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Multilook Polarimetric SAR Change Detection
Using Stochastic Distances Between

Matrix-Variate G0
d Distributions

Nizar Bouhlel , Member, IEEE, and Stéphane Méric , Member, IEEE

Abstract— In this article, we propose an efficient heterogeneous
change detection algorithm based on stochastic distance measure
between two G0

d distributions. Due to its flexibility and simplicity,
the matrix-variate G0

d distribution has been successfully used
to model the multilook polarimetric synthetic aperture radar
(PolSAR) data and has been tested for classification, segmen-
tation, and image analysis. Concretely, closed-form expressions
for the Kullback–Leibler, Rényi of order β, Bhattacharyya,
and Hellinger distances are provided to compute the stochastic
distance between G0

d distributions. In this context, we resort to
the expectation–maximization (EM) to estimate accurately with
low complexity the parameters of the probability distribution
of the two multilook polarimetric covariance matrices to be
compared. Finally, the performance of the method is compared
firstly to the performance of other known distributions, such as
the scaled complex Wishart distribution, and secondly to other
known statistical tests using simulated and real multilook PolSAR
data.

Index Terms— Bhattacharyya and Hellinger distances, change
detection, expectation–maximization (EM) algorithm, multilook
polarimetric synthetic aperture radar (PolSAR) data, Rényi of
order β, stochastic distances: Kullback–Leibler.

I. INTRODUCTION

THE detection of changes in synthetic aperture radar
(SAR) images has become very important for various

applications, such as earth monitoring, earth observation, dam-
age assessment, and disaster management for which unsuper-
vised methods have been widely applied. Basically, change
detection consists of analyzing multitemporal remote sensing
images acquired on the same geographical area at different
times to identify changes [1]. When changes occur, a change
detection map is generated in which changed areas are explic-
itly identified. In unsupervised methods [2], some features
of the two images (before and after change) are compared
by using some similarity metrics resulting in a change map
quantifying the difference between the scenes, and then a
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threshold is applied to produce a final binary change detection
map with two classes associated with changed and unchanged
pixels [3]. Several unsupervised change detection methods
have been proposed and can be categorized into two groups:
one is based on pixel intensity and the neighboring of the pixel,
whereas the other is based on local statistics and statistical
information theory.

The first group included image differencing, mean ratio/log-
ratio measures [4], [5], Gauss log-ratio [6], etc. The simplest
one is to compute the ratio of SAR amplitudes or intensities
observed at different times and test the hypotheses of change
versus no-change. This kind of ratio is well-known test sta-
tistic in single-polarization SAR-based change detection. The
generalization of these methods to multilook polarimetric SAR
(PolSAR) images has been introduced by Conradsen et al. [7].
The authors proposed a likelihood ratio test (LRT) for the
equality of two complex covariance matrices and gave the
approximated distribution of the LRT statistic. The LRT
approach was extended to the multitemporal case [8], [9] and
multifrequency data [10]. Recently, Akbari et al. [11] proposed
a simpler test statistic to detect changes in many scenarios.
The test assumes the scaled complex Wishart distribution for
the covariance matrix data. It is based on the complex-kind
Hotelling–Lawley trace (HLT) which is used as a covariance
equality test.

The second group based on statistical information measure
has shown good performances for change detection. Indeed,
the complex PolSAR images are well described by proba-
bility density function (pdf) due to the random nature of
speckle. Thus, the statistical information measure uses the
local pdfs of the neighborhood of homologous pixels of
the pair of data used for the change detection [12]. These
pdfs have been chosen particularly to adequately model the
statistics of the SAR data. Once the parameters of the dis-
tributions are estimated, the information measure quantifies
the distance between the two pdfs. The comparison can
be performed using various information measures such as
the mutual information [13], [14], the variational and mixed
information [13], [15], and the stochastic distances such as the
Kullback-Leibler [16], Rényi [17], Bhattacharyya [18], [19],
and Hellinger distances [20]. We limit our focus to change
detection based on a stochastic distance measure between two
scenes acquired at different times.

Closed-form expressions of the distance measure of some
known distributions exist for single-polarization SAR images.
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Otherwise, certain approximations should be applied, like
the kernel density estimation (KDE) [21] or the 1-D edge
worth series expansions used to estimate the local pdfs [22].
Nascimento et al. [23] developed analytic expressions for
the Kullback–Leibler, Rényi, Bhattacharyya, and Hellinger
distances between univariate G0 distributions. Full PolSAR
gives more scattering information than single polarization
channel SAR data and then can be used to increase the quality
of the change detection map. Stochastic distances between
models for complex multilook PolSAR data require dealing
with integrals whose domain is the set of all positive definite
complex Hermitian matrices [24]. Unfortunately, it is not
obvious to find closed-form expressions for all the stochastic
distances. In this case, certain approximation techniques based
on the numerical evaluation of the integral of the distance
measure are commonly applied. The most popular method
is the Monte-Carlo (MC) estimation technique [25]. It can
estimate the stochastic distance provided that a large number
of independent and identically distributed (i.i.d.) samples is
provided. Nevertheless, the MC integration is a too slow
process to be useful in change detection. The simplest way
to have a closed-form expression for all the stochastic mea-
sures is to use a simple model. The complex scaled Wishart
distribution is widely used as a statistical simple model for
low-resolution multilook PolSAR data due to its ease of imple-
mentation and low computational cost [26]. Frery et al. [24]
obtained analytic expressions for the Kullback–Leibler, Rényi,
Bhattacharyya, and Hellinger distances between scaled com-
plex Wishart distributions in their most general form and in
important particular cases.

However, one critical issue in applying Wishart distribution
is that when the resolution increases, the homogeneous hypoth-
esis of the PolSAR is not valid any more, and non-Gaussian
statistics are observed. Consequently, many heterogeneous
models have been proposed based on the scalar texture product
model which is commonly assumed to be an appropriate statis-
tical model for PolSAR data [27]. Based on the product model,
the speckle is modeled with the complex scaled Wishart
distribution, and the texture is modeled as gamma (γ), inverse
gamma (γ−1), Fisher (F ), and generalized inverse Gaussian
distributions (N−1). The first two distributions depend on a
single shape parameter, whereas the other ones depend on two
shape parameters. The parameter estimation becomes more
challenging when the number increases. With different texture
distributions, the product model leads to different compound
distributions given by Kd [28], G0

d [29], [30], Kummer-Ud

[31], and Gd [30]. In general, unless the special function is
complicated and the shape of the distribution is flexible, the
better.

In this regard, the G0
d distribution has been extensively used

by the community for its flexibility and has been reported
excellent performance showing the suitability for describ-
ing different kind of regions: homogeneous, heterogeneous,
and extremely heterogeneous clutter with low computational
costs. In addition, the G0

d distribution is simpler than the Kd

distribution, which contains the modified Bessel function of
the second kind. Recent works also validate its use as an
efficient distribution for modeling [32], ship detection [33],

change detection [12], [23], and classification of PolSAR
images [34], [35].

For these reasons and without losing generality, we assume
that multilook PolSAR data follow a G0

d distribution. We
present analytic expressions for the Kullback–Leibler, Rényi,
Bhattacharyya, and Hellinger distances between two matrix-
variate G0

d distributions in general forms and in particular
cases. We believe that this is the first work that establishes
the closed-form expressions for these stochastic distances. In
order to apply these stochastic distance measures to change
detection, the parameters of matrix-variate G0

d distributions
need to be estimated first. In particular, we estimate the
equivalent number of looks (ENLs), the covariance matrix of
the speckle component, and the texture distribution parameters
by the polarimetric expectation–maximization (EM) estimator
[36]. For that end, the first contribution of this article is
to present closed-form expressions of the Kullback–Leibler,
Rényi, Bhattacharyya, and Hellinger distances between two
matrix-variate G0

d distributions. The second one is to provide
a numerical analysis of the closed-form expression and provid-
ing benchmark resources. The last contribution is to present
a parameter estimation procedure for compound distribution
and specifically for G0

d distribution.
This article is organized as follows: Section II introduces the

statistical product model for multilook PolSAR data and the
matrix-variate G0

d distribution. The closed-form expressions for
four stochastic distances between G0

d distributions are derived
in Section III. They are the Kullback–Leibler, Rényi of order
β, Bhattacharyya, and Hellinger distances. Section IV presents
the parameter estimation method needed for the computation
of the previous stochastic distances. The polarimetric EM esti-
mator is used for the multilook PolSAR data distribution. The
content of Section V is related to the performance evaluation.
Simulated PolSAR data and real PolSAR data are used for
evaluation. Finally, Section VI concludes this article.

II. PRODUCT MODEL FOR MULTILOOK POLARIMETRIC

RADAR DATA

The backscattering of a full PolSAR system is characterized
by the polarimetric scattering vector and defined as

s = [sHH, sHV, sVH, sVV]T ∈ C
d. (1)

The elements represent the complex backscattering coefficients
in the four combinations of the linear receive and transmit
polarizations. [.]T means transposition, and d = dim(s) is
the vector dimension. The polarimetric scattering vector s
represents a complex single-look. To reduce the speckle,
a multilook operation is used by averaging the covariance
matrix. The averaged multilook covariance matrix is obtained
as follows:

C =
1
L

L�
�=1

s�sH
� , L ≥ d (2)

where L is the number of looks, (.)H denotes the Hermitian
operator, and C ∈ Ω+ ⊂ Cd×d is the multilook polarimetric
covariance matrix defined on the cone Ω+ of the positive

. 



ACCEPTED MANUSCRIPT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BOUHLEL AND MÉRIC: MULTILOOK PolSAR CHANGE DETECTION USING STOCHASTIC DISTANCES 3

definite complex Hermitian matrices. According to the multi-
look polarimetric product model, the covariance matrix C is
considered as the product of a positive scalar texture random
variable, denoted τ , and a random speckle matrix, denoted X,
such that

C = τX. (3)

Matrix X follows a scaled complex Wishart distribution
sWC

d (L,Σ) with a pdf given by

fX(X) =
LLd|X|L−d

Γd(L)|Σ|L etr(−LΣ−1X) (4)

where Σ is the covariance matrix of the speckle, etr(.) =
exp(tr(.)) is the exponential trace operator, |.| is the determi-
nant operator, and Γd(L) is the multivariate gamma function
of the complex kind defined as Γd(L) = πd(d−1)/2

�d−1
i=0 Γ

(L − i), where Γ(L) is the standard Euler gamma function.
The pdf of C using the Bayes’ theorem becomes as follows:

fC(C) =
� +∞

0
fC|τ (C|τ)fτ (τ)dτ (5)

where fC|τ (C|τ) is the pdf of C with a specific value of τ
and is given by

fC|τ (C|τ) =
LLd|C|L−d

Γd(L)|Σ|L
1
τdL

etr
�
−L
τ
Σ−1C

�
. (6)

Substituting (6) in (5), the pdf of C is obtained by

fC(C) =
LLd|C|L−d

Γd(L)|Σ|L
� +∞

0

1
τdL

etr

�
− L

τ
Σ−1C

�
fτ (τ)dτ. (7)

The variable texture τ follows a normalized inverse gamma
distribution to the unit mean, denoted γ̄−1(λ) as follows:

fτ(τ) =
(λ− 1)λ

Γ(λ)
1

τ1+λ
exp

�
−λ− 1

τ

�
τ ∈ R+, λ > 1. (8)

As a consequence, the multilook polarimetric covariance
matrix follows the matrix-variate G0

d distributions [30],
denoted as G0

d(Σ, L, λ), and is given as follows:

fC(C) =
LLd|C|L−d

Γd(L)|Σ|L
(λ− 1)λΓ(dL + λ)

Γ(λ)(Ltr(Σ−1C) + λ− 1)dL+λ
. (9)

III. STOCHASTIC DISTANCES

In this section, the closed-form expressions of the stochas-
tic distances such as the Kullback–Leibler, Rényi of order
β, Bhattacharyya, and Hellinger between two matrix-variate
G0

d(Σ1, L1, λ1) and G0
d(Σ2, L2, λ2) distributions are derived.

The analytic expressions are available for different ENLs,
various covariance matrices, and different texture parameters.
A particular case is examined when the ENL is the same
for the two distributions. This case is likely to be the most
frequently used in practice since it allows the comparison
of two possibly different areas from the same image [24].
Let C1 and C2 be two random matrices that follow G0

d dis-
tribution with pdfs fC1(C|Σ1, L1, λ1) and fC2(C|Σ2, L2, λ2)
given by (9).

A. Kullback–Leibler Distance

The Kullback–Leibler divergence [16] between C1 and C2

is given by

DKL(C1||C2) =
�
Ω+

ln
�
fC1(C)
fC2(C)

�
fC1(C)dC

=EC1{ln fC1(C)} −EC1{ln fC2(C)}. (10)

Jeffreys [37] used a symmetric version of (10) as a measure of
divergence between two distributions. In this case, the measure
is called “distance” and is given by

dKL(C1,C2) = DKL(C1||C2) +DKL(C2||C1). (11)

The expressions of EC1{ln fC1(C)} and EC1{ln fC2(C)} are
given as follows:

EC1{ln fC1(C)}

= ln

�
Γ(dL1 + λ1)(λ1 − 1)λ1

Γ(λ1)Γd(L1)
��L1Σ−1

1

��−L1

�
+ (L1 − d)EC1{ln |C|}

− (dL1 + λ1)EC1{ln[tr(L1Σ−1
1 C) + λ1 − 1]} (12)

and

EC1{ln fC2(C)}
= ln

	
Γ(dL2 + λ2)(λ2 − 1)λ2

Γ(λ2)Γd(L2)|L1Σ−1
2 |−L2



+ (L2 − d)EC1{ln |C|}

− (dL2 + λ2)EC1

�
ln

�
tr


L2Σ−1

2 C
�
+λ2−1

��
. (13)

These expectations depend on EC1{ln |C|} which is given as
follows (see Appendix B-A for details):

EC1{ln |C|} = ψd(L1)− d lnL1 + ln |Σ1|
+ d ln(λ1 − 1)− dψ(λ1) (14)

where function ψd(L) is the multivariate digamma function
defined as ψd(L) = ∂ ln Γd(L)/∂L =

�d−1
j=0 ψ(L − j), and

ψ(.) is the digamma function. In fact, the last expectation can
be computed in another way by using the product model. Then
it is equivalent to EC1{ln |C|} = EX1{ln |X|} + dEτ1{ln τ}.
The second expectation EC1{ln[tr(L1Σ−1

1 C) + λ1 − 1]} is
given as follows (see Appendix B-B for details):

EC1{ln[tr(L1Σ−1
1 C) + λ1 − 1]}

= ln(λ1−1)−ψ(λ1)+ ψ(dL1+λ1). (15)

Finally, to completely compute EC1{ln fC2(C)}, the third
expectation EC1{ln[tr(L2Σ−1

2 C) + λ2 − 1]} is needed and
it is given as follows (see Appendix B-C for details):

EC1

�
ln

�
tr


L2Σ−1

2 C
�

+ λ2 − 1
��

= ln(λ2 − 1)− ψ(λ1) + ψ(λ1 + dL1)−
�

d�
i=1

Λ−L1
i

�

× ∂

∂a
F

(d)
D

�
λ1 + dL1, L1, . . . , L1� �� �

d

;

λ1 + dL1 + a; 1− 1
Λ1
, 1− 1

Λ2
, . . . , 1− 1

Λd

������
a=0

(16)

. 



ACCEPTED MANUSCRIPT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE I

ANALYTIC EXPRESSIONS OF KULLBACK–LEIBLER AND RÉNYI OF ORDER β DISTANCES BETWEEN TWO MATRIX-VARIATE

G0
d(Σ1, L1, λ1) AND G0

d(Σ2, L2, λ2) DISTRIBUTIONS

where F (d)
D (.) is the Lauricella D-hypergeometric series of d

variables (see Appendix G for more details), and Λ1, . . . ,Λd

are the eigenvalues of the positive definite complex Hermitian
matrix Λ = [L2(λ1 − 1)/L1(λ2 − 1)]Σ−1

2 Σ1.
The analytic expressions for the stochastic divergence

DKL(C1||C2) and distance dKL(C1,C2) between
G0

d(Σ1, L1, λ1) and G0
d(Σ2, L2, λ2) distributions are given,

respectively, by (20) and (21) in Table I.
1) Case L1 = L2 = L: The positive definite complex

Hermitian matrix becomes Λ = (λ1 − 1)(λ2 − 1)−1Σ−1
2 Σ1

and the symmetric Kullback–Leibler divergence is as
follows:

dKL(C1,C2)

= (λ1 − λ2)
�
ψ(λ1)− ψ(λ2) + ψ(dL+ λ2)− ψ(dL + λ1)

�

−(dL+ λ2)

�
d�

i=1

Λ−L
i

�
∂

∂a
F

(d)
D



λ1 + dL,L, . . . , L;

λ1 + dL + a; 1− Λ−1
1 , . . . , 1− Λ−1

d

���
a=0

− (dL+ λ1)

�
d�

i=1

ΛL
i

�
∂

∂a
F

(d)
D (λ2 + dL,L, . . . , L;

λ2 + dL + a; 1− Λ1, . . . , 1− Λd)
��
a=0

. (17)

2) Case L1 = L2 = L and Σ1 = Σ2: The positive definite
complex Hermitian matrix becomes Λ = (λ1−1)(λ2−1)−1Id

and the Lauricella function becomes equivalent to the Gauss
hypergeometric function as follows:

F
(d)
D (λ1+dL,L, . . . , L; λ1+dL+a; 1−Λ−1, . . . , 1− Λ−1)

= 2F1(λ1 + dL, dL, λ1 + dL+ a; 1− Λ−1) (18)

. 
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where Λ = (λ1 − 1)(λ2 − 1)−1. As a consequence,
the Kullback–Leibler distance is as follows:

dKL(C1,C2)
= (λ1 − λ2)[ψ(λ1)− ψ(λ2) + ψ(dL+ λ2)− ψ(dL + λ1)]

− (dL+ λ2)Λ−dL ∂

∂a
2F1(λ1 + dL, dL;

λ1 + dL+ a; 1− Λ−1)
��
a=0
− (dL + λ1)ΛdL

∂

∂a
2F1(λ2 + dL, dL; λ2 + dL+ a; 1− Λ)

��
a=0

.

(19)

B. Rényi Distance of Order β

Rényi [17] presented the first parametric generalization of
(10) given by

Dβ
R(C1||C2) =

1
β − 1

ln
�
Ω+

fβ
C1(C)f1−β

C2 (C)dC (25)

=
1

β − 1
lnEC1

��
fC1(C)
fC2(C)

�β−1�
(26)

where 0 < β < 1. The Rényi distance is given by

dβ
R(C1,C2) =

1
2



Dβ

R(C1||C2) +Dβ
R(C2||C1)

�
. (27)

It is clear that the KL divergence is a particular case of
the Rényi divergence when β → 1. The analytic expres-
sion for the stochastic distance Dβ

R(C1||C2) between two
matrix-variate G0

d(Σ1, L1, λ1) and G0
d(Σ2, L2, λ2) distribu-

tions is given by (22) in Table I. The computation details
are given in Appendix C. The symmetric expression of
the Rényi divergence is then given by (23). Using pro-
priety (116), dβ

R(C1,C2) can also be written otherwise
by (24).

1) Case L1 = L2 = L: The distance, dβ
R(C1,C2), given by

(23) becomes in this case as follows:

dβ
R(C1,C2)

=
1

2(β − 1)

�� ln
Γ(dL+ λ1)Γ(dL + λ2)

Γ(λ1)Γ(λ2)
− L1

d�
i=1

ln Λi

+ ln
Γ(β(λ1 − λ2) + λ2)Γ(β(λ2 − λ1) + λ1)

Γ (β(λ1 − λ2) + dL+ λ2) Γ (β(λ2 − λ1) + dL+ λ1)

+ lnF (d)
D



β(dL + λ1), L, . . . , L;β(λ1 − λ2) + dL+ λ2;

1− Λ−1
1 , . . . , 1− Λ−1

d

�
+ lnF (d)

D

�
(1− β)(dL + λ1), L, . . . , L;β(λ2 − λ1)

+ dL+ λ1; 1− Λ−1
1 , . . . , 1− Λ−1

d

���. (28)

C. Hellinger Distance

The Hellinger distance [38] is defined as follows:

dH(C1,C2) = 1−
�
Ω+

�
fC1(C)fC2(C)dC (29)

= 1− exp

�
− 1

2
d
1/2
R (C1,C2)

�
(30)

with�
Ω+

�
fC1(C)fC2(C)dC

=

�
Γ(dL1 + λ1)Γ(dL2 + λ2)
Γd(L1)Γd(L2)Γ(λ1)Γ(λ2)

� 1
2

× Γd(L1/2 + L2/2)Γ(λ1/2 + λ2/2)
Γ(dL1/2 + dL2/2 + λ1/2 + λ2/2)

�
d�

i=1

Λ−L1
2

i

�

×F (d)
D

�
dL1 + λ1

2
,
L1 + L2

2
, . . . ,

L1 + L2

2
;

d(L1 + L2) + λ1 + λ2

2
;

1− 1
Λ1
, 1− 1

Λ2
, . . . , 1− 1

Λd

�
. (31)

The details of this derivation are given in Appendix D. This
expression can be written otherwise by using the following
relation deduced from (116):

d�
i=1

Λ−L1
2

i F
(d)
D

�
dL1 + λ1

2
,
L1 + L2

2
, . . . ,

L1 + L2

2
;

d(L1 + L2) + λ1 + λ2

2
; 1− 1

Λ1
, 1− 1

Λ2
, . . . , 1− 1

Λd

�

=
d�

i=1

Λ
L2
2

i F
(d)
D

�
dL2 + λ2

2
,
L1 + L2

2
, . . . ,

L1 + L2

2
;

d(L1 + L2) + λ1 + λ2

2
; 1− Λ1, 1−Λ2, . . . , 1−Λd

�
. (32)

As a result, both expressions (39) and (40) can be estab-
lished for the Hellinger distance between two matrix-variate
G0

d(Σ1, L1, λ1) and G0
d(Σ2, L2, λ2) distributions. The analytic

expressions are given in Table II.
1) Case L1 = L2 = L: The symmetric Hellinger distance

dH(C1,C2) given by (39) becomes as follows:

dH(C1,C2)

= 1−
�

Γ(dL+ λ1)Γ(dL + λ2)
Γ(λ1)Γ(λ2)

� 1
2 Γ



λ1
2 + λ2

2

�
Γ


dL + λ1

2 + λ2
2

�
×

�
d�

i=1

Λ−L
2

i

�
F

(d)
D

�
dL+ λ1

2
, L, . . . , L� �� �

d

; dL+
λ1 + λ2

2
;

1− 1
Λ1
, 1− 1

Λ2
, . . . , 1− 1

Λd

�
. (33)

D. Bhattacharyya Distance

The Bhattacharyya distance measure [18] is given by

dB(C1,C2) = − ln
�
Ω+

�
fC1(C)fC2(C)dC (34)

=
1
2
d
1/2
R (C1,C2). (35)

The developed expression of dB(C1,C2) is given by (37)
in Table II. Using relation (32) deduced from (116), one can
deduce a second expression of the Bhattacharyya distance
given by (38).

. 
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TABLE II

ANALYTIC EXPRESSIONS OF BHATTACHARYYA AND HELLINGER DISTANCES BETWEEN TWO MATRIX-VARIATE

G0
d(Σ1, L1, λ1) AND G0

d(Σ2, L2, λ2) DISTRIBUTIONS

1) Case L1 = L2 = L: Symmetric dB(C1,C2) given by
(37) becomes in this case as follows:

dB(C1,C2)

= −1
2

ln
Γ(dL+ λ1)Γ(dL + λ2)

Γ(λ1)Γ(λ2)

− ln
Γ(λ1/2 + λ2/2)

Γ(dL+ λ1/2 + λ2/2)
+
L

2

d�
i=1

ln Λi

− lnF (d)
D

�
dL + λ1

2
, L, . . . , L; dL+

λ1 + λ2

2
; 1− 1

Λ1
,

1− 1
Λ2
, . . . , 1− 1

Λd

�
. (36)

E. Implementation of Lauricella Function
In order to compute Kullback–Leibler divergence given by

(20) and its symmetric version (21), the Lauricella function
and its derivative need to be computed. The reader may refer to
Appendix G, where we provide two different ways to compute
Lauricella’s FD. The first one consists of using the integral
form given by (115) which is evaluated by symbolic inte-
gration tools in MATLAB, whereas the second one resort to
Lauricella series given by (113). In this article, the Lauricella
series is more convenient than the integral form because of the
ease of computation and implementation. However, the conver-
gence of the series needs to be guaranteed. In doing so, several
transformations can be applied to the series using relations
(116) and (117) included in Appendix G. In addition, for the
feasible computation of the series, the series indices are limited

to Nmax instead of infinity. The last parameter is chosen to
ensure a good approximation of the Lauricella function. The
achieved accuracy given by the selected parameter will be
discussed later in the next paragraph.

Partial derivatives (∂/∂a)F (d)
D (.) are approximated using a

numerical differentiation (For more details, see Appendix E.)
as follows:�

d�
i=1

Λ−L1
i

�
∂

∂a
F

(d)
D

�
λ1 + dL1, L1, . . . , L1; δ1;

1− Λ−1
1 , . . . , 1− Λ−1

d

�
≈ F

(d)
D (a, L1, . . . , L1; δ1; 1− Λ1, . . . , 1− Λd)− 1

a
(41)

≈
Λ−a

1 F
(d)

D



a, λ1+a, . . . ,L1;δ1;1− 1

Λ1
,1−Λ2

Λ1
, . . . ,1−Λd

Λ1

�
−1

a (42)

with δ1 = λ1 + dL1 + a and a = 10−3. The approxi-
mation accuracy of the numerical derivatives depends on the
smoothness of the function. In the same manner, the second
derivative of (21) is approximated as follows:�

d�
i=1

ΛL2
i

�
∂

∂a
F

(d)
D (λ2 + dL2, L2, . . . , L2; δ2;

1− Λ1, . . . , 1− Λd)

≈
F

(d)
D



a, L2, . . . , L2; δ2; 1− 1

Λ1
, . . . , 1− 1

Λd

�
− 1

a
(43)

≈
Λa

1F
(d)

D



a, λ2 + a, . . . ,L2;δ2;1−Λ1,1− Λ1

Λ2
, . . . ,1− Λ1

Λd

�
−1

a
(44)

. 
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≈
Λa

dF
(d)

D



a,λ2+a, . . . ,L2;δ2;1−Λd,1− Λd

Λd−1
, . . . ,1−Λd

Λ1

�
−1

a
(45)

with δ2 = λ2 + dL2 + a. Then, to compute the Kullback–
Leibler, the following Algorithm 1 is used.

Algorithm 1 Computation of dKL

1: Compute the eigenvalues of Λ = L2(λ1−1)
L1(λ2−1)Σ

−1
2 Σ1.

2: Sort in descending order: Λ1 > Λ2 > · · · > Λd > 0
3: Main:
4: If Λ1 > 1
5: Use (42)
6: Else Use (41); end
7: If Λd > 1
8: Use (43)
9: Else Use (45); end

10: Return dKL

The computation accuracy of the Lauricella series is evalu-
ated by comparing it with the Gauss hypergeometric function
in the case, where they are equivalents for some particular
values of (Λ1, . . . ,Λd). Indeed, when Λ1 = · · · = Λd = Λ,
we have the following relation:

F
(d)
D (a, L1, . . . , L1; λ1 + dL1 + a; 1− Λ, . . . , 1− Λ)

= 2F1(a, dL1, λ1 + dL1 + a, 1− Λ). (46)

Table III shows the computation of F (d)
D (.) and 2F1(.),1

along with the absolute value of error |ε|, where a =
10−3, L1 = 6, λ1 = 2, d = 3, Nmax = {10, 20, 30}. Note
that the error is reasonably low and increases for the values
of 1 − Λ near 1, as expected. The computation times of
F

(d)
D (.) are recorded using MATLAB on a 2.6-GHz processor

with 16 GB of memory. The mean values are respectively
{1.24, 4.30, 12.52} s for Nmax = {10, 20, 30}. The value of
Nmax can be increased to further improve accuracy but it will
increase the computation time. It is worth noticing that when
1− Λ = 1, we have the following relation:

F
(d)

D (a, L1, . . . , L1; λ1+dL1+a; 1, . . . , 1) =
B(a, λ1)

B(a, λ1+dL1)
(47)

where B(.) is the beta function.

F. Comparison With MC Technique

When it is hard to compute the stochastic distances because
of the integral involved in computing them, we have to resort
to approximation methods. In the literature, there have been
several methods addressing this issue. The most important
one is the MC sampling. The MC method can estimate the
stochastic distances provided that we have a large number of
i.i.d. samples. The idea of the method is to sample a large
number of samples and use them to compute the summation,
instead of the integral, over these samples. The approximation

1The Gauss hypergeometric function 2F1 is provided in MATLAB by the
command hypergeom.

TABLE III

a = 10−3, L1 = 6, λ1 = 2, d = 3, Nmax = {10, 20, 30}

result will be very close to the true value of the stochastic
distance when a large number of samples goes to infinity.

Let N be i.i.d. realizations Ci and C′
i, i = {1, . . . , N} of a

random matrix C1 and C2, respectively, which are distributed
according to the density function fC1(Ci) and fC2(C′

i). The
stochastic distances are calculated with the sample mean given
a set of {Ci}Ni=1 and {C′

i}Ni=1 as follows:

d̂KL(C1,C2) =
1
N

N�
i=1

ln
fC1(Ci)
fC2(Ci)

+
1
N

N�
i=1

ln
fC2(C′

i)
fC1(C′

i)
(48)

d̂H(C1,C2) = 1− 1
N

N�
i=1

�
fC1(Ci)
fC2(Ci)

�− 1
2

(49)

d̂B(C1,C2) = − ln
1
N

N�
i=1

�
fC1(Ci)
fC2(Ci)

�− 1
2

. (50)

Some simulations are used to assess the deviation and vari-
ation of the sample mean with the theoretical stochastic
distances. Then, the bias and the Mean Square Error (MSE)
defined, respectively, by E{d̂x} − dx and E{(d̂x − dx)2},
where x ∈ {KL,H (Hellinger),B (Bhattacharyya)} are com-
puted for finite size samples during the MC experiments.
The parameters used for simulations are (Σi, Li, λi), i =
{1, 2} of G0

d distribution, and the considered sample sizes
are {1024, 2048, 4096, 8192, 16 384, 32 768}. For each sample
size configuration, the experiment is repeated 2000 times.
Parameters of simulations (Σi, Li, λi) are given in Table IV
and we set a = 10−3 and Nmax = 30 to compute the
Lauricella series. The result of our simulations is depicted
in Fig. 1, where the absolute value of the bias and the MSE is
illustrated as a function of the sample sizes. The reader may
notice that as the sample size increases, the bias and MSE
of d̂KL, d̂H, and d̂B decrease. It is clear that by the law of
large numbers, d̂KL, d̂H, and d̂B converge to dKL, dH, and
dB, respectively.

IV. EM-BASED ESTIMATOR FOR G0
d DISTRIBUTION

In order to compute these distance measures to change
detection, the parameters of the matrix-variate G0

d distribution

. 
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TABLE IV

PARAMETERS (Σ1, L1, λ1) AND (Σ2, L2, λ2) USED TO COMPUTE
STOCHASTIC DISTANCES AND FOR MC SAMPLING

Fig. 1. Bias: E{d̂x} − dx and MSE: E{(d̂x − dx)2} of sample mean
estimator, where x ∈ {KL, H (Hellinger), B (Bhattacharyya)}.

need to be estimated first. In particular, we estimate the
ENLs, the covariance matrix of speckle component Σ and
the texture distribution parameter λ. A developed method
based on the EM algorithm and presented by Bouhlel and
Meric [36] is used in this article to compute the maximum of
likelihood (ML) estimates of the unknown parameters of the
G0

d distribution. In [36], it was shown that the method had a
good performance in terms of bias and MSE compared to the
performance of other known estimators such as the matrix log-
cumulants (MLC) [28] and the multivariate fractional moment
(MFM) [39].

We consider C = {Ci, 1 ≤ i ≤ N} a set of i.i.d. random
matrices. We assume that the random matrix Ci follows the G0

d

distribution. We suppose that each covariance matrix Ci has a
corresponding unobserved and hiding texture τi. We assume

that the sequence {τi, 1 ≤ i ≤ N} is also i.i.d. random
variables. The EM algorithm is used to find the estimation
θ̂ = (Σ̂, L̂, λ̂) given a current estimate θ′. The equations
needed to estimate these parameters are as follows:

Σ̂ =
1
N

N�
i=1

Eτi|Ci

�
1
τi
|Ci, θ

′
�

Ci (51)

d ln L̂+ d− ψd(L̂)

=
1
N

N�
i=1

�
Eτi|Ci

�
1
τi
|Ci, θ

′
�

tr(Σ̂
−1

Ci)− ln |Σ̂−1
Ci|

�

+
d

N

N�
i=1

Eτi|Ci
{ln τi|Ci, θ

′} (52)

ln(λ̂−1)−ψ(λ̂)+
λ̂

λ̂− 1
=

1
N

N�
i=1

Eτi|Ci

�
1
τi

+ln τi|Ci, θ
′
�
. (53)

The posterior pdf of τi given Ci is provided in a closed form
in Table V. It corresponds to an inverse gamma distribution
with parameters (α1 = dL+λ, β1 = Ltr(Σ−1Ci)+λ−1). The
posterior expectation expression in terms of these parameters
is defined in Table VI (see Appendix F). An explicit solution
for L̂ and λ̂ is not obtainable directly from (52) and (53).
The trust region method [40] is proposed to solve it itera-
tively. Specifically, the f solve function MATLAB is utilized
to obtain the parameter estimate. The estimation approach of
the parameters is summarized in Algorithm 2.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the proposed distance measures is
evaluated by comparison with distances based on the scaled
Wishart distribution. The receiver operating characteristic
(ROC) curve is performed for both methods independently of
any thresholding algorithm leading to the accurate evaluation
of the change map. The performance measure is taken here
as the area under the ROC curve (AUC). The ROC curve is
the evolution of the true positive rate (TPR) as a function of
false positive rate (FPR) [41]. The AUC is a good indicator of
changes. Indeed, a better performance is found for larger AUC.

Algorithm 2 Estimation Approach of the Parameters (Σ, L, λ)
1: Input: N,Ci, d, ε
2: Output: θ̂ = (Σ̂, L̂, λ̂)
3: Initialization:
4: Set initial parameters θ′ = (Σ′ = Id, L0, λ0)
5: Main Loop:
6: Repeat
7: Calculate Eτ |C{.|Ci, θ

′} according to the com-
pound pdf using Table VI

8: Estimate Σ̂ using (51);
9: Estimate L̂ using Σ̂ and (52)

10: Estimate λ̂ using (53)
11: Calculate stop criterion: D ← 	θ̂ − θ′	
12: Set inputs for next iteration: Σ′, L′, λ̂′ ← Σ̂, L̂, λ̂
13: Until D < ε
14: Return (Σ̂, L̂, λ̂)

. 
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TABLE V

POSTERIOR PDF OF τ GIVEN MULTILOOK POLARIMETRIC COVARIANCE MATRIX C

TABLE VI

POSTERIOR EXPECTATION OF τ GIVEN MULTILOOK POLARIMETRIC COVARIANCE MATRIX C

Fig. 2. Pauli decomposition of simulated 4-look quad-pol PolSAR data. (a) Before change, (b) after change, and (c) binary truth change map, where white
color is change and black color is no-change.

To produce a binary change detection map a thresholding is
applied. Several thresholding methods have been proposed
in the literature to determine the threshold in a completely
unsupervised manner and none of them is perfect. To name a
few of them: the constant false alarm rate (CFAR) algorithm
[42], Otsu’s method [43], the Kittler and Illingworth (K&I)
algorithm [44], and Liu’s method [45]. In the present work,
the best performance was obtained by applying an optimal
thresholding which consists of selecting the nearest point to
(0, 1) in the ROC curve [12], [41] as shown in Fig. 7. Based
on the optimal threshold, TPR and FPR are obtained. In
Section V-A, our approach will be compared against other
methods by evaluating both simulated and real multilook
PolSAR data.

A. Evaluation on Simulated Multilook PolSAR Data

The simulated quad-pol data contain two four-look PolSAR
images of 200 × 200 pixels and have three polarimetric
channels. These data are each composed of five different
regions. All five regions follow G0

d distribution. The tex-
ture distribution parameters are chosen to cover homoge-
neous and heterogeneous textures. For an urban area (area 1)
which is a high-texture region and extremely heterogeneous,
the shape parameter of the matrix-variate G0

d distribution is less
than or equal to 2. For a forest area which is a heterogeneous
area with moderate texture, the value of λ is given by 2 <
λ < 8 (areas 3, 4, and 5). For a sea region which is a
homogeneous area, the shape parameter tends toward infinity
leading to a realization of a scaled Wishart distribution. Here,

TABLE VII

TEXTURE PARAMETERS AND COVARIANCE MATRIX FOR EACH REGION

it corresponds to region 2 with λ = ∞. The details of
the distribution parameters (λ,Σ) for each region are given
in Table VII. We want to draw the reader’s attention to the fact
that regions 1 and 2 have the same speckle covariance matrix
but different texture parameter values. This choice is to see if
our approach is able to distinguish between the two regions.

Fig. 2 shows the two images before and after change as well
as the binary truth change map. For the estimation parameter
procedure, the EM-based estimator using a sliding window of
size k × k, covering the whole image is selected to compute
the local estimation of the covariance matrix Σ, its determinant
|Σ|, the ENL L, and the texture parameter λ. Fig. 3 depicts
the results of the local estimation of these parameters using
sliding windows of size 11× 11.

To further illustrate the potential of the stochastic dis-
tances in change detection for multilook PolSAR data, two
well-known test statistics for measuring the equality of
two multilook covariance matrices are compared against our
approach. Bartlett distance is one of them which has been
reported in the literature for classification [46] and change

. 
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Fig. 3. Local estimation of speckle and texture parameter of whole image before and after change. (a) and (a’) Local ENL estimates computed by EM-based
estimator when slide window is 11×11. (b) and (b’) Local ln λ̂ estimates before and after change. (c) and (c’) Local ln |Σ̂| estimates before and after change.

Fig. 4. Detection results for simulated PolSAR data. (a) and (a’) Kullback–Leibler distances using G0
d

and the binary change map, where white color is
change and black color is no-change. (c) and (c’) Bhattacharyya distances using G0

d
and the corresponding binary change map. (b) and (b’) Kullback–Leibler

distance using sWC

d
and its binary map. (d) and (d’) Bhattacharyya distances using sWC

d
and binary map. (e) and (e’) Logarithm of HLT statistic images

and binary change map. (f) and (f’) Bartlett distance and the corresponding change detection map.

. 
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detection [47] and is given by

TBartlett = 2 ln
|Y + Z|
|Y| 12 |Z| 12 (54)

where Y and Z are multilook covariance matrices before and
after change. It is worth noticing that the Bartlett distance
is proportional to the LRT [7]. The second approach for
comparative purposes is the HLT statistic [11] which is used
as covariance equality test and is defined as

THLT = max{tr(Y−1Z), tr(Z−1Y)}. (55)

The test assumes the scaled complex Wishart distribution
for the covariance matrix data.

Fig. 4 illustrates the different distances and the correspond-
ing binary change maps, where white color is change and
black color is no-change. These corresponding binary maps are
obtained by applying an optimal thresholding which consists
of selecting the nearest point to (0, 1) in the ROC curve
previously mentioned. In doing so, we obtain the TPR and
the FPR. The Bartlett distance and HLT statistic give us the
worst detection results as it is shown in Fig. 4(e) and (f)
and their corresponding binary images in Fig. 4(e’) and (f’),
respectively. In Fig. 4(a)–(d), the Kullback–Leibler and the
Bhattacharyya distances using G0

d and sWC

d provide better
performance than Bartlett distance and HLT statistic as more
areas are detected. The reader may refer to Appendixes H and
I for the detailed analytical expressions of Kullback–Leibler
and Bhattacharyya distances based on the scaled Wishart
distribution.

The comparison between distances shows that G0
d distrib-

ution gives better results than sWC

d . This can be depicted
in region 2 at the center of the image. In this example,
the scaled Wishart distribution is unable to detect region 2
[see Fig. 4(b’)–(d’)], whereas both distances Kullback–Leibler
and Bhattacharyya for the G0

d distribution successfully detected
it [see Fig. 4(a’)–(c’)]. This is due to the fact that regions
1 and 2 have the same speckle covariance matrix and as
a consequence the distances based on the scaled Wishart
distribution consider them to be similar and not different.
Furthermore, the distance profile concerning region 2 for both
distributions using Bhattacharyya distance is drawn in Fig. 5(a)
and (b) corresponding to the columns and rows of the image,
respectively. To be more precise, for instance in Fig. 5(a),
we fix the row number to 100 and we draw the variation among
columns. In a similar way, the variation among rows is shown
in Fig. 5(b). One can notice the low values of Bhattacharyya
distances based on scaled Wishart distribution compared to the
G0

d distribution in region 2.
Change detection in region 2 by the Kullback–Leibler

distance is more visible than that of Bhattacharyya. This is due
to the different behavior of these two distances with respect
to λ1 and λ2. Indeed, in Fig. 6, the behavior of Kullback–
Leibler and Bhattacharyya distances for G0

d distribution was
drawn as a function of λ1 = {2, 4} and 0 < λ2 ≤ 200 in
the case corresponding to L1 = L2 = 4 and Σ1 = Σ2.
For increasing values of λ2, the Kullback–Leibler distance
increases monotonically, whereas Bhattacharyya distance
remains almost constant. In other words, Bhattacharyya is

Fig. 5. Distance profile concerning region 2 for G0
d

and sWC

d
distribution

with Bhattacharyya distance. (a) Horizontal profile: row 100. (b) Vertical
profile: column 100.

more sensitive to heterogeneous regions and as a consequence,
less sensitive to homogeneous regions. In addition, for low
value of λ1, both distances increase (see blue curves in Fig. 6).

Regarding the quantitative assessment, the ROC curves for
all the distances used in the experiments are given in Fig. 7.
In this example, a sliding window of size 11×11 for distances
based on G0

d and sWC

d distributions has been employed and the
obtained results show that the ROC curve of sWC

d is always
above the ROC curve of G0

d for both low and high FPR values.
Moreover, HLT and Bartlett show the poorest performance
among all considered methods.

As density (or parameter) estimation depends heavily on
the sample size, different sliding window sizes are chosen,
k = {7, 9, 11, 13, 15}, for evaluation. The AUC is provided
for all methods presented in this article in Table VIII. At each
window size, the best values are highlighted in red whereas the
worst ones are blue. We can clearly see that G0

d always gives
the best for any sliding window size. We can also note that
as the window size grows, the AUC always increases until
a window size of 11 × 11 and decreases afterward. On the
contrary, HLT statistic and Bartlett distance are always the
worst. The TPR and FPR are also presented in Table VIII
based on the selected optimal thresholds. It is worth noticing
that TPR and FPR are consistent with AUC. Best performance
is characterized by a higher TPR value with a lower FPR value.
As it is seen in Table VIII, the Kullback–Leibler distance for
G0

d distribution with sliding window 11× 11 gives us the best
performance with (TPR = 0.92, FPR = 0.048) followed by
Bhattacharyya distance (TPR = 0.93, FPR = 0.063).

B. Evaluation on Real PolSAR Data

To evaluate the performance of the stochastic distance based
on the matrix-variate G0

d distribution, two PolSAR data sets are
used in the experiments.

1) Data Set: A co-registered pair of L-band full polarimetric
images acquired by the Jet Propulsion Laboratory/National
Aeronautics and Space Administration UAVSAR (1.26 GHz)
over the city of Los Angeles, California, on April 23, 2009 and
May 11, 2015 with a spatial resolution of 0.47 m in azimuth
and 1.66 m in range is used. The images are 1×4 multilooked.
Fig. 8(a) and (b) shows the Pauli decomposition of two images
obtained by the JPL’s UAVSAR sensor at two different times.

. 
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Fig. 6. (a) Behavior of Kullback–Leibler and (b) Bhattacharyya distance for
G0

d distribution, when L1 = L2 = 4, Σ1 = Σ2, λ1 = {2, 4} and λ2 varies.

Fig. 7. Comparison of ROC curves between the proposed method and
the other considered methods. The selected optimal thresholds correspond
to the closest point to (0, 1) in ROC curves. For G0

d , it is pointed by the
arrow. The slide window is 11 × 11.

TABLE VIII

AREA UNDER CURVE (AUC), TPR, AND FALSE ALARM RATE (FPR) FOR

SIMULATED DATA AND DIFFERENT VARIOUS METHODS. THE BEST

VALUES ARE HIGHLIGHTED IN RED AND THE
WORST ONES ARE BLUE

Fig. 8(c) shows the ground truth used to compute the ROC
curve. We recall that white color corresponds to change and
black color to no-change. As we can see, the interested area
of this data set is an urban area where the changes occurred
due to the effects of urbanization.

TABLE IX

AREA UNDER CURVE (AUC), TPR, AND FALSE ALARM RATE (FPR) FOR
REAL DATA AND DIFFERENT VARIOUS METHODS

2) Analysis: We first try to compute the local estimate
of the speckle covariance matrix, the ENL, and the texture
parameters for both images before and after change. The
local ENL estimation images computed by the EM-based
estimator using a sliding window of size 11 × 11 covering
the whole image are depicted in Fig. 9(a) and (a’). Fig. 9(b)
and (b’) presents the local texture parameter ln λ̂i, i = {1, 2}
estimate. The extremely heterogeneous texture regions (low λ

values) are marked in dark blue and the homogeneous regions
are marked in dark red. We show in Fig. 9(c) and (c’) the
local Log-determinant of the covariance matrix of the speckle
ln |Σ̂i| estimated before and after change. As we can see,
the heterogeneous texture regions are marked in red and the
homogeneous regions are marked in blue.

The second step is to compute the stochastic Kullback–
Leibler and Bhattacharyya distances with G0

d . For convenience
of analysis, we compare these distances to that of using
the scaled Wishart sWC

d distribution. In addition, the test
statistics, HLT and Bartlett, for measuring the equality of
two multilook covariance matrices are compared against our
approach.

Fig. 10 shows the results relative to the stochastic distances
based on G0

d and sWC

d distribution, and the statistical tests:
HLT and Bartlett. The corresponding binary change detection
maps are also depicted in Fig. 10. It is noted that the distances
are important at the location of the changes given by the
ground truth. Changes can be seen easily on both distances
for both distributions and for both HLT and Bartlett tests.
The difference lies in the small changes that are visible for
the G0

d distribution and not for the sWC

d distribution. To
quantify the performance of the method, ROC curves are
plotted for both distributions and distances using the ground
truth. Fig. 11 presents the results corresponding to an analysis
window of size 11 × 11. It is shown that the stochastic
distances based on G0

d give the best performance followed
by that based on scaled Wishart distribution and then by
HLT test. The Bartlett test gives the worst detection results.
As the method depends on the sample size, different sliding
window sizes are used k = {9, 11, 13} for evaluation. The
AUC, TPR, and FPR are provided in Table IX for all methods
presented in this study and for different sliding window.
We recall the reader that the selected optimal thresholds pro-
vide TPR and FPR. The best results are given by a window of
size 11× 11.

. 
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Fig. 8. UAVSAR images (in Pauli decomposition) on April 23, 2009 and May 11, 2015. (a) Before change, (b) after change, (c) ground truth, where white
color is change and black color is no-change.

Fig. 9. Local estimation of speckle and texture parameters of the city of Los Angeles images before and after change. (a) and (a’) Local ENL estimation.
(b) and (b’) Local texture parameter ln λ estimate. (c) and (c’) Local log determinant of the covariance matrix of speckle.

VI. CONCLUSION

This article has developed the closed-form expressions of
four stochastic distances that are Kullback–Leibler, Rényi of
order β, Bhattacharyya, and Hellinger, between two matrix-
variate G0

d distributions representing multilook PolSAR data
before and after change. These expressions have been derived

for the most general case (different ENLs, various covariance
matrices of the speckle, and different texture parameters) and
for the particular case where the ENLs are the same before
and after change. All the four analytic expressions depend on
the Lauricella function which is easily implemented in the
Lauricella series. The effectiveness of the change detection

. 
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Fig. 10. Detection results for simulated PolSAR data. (a) and (a’) Kullback–Leibler distances using G0
d

and the binary change map, where white color is
change and black color is no-change. (c) and (c’) Bhattacharyya distances using G0

d
and the corresponding binary change map. (b) and (b’) Logarithm of

Kullback–Leibler distance using sWC

d and its binary map. (d) and (d’) Bhattacharyya distances using sWC

d and binary map. (e) and (e’) Logarithm of HLT
statistic images and binary change map. (f) and (f’) Bartlett distance and the corresponding change detection map.

Fig. 11. ROC curve comparison between proposed method with G0
d and

scaled Wishart distribution and other methods (HLT, Bartlett distance). The
sliding window size is 11 × 11.

method using the closed-form formula is illustrated by both
simulated and real PolSAR data set. The results show that the

proposed method is well suited to detect heterogeneous areas
where the texture is dominant and gives a higher performance
(higher AUC) than the stochastic distances based on the scaled
Wishart distribution and other methods such as the HLT and
the Bartlett distance.

APPENDIX A

We need to demonstrate that�
Ω+

|C|L1−d(1 + tr(C))−(dL1+λ1)dC =
Γ(λ1)Γd(L1)
Γ(dL1 + λ1)

. (56)

The multiplication of the expression of Γd(L1) by Γ(λ1) is
given by

Γd(L1)Γ(λ1) =
�
Ω+

|X|L1−de−tr(X)dX
� +∞

0
tλ1−1e−tdt (57)

=
�
Ω+

� +∞

0

tλ1−1|X|L1−de−(tr(X)+t)dX dt. (58)

By taking the transformation C = t−1X where the
Jacobian determinant of this transformation is given by

. 
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dC = t−d2
dX [48, Th. 3.5] and by using propriety +∞

0 tbe−atdt = Γ(b+ 1)/ab+1, (58) is then given as follows:

Γd(L1)Γ(λ1)

=
�
Ω+

� +∞

0

|C|L1−dtdL1+λ1−1e−t(tr(C)+1)dtdC (59)

=
�
Ω+

|C|L1−d

	� +∞

0
tdL1+λ1−1e−t(tr(C)+1)dt



dC (60)

= Γ(dL1 + λ1)
�
Ω+

|C|L1−d(1 + tr(C))−(dL1+λ1)dC. (61)

Finally, (56) is established.

APPENDIX B
KULLBACK–LEIBLER DISTANCE FOR G0

d DISTRIBUTION

A. Expression of EC1{ln |C|}
Expectation EC1{ln |C|} can be computed utilizing the fol-

lowing propriety
 

log(x)f(x)dx = (∂/∂a)
 
xaf(x)dx|a=0.

The expectation is given as follows:

EC1{ln |C|}

=
∂

∂a

�
Ω+

|C|afC1(C)dC

�����
a=0

(62)

=
Γ(dL1 + λ1)(λ1 − 1)λ1

Γ(λ1)Γd(L1)

��L1Σ−1
1

��L1 ∂

∂a

�
Ω+

|C|L1+a−d

× [tr(L1Σ−1
1 C) + λ1 − 1]−(dL1+λ1)dC

�����
a=0

(63)

=
Γ(dL1 + λ1)

Γ(λ1)Γd(L1)(λ1 − 1)dL1

��L1Σ−1
1

��L1 ∂

∂a

�
Ω+

|C|L1+a−d

×
!
tr

�
L1

λ1 − 1
Σ−1

1 C

�
+ 1

"−(dL1+λ1)

dC

�����
a=0

. (64)

Let Y = L1/(λ1 − 1)Σ−1
1 C be a transformation

where the Jacobian determinant is given by dY =
|L1/(λ1 − 1)Σ−1

1 |ddC [48, Th. 3.5]. The new expression of
the expectation is then given as follows:

EC1{ln |C|}
=

Γ(dL1 + λ1)
Γ(λ1)Γd(L1)

∂

∂a

#
(λ1−1)ad��L1Σ−1

1

��a
×

�
Ω+

|Y|L1+a−d[1+tr(Y)]−(dL1+λ1)dY

 �����

a=0

. (65)

Using relation (56), the following relation can be established:�
Ω+

|Y|L1+a−d[1 + tr(Y)]−(dL1+λ1)dY

=
Γ(λ1 − ad)Γd(L1 + a)

Γ(dL1 + λ1)
. (66)

The last equation is substituted in the expression of
EC1{ln |C|} and the result is given by the following
expression:

EC1{ln |C|} (67)

=
∂

∂a

�
Γ(λ1− ad)

Γ(λ1)
Γd(L1+ a)

Γd(L1)

��L1Σ−1
1

��−a(λ1−1)ad

������
a=0

= ψd(L1)+ln |Σ1|−d lnL1+d [ln(λ1−1)− ψ(λ1)] . (68)

B. Expression of EC1{ln[tr(L1Σ−1
1 C) + λ1 − 1]}

The expression of the expectation is computed as follows:

EC1

�
ln

�
tr



L1Σ−1

1 C
�

+ λ1 − 1
��

=
∂

∂a

�
Ω+



tr(L1Σ−1

1 C) + λ1 − 1
�a
fC1(C)dC

�����
a=0

(69)

=
Γ(dL1 + λ1)(λ1 − 1)λ1

Γ(λ1)Γd(L1)

��L1Σ−1
1

��L1 ∂

∂a

�
Ω+

|C|L1−d

×


tr(L1Σ−1

1 C) + λ1 − 1
�−(dL1+λ1−a)

dC

�����
a=0

(70)

=
Γ(dL1 + λ1)

��L1Σ−1
1

��L1

Γ(λ1)Γd(L1)
∂

∂a

	
1

(λ1 − 1)dL1−a

�
Ω+

|C|L1−d

×
�

tr
�

L1

λ1 − 1
Σ−1

1 C
�

+ 1
�−(dL1+λ1−a)

dC

$�����
a=0

. (71)

In the same way, as done in the previous section, transforma-
tion Y = L1/(λ1 − 1)Σ−1

1 C is used. The expression of the
expectation is then given as follows:

EC1{ln[tr(L1Σ−1
1 C) + λ1 − 1]}

=
Γ(dL1 + λ1)
Γ(λ1)Γd(L1)

(72)

× ∂

∂a

	
(λ1−1)a

�
Ω+

|Y|L1−d(tr(Y)+1)−(dL1+λ1−a)dY

�����

a=0

.

Using relation (56), the following equation is established:�
Ω+

|Y|L1−d(tr(Y)+1)−(dL1+λ1−a)dY=
Γ(λ1− a)Γd(L1)
Γ(dL1+ λ1 − a) .

(73)

As a consequence, the new expression of the expectation is
given by

EC1{ln[tr(L1Σ−1
1 C) + λ1 − 1]}

=
∂

∂a

�
Γ(λ1− a)

Γ(λ1)
Γ(dL1+ λ1)

Γ(dL1+ λ1 − a) (λ1−1)a

������
a=0

(74)

= log(λ1 − 1)− ψ(λ1) + ψ(dL1 + λ1). (75)

C. Expression of EC1{ln[tr(L2Σ−1
2 C) + λ2 − 1]}

The expression of the expectation is computed as follows:

EC1

�
ln

�
tr


L2Σ−1

2 C
�

+ λ2 − 1
��

=−A ∂

∂a

�
Ω+

|C|L1−d
�
tr


L1Σ−1

1 C
�
+ λ1 − 1

�−(dL1+λ1)

×
�
tr


L2Σ−1

2 C
�

+ λ2 − 1
�−a

dC

�����
a=0

(76)

withA= [Γ(dL1+ λ1)/(Γ(λ1)Γd(L1))](λ1− 1)λ1
��L1Σ−1

1

��L1.
Let take Σ′−1

1 = L1/(λ1 − 1)Σ−1
1 a positive definite complex

Hermitian matrix and define the transformation Y = Σ′−1
1 C.

The Jacobian determinant of this transformation is given by
dY = |Σ′−1

1 |ddC. The previous expectation is then given as
follows:

EC1

�
ln

�
tr


L2Σ−1

2 C
�

+ λ2 − 1
��

= −A(λ1 − 1)−(dL1+λ1)|Σ′
1|L1

. 
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× ∂

∂a

�
(λ2 − 1)−a

�
Ω+

|Y|L1−d[tr(Y) + 1]−(dL1+λ1)

× [tr(ΛY) + 1]−adY

������
a=0

(77)

with Λ = L2(λ1 − 1)/(L1(λ2 − 1))Σ−1
2 Σ1.

Substituting expressions of A and Σ′
1 in the last equation and

using relation (56), we get

= −Γ(dL1 + λ1)
Γ(λ1)Γd(L1)

∂

∂a

�
(λ2 − 1)−a

�
Ω+

|Y|L1−d

× [tr(Y)+1]−(dL1+λ1)[tr(ΛY)+1]−adY

������
a=0

(78)

= ln(λ2 − 1)− Γ(dL1 + λ1)
Γ(λ1)Γd(L1)

∂

∂a

×
	�

Ω+

|Y|L1−d[1+ tr(Y)]−(dL1+λ1)[1+tr(ΛY)]−adY

�����

a=0

.

(79)

Knowing that

1+tr(Y)

�−(dL1+λ1)
=

1
Γ(dL1+λ1)� +∞

0
tdL1+λ1−1e−t(1+tr(Y))dt (80)


1+tr(ΛY)
�−a

=
1

Γ(a)

� +∞

0

xa−1e−x(1+tr(ΛY))dx (81)

we can write�
Ω+

|Y|L1−d[tr(Y) + 1]−(dL1+λ1)[tr(ΛY) + 1]−adY

=
1

Γ(dL1 + λ1)Γ(a)

�
Ω+

|Y|L1−d

+∞��
0

tdL1+λ1−1e−te−tr(tY)

× xa−1e−xe−tr(xΛY)dxdtdY. (82)

Using transformation Z = tY where its Jacobian determinant
is given by dZ = td

2
dY, the last equation is given by

=
1

Γ(dL1 + λ1)Γ(a)

�� +∞

0
tλ1−1e−txa−1e−x

×
	�

Ω+

|Z|L1−de−tr(Z[Id+ x
t Λ])dZ



dxdt. (83)

Utilizing relation
 
Ω+
|X|α−de−tr(BX)dX = Γd(α)|B|−α [48]

where B is a positive define complex Hermitian matrix,
the previous equation is then given by

=
Γd(L1)

Γ(dL1+λ1)Γ(a)

+∞��
0

tλ1−1e−t

�����Id+
x

t
Λ

�����
−L1

xa−1e−xdxdt.

(84)

Let Λ1, . . . ,Λd be the eigenvalues of Λ. Then, the determinant
is given as follows:�����Id +

x

t
Λ

����� =
d�

i=1

�
1 +

x

t
Λi

�
. (85)

As a consequence, (84) is given by

=
Γd(L1)

Γ(dL1 + λ1)Γ(a)

+∞��
0

tλ1−1e−(t+x)

×
d�

i=1

�
1 +

x

t
Λi

�−L1

xa−1dxdt. (86)

Using the following change variables u = x/t and v =
x + t, the Jacobian determinant is defined by dudv =
(1 + u)2/vdxdt. Then, one can write

=
Γd(L1)Γ(λ1 + a)
Γ(dL1 + λ1)Γ(a)

� +∞

0
ua−1(1 + u)−(λ1+a)

×
d�

i=1

(1 + Λiu)−L1du .(87)

Using the following change variable t = 1/(1 + u), the last
equation is given by

=
Γd(L1)Γ(λ1 + a)
Γ(dL1 + λ1)Γ(a)

�
d�

i=1

Λ−L1
i

�� 1

0

tdL1+λ1−1(1− t)a−1

×
d�

i=1



1− Λi − 1

Λi
t
�−L1

dt. (88)

The last integral represents the Lauricella D-hypergeometric
function, denoted F (n)

D (.), which is an extension of the Appell
function to n variables where n > 2. The integral representa-
tion of F (n)

D (.) is given by (115) in Appendix G. Consequently,
(88) is given by�

Ω+

|Y|L1−d[tr(Y) + 1]−(dL1+λ1)[tr(ΛY) + 1]−adY

=
Γd(L1)Γ(λ1 + a)
Γ(λ1 + dL1 + a)

�
d�

i=1

Λ−L1
i

�
×F (d)

D

�
λ1 + dL1, L1, . . . , L1� �� �

d

; a+ λ1 + dL1;

1− Λ−1
1 , . . . , 1− Λ−1

d

�
. (89)

Then, expectation EC1{ln[tr(L2Σ−1
2 C)+λ2−1]} is given by

EC1

�
ln

�
tr


L2Σ−1

2 C
�

+ λ2 − 1
��

= ln(λ2 − 1)− Γ(λ1 + dL1)
Γ(λ1)

%
d�

i=1

Λ−L1
i

&

× ∂

∂a

�
Γ(λ1 + a)

Γ(λ1 + dL1 + a)
F

(d)
D



λ1 + dL1, L1, . . . , L1;

a+ λ1 + dL1; 1− Λ−1
1 , . . . , 1− Λ−1

d

�������
a=0

= ln(λ2 − 1)

−
!

ψ(λ1)− ψ(λ1 + dL1)

�
F

(d)
D



λ1 + dL1, L1, . . . , L1;

λ1 + dL1 + a; 1− Λ−1
1 , . . . , 1− Λ−1

d

���
a=0

+
∂

∂a
F

(d)
D (λ1 + dL1, L1, . . . , L1; λ1 + dL1 + a;

1− Λ−1
1 , . . . , 1− Λ−1

d )
��
a=0

"
d�

i=1

Λ−L1
i . (90)

. 
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Lauricella gave several transformation formulas, of which we
use the relation (116)

F
(d)
D



λ1 + dL1, L1, . . . , L1; λ1 + dL1 + a;

1− Λ−1
1 , . . . , 1− Λ−1

d

���
a=0

=
d�

i=1

ΛL1
i F

(d)
D (a, L1, . . . , L1; λ1 + dL1 + a;

1− Λ1, . . . , 1− Λd)
��
a=0

=
d�

i=1

ΛL1
i lim

a→0
F

(d)
D (a, L1, . . . , L1; λ1 + dL1 + a;

1− Λ1, . . . , 1− Λd)

=
d�

i=1

ΛL1
i . (91)

In fact, lima→0 F
(d)
D (a, L1, . . . , L1; λ1 + dL1 + a; 1 −

Λ1, . . . , 1 − Λd) = 1 is deduced using the definition of the
Lauricella series given by (113). Subsequently, the expectation
is given by

EC1

�
ln

�
tr


L2Σ−1

2 C
�

+ λ2 − 1
��

= ln(λ2 − 1)− ψ(λ1) + ψ(λ1 + dL1)−
�

d�
i=1

Λ−L1
i

�
× ∂

∂a
F

(d)
D (λ1 + dL1, L1, . . . , L1; λ1 + dL1 + a;

1− Λ−1
1 , . . . , 1− Λ−1

d )

�����
a=0.

(92)

In the following we present some particular cases:
Case: Λ = Id: This case corresponds to the equality

between parameters Σ1 = Σ2, L1 = L2 and λ1 = λ2.
Expectation EC1{ln[tr(L2Σ−1

2 C) + λ2 − 1]} is given by
ln(λ2 − 1)− ψ(λ1) + ψ(λ1 + dL1).

Case d =1: For mono-polarization where d = 1, expec-
tation EC1{ln[L2I + λ2 − 1]} where I represents one of
the following channels {HH, HV, VV} depends on Gauss
hypergeometric function 2F1(.) and is given as follows:

EC1{ln[L2I + λ2 − 1]}
= ln(λ2 − 1)− ψ(λ1) + ψ(L1 + λ1)

− Λ−L1
∂

∂a
2F1(L1, L1+ λ1;L1+ λ1+ a; 1− Λ−1)

�����
a=0

(93)

with Λ = L2(λ1 − 1)/(L1(λ2 − 1)).
Case d =2: For bi-polarization d = 2, expression of

EC1{ln[tr(L2Σ−1
2 C)+λ2−1]} depends on the Appell hyper-

geometric function F1(.) [49] and is given as follows:

EC1

�
ln

�
tr


L2Σ−1

2 C
�

+ λ2 − 1
��

= ln(λ2 − 1)− ψ(λ1) + ψ(λ1 + 2L1)−
�

2�
i=1

Λ−L1
i

�
× ∂

∂a
F1

�
λ1 + 2L1, L1, L1; λ1 + 2L1 + a;

1− Λ−1
1 , 1− Λ−1

2

������
a=0

. (94)

APPENDIX C
RÉNYI DISTANCE OF ORDER β FOR G0

d

The integral over all positive definite complex Hermitian
matrix C is given as follows:�
Ω+

fβ
C1(C)f1−β

C2 (C)dC

= Aβ
1A

1−β
2

�
Ω+

|C|β(L1−d)+(1−β)(L2−d)

×
�
L1tr(Σ−1

1 C)+λ1−1
�−α1�

L2tr(Σ−1
2 C)+λ2−1

�−α2
dC

(95)

with Ai = (LdLi

i Γ(dLi + λi)(λi− 1)λi)/(Γd(Li)|Σi|LiΓ(λi))
where i = {1, 2}, α1 = β(dL1 +λ1) and α2 = (1−β)(dL2 +
λ2).

Let Y = L1/(λ1 − 1)Σ−1
1 C be a transformation

where the Jacobian determinant is given by dY =
|(L1/(λ1 − 1))Σ−1

1 |ddC. The new expression of the integral
is then given as follows:�
Ω+

fβ
C1(C)f1−β

C2 (C)dC

=Aβ
1A

1−β
2 (λ1−1)−α1(λ2−1)−α2×

����λ1−1
L1

Σ1

����β(L1−L2)+L2

�
Ω+

|Y|β(L1−L2)+L2−d[1+ tr(Y)]−α1

× [1 + tr(ΛY)]−α2dY. (96)

Similarly as done in Appendix B-C, the integral over all
positive definite complex Hermitian matrix Y is given as
follows:�
Ω+

|Y|β(L1−L2)+L2−d[1 + tr(Y)]−α1 [1 + tr(ΛY)]−α2dY

=
Γd(β(L1 − L2) + L2)Γ(β(λ1 − λ2) + λ2)

Γ(α1 + α2)

×
d�

i=1

Λ−β(L1−L2)−L2
i

×F (d)
D

�
α1, β(L1−L2)+L2, . . . ,β(L1−L2)+L2;α1+α2;

1− 1
Λ1
, . . . , 1− 1

Λd

�
(97)

where Λ1, . . . ,Λd are the eigenvalues of matrix Λ. Substi-
tuting the expressions of A1, A2, and (97) in (96), the integral
of fβ

C1(C)f1−β
C2 (C) over all positive definite complex Her-

mitian matrix C is then given by�
Ω+

fβ
C1(C)f1−β

C2 (C)dC

=
�

Γ(dL1 + λ1)
Γd(L1)Γ(λ1)

�β
�

Γ(dL2 + λ2)
Γd(L2)Γ(λ2)

�1−β d�
i=1

Λ−βL1
i

× Γd(β(L1 − L2) + L2)Γ(β(λ1 − λ2) + λ2)
Γ(α1 + α2)

×F (d)
D

�
α1, β(L1 − L2) + L2, . . . , β(L1 − L2) + L2;

α1 + α2; 1− 1
Λ1
, . . . , 1− 1

Λd

�
. (98)

. 
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APPENDIX D
HELLINGER DISTANCE FOR G0

d

The integral over all positive definite complex Hermitian
matrix C of the square root of the product of fC1(C) and
fC2(C) is given by�

Ω+

�
fC1(C)fC2(C)dC

= A
1/2
1 A

1/2
2 (λ1 − 1)−α1(λ2 − 1)−α2

×
�
Ω+

|C|L1+L2
2 −d

'
L1

λ1 − 1
tr(Σ−1

1 C) + 1
(−α1

×
'

L2

λ2 − 1
tr(Σ−1

2 C) + 1
(−α2

dC (99)

whereAi =(LdLi

i Γ(dLi+ λi)(λi−1)λi)/(Γd(Li)|Σi|LiΓ(λi))
and αi = (1/2)(dLi + λi) with i = 1, 2.

Let Y = L1/(λ1 − 1)Σ−1
1 C be a transformation

where the Jacobian determinant is given by dY =
|(L1/(λ1 − 1))Σ−1

1 |ddC. The new expression of the integral
is then given as follows:�
Ω+

�
fC1(C)fC2(C)dC

= A
1/2
1 A

1/2
2 (λ1 − 1)−α1(λ2 − 1)−α2

�����λ1 − 1
L1

Σ1

�����
L1+L2

2

×
�
Ω+

|Y|L1+L2
2 −d[1+ tr(Y)]−α1 [1+ tr(ΛY)]−α2dY. (100)

In the same way, as done in Appendix B-C, the integral over
all positive definite complex Hermitian matrix Y is given
as follows:�

Ω+

|Y|L1+L2
2 −d[1 + tr(Y)]−α1 [1 + tr(ΛY)]−α2dY

=
Γd



L1+L2

2

�
Γ



λ1+λ2
2

�
Γ(α1 + α2)

d�
i=1

Λ−L1+L2
2

i

×F (d)
D

�
α1,

L1 + L2

2
, . . . ,

L1 + L2

2
;α1 + α2;

1− 1
Λ1
, . . . , 1− 1

Λd

�
(101)

where Λ1, . . . ,Λd are the eigenvalues of matrix Λ. Sub-
stituting the expressions of A1, A2, and (101) in (100),
the integral of (fC1(C)fC2(C))1/2 over all positive definite
complex Hermitian matrix C is then given by (31).

APPENDIX E

Using (116) and (117), the following equations are equiva-
lent:
d�

i=1

Λ−L1
i F

(d)
D

�
λ1+dL1, L1, . . . , L1; δ1; 1−Λ−1

1 , . . . , 1−Λ−1
d

�
= F

(d)
D (a, L1, . . . , L1; δ1; 1− Λ1, . . . , 1− Λd) (102)

= Λ−a
1 F

(d)
D

�
a, λ1 + a, . . . , L1� �� �

d

; δ1; 1− 1
Λ1
, . . . , 1− Λd

Λ1

�
(103)

with δ1 = λ1 + dL1 + a. Partial derivatives (∂/∂a)F (d)
D (.)

are approximated using a numerical differentiation given as
follows:

∂

∂a
F

(d)
D

�
λ1 + dL1, L1, . . . , L1; δ1; 1− 1

Λ1
, . . . , 1− 1

Λd

�

≈
F

(d)
D



λ1+dL1, L1, . . . ,L1;δ1; 1− 1

Λ1
, . . . , 1− 1

Λd

�
−

d�
i=1

ΛL1
i

a

≈
�

d�
i=1

ΛL1
i

�
F

(d)
D (a, L1, . . . , L1; δ1; 1−Λ1, . . . , 1−Λd)−1

a
.

(104)

In a similar way, after lightening the expression by using δ2 =
λ2 + dL2 + a, the following equations are equivalent:�

d�
i=1

ΛL2
i

�
F

(d)
D (λ2+dL2, L2, . . . , L2; δ2; 1−Λ1, . . . , 1−Λd)

= F
(d)
D

�
a, L2, . . . , L2; δ2; 1− 1

Λ1
, . . . , 1− 1

Λd

�
(105)

= Λa
1F

(d)
D

�
a, λ2 + a, . . . , L2� �� �

d

; δ2; 1− Λ1, . . . , 1− Λ1

Λd

�
(106)

= F
(d)
D

�
a, L2, . . . , L2; δ2; 1− 1

Λd
, . . . , 1− 1

Λ1

�
(107)

= Λa
dF

(d)
D

�
a, λ2 + a, . . . , L2� �� �

d

; δ2; 1− Λd, . . . , 1− Λd

Λ1

�
.

(108)

Partial derivatives (∂/∂a)F (d)
D (.) are approximated using a

numerical differentiation given as follows:

∂

∂a
F

(d)
D (λ2 + dL2, L2, . . . , L2; δ2; 1− Λ1, . . . , 1− Λd)

≈
F

(d)
D (λ2+dL2, L2, . . . ,L2;δ2;1−Λ1, . . . ,1−Λd)−

d�
i=1

Λ−L2
i

a

≈
d�

i=1

Λ−L2
i

F
(d)
D



a, L2, . . . , L2; δ2; 1− 1

Λ1
, . . . , 1− 1

Λd

�
−1

a
.

(109)

APPENDIX F
INVERSE GAMMA DISTRIBUTION

The pdf of the inverse gamma distribution is given by

f(z;α1, β1) =
βα1

1

Γ(α1)
1

z1+α1
exp


−β1

z

�
. (110)

The following moments exist and are finite:

E{Z} =
β1

α1 − 1
for α1 > 1, E{Z−1} =

α1

β1
, (111)

. 
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E{lnZ} = −ψ(α1) + lnβ1. (112)

APPENDIX G
LAURICELLA FUNCTION

In 1893, Lauricella [50] investigated the properties of four
series: F (n)

A , F
(n)
B , F

(n)
C , F

(n)
D of n variables. When n = 2,

these functions coincide with Appell’s F2, F3, F4, F1, respec-
tively. When n = 1, they all coincide with Gauss’ 2F1. We
present here only Lauricella series F (n)

D given as follows:

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn)

=
∞�

m1=0

. . .
∞�

mn=0

(a)m1+···+mn(b1)m1 . . . (bn)mn

(c)m1+···+mn

xm1
1

m1!
. . .

xmn
n

mn!

(113)

where |x1|, . . . , |xn| < 1. Pochhammer symbol (q)i indicates
the ith rising factorial of q, that is

(q)i = q(q + 1) . . . (q + i− 1) =
Γ(q + i)

Γ(q)
if i = 1, 2, . . . .

(114)

If i = 0, (q)i = 1. Lauricella’s FD can be written as a 1-D
Euler-type integral for any n number of variables. The integral
representation of F (n)

D (.) is given as follows when Real(a) >
0 and Real(c− a) > 0:

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn) =

Γ(c)
Γ(a)Γ(c− a)

� 1

0
ua−1

× (1− u)c−a−1(1− x1u)−b1 . . . (1− xnu)−bndu. (115)

Lauricella gave several transformation formulas, of which we
use the following two relations. Many more can be found in
Exton’s book [51] on hypergeometric equations

F
(n)
D (a, b1, . . . , bn; c;x1, . . . , xn)

=
n�

i=1

(1− xi)−bi

×F (n)
D

�
c− a, b1, . . . , bn; c;

x1

x1 − 1
, . . . ,

xn

xn − 1

�
(116)

= (1 − x1)−aF
(n)
D

�
a, c−

n�
i=1

bi, b2, . . . , bn; c;
x1

x1 − 1
,

x1 − x2

x1 − 1
, . . . ,

x1 − xn

x1 − 1

�
. (117)

APPENDIX H
KULLBACK–LEIBLER DISTANCE FOR SCALED WISHART

DISTRIBUTION

Let X1 and X2 be two random matrices that follow scaled
Wishart distributions with fX1(X) and fX2(X) pdfs given
by (4) and respectively depend on parameters (Σ1, L1) and
(Σ2, L2). The Kullback–Leibler divergence from X2 to X1 is
given by

DKL(X1||X2) = EX1{ln fX1(X)} −EX1{ln fX2(X)}. (118)

The first expectation is given by

EX1{ln fX1(X)} = dL1 lnL1 + (L1 − d)EX1{ln |X|}
−L1 ln |Σ1| − ln Γd(L1)− dL1. (119)

The second expectation is expressed taking into consideration
the property EX1{tr(Σ−1

2 X)} = tr(Σ−1
2 Σ1) as follows:

EX1{ln fX2(X)}
= dL2 lnL2+(L2 − d)EX1{ln |X|}
−L2 ln |Σ2|−lnΓd(L2)−L2tr(Σ−1

2 Σ1). (120)

Following the steps of Appendix B-A, one can compute the
following:

EX1{ln |X|} = ψd(L1)− d lnL1 + ln |Σ1|. (121)

As a consequence, DKL(X1||X2) is as follows:

DKL(X1||X2) = dL2 ln
L1

L2
+ (L1 − L2)ψd(L1) + L2 ln

|Σ2|
|Σ1|

+ ln
Γd(L2)
Γd(L1)

+ L2tr(Σ−1
2 Σ1)− dL1. (122)

The Kullback–Leibler distance for the scaled Wishart distrib-
ution is given as follows:

dKL(X1,X2)

= (L1 − L2)
�
ψd(L1)− ψd(L2) + d ln

L2

L1
+ ln

|Σ1|
|Σ2|

�
+L1tr



Σ−1

1 Σ2

�
+L2tr



Σ−1

2 Σ1

�
−d(L1 + L2). (123)

APPENDIX I
RÉNYI DISTANCE FOR SCALED WISHART DISTRIBUTION

Let X1 and X2 be two random matrices that follow scaled
Wishart distributions with fX1(X) and fX2(X) pdfs given
by (4) and respectively depend on parameters (Σ1, L1) and
(Σ2, L2). The Rényi distance from X2 to X1 is given by

Dβ
R(X1||X2)

=
1

β − 1
ln

�
Ω+

fβ
X1(X)f1−β

X2 (X)dX

=
1

β − 1
ln

#
LdL1

1

Γd(L1)|Σ1|L1

$β #
LdL2

2

Γd(L2)|Σ2|L2

$1−β

×
�
Ω+

|X|β(L1−d)+(1−β)(L2−d)

× etr


−(βL1Σ−1

1 + (1− β)L2Σ−1
2 )X

�
dX. (124)

Knowing that�
Ω+

|X|β(L1−d)+(1−β)(L2−d)

×etr


−(βL1Σ−1

1 + (1− β)L2Σ−1
2 )X

�
dX

=
Γd(βL1 + (1− β)L2)

|βL1Σ−1
1 + (1− β)L2Σ−1

2 |βL1+(1−β)L2
(125)

. 
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then we can write

Dβ
R(X1||X2)

=
β

β − 1
ln

LdL1
1

Γd(L1)|Σ1|L1
− ln

LdL2
2

Γd(L2)|Σ2|L2

+
1

β − 1
ln Γd(βL1 + (1 − β)L2)− βL1 + (1 − β)L2

β − 1
× ln

��βL1Σ−1
1 + (1− β)L2Σ−1

2

��. (126)

The symmetric expression of the Rényi distance is given by
the following expression:

dβ
R(X1,X2)

=
1
2

1
β − 1

!
ln

��L1Σ−1
1

��L1 + ln |L2Σ2|L2

+ ln
Γd(βL1 + (1 − β)L2)Γd(βL2 + (1− β)L1)

Γd(L1)Γd(L2)
− (βL1 + (1− β)L2) ln

��βL1Σ−1
1 + (1− β)L2Σ−1

2

��
− (βL2+(1−β)L1) ln

��βL2Σ−1
2 +(1−β)L1Σ−1

1

��". (127)

When β = 1/2, the Rényi distance is equivalent to the
Bhattacharyya distance. Thus, the expression is given by

dB(X1,X2)

=−L1

2
ln
��L1Σ−1

1

��−L2

2
ln|L2Σ−1

2 |−ln
Γd(L1/2+L2/2)

Γd(L1)1/2Γd(L2)1/2

+
L1 + L2

2
ln

�����L1

2
Σ−1

1 +
L2

2
Σ−1

2

�����. (128)
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