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A machine learning framework for estimating leaf

biochemical parameters from its spectral reflectance

and transmission measurements.
Bikram Koirala, Student Member IEEE, Zohreh Zahiri, Member IEEE, Paul Scheunders, Senior Member IEEE

Abstract—Spectral measurements are commonly applied for
the nondestructive estimation of leaf parameters, such as the
concentrations of chlorophyll ab, carotenoid, anthocyanin, and
brown pigment, the leaf water content, and the leaf mass per
area for quantification of vegetation physiology. The most popular
way to estimate these parameters is by using spectral vegetation
indices. The use of biochemical models allows to employ the full
wavelength range (400-2500 nm) and to physically interpret the
result. However, their performance is usually lower than that
of supervised machine learning regression techniques. Machine
learning regression techniques, on the other hand, have the
disadvantage that the relation between estimated parameters and
the reflectance/transmission spectra is unclear.

In this paper, a hybrid between a supervised learning method
and physical modeling for the estimation of leaf parameters is
proposed. In this method, a machine learning regression tech-
nique is applied to learn a mapping from the true hyperspectral
dataset to a dataset that follows the PROSPECT model. The
PROSPECT model then reveals the actual leaf parameters.
Two mapping methods, based on gaussian processes (GP) and
kernel ridge regression (KRR) are proposed. As an alternative,
a mapping onto the leaf absorption spectra is proposed as well.
The proposed methodology not only estimates the leaf parameters
with a lower error but also solves the interpretation problem
of the parameters estimated by the advanced machine learning
regression techniques. This method is validated on the ANGERS
and LOPEX dataset.

Index Terms—Hyperspectral, leaf parameter estimation, ma-
chine learning regression

I. INTRODUCTION

Retrieval of leaf parameters, e.g., the concentrations of

chlorophyll ab (Cab), carotenoid (Cxc), anthocyanin (Canth),

the water content (Cw), and the leaf mass per area (Cm) is

of great interest due to their direct connection with the vege-

tation’s physiological functions ([1],[2],[3],[4],[5],[6],[7],[8]).

The most popular way to relate reflectance/transmission spec-

tra with leaf parameters is by the use of spectral vegetation

indices ([9],[10],[11],[12],[13],[14]). As an example, the Nor-

malized Difference Vegetation Index (NDVI) ([12]) uses two

bands, one correlated with the chlorophyll (red), and the other

uncorrelated (near infrared).

Since techniques based on spectral vegetation indices use

a limited number of spectral bands, to extract critical infor-

mation from a quasi-continuous spectral signal, shape indices

were developed. In [13], they were categorized into four
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classes: a) Red-edge position ([15],[16]), b) Integration-based

indices ([17],[18]), c) Derivative-based indices ([19]), and d)

Continuum removal ([20],[21],[22],[23]).

Instead of relating a few wavelengths or individual absorp-

tion features with the leaf parameters, several deterministic

models have been developed to describe the optical properties

of plant leaves. These models can be distinguished by the

complexity level that is taken into account and the underlying

physics. In [24], they are categorized into four classes of

models. The simplest class of plate models represents the leaf

by absorbing plates with rough surfaces, isotropically diffusing

the incident rays of light. N-flux models describe leaves as

slabs, diffusing and absorbing the material. Stochastic and

radiative transfer models simulate the optical properties of the

leaf by using a Markov chain or by directly using a radiative

transfer equation. The most complex models are the ray tracing

models. They require the optical properties of the leaf material

and a detailed description of the internal structure of the leaf.

In the remote sensing community, an improved version of

the plate models, i.e., the PROSPECT model ([1],[3],[4]) is

widely used. It describes the optical properties of plant leaves

in the wavelength range λ ∈ [400, 2500] nm. This model

describes the reflectance and transmission spectrum of the leaf

as a function of the leaf parameters (Cab, Cxc, Canth, Cw,

Cm), and their corresponding specific absorption spectra, a

wavelength dependent refractive index (n(λ)) and a parameter

characterizing the leaf mesophyll structure (Nlms).

In the past two decades, much research has been reported on

the estimation of leaf biochemical parameters by inverting the

PROSPECT model ([1],[8],[25],[26],[27],[28],[29]). Among

the leaf biochemical parameters, Cab and Cw have been

studied most extensively because of their strong absorption

features in the visible and shortwave infrared ([29]). Quantifi-

cation of Cxc, Canth, and Cm was shown to be much more

challenging because their specific absorption spectra overlap

with the spectrum of Cab in the visible region and with

Cw in the shortwave infrared. To improve the performance

of the PROSPECT model for the retrieval of Cm, several

strategies have been proposed. In [27], the ill-posedness of

the PROSPECT inversion was alleviated by selecting for each

leaf biochemical parameter separately the wavelength region

to which it is sensitive. In [8], the spectral range from 1700 to

2400 nm was identified as the optimal range for the estimation

of Cm. In [30], the model PROSPECT-g was developed

that introduced a wavelength-independent factor to represent

anisotropic scattering in the elementary layer.
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However, one important drawback of the PROSPECT model

is its utilization of fixed specific absorption spectra and refrac-

tive index spectrum, hereby assuming that these spectra are the

same for the leaves of all plant species.

To account for the spectral variability of the refractive index

spectrum of plant leaves and the specific absorption spectra

of the leaf biochemical parameters, several advanced machine

learning regression algorithms have been used to retrieve

biochemical parameters ([2],[8],[29],[31],[32],[33],[34],[35]).

The goal of these algorithms is to model the predictive func-

tion that best approximates the relationship between spectra

and the parameters of interest. These are supervised methods

that require a training set of spectra and ground-truth infor-

mation of leaf parameters. Due to the nonlinear relationship

between spectra and the biochemical parameters, kernel meth-

ods have been introduced to make the regression algorithms

nonlinear. The most popular kernel-based regression methods

are Kernel Ridge Regression (KRR) and Gaussian Process

Regression (GP).

Opposed to the PROSPECT model that relates the re-

flectance/transmission spectra to the specific absorption spec-

tra of the leaf parameters, the machine learning regression

methods map the reflectance/transmission spectra directly to

the leaf parameters. One particular problem with this direct

mapping is that the physical relationship between the bio-

chemical parameters and the reflectance/transmission spectra

is lost. As a consequence, the estimated values of the leaf

parameters do not necessarily fall within their physical range,

and even can become negative. A nonnegativity constraint

could be enforced on the output variables, but in that case,

there is no closed-form solution.

In this paper, an alternative supervised technique for re-

trieval of leaf parameters is proposed. This method also

assumes that a training set of spectra and ground-truth infor-

mation of leaf parameters is available. The PROSPECT model

is used to generate spectra from the ground truth parameters of

the training data. Then, a mapping between the actual training

spectra and the spectra generated by the PROSPECT model is

learned. Two mapping methods are presented, based on KRR

([36],[37]) and GP ([38]). Once the mapping is learned, all

test spectra are mapped to the PROSPECT model, and the leaf

parameters of the mapped spectra are estimated by inverting

the PROSPECT model. As an alternative, the mapping to the

leaf absorption spectra which are, according to the PROSPECT

model, given by a linear combination of the specific absorption

spectra of the leaf parameters, is performed. Inverting the

linear model then delivers the parameters.

The proposed methodology combines the physical inter-

pretability of the PROSPECT model with the flexibility and

generalizability of the regression methods. The generaliza-

tion properties of the machine learning regression approaches

account for the spectral variability of the refractive index

spectrum of plant leaves and the specific absorption spectra

of the pigments. The use of the PROSPECT model allows

to physically relate the estimated leaf parameters to the re-

flectance/transmission spectra of the plant leaves.

The remaining of the paper is organized as follows: In

section II, the datasets and the different methodologies to

estimate leaf parameters from the hyperspectral datasets is

described. The PROSPECT model, the different kernel regres-

sion methods, and the proposed strategy will be explained. The

experimental results are presented in section III and discussed

in section IV. Section V concludes this work.

II. EXPERIMENTAL DATASETS AND METHODS

A. Datasets

1) ANGERS: The ANGERS leaf optical properties database

was generated in 2003 at INRA in Angers (France) [1]. This

dataset contains transmission and reflectance spectra of 276

leaf samples (43 plant species) and the ground-truth infor-

mation regarding four parameters (Cab, Cxc, Cw, Cm). ASD

Field spectroradiometers were used to capture leaf directional-

hemispherical reflectance and transmittance spectra (350-2500

nm) with a spectral sampling of 1.4 nm and 2 nm in the

VNIR (350-1050 nm) and SWIR (1000-2500) respectively.

To extract biochemical information, leaf discs were sampled

using a cork borer immediately after the measurement of

spectra. The fresh weight of these discs was measured before

placing them in a drying oven at 850C. After drying them

for 48 h, the Cw, and Cm were determined by reweighing.

Simultaneously, pigments were extracted using ethanol 95%

by grinding fresh leaf discs in a chilled mortar. To prevent

acidification, a small amount of MgCO3 and quartz sand

was added. The solution of ethanol 95% and pigments were

separated from other materials by centrifugation. Further, the

absorption spectra of the solution were measured using a dual

beam scanning UV-Vis spectrophotometer. Cab and Cxc were

estimated by using a multi-wavelength analysis ([39]). Cab

ranges between 0.78-106.70 µg cm−2 and Cxc ranges between

0.00-25.28 µg cm−2. The Cw ranges between 0.0044-0.034

cm and Cm ranges between 0.0017-0.0331 g cm−2.

2) LOPEX: This dataset contains transmission and reflec-

tion spectra of 330 leaf samples (66 plants) that were cap-

tured from 45 plant species and the ground-truth information

of four different leaf parameters (Cab, Cxc, Cw, and Cm)

[1],[40]. The leaf directional-hemispherical reflectance and

transmission spectra were captured over the wavelength range

400-2500 nm with 1 nm step size by using Perkin Elmer

Lambda 19 spectrophotometers. The spectral resolution of this

dataset is 1-2 nm and 4-5 nm in the VNIR (400-1000 nm)

and SWIR (1000-2500) respectively [40]. The procedure of

estimating leaf parameters from this dataset is similar to the

ANGERS dataset, except that acetone 100% was used for

extracting leaf pigments. Although this dataset contains four

leaf parameters, only Cw and Cm were used for validating

the proposed methodology, since the values of Cab and Cxc

for several leaves of the same plant ([41]) 1 are exactly the

same, making these values unreliable. The values of Cw of

this dataset range between 0.0021-0.0525 cm while the values

for Cm range between 0.0017-0.0157 g cm−2.

B. The PROSPECT model

The PROSPECT model ([1],[3],[4]) is the improved version

of a generalized “plate model” ([42],[43]), describing a leaf

1http://opticleaf.ipgp.fr/index.php?page=database
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as a pile of N homogeneous layers separated by N − 1 air

spaces.

The prospect model describes the total reflectance R(λ)
and transmission T(λ) of the N layers as a function of the

leaf absorption spectrum k(λ) and the leaf refractive index

spectrum n(λ) in the wavelength region 400-2500 nm. In its

turn, the leaf absorption spectrum is assumed to be a linear

combination of the plant biochemical parameters and their

corresponding specific absorption spectra:

k =

∑p

j=1 kspe,jcj

Nlms

(1)

where kspe,j is the specific absorption spectrum of leaf pa-

rameter cj and p is the number of leaf parameters. Nlms is

the leaf mesophyll structure.

Based on a large number of spectral measurements and

ground truth information on the leaf parameters (Cab, Cxc, Cw,

and Cm), part of which come from the ANGERS and LOPEX

dataset, the PROSPECT model has been inverted to obtain an

average refractive index spectrum n(λ) and average specific

absorption spectra of Cab, Cxc, Cw, and Cm [1]. Remark

that these are averages over a large number of plant species,

and they are assumed to be fixed. The latest version of the

PROSPECT model, PROSPECT-D [4] includes two extra leaf

parameters: Canth, and the concentration of brown pigment

(Cbr).

With the assumption of fixed n(λ) and kspe,j(λ), the

PROSPECT model can now be inverted to estimate the leaf

parameters from measured reflectance (Rmeas(λ)) and trans-

mission (Tmeas(λ)) spectra from individual leaves:

Θ = argmin
Θ

∑

λ

[(

Rmeas(λ)−R(λ,Θ)
)2

+
(

Tmeas(λ)−T(λ,Θ)
)2]

(2)

where Θ = {Nlms, {cj}
p
j=1}, and R(λ,Θ) and T(λ,Θ)

are the modeled reflectance and transmission spectra by the

PROSPECT model.

Although physically sound for the retrieval of leaf parame-

ters, the PROSPECT model has some problems. As mentioned

before, the refractive index spectrum is assumed to be constant,

while it actually can vary a lot between different leaf samples.

Another problem is that the chlorophyll a:b ratio is assumed

to be constant, and therefore, the specific absorption spectra

of chlorophyll a and b are estimated simultaneously ([4]).

Moreover, other pigments are present, the carotenoid group

contains xanthophylls and the anthocyanin group contains

several different anthocyanins and it is assumed that these

don’t influence the determination of the specific absorption

spectra from these groups. These assumptions lead to the

lower performance of the PROSPECT model compared to the

advanced machine learning regression algorithms.

C. Machine learning regression algorithms

Machine learning regression algorithms learn the

relationship between the high dimensional input

(reflectance/transmission spectra) and low dimensional

output (leaf parameters) based on a training dataset.

Let us consider a set of N samples {xi,yi}
N
i=1, where

xi =

[

Rmeas,i

Tmeas,i

]

, Rmeas,i and Tmeas,i ∈ Rd
+ represent the

measured reflectance and transmission spectra and yi = Ci ∈
R

p
+ is the in-situ measurement of p leaf parameters. The goal

of machine learning regression is to learn a mapping function:

y = f(x) + ǫ (3)

where ǫ is additive noise. To learn this mapping function,

among N samples, n training samples X = {xi}
n
i=1 are used.

After learning this mapping, the performance of the model is

tested on the remaining (N − n) samples X∗ = {xi}
N
i=n+1.

Two state-of-the-art machine learning regression algorithms,

KRR and GP are presented.

1) Kernel ridge regression: Ridge regression finds a linear

relationship between the input X = {xi}
n
i=1 and output Y =

{yi}
n
i=1:

yi = wTxi (4)

Generally, to tackle the problem of overfitting the training

samples, the quadratic cost function J is regularized by the

norm of the model weights w:

J = 1/2

(

∥

∥Y −wTX
∥

∥

2
+ λ ‖w‖2

)

(5)

where λ is the regularization parameter. Minimizing 5 leads

to:

w =

(

XXT + λI

)

−1(

XYT

)

(6)

where I is the identity matrix. In the above equation, a matrix

with size (2d× 2d) needs to be inverted. To do the inversion

after kernelization, equation 6 has to be re-arranged to contain

a matrix of size (n× n):

w =

(

X(XTX+ λI)X−1

)

−1(

XYT

)

=X

(

XTX+ λI

)

−1

YT

(7)

Once the mapping is found, the prediction of the leaf param-

eters from the test data Y∗ = {yi}
N
i=n+1 is obtained by:

Y∗ = Y

(

XTX+ λI

)

−1

XTX∗ (8)

To allow nonlinear relationships between input and output,

ridge regression needs to be kernelized. A kernelized extension

of ridge regression is presented in [36][37]. The original

dataset is projected onto an infinite dimensional feature space

(xi → φ(xi)). Using the kernel trick, i.e., k(xi,xj) =
φ(xi)

Tφ(xj), the mapping of a nonlinear spectra X∗ to the

leaf parameters Y∗ is obtained by:

Y∗ = f(X∗) = Y

(

K(X,X) + λI

)

−1

K(X,X∗) (9)

where K(X,X) is the matrix of kernel functions between

the n training samples (with a dimension of (n × n)) and

K(X,X∗) is the matrix of kernel functions between the

n training samples and the (N − n) test samples (with a

dimension of (n× (N − n))).
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In this work, a radial basis function (RBF) kernel is applied

as the kernel function:

k(xi,xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

(10)

In equation 9, the (n×n) kernel matrix K that is regularized

by λ needs to be inverted. For each test sample, the only

computation involved is to determine the kernel function

between the n training samples and the test samples. The

regularization parameter λ and the parameter of the kernel

(σ) were tuned by 10-fold cross-validation of the training

samples [44]. To determine the optimal pair (σ̂, λ̂), all possible

combinations of σ ∈
{

2−15, · · · , 23
}

and λ ∈
{

2−15, · · · , 25
}

were applied and the average mapping error was calculated.

2) Gaussian processes: An alternative strategy to learn the

nonlinear relationship between the input X and the output

Y is given by gaussian process regression (GP). GP is a

bayesian approach that estimates the distribution of mapping

functions that are consistent with the training set {(xi,yi)|i =
1, 2, · · · , n}.

It is assumed that the observed leaf parameters (yi) are

related to the input spectra (xi) as follows:

yi = f(xi) = φ(xi)
Tw (11)

with prior distribution for w ∼ N (0,Σ2d). The function φ(·)
maps the input spectrum to an infinite dimensional feature

space. The mean and covariance of the outputs can then be

computed as follows:

E[f(xi)] =φ(xi)
T
E[w] = 0

E[f(xi)f(xj)] =φ(xi)
T
E[wwT ]φ(xj) = φ(xi)

T
Σ2dφ(xj).

(12)

GP assumes that the covariance of the outputs is modeled by

a squared exponential kernel function:

φ(xi)
T
Σ2dφ(xj)

T = k(xi,xj) = σ2
f exp

(

−
2d
∑

b=1

(

xb
i − xb

j

)2

2l2b

)

(13)

where lb is a characteristic length-scale for each spectral band

and σ2
f is the variance of the input spectra.

The joint distribution of the estimated leaf parameters from

the test data (f(X∗)) and the training leaf parameters (Y) is

then given by:

p(f(XT
∗
),YT ) ∼ N

(

0,

[

K(X∗,X∗) K(X∗,X)
K(X,X∗) K(X,X) + σ2

nI

])

= N

(

0,

[

Σ11 Σ12

Σ21 Σ22

])

(14)

where σ2
n is the noise variance of the training spectra,

K(X∗,X) is the matrix of kernel functions between the test

samples and the n training samples, and K(X∗,X∗) is the

matrix of kernel functions between the test samples.

When inverting the partitioned matrix:
(

Σ11 Σ12

Σ21 Σ22

)

−1

=

(

Σ
−1 −Σ

−1
Σ12Σ

−1
22

−Σ
−1
22 Σ21Σ

−1
Σ
−1
22 + Σ

−1
22 Σ21Σ

−1
Σ12Σ

−1
22

)

(15)

with Σ = Σ11 − Σ12Σ
−1
22 Σ21, (14) can be factorized into the

predictive distribution p(f(XT
∗
)|YT ) and the marginal p(YT ):

p(f(XT
∗
),YT ) =p(f(XT

∗
)|YT )p(YT )

=N (Σ12Σ
−1
22 Y

T ,Σ)N (0,Σ22)
(16)

The estimated mapping of the nonlinear spectra X∗ to the leaf

parameters Y∗ is then given by:

Y∗ = f(X∗) = YΣ
−1
22 Σ

T
12

= Y(K(X,X) + σ2
nI)

−1K(X∗,X)T (17)

The hyperparameters involved in (13) are automatically op-

timized by minimizing the log marginal likelihood of the

training set: log(p(YT |XT )).

D. The proposed method: mapping to the PROSPECT model

The main disadvantage of applying GP and KRR to map

the spectra directly to the parameters is that the estimated leaf

parameters are not physically related to the spectra. When leaf

parameters are estimated by applying equation 9 or 17, there is

no guarantee that the estimated leaf parameters are positive. To

solve these problems, the PROSPECT model and the machine

learning regression techniques are combined in such a way

that the estimated parameters are physically interpretable while

the accuracy of the parameter estimation is comparable to

the unconstrained direct mapping to the leaf parameters. The

main idea is to learn a mapping from the actual spectra to

spectra that follow the PROSPECT model, after which the

leaf parameters can be estimated by inverting the model.

This method consist of the following steps:

1) In the first step, target spectra

(

x
target
i =

[

Ri

Ti

])

are

generated by using the ground truth information (Ci) and

the PROSPECT model.

2) In the second step, a mapping between the true spectra

(X) and the target spectra (Xtarget = {xtarget
i }ni=1) is

learned:

Xtarget = f(X) + ǫ (18)

The learning of this mapping can be performed using

any machine learning regression algorithm. In this work,

GP and KRR were used. When the mapping was learned

using GP, the mapping between the true test spectra

(X∗ = {xi}
N
i=n+1) and the target spectra (X

target
∗ =

{xtarget
i }Ni=n+1) is given by:

Xtarget
∗

=f(X∗)

=Xtarget(K(X,X) + σ2
nI)

−1K(X∗,X)T
(19)

using equation 13 for computing the kernel functions.

We will refer to this method as GP PROSPECT. The

prediction using KRR is given by:

Xtarget
∗

=f(X∗)

=Xtarget(K(X,X) + λI)−1K(X∗,X)T
(20)

using equation 10 for computing the kernel functions. We

will refer to this method as KRR PROSPECT.
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3) The PROSPECT-D model contains seven leaf param-

eters. In case the number of ground truth leaf parameters

is smaller than those that are involved in the PROSPECT

model, parameters that are not a part of the ground

truth information are estimated from the true spectra
(

{Rmeas,i,Tmeas,i}
N
i=1

)

by inverting the PROSPECT

model (see 2). Now, the ground truth information be-

comes:

Ctrue/est.
i = [Ci(1 : l),Ci(l + 1 : p)]T (21)

with l is the number of parameters that are part of

the ground truth information and p the total number of

parameters that are involved in the PROSPECT model.

In step 1, the target spectra are then generated by using

Ctrue/est.
i .

4) In the final step, leaf parameters from the mapped

spectra

(

x̂
target
i =

[

R̂i

T̂i

])

are estimated by inverting the

PROSPECT model.

E. Alternative method: mapping to the leaf absorption spectra

Instead of mapping the hyperspectral dataset onto the

PROSPECT spectra, an alternative approach is to estimate the

leaf parameters by mapping the hyperspectral dataset (X) onto

the absorption spectra ki. So, this time, in step 1, the target

spectra x
target
i that are generated are absorption spectra by using

the ground truth information (Ci) and equation 1. To maintain

consistent notations, we will define x
target
i =

[

ki

ki

]

.

The mapping between a hyperspectral training set and the

ground truth absorption spectra is learned by GP or KRR

(step 2). Then, the test hyperspectral data are mapped onto

the absorption spectra. The parameters C∗

i from the mapped

spectra

(

x̂
target
i =

[

kR∗

i

kT∗

i

])

are estimated by (step 4):

C∗

i = argmin
C∗

i

∑

λ

[(

kR∗

i (λ)− k(λ,C∗

i )
)2

+
(

kT∗

i (λ)− k(λ,C∗

i )
)2]

(22)

where kR∗

i and kT∗

i are the mapped absorption spectra from

the reflectance and the transmission spectrum respectively, and

C∗

i is the estimated leaf parameter of the test spectrum. This

estimation can be performed by including physical constraints

of the leaf parameters, i.e., lower and upper bounds.

When the mapping between the hyperspectral training set

and the ground truth absorption spectra is learned by GP, we

will refer to this method as GP LINEAR. When KRR is used,

we refer to the method as KRR LINEAR.

F. Experimental set-up and Evaluation statistics

To reduce the computational complexity and the dimen-

sionality, the hyperspectral datasets with a 1 nm step-size

were resampled to 10 nm. For estimating the performance

of the described methods, the ground truth data set was

divided into a randomly selected training and a test set.

For the ANGERS dataset, five different experiments were

performed, by selecting 15, 45, 75, 105 and 135 training

samples randomly respectively. For the LOPEX dataset, six

different experiments were performed, by selecting 15, 45,

75, 105, 135 and 165 training samples randomly respectively.

Each experiment was repeated 100 times.

The following methods were compared:

• The PROSPECT model

• Methods that map the spectra directly to the leaf param-

eters: KRR and GP

• The proposed methods that map the spectra onto spectra

that follow the PROSPECT model: KRR PROSPECT

and GP PROSPECT

• The proposed methods that map the spectra onto absorp-

tion spectra that follow a linear model: KRR LINEAR

and GP LINEAR

The performance of each regression model for each leaf

parameter was evaluated based on the normalized root mean

squared error (NRMSE) between the estimated and ground

truth leaf parameter to measure the accuracy and the aver-

age Pearson’s determination coefficient (R2) to measure the

goodness-of-fit:

NRMSE (%) =

√

1
N−n

∑N

i=n+1(yji − ŷji)2 × 100

max(yj(n+1) : yjN )− min(yj(n+1) : yjN )
(23)

R2 = 1−

∑N

i=n+1(yji − ŷji)
2

∑N

i=n+1(yji − ȳj)2
(24)

where yji is the true leaf parameter j and ŷji the estimated

leaf parameter j for test sample i, and ȳj is the mean of the

true leaf parameter j over all test samples.

III. RESULTS

A. ANGERS dataset

Fig. 1 and Fig. 2 show the mean and standard deviation of

the NRMSE and R2 respectively for 100 runs as a function

of the applied number of training samples that were selected

randomly. From top left to bottom right, results are shown for

water content (Cw), the concentration of chlorophyll ab (Cab),

leaf mass per area (Cm) and the concentration of carotenoid

(Cxc).

The results indicate that the estimation error is reduced

when the number of applied training samples is increased.

Also, almost all methods outperform the PROSPECT model

from a certain number of training samples on. For each of

the two regression methods, the proposed strategy of mapping

onto the PROSPECT model or the leaf absorption spectra

outperforms the direct mapping onto the leaf parameters. In

general, mapping onto the leaf absorption spectra delivers the

best results. Except for WC, GP LINEAR outperforms all

other methods. It outperforms the PROSPECT model already

when only 15-45 training samples are applied.

Fig. 3 shows the validation of the prediction models for

each of the four leaf parameters for the case of 75 training

samples. Each time, from the 100 experiments, the result with

the best NRMSE and R2 is depicted. It can be seen that all

methods accurately estimated Cab, Cxc, Cw and Cm for a large

range of values. Both KRR and GP predicted negative values
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Fig. 1: NRMSE (100 runs) obtained by the PROSPECT model, GP, GP PROSPECT, GP LINEAR, KRR, KRR PROSPECT

and KRR LINEAR, in function of applied number of training samples (the ANGERS dataset). Cw, Cab, Cm, and Cxc refer

to water content, the concentration of chlorophyll ab, leaf mass per area, and the concentration of carotenoid respectively.

for Cab and Cxc. These results demonstrate that mapping to

the PROSPECT model or the leaf absorption spectra avoids

negative values and obtains a sound physical interpretation of

the estimated parameters.

B. LOPEX dataset

Fig. 4 and Fig. 5 show the mean and standard deviation of

the NRMSE and R2 respectively for 100 runs as a function

of the applied number of training samples that were selected

randomly for the LOPEX dataset. On the left, the results are

shown for Cw, and on the right for Cm. Fig. 6 shows the

validation of the prediction models for Cw and Cm for the case

of 75 training samples. Each time, from the 100 experiments,

the result with the best NRMSE and R2 is shown.

Similar results are obtained as with the ANGERS dataset,

although the advantage of the machine learning regression

methods over the PROSPECT model are not so clear in case of

Cw. In case of Cm, mapping onto the leaf absorption spectra

outperforms the other methods.

C. Training on the ANGERS and tested on the LOPEX dataset

To test the generalization capability of the proposed method-

ology, the models were trained by using the ANGERS dataset

and were validated on the LOPEX dataset. Although the

ANGERS dataset contains ground truth of four different leaf

parameters, only Cw and Cm were used to make it compatible

with the LOPEX ground truth leaf parameters. The experiment

was limited to the wavelength region 900-2500 nm, because

leaf pigments do not have absorption features in that region,

and thus will not influence the results. The hyperspectral

dataset (reflectance/transmission) with a 1 nm step-size was

resampled to 8 nm resulting in 201 wavebands. Fig. 7 shows

the validation of the prediction models for Cw and Cm when

the models were trained by using 276 training samples from

the ANGERS dataset. The proposed methods outperformed



7

15 45 75 105 135

Number of training samples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
2

C
w

GP_PROSPECT

GP_LINEAR

KRR_LINEAR

GP

KRR_PROSPECT

KRR

PROSPECT

15 45 75 105 135

Number of training samples

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

R
2

C
ab

GP_LINEAR

GP_PROSPECT

KRR_LINEAR

GP

KRR_PROSPECT

KRR

PROSPECT

15 45 75 105 135

Number of training samples

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
2

C
m

GP_LINEAR

GP_PROSPECT

KRR_LINEAR

KRR

GP

KRR_PROSPECT

PROSPECT

15 45 75 105 135

Number of training samples

0.65

0.7

0.75

0.8

0.85

0.9

R
2

C
xc

GP_LINEAR

KRR_LINEAR

GP_PROSPECT

GP

KRR_PROSPECT

KRR

PROSPECT

Fig. 2: R2 (100 runs) obtained by the PROSPECT model, GP, GP PROSPECT, GP LINEAR, KRR, KRR PROSPECT and

KRR LINEAR, in function of applied number of training samples (the ANGERS dataset). Cw, Cab, Cm, and Cxc refer to

water content, the concentration of chlorophyll ab, leaf mass per area, and the concentration of carotenoid respectively.

the direct mapping onto the leaf parameters. KRR LINEAR

was the best performer for the estimation of both Cw and Cm.

D. Training on the LOPEX and tested on the ANGERS dataset

Similarly, the models were trained by using the LOPEX

dataset and were validated on the ANGERS dataset. Fig. 8

shows the validation of the prediction models for Cw and Cm

when the models were trained by using 330 training samples

from the LOPEX dataset. From the figure, it can be observed

that KRR PROSPECT was the best performer for estimating

Cw with the lowest NRMSE and the highest R2 while both

direct mapping methods (KRR and GP) could not perform

better than the PROSPECT model. For the estimation of Cm,

the PROSPECT model was the best performer with the lowest

NRMSE but R2 of KRR LINEAR was the highest. Both KRR

and GP estimated negative values for Cm for several spectra.

IV. DISCUSSION

From the experimental results, the following general con-

clusions can be drawn:

• The supervised methods outperform the use of the

PROSPECT model for estimating leaf biochemical pa-

rameters from both the LOPEX and the ANGERS dataset.

This is partially because these methods make use of

a training dataset. However, the generic nature of the

regression algorithms allows them to account for the

spectral variability of the specific absorption spectra and

refractive index spectrum. It also demonstrates that a few

training samples (15-45) are enough to outperform the

PROSPECT model.

• The strategy of mapping reflectance/transmission spec-

tra onto either the PROSPECT model or to the linear

model outperforms methods that directly map to the

leaf parameters. The main difference is that the direct

mapping techniques lose the physical relation between the
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Fig. 3: Validation between the measured (Y -axis) and the estimated (X-axis) values of the concentration of chlorophyll ab

(µg cm−2), carotenoid (µg cm−2), water content (cm), and leaf mass per area (g cm−2). The presented results are the best

prediction from the 100 runs using 75 training samples (the ANGERS dataset).

reflectance/transmission spectra and the leaf parameters.

In Fig. 3 (Cab and Cxc) and Fig. 8 (Cm), negative

values can be observed for the estimated leaf biochemical

parameters by direct mapping (GP and KRR).

• The performance of both the PROSPECT model and

the supervised techniques is affected by the uncertainty
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KRR LINEAR in function of applied number of training samples (the LOPEX dataset). Cw and Cm refer to water content

and leaf mass per area respectively.
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Fig. 5: R2 (100 runs) obtained by PROSPECT, GP, GP PROSPECT, GP LINEAR, KRR, KRR PROSPECT and

KRR LINEAR in function of applied number of training samples (the LOPEX dataset). Cw and Cm refer to water content

and leaf mass per area respectively.

in the ground truth measurements of the biochemical

parameters. The uncertainty on Cw and Cm is mainly due

to improper measurements of the weight and area of the

leaf discs. The uncertainty in the pigment concentrations

and in particular in Cxc is expected to be high. In the

ANGERS dataset, Cxc was estimated from the absorption

spectra of the solution (ethanol 95% and pigments) by

using the equation of Lichtenthaler (1987) ([39]). Due

to the complexity of the mixture of chlorophyll and

carotenoid pigments, a chromatography technique (high-

pressure liquid chromatography) would be required to

prepare high-quality ground truth of Cxc. Moreover, to

predict Cxc accurately by using the PROSPECT model,

the specific absorption spectrum for each carotenoid

pigment from the carotenoid group is required. In the

ANGERS dataset, no distinction is made between these

different pigments.

Because of the high uncertainty in the ground truth of

Cxc, both the supervised approaches and the PROSPECT

model performed low at the estimation of this parameter.

Although the results on the other parameters are better,

one cannot expect errors to be lower than the uncertainties

in the ground truth.

• The low performance of the PROSPECT model for esti-

mating Cm is reported in many studies [8],[45],[46],[47].

This can also be observed in the results of the LOPEX

dataset where the error (NRMSE) on the estimation

of Cm was higher than 20%. This is because a sin-

gle specific absorption spectrum is defined for the leaf

mass per area, i.e., an average spectrum for dry matter.
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Fig. 6: Validation between the measured (Y -axis) and the

estimated (X-axis) values of water content, and leaf mass per

area. The presented results are the best prediction with best

NRMSE and R2 from the 100 runs using 75 training samples

(the LOPEX dataset).

However, dry matter contains various organic materials

(cellulose, hemicellulose, lignin, proteins, starch), each

with their absorption spectrum. When using a single

specific absorption spectrum, it is implicitly assumed that

the relative proportion of each of these single constituents

are constant among the leaves. The main reason for the

better performance of the PROSPECT model for this

parameter on the ANGERS dataset is that the specific

absorption spectrum of dry matter was better adapted to

the ground truth measurements. All supervised methods

perform better on the estimation of Cm, because they

adapt to the spectral variability of the dry matter.

• The performance of the proposed methodologies was

equivalent to or better than the PROSPECT model when

an independent dataset was used for the model validation.

This demonstrates their generalization capability.

• An advantage of the proposed methodology is that any

nonlinear regression algorithm can be applied for learning

the mapping. In this work, two different kernel methods

were compared. Gaussian processes generally seem to

outperform kernel ridge regression when training and

testing samples are from the same dataset. But kernel

ridge regression outperformed gaussian processes when

training and testing samples were independent from each

other. On the other hand, gaussian process was compu-

tationally expensive when spectra were either mapped to

the PROSPECT model or the linear model.

• Although the leaf mesophyll structure (Nlms) impacts

simulated spectra, there is no protocol to experimen-

tally estimate Nlms from leaf samples. Generally, it is

determined by inverting the PROSPECT model. Nlms

has a maximum effect in the NIR from 800-1000 nm

where absorption is at its minimum ([1]). To estimate it,

in [1], only three wavelengths were used to invert the

PROSPECT model, corresponding to the maximum re-

flectance, the maximum transmittance, and the minimum

absorptance respectively. In this work, the values were

obtained by inverting the PROSPECT model using the

entire spectrum (400-2500 nm) and were very close to

the optimal ones provided by the datasets (ANGERS and

LOPEX).

• To investigate the impact of the number of ground truth

leaf parameters on the retrieved leaf biochemical param-

eters, Cab was disregarded from the ANGERS dataset.

The estimation error of Cxc (highly correlated with Cab)

was increased by only 0.1-1% when 75 training samples

were used for learning the mapping.

• Although BRF spectra are more practical for leaf-

level applications, they contain a significant specular

component. The PROSPECT model is calibrated with

directional-hemispherical reflectance and transmission

factor spectra, captured by spectrometers equipped with

an integrating sphere, and cannot simulate BRF spec-

tra. To account for the specular component, in [48], a

physically-based method called PROCOSINE was pro-

posed. Similarly, in [49], the PROSPECT model was

coupled with a continuous wavelet transform (PROCWT)

to suppress the effect of the specular component. The

generic nature of the proposed methodology allows re-

placing the PROSPECT model either with PROCOSINE

or PROCWT. The PROCOSINE or PROCWT model

can tackle the specular component, while the advanced
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machine learning algorithms can account for the spectral

variability of the specific absorption spectra and refractive

index spectrum.

• The use of the PROSPECT model assumes that both

reflectance and transmission spectra are available to

estimate leaf biochemical parameters. However, when

only reflectance or BRF spectra are available, as is the

case at the regional or the global level, the proposed

regression methodology can be combined with canopy

models (such as PROSAIL) to estimate both leaf area

index and chlorophyll content.

To demonstrate the potential of the proposed method-

ology for canopy level applications, we performed an

experiment, only using the reflectance spectra of both

LOPEX and ANGERS data sets. Also, in this case, we

observed that the proposed methodology outperformed

the PROSPECT model, while the direct mapping meth-

ods performed worse or only slightly better than the

PROSPECT model in most cases.

• All methods were developed in Matlab and ran on an

Intel Core i7-8700K CPU, 3.20 GHz machine with 6

cores. The runtimes of the proposed methods on the

LOPEX dataset (see III-D) and the ANGERS dataset

(see III-C) are shown in Table I. As can be seen, the

runtime of GP PROSPECT and GP LINEAR is rela-

tively high due to the involvement of 2×203 hyperpa-

rameters. KRR PROSPECT, KRR LINEAR, and KRR

have a lower runtime compare to GP PROSPECT and

GP LINEAR because it involves only two free parame-

ters.

TABLE I: The runtime in seconds.

Method timeLOPEX (s) timeANGERS (s)

KRR PROSPECT 25.34 25.85

GP PROSPECT 384.02 384.12

KRR LINEAR 25.17 25.89

GP LINEAR 384.78 382.29

KRR 20.96 20.96

GP 4.99 5.16

V. CONCLUSION

In this work, a hybrid between a model-based and super-

vised data-driven method for leaf parameter estimation from

spectral reflectance/transmission measurements was proposed.

The proposed method is based on the learning of a mapping

between a true hyperspectral dataset and the PROSPECT

model. Two kernel-based mapping methods are proposed.

As an alternative, mapping to the leaf absorption spectra

is proposed as well. The proposed methods are shown to

outperform the PROSPECT model and supervised machine

learning regression methods that map directly to the leaf

parameters.

The procedure to map reflectance/transmission spectra to

the PROSPECT model can be extended to any biochemi-

cal/physical model. The main limitation of this method is that

it cannot be applied to estimate parameters which are not part

of existing radiative transfer models.
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Fig. 7: Validation between the measured (Y -axis) and the

estimated (X-axis) values of water content and leaf mass per

area (the LOPEX dataset). The training was performed by

applying the ANGERS dataset. Cw and Cm refer to water

content and leaf mass per area respectively.
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Fig. 8: Validation between the measured (Y -axis) and the

estimated (X-axis) values of water content and leaf mass

per area (the ANGERS dataset). The training was performed

by applying the LOPEX dataset. Cw and Cm refer to water

content and leaf mass per area respectively.
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