p - HW x 256 conv_p
multiply - HW x HW reshape_¢
reshape_¢p
softmax - HW x HW multiply

so that the sum of all edge values related to the same instance i
is 1. Here, we make use of a softmax function for the purpose
of normalization
exp(S(xi, X))
> exp(S(xi, x)))
The normalized A = {q;;} is taken as the final form of the
adjacent matrix in our model.

ajj =

)

B. Instantiations of ¢ and ¢

As shown in (7), ¢ and ¢ are of importance for constructing
the graph in the proposed model. Next, we discuss how to
instantialize them. More specifically, we consider two ways.

1) Embedded Dot Product: An embedded dot product sim-
ilarity can be used to define the pairwise similarity
function S as follows:

S(xisxj) = (Wex) (Wyx)) ©)
where Wyx; and W,x; are two embeddings.

2) Embedded Gaussian: Another way to compute similari-
ties in a latent feature space is to harness the following
embedded Gaussian function:

S(xi,x)) = exp(Wyx) ' (Wox ). (10)

Note that a special case (nonembedded version) of

the embedded Gaussian function is the conventional

Gaussian function, which is parameter-free and written

as follows:

S(x;,x;) =exp(x]x;). an

As discussed earlier, the construction of the nonlocal graph
in our model is flexible, and we believe that more alternative
ways are possible and may be able to offer better performance
in the future.

In addition, regarding the implementation of this nonlocal,
data-driven graph, a traversing method for computing pairwise
similarity between every two hyperspectral pixels is obviously
not computationally feasible in a network. Therefore, we need
a doable way to wrap (9) or (10) into the form of a network

block. Table I shows the implementation of a graph learning
block.
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C. Graph Convolution

Here, we describe how to perform graph convolutions
on the learnable graph described in the previous sections.
Unlike conventional convolutions in CNNs, which operate on
a regular, local grid, graph convolutions on a graph make it
possible to allow every vertex to attend on every other vertex
on the graph. Hence, the process of graph convolutions in our
case can be deemed as a message passing inside the whole
hyperspectral image. The outputs of a graph convolution layer
are convolved features of each vertex. The forward propagation
rule of graph convolutions is as follows:

Z2UD) = 5 (A(X; ©)ZOwitD) (12)
where @ = {W ,;, W, }.

Here, Z® = X. WD denotes layer-specific learnable
weights, and o (-) represents an activation function (we use
ReLU).

From (12), we can see that a graph convolution layer
actually includes two steps: 1) generating a new feature
representation from the input Z®) by performing a graph con-
volution, i.e., A(X; @)Z(’) and 2) feeding the new generated
feature A(X; ©)Z? to a fully connected layer. To figure out
the unique asset of graph convolutions, we compare them
with fully connected layers, in which the layerwise forward
propagation rule is

20+ = 5 (ZzO WD)y, (13)

From (12) and (13), we can see that their difference is an
adjacency matrix applied on the left of Z(). The benefit that
this matrix brings is Laplacian smoothing, which calculates
new features of a vertex as a weighted average of features
of its neighbors on a graph. Given that vertices in the same
cluster are more likely to be densely connected, Laplacian
smoothing allows them to have similar features, which makes
the subsequent classifications much easier.

D. Semisupervised Classification
We make use of a softmax on output features of the last

graph convolutional layer, that is

¥ = softmax(AZE~Dwd). (14)

For semisupervised classification tasks of hyperspectral
images, we exploit the following loss function:

C
L:::—ZZYiclnf/ic

i€V c=1

5)

where V) is a set of indices of labeled instances and C is the
number of classes that is also the dimension of output features.
It can be seen from this equation that a cross-entropy loss is
calculated over all labeled instances. By training, the network
learns a message passing mechanism that is capable of prop-
agating labels from labeled instances to unlabeled samples.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 12, DECEMBER 2020

TABLE II

AMOUNTS OF TRAINING AND TEST DATA OF THE PAVIA
UNIVERSITY DATA SET

Class No.  Class Name  Training Test
1 Asphalt 548 6631
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal sheets 265 1345
6 Bare Soil 532 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947

TOTAL 3921 42776
TABLE III

AMOUNTS OF TRAINING AND TEST DATA OF THE INDIAN PINES SCENE

Class No. Class Name Training  Test
1 Alfalfa 50 1384
2 Corn-notill 50 784
3 Corn-min 50 184
4 Corn 50 447
5 Grass-pasture 50 697
6 Grass-trees 50 439
7 Grass-pasture-mowed 50 918
8 Hay-windrowed 50 2418
9 Oats 50 564
10 Soybean-notill 50 162
11 Soybean-mintill 50 1244
12 Soybean-clean 50 330
13 Wheat 50 45
14 Woods 15 39
15 Buildings-grass-trees 15 11
16 Stone-steel-towers 15 5

TOTAL 695 9671

IV. EXPERIMENTS AND ANALYSIS
A. Data Description

1) Pavia University Hyperspectral Data Set: The first data
set was acquired over the city of Pavia, Italy, 2002, by an air-
borne instrument—Reflective Optics Spectrographic Imaging
System (ROSIS). The aircraft was operated by the German
Aerospace Center (DLR) within the context of the Euro-
pean Union-funded HySens project. The data set is made
up of 640 x 340 pixels with a 1.3-m/pixel spatial resolution
and 103 bands covering from 430 to 860 nm after removing
12 noisy channels. Besides unknown pixels, nine classes are
manually annotated in the reference data. Table II shows the
information about all nine categories.

2) Indian Pines Hyperspectral Data Set: The second data
were collected by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor over Northwestern Indiana, USA,
1992. It includes 145 x 145 pixels with a 20-m/pixel spatial
resolution and 200 spectral bands covering from 400 to
2500 nm after removing 20 water absorption channels (220,
150-163, and 104-108). The ground truth includes 16 classes
of interest, which are mostly various crops in different growth
phases and detailed in Table III (black color in the ground
truth indicates unknown samples). Since these 16 classes have
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(a) Visualization of original spectra and (a) outputs of the last graph convolution of the nonlocal GCN on the Indian Pines data set by t-SNE [56].

Fig. 5.

Classification maps of different approaches for the Pavia University data set. (From Left to Right and Top to Bottom) Composite image, training

samples, ground truth, RF-200, SVM-RBF, CCF-200, SICNN, 2-D CNN, GCN, and nonlocal GCN.

similar spectral signatures, the precise classification of this
scene is hard.

3) Salinas Hyperspectral Data Set: The third data set was
also gathered by the AVIRIS sensor over the region of Salinas
Valley, CA, USA, and with a 3.7-m/pixel spatial resolution.
The Salinas scene is composed of 224 spectral bands and

512 x 217 pixels. Like the Indian Pines data set, 20 water
absorption bands (224, 154-167, and 108-112) of the
Salinas scene have been discarded. The data set presents
16 classes related to vegetables, vineyard fields, and bare soils.
Table IV shows the amounts of training and test data of this
data set.
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Fig. 6.

Classification maps of different approaches for the Indian Pines data set. (From Left to Right and Top to Bottom) True-color composite image,

training set, test set, RF-200, SVM-RBF, CCF-200, SICNN, 2-D CNN, GCN, and nonlocal GCN.

TABLE IV
AMOUNTS OF TRAINING AND TEST DATA OF THE SALINAS DATA

Class No. Class Name Training Test
1 Brocoli_green_weeds_1 50 1959
2 Brocoli_green_weeds_2 50 3676
3 Fallow 50 1926
4 Fallow_rough_plow 50 1344
5 Fallow_smooth 50 2628
6 Stubble 50 3909
7 Celery 50 3529
8 Grapes_untrained 50 11221
9 Soil_vinyard_develop 50 6153

10 Corn_senesced_green_weeds 50 3228
11 Lettuce_romaine_4wk 50 1018
12 Lettuce_romaine_5wk 50 1877
13 Lettuce_romaine_6wk 50 866
14 Lettuce_romaine_7wk 50 1020
15 Vinyard_untrained 50 7218
16 Vinyard_vertical_trellis 50 1757
TOTAL 800 53329

B. Experiment Setup

To quantitatively compare different models for hyperspectral
data classification tasks from various aspects, the following
measurements are considered.

1) Overall Accuracy (OA): This criterion is calculated
as the fraction of test samples that are differentiated
correctly.

2) Per-Class Accuracy: To access the performance with
respect to each category in a data set, we also compute
per-class accuracy. This measurement is particularly use-
ful when the class labels are not uniformly distributed.

3) Average Accuracy (AA): This criterion is computed as
the average of all per-class accuracies.

4) Kappa Coefficient: This statistic criterion is a robustness
measurement with the degree of agreement.

If the number of samples for each category is identi-
cal, OA and AA are equal. However, the category distrib-
ution suffers from an imbalanced phenomenon in practice.
Adopting OA alone is not precise since rare categories are

commonly ignored. Therefore, AA is also utilized to evaluate
the performance of different classification models. Strong
differences between the OA and AA may indicate that a
specific class is incorrectly classified with a high proportion.
In addition, the kappa coefficient is generally thought to
be a more robust measure than a simple percent agreement
calculation.

Furthermore, we make use of a statistical test to validate the
significance of classification accuracies produced by various
methods. Given that samples used for two classification mod-
els are not independent, McNemar’s test can be harnessed to
estimate the significance of the difference of two classification
maps, and McNemar’s test can be performed by

o=/ (16)

e N iz + fa

where f;; is the amount of data correctly recognized by
method i and incorrectly recognized by j. McNemar’s test
is a statistical test for paired nominal data, and we can use
McNemar’s test to compare the predicted accuracies of two
models. In McNemar’s test, the null hypothesis, which means
that none of the two models performs better than the other,
is rejected at p = 0.05 (]z] > 1.96), which indicates the
significance level.

Competitors included in our comparison are given in the

following.

1) RF-200: A random forest being composed of 200 deci-
sion trees.

2) SVM-RBF:An SVM!' having the widely used radial basis
function (RBF) kernel. We make use of five-fold cross
validation to search optimal hyperparameters y (the
spread of the RBF kernel) and C (controlling the mag-
nitude of penalization during the model optimization)
in the range of y = 273,272, ...,2* and C = 1072,
1071, ..., 10%

3) CCF-200: A canonical correlation forest (CCF)? [53]
with 200 trees.

Uhttps://www.csie.ntu.edu.tw/~cjlin/libsvm/
Zhttps://github.com/twgr/ccfs
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4) SICNN: A CNN model, which makes an attempt at
solving the curse of dimensionality by first utilizing a
computational intelligence (particle swarm optimization)
algorithm to choose informative spectral bands and then
training a 2-D CNN using the selected bands. The used
network is made up of three convolutional layers. The
first two convolutional layers are followed max-pooling
layers and their fields of view are 4 x 4 and 5 x 5,
respectively. The last convolutional layer is equipped
with 4 x 4 filters. Moreover, 32, 64, and 128 con-
volutional filters are used separately for those three
convolutional layers. For more details, refer to [54].
2-D CNN: The exact architecture of the 2-D CNN is
a VGG-like network, in which we utilize three con-
volutional blocks and 3 x 3 filters for all the blocks.
Spatial shrinkage is operated by three max-pooling
layers following the convolutional blocks. Each convo-
lutional block in this 2-D CNN has two convolutional
layers, and 32, 64, and 128 filters are used for convolu-
tional layers of those three blocks, respectively.

GCN: To evaluate the superiority of the proposed
approach, we perform an ablation study, i.e., using a
GCN introduced in [48] which has no the proposed
graph learning module but other parts the same as the
nonlocal GCN. This GCN uses a fixed graph calcu-
lated according to original spectrum signatures using a
Gaussian distance.

Note that in order to make our model completely compara-
ble with other investigated approaches, for the first two data
sets, we use standard training and test sets. In addition, for the
Salinas scene, training samples are generated by simple ran-
dom sampling. In both hyperspectral data sets, 10% samples of
the training set are randomly selected as validation samples.
In other words, in the network training phase, we use 90%
samples of the training set to iteratively update and optimize
network weights and the remaining ones as validation to
tune hyperparameters of networks. Regarding training details,
Nesterov Adam [55] algorithm is chosen to optimize networks,
as it provides much faster convergence compared to other
optimizers. Almost all parameters of this optimizer are set as
recommended in [55]. We utilize a relatively small learning
rate of 2e—04. We set the batch size as 1 and the number of
epochs as 800. Since a fully connected graph is calculated,
the computational and memory overheads of the proposed
method are high. We train it on a NVIDIA DGX-1 server
with 4 Tesla V100 GPUs.

5)

6)

C. Embedded Dot Product Versus Embedded Gaussian

Table V compares two instantiations of ¢ and ¢, namely
the embedded dot product and embedded Gaussian, in our
network. As we can see, they perform similarly on the Pavia
University, Indian Pines, and Salinas data sets. Compared
with the performance of GCN, experimental results show that
the instantiation of the nonlocal graph of our model is not
the key to the improvement; instead, it is more likely that the
nonlocal graph itself is of importance, and it is insensitive to
instantiations. In this article, we use the embedded Gaussian
to implement our nonlocal GCN.
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TABLE V

COMPARISON OF EMBEDDED DOT PRODUCT AND EMBEDDED GAUSSIAN
IN THE NONLOCAL GCN IN TERMS OF OA

Pavia Uni.  Indian Pines  Salinas

Embedded Dot Product 88.22 87.73 92.16

Embedded Gaussian 90.04 87.92 92.48
TABLE VI

RATIOS OF WITHIN-CLASS TO BETWEEN-CLASS SIMILARITY OF
ORIGINAL SPECTRA AND OUTPUTS OF GRAPH CONVOLUTIONS
ON THE THREE DATA SETS. SMALLER IS BETTER

Data Set Original Spectrums  Outputs of Graph Convs
Pavia University 3.9088 1.5675
Indian Pines 4.8561 1.8692
Salinas 0.9498 0.7928

D. Analysis of Graph Convolutions

To understand how graph convolutions work, we make use
of t-SNE technique to visualize original spectra and outputs
of the last graph convolution of our model on the Indian Pines
scene in Fig. 4. As shown in this figure, after several graph
convolutions, samples of some categories gather together
and come into several groups, while in the original spectral
domain, these samples may be completely mixed (e.g., classes
#1 and #2). It seems that the proposed GCN improves the
classification results by minimizing intraclass variance.

In order to quantitatively prove this, we evaluate the model
using an index called the ratio of within-class to between-class
similarity, which is defined as follows:

trace(S,,)
= 1
trace(Sy) a7

where S, and S, are within-class scatter matrix and
between-class scatter matrix, respectively, and defined as

Sw= D > (xi—n)xi —n)"

¢ iec

Sy = > Ne(p, — ) (. — )"

(18)
19)

where . = (1/N;) > ;.. xi and N, denotes the amount of
test data belonging to the cth category. Moreover, g = (1/N)
Z,N: , X; is the sample mean of the whole test set.

Table VI reports the calculated ratios of within-class to
between-class similarity of original spectra and outputs of
graph convolutions on both data sets. We can observe that con-
volved features in the same category have a higher similarity.
Hence, the results demonstrate that this model can minimize
intraclass variance.

E. Results and Discussion

Tables VII-IX give the information about per-class
accuracies, OAs, AAs, and kappa coefficients obtained by var-
ious classification methods on the three data sets. For spectral
classification approaches, CCF-200 outperforms RF-200 and
SVM-RBF. With respect to the obtained classification results,
neural networks, including SICNN, 2-D CNN, GCN, and
the proposed nonlocal GCN, show better performance than
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TABLE VII
ACCURACY COMPARISONS FOR THE PAVIA UNIVERSITY SCENE. BOLD NUMBERS INDICATE THE BEST PERFORMANCE

Class No.  Class Name  RF-200 SVM-RBF CCF-200 SICNN 2D CNN  GCN  Non-local GCN

1 Asphalt 81.54 82.37 86.59 84.21 83.85 78.89 86.80
2 Meadows 55.39 67.87 72.33 91.10 96.09 90.50 88.74
3 Gravel 53.07 69.18 71.75 64.36 81.47 71.70 70.84
4 Trees 98.76 98.37 99.09 95.53 96.12 98.76 98.43
5 Metal Sheets 99.11 99.41 99.78 97.70 98.74 99.93 99.85
6 Bare Soil 79.10 93.64 97.26 56.53 49.79 79.08 94.37
7 Bitumen 84.36 91.20 91.88 77.29 79.32 71.20 86.24
8 Bricks 91.39 92.59 94.92 95.57 88.89 92.83 96.74
9 Shadows 97.47 96.94 98.73 96.20 94.19 97.47 95.78
OA - 71.53 79.89 83.36 85.25 86.93 87.08 90.04
AA - 82.24 87.95 90.26 84.28 85.38 86.71 90.87
Kappa - 0.6504 0.7491 0.7905 0.8041 0.8242 0.8307 0.8706
TABLE VIII

ACCURACY COMPARISONS FOR THE INDIAN PINES SCENE. BOLD NUMBERS INDICATE THE BEST PERFORMANCE

Class No. Class Name RF-200 SVM-RBF CCF-200 SICNN 2D CNN GCN  Non-local GCN
1 Alfalfa 56.65 71.39 76.37 79.84 54.77 76.66 83.09
2 Corn-notill 55.48 71.05 77.93 92.47 96.94 86.10 89.03
3 Corn-min 82.07 86.96 94.57 99.46 99.46 100 100
4 Corn 85.23 91.72 94.41 93.29 96.87 93.06 93.51
5 Grass-pasture 80.20 85.80 91.39 92.68 94.12 92.25 94.12
6 Grass-trees 94.99 93.85 97.04 96.58 96.81 96.81 98.18
7 Grass-pasture-mowed 77.02 75.38 90.96 86.82 91.29 88.24 88.24
8 Hay-windrowed 57.94 59.88 69.48 69.52 93.05 76.80 78.78
9 Oats 62.94 76.24 89.01 83.69 87.59 80.85 86.70
10 Soybean-notill 95.06 96.91 98.77 100 100 99.38 99.38
11 Soybean-mintill 88.67 79.58 93.73 96.70 68.57 93.89 94.94
12 Soybean-clean 53.33 74.84 74.55 96.97 88.48 93.64 97.27
13 Wheat 97.78 97.78 100 100 100 100 100
14 Woods 56.41 79.49 97.44 94.87 82.05 92.31 97.44
15 Buildings-grass-trees 81.82 100 90.91 100 100 100 100
16 Stone-steel-towers 100 100 100 100 100 100 100

OA - 69.31 74.24 82.87 85.13 84.76 85.43 87.92

AA - 76.60 83.80 89.78 92.68 90.62 91.87 93.79

Kappa - 0.6538 0.7093 0.8059 0.8313 0.8261 0.8342 0.8625
TABLE IX

ACCURACY COMPARISONS FOR THE SALINAS DATA. BOLD NUMBERS INDICATE THE BEST PERFORMANCE

Class No. Class Name RF-200 SVM-RBF CCF-200 2D CNN GCN Non-local GCN
1 Brocoli_green_weeds_1 99.29 98.98 99.49 71.57 99.59 99.69
2 Brocoli_green_weeds_2 99.21 99.67 99.95 99.86 98.07 99.21
3 Fallow 97.72 98.70 99.43 88.89 91.95 99.79
4 Fallow_rough_plow 97.62 97.77 99.33 98.14 97.84 98.29
5 Fallow_smooth 97.95 98.33 98.82 98.17 98.06 99.28
6 Stubble 99.41 99.72 99.80 100 99.00 99.80
7 Celery 99.23 99.46 99.66 97.00 99.29 99.04
8 Grapes_untrained 61.92 70.37 67.56 70.79 82.25 79.11
9 Soil_vinyard_develop 98.70 98.59 99.19 99.45 97.11 97.74
10 Corn_senesced_green_weeds 85.56 93.74 93.80 96.19 91.60 95.01
11 Lettuce_romaine_4wk 91.75 94.70 95.87 96.37 90.77 94.60
12 Lettuce_romaine_5wk 98.24 99.89 99.95 100 100 100
13 Lettuce_romaine_6wk 97.69 97.81 98.15 100 98.96 98.96
14 Lettuce_romaine_7wk 92.25 97.35 96.86 98.33 97.35 99.41
15 Vinyard_untrained 70.32 71.53 80.77 91.22 70.44 84.26
16 Vinyard_vertical_trellis 96.98 98.18 98.18 93.00 97.10 98.01
OA - 86.02 88.82 89.72 90.25 90.37 92.48
AA - 92.74 94.67 95.43 93.69 94.34 96.39
Kappa - 0.8450 0.8757 0.8858 0.8918 0.8928 0.9164

those traditional machine learning models (i.e., random forest, feature representations and 2) spatial information can be fully
SVM, and CCF) in regard to OA and kappa coefficient, exploited in them. These two properties make the networks
mainly because they are capable of extracting hierarchical more robust in finding appropriate decision boundaries and
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TABLE X

ASSESSMENTS OF THE SIGNIFICANCE OF CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD COMPARED TO
OTHER INVESTIGATED APPROACHES FOR THE THREE DATA SETS

Data Set RF-200  SVM-RBF CCF-200 SICNN 2D CNN  GCN
Pavia University ~ 74.659 48.108 34.179 21.957 15.334 21.314
Indian Pines 35.900 28.932 12.855 6.491 7.189 10.498
Salinas 22.464 44.909 42.164 - 47.985 7.178

Fig. 7. Classification maps of different approaches for the Salinas data set. (From Left to Right) True-color composite of the hyperspectral image, reference
data, RF-200, SVM-RBF, CCF-200, 2-D CNN, GCN, and nonlocal GCN.

enable the models to handle nonlinearly separable data more
efficiently.

Among network models, the proposed nonlocal GCN out-
performs the 2-D CNN on all indexes on all three data sets.
Specifically, our network increases accuracies significantly by
3.11% of OA, 5.49% of AA, and 0.0464 of Kappa coef-
ficient on the Pavia University data set; by 3.16% of OA,
3.17% of AA, and 0.0364 of Kappa coefficient on the Indian
Pines data set; and by 2.23% of OA, 2.70% of AA, and
0.0246 of Kappa coefficient on the Salinas scene. This shows
the effectiveness of the GCN framework for hyperspectral
image classification tasks. On the other hand, in comparison
with GCN, the nonlocal GCN is capable of achieving accuracy
increments of 2.96%, 4.16%, and 0.0399 for OA, AA, and
Kappa coefficient, respectively, on the Pavia University scene.
Regarding the Indian Pines scene, the accuracy increments
on OA, AA, and Kappa coefficient are separately 2.49%,
1.92%, and 0.0283, respectively. This observation reveals that
compared to GCN that uses a fixed graph, our data-driven
nonlocal GCN can offer better results.

Table X demonstrates the results of McNemar’s test,
in which we compute our method and other competitors in
terms of the significance of the difference between their classi-
fication results. We can see that on both data sets, the improve-
ment of accuracies yielded by our approach is statistically
significant compared with other methods. Figs. 5-7 show
the classification maps produced by RF-200, SVM-RBE
CCF-200, SICNN, 2-D CNN, GCN, and nonlocal GCN on
the three scenes. As shown in these figures, spectral classifiers
(i.e., random forest, SVM, and CCF) lead to salt-and-pepper
noised classification maps. Although spectral-spatial classifi-
cation networks (SICNN and 2-D CNN) address this issue,
they also result in another problem: oversmoothed classifica-
tion maps. In contrast, GCN-based methods not only remove
noisy scattered points of misclassification from classification

maps but also preserve edge information well. Figs. 5-7 show
classification results of different methods on the three data sets.

V. CONCLUSION

In this article, a semisupervised nonlocal GCN is pro-
posed for hyperspectral image classification. This network
takes as input the whole hyperspectral image instead of its
local portions (e.g., pixels and patches), providing a fresh
perspective to the classification of hyperspectral imagery using
networks. Based on several of our observations from this
task, we propose a network module to learn a nonlocal graph
representation for the input image. Afterward, a couple of
graph convolutional layers are used to extract useful features,
depending on the learned graph representation. Both the graph
learning module and graph convolutional layers are jointly
optimized during training. In addition, a cross-entropy error
over all labeled instances is used as the loss function of the
nonlocal GCN to achieve the semisupervised classification.
Extensive experiments validate the effectiveness of the pro-
posed network. In the future, we will carry out further research
to explore dynamic graph-based convolutional networks for
hyperspectral image classification.

On the other hand, although we valid that a GCN with a
graph learning can provide satisfactory classification results,
one shortcoming of this method we can see is high compu-
tational and GPU memory overheads. This limits its use in
large-scale classification tasks, for example, at the moment
we fail to train a model on the Houston data set due to the
problem of out of memory. In the future, a promising and
important direction is to study how to greatly reduce these
overheads. Using superpixels as vertices in the graph is a
potential solution, but the oversegmentation algorithm cannot
be integrated into an end-to-end network. We believe that
lightweight versions are possible.
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