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Abstract— As an improvement of the four-component
scattering power decomposition with rotation of coherency
matrix (Y4R) and extension of volume model (S4R), the gen-
eral four-component decomposition with unitary transformation
(G4U) was devised to make the full use of the polarimetric infor-
mation in coherency matrix. This article enables an extension to
G4U by deriving the scattering balance equation system in G4U
to investigate the role of unitary transformation first. Despite
self-contained, the scattering balance equation system in Y4R
and S4R is independent of the T13 entry of coherency matrix.
To include T13 in decomposition, the unitary transformation in
G4U adds a T13-related but redundant balance equation into
the original system. As a result, T13 is accounted for by G4U,
and we attain no exact solution to the equation system but
some approximate ones. By deducing the general expression of
the approximate solutions, a generalized G4U (GG4U) is then
created and denoted as G(ψ). The decomposition constant ψ
determines a GG4U by producing a ψ-rotated double-bounce
scattering matrix. We treat this as the scattering preference
of G(ψ) to characterize the physical mechanism. By assigning
appropriate values to ψ , we attain GG4U of different preferences,
while G(0) and G(+π/8) just correspond to S4R and G4U.
A dual G4U G(−π/8) is also achieved. The duality G(±π/8)
provides us an adaptive improvement to both G4U and S4R
by strengthening the double-bounce scattering over urban and
building area while enhancing the surface scattering over water
and land area. Both theoretical derivation and experiments on
ten polarimetric synthetic aperture radar data sets validate the
outperformance. Nonetheless, for whatever unitary transforma-
tion employed, there is, forever, a T13-related residual component
in GG4U. Thus, the incorporation of unitary transformation into
Y4R and S4R for the full modeling of polarimetric information
is impossible in theory only when the canonical scattering model
with nonzero (1, 3) entry of coherency matrix is used to add
the balance equation system an independent T13-related equation
rather than a redundant one.
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I. INTRODUCTION

POLARIMETRIC incoherent target decomposition plays
an important role in the recognition and discrimination

of the mixed radar targets [1]–[4]. It pursues the scatter-
ing mechanism of the unknown scatterer by extracting the
dominant or average target (such as the Huynen-type phenom-
enological dichotomies [5]–[8] and the eigenvalue/eigenvector-
based decompositions [9]–[12]) or expanding the target on the
canonical models (such as the model-based scattering power
decompositions [13]–[21]). Among these decompositions, the
model-based decompositions have been a hot topic recently
because of the influence of target orientation, diversification
of scattering models, problem of negative power, and the
imperfect utilization of polarimetric information [22]–[45].

The issue of the full use of polarimetric information
concentrates on the complete coverage of the nine
degrees of freedom (DoF) of coherency or covari-
ance matrix into the accounted scattering models [24].
As the first model-based decomposition, the three-component
Freeman–Durden decomposition (FDD) accounts for only five
DoF owing to the assumption of symmetric reflection [13].
Yamaguchi et al. [14] rectified this assumption by introducing
a fourth helix component and two additional models of volume
scattering. The Yamaguchi four-component decomposition
(Y4O) then leaves only three DoF unaccounted for: T13 and
the real part of T23 (Re{T23}) entry of target coherency matrix
�[T ]�. The same target will present differently by a simple
rotation about the line of sight of radar [24], [46]. The deori-
entation should be first conducted on �[T ]� to eliminate the
influences [47]. As a result, Re{T23} changes to zero, and Y4O
with rotation (Y4R) accounts for seven DoF [26]. Based on
Y4R, Sato et al. [29] further proposed to add a new model to
characterize the volume scattering generated by even-bounce
structure. However, Sato’s extended Y4R (S4R) still leaves
T13 unaccounted. To solve this, Singh et al. in 2013 proposed
a general four-component decomposition (G4U) based on a
special unitary matrix of degree three (SU(3)) [31]. G4U
enables T13 included in the accounted models by carrying
out unitary transformation to the rotated version of �[T ]�.
Singh et al. [31] claimed that G4U could make the full
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use of polarimetric parameters. As a result, in comparison
with the four-component model-based decompositions such as
S4R and Y4R, G4U could enhance double-bounce scattering
power over urban area while enhancing the surface scattering
contribution over area where surface scattering is preferable.
All these establish G4U the state-of-the-art four-component
scattering power decomposition, which has been widely used
in the remote sensing of agriculture, forestry, wetland, snow,
glaciated terrain, man-made target, environment, as well as
damages caused by earthquake/tsunami and landside, recently.
For details on the influence, evaluation, improvement, devel-
opment, and application of G4U, please refer the literature
survey concisely conducted in [48].

This article is dedicated to enable an extension to G4U from
a mathematical point of view. The role of unitary transforma-
tion in G4U is investigated by deriving the G4U scattering
balance equation system. It is indicated that the unitary trans-
formation in G4U adds a T13-related but redundant balance
equation to the original self-contained equation system in Y4R
and S4R. Then T13 is accounted for by G4U, and we obtain
no exact solution to the system but the approximate ones. The
general expression of the approximate solutions is formulated
to enable a generalized G4U (GG4U), while G4U and S4R
represent two special forms. Information accounted for in
modeled part shows the scattering preference of GG4U. A dual
G4U (DG4U) is also attained. The general solution indicates
that G4U cannot always enhance the double-bounce scattering
power over urban area nor strengthen the surface scattering
power over area, where surface scattering is preferable unless
we adaptively integrate G4U and DG4U for an extended G4U
(EG4U). Both the mathematic derivation and experiments on
real data demonstrate EG4U outperformance over S4R and
G4U. Despite T13 is included in the modeled part of GG4U,
there is always an unaccounted residue in GG4U for whatever
unitary transformation used. Hence, the incorporation of uni-
tary transformation in Y4R and S4R for the full modeling of
polarimetric information is not possible. A complete modeling
requires an independent T13-related equation incorporated into
the original balance equation system. The canonical model
with nonzero (1, 3) entry of coherency matrix should be used.

The remainder of this article is arranged as follows.
Section II presents the SU(3) matrices and transformations
used in G4U. G4U is then described in Section III and general-
ized in Section IV for GG4U. As a special form of GG4U and
also an adaptive combination of G4U and DG4U, Section V
provides a detailed depiction to EG4U. Its outperformance is
validated on polarimetric synthetic aperture radar (PolSAR)
images in Section VI by comparing with S4R, G4U, and
DG4U. Section VII discuses some important issues on GG4U
and G4U further. This article is concluded in Section VIII
with the balance equation system in GG4U being derived in
Appendix A.

II. SU(3) MATRICES AND TRANSFORMATIONS

The scattering matrix [S] of a single target is

[S] =
[

SHH SHV

SVH SVV

]
. (1)

In reciprocal backscattering, we have SHV = SVH, and
matrix [S] covers five DoF then. As for a mixed target
subjected to spatial and/or temporal variations, we cannot
model its scattering with a determined [S], and the coherency
matrix �[T ]� is constructed as the statistical average of the
acquired scattering information

�[T ]� = 〈
kk†〉 =

⎡
⎣

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦

k = 1√
2

⎡
⎣ SHH + SVV

SHH − SVV

2SHV

⎤
⎦ (2)

where �·� and superscript † indicate the operations of ensemble
average and conjugate transpose, and k is the Pauli vector.
The spatial/temporal depolarization pushes the DoF of �[T ]�
to nine.

The unitary transformation of matrix �[T ]� under an arbi-
trary SU(3) matrix [U3] is defined as [3]

Unitary(�[T ]�) def= [U3]�[T ]�[U3]†. (3)

Target deorientation is based on the SU(3) rotation matrix [24]

[U3(θ)] =
⎡
⎣ 1 0 0

0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ

⎤
⎦ (4)

where the rotation 2θ is attained by minimizing the (3, 3) entry
of coherency matrix [26]

2θ = 1

2
tan−1

(
2Re{T23}
T22 − T33

)
. (5)

Combine (4) into (3), the deoriented coherency matrix �[T �]�
is 〈[

T �]〉 = [U3(θ)]�[T ]�[U3(θ)]†

=
⎡
⎢⎣

T �
11 T �

12 T �
13

T �
21 T �

22 j Im
{

T �
23

}
T �

31 j Im
{

T �
32

}
T �

33

⎤
⎥⎦. (6)

The deorientation makes T �
23 become purely imaginary and

reduces the DoF from nine to eight. In order to eliminate the
imaginary part further, Singh et al. [31] developed another
SU(3) matrix

[U3(ϕ)] =
⎡
⎣ 1 0 0

0 cos 2ϕ j sin 2ϕ
0 j sin 2ϕ cos 2ϕ

⎤
⎦. (7)

A coherency matrix �[T ��]� with zero T ��
23 entry is then achieved

〈[
T ��]〉= [U3(ϕ)]

〈[
T �]〉[U3(ϕ)]

†=
⎡
⎣ T ��

11 T ��
12 T ��

13
T ��

21 T ��
22 0

T ��
31 0 T ��

33

⎤
⎦ (8)

where element T ��
i j(i, j = 1, 2, 3) is shown in (A2) in Appen-

dix A. The parameter 2ϕ is obtained by minimizing T ��
33 [31]

2ϕ = 1

2
tan−1

(
2Im

{
T �

23

}
T �

22 − T �
33

)
. (9)
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III. FROM Y4R AND S4R TO G4U

A. Y4R and S4R

Y4R and S4R achieve the decomposition of target by
linearly expanding matrix �[T �]� on the canonical model
�[T �S4R/Y4R

M ]�. As shown in Fig. 1, �[T �S4R/Y4R
M ]� further com-

prises of four components, which are the surface scattering
model �[T �

S]�, the double-bounce scattering model �[T �
D]�,

the volume scattering model �[T �
V ]�, and the helix scattering

model �[T �
C]�〈[

T
�S4R/Y4R
M

]〉
= fS

〈[
T �

S

]〉 + fD
〈[

T �
D

]〉
+ fV

〈[
T �

V

]〉 + fC

〈[
T �

C

]〉
(10)

where parameters fS , fD , fV , and fC denote the contributions
of the four models; β gives the surface scattering mechanism
ratio determined by the dielectric constant of soil and local
incidence angle; α denotes the double-bounce scattering mech-
anism ratio, which relates to both the dielectric constant of
soil and truck; and a, b, c, and d in �[T �

V ]� are real constants
satisfying a + b + c = 1, which involve in four volume
scattering models

〈[
T �

V 1

]〉 = 1

30

⎡
⎣ 15 5 0

5 7 0
0 0 8

⎤
⎦, 〈[

T �
V 2

]〉 = 1

4

⎡
⎣ 2 0 0

0 1 0
0 0 1

⎤
⎦

〈[
T �

V 3

]〉 = 1

30

⎡
⎣ 15 − 5 0

−5 7 0
0 0 8

⎤
⎦, 〈[

T �
V 4

]〉= 1

15

⎡
⎣ 0 0 0

0 7 0
0 0 8

⎤
⎦.
(11)

They are adaptively selected according to the branch
conditions (BC)

〈[
T �

V

]〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈[
T �

V 1

]〉
, BC1 > 0 and BC2 ≤ −2〈[

T �
V 2

]〉
, BC1 > 0 and − 2 < BC2 ≤ 2〈[

T �
V 3

]〉
, BC1 > 0 and BC2 > 2〈[

T �
V 4

]〉
, BC1 ≤ 0

(12)

where1

BC1 = T �
11 − T �

22 + 7

8
T �

33 + 1

16
fC (13)

BC2 = 10 log

[
T �

11 + T �
22 − 2Re

{
T �

12

}
T �

11 + T �
22 + 2Re

{
T �

12

}
]
. (14)

Combine the matrices �[T �
S]�, �[T �

D]�, �[T �
V ]�, and �[T �

C ]�
shown in Fig. 1 into (10), the (i, j) element of �[T �S4R/Y4R

M ]�,
T

�S4R/Y4R
Mi j (i, j = 1, 2, 3) is obtained and expressed in (A1)

in Appendix A. The S4R/Y4R scattering balance equation
system on the unknown parameters fS , fD , fV , fC , α, and β

1BC1 was originally denoted in S4R as BC1 = T �
11 − T �

22 + fC/2 [29].
Singh et al. [31] indicated that BC1 should be as precise as ever possible
for assigning the volume models, and thus, they proposed to improve BC1 as
(13). In view of this, we also extend (13) to S4R in this article. In Section
IV-A, we will show that BC1 is related to volume model �[T �

V 4]� only, which
is a special form of the BC in (29). Hence, it is used in (12) to identify
�[T �

V 4]� from �[T �
V 1]� to �[T �

V 3]�, while the selection among �[T �
V 1]�, �[T �

V 2]�,
and �[T �

V 3]� is based on BC2.

is then formulated by letting T
�S4R/Y4R
Mi j = T �

i j [29]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fS + fD|α|2 + fV a = T �
11 −1)

fSβ + fDα + fV d = T �
12 −2)

fS|β|2 + fD + fV b + fC

2
= T �

22 −3)

± j
fC

2
= j Im

{
T �

23

} −4)

fV c + fC

2
= T �

33 −5).

(15)

An exact solution is obtained by fixing α or β zero according
to BC1 and another parameter BC0 [13], [14]. This will be
detailed in Section IV-A. However, we achieve no scattering
balance equation on T �

13 in (15) because T
�S4R/Y4R
M13 in (A1-3)

is always zero. As a result, there always exists a T �
13-related

unaccounted residual part �[T �S4R/Y4R
R ]�. Thus, the S4R/Y4R

decomposition can be generally formulated as follows:〈[
T �]〉 =

〈[
T

�S4R/Y4R
M

]〉
+

〈[
T

�S4R/Y4R
R

]〉
(16)

with

〈[
T

�S4R/Y4R
M

]〉
=

⎡
⎣ T �

11 T �
12 0

T �
21 T �

22 j Im
{

T �
23

}
0 j Im

{
T �

32

}
T �

33

⎤
⎦(17)

〈[
T �Y4R/S4R

R

]〉
=

⎡
⎣ 0 0 T �

13
0 0 0

T �
31 0 0

⎤
⎦. (18)

B. G4U

To account for T �
13 in the modeled part, G4U uses [U3(ϕ)] to

conduct unitary transformation to both �[T �]� and �[T �S4R/Y4R
M ]�

for �[T ��]� in (8) and for �[T ��G4U
M ]� in (19) first〈[

T ��G4U
M

]〉 = [U3(ϕ)]
〈[

T
�S4R/Y4R
M

]〉
[U3(ϕ)]† (19)

where T ��G4U
Mi j , the (i, j) entry of �[T ��G4U

M ]�, is expressed in (A3)
in Appendix A. The decomposition of �[T �]� is then attained
by letting T ��G4U

Mi j = T ��
i j for (A4) and by killing ϕ in (A4) via

(A5) to (A12) for (A13) in Appendix A. This is equivalent
to further doing inverse unitary transformation to �[T ��]� and
�[T ��G4U

M ]� using [U3(ϕ)]. Nevertheless, the unitary transfor-
mation in (19) makes T ��G4U

M13 in (A3-3) no longer zero. As a
result, an additional balance equation is brought into G4U,
as given in (A13-3). This additional equation, nonetheless,
is not independent of the other five equations in (A13), because
it is resulted from the mathematical transformation rather than
the physical process. Then, we obtain the following scattering
balance equation system (the deduction of it is formulated in
Appendix A):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fS + fD|α|2 + fV a = T �
11 −1)

fSβ + fDα + fV d = T �
12 + T �

13

fSβ + fDα + fV d = T �
12 − T �

13

}
−2)

fS|β|2 + fD + fV b + fC

2
= T �

22 −3)

± j
fC

2
= j Im

{
T �

23

} −4)

fV c + fC

2
= T �

33 −5).

(20)
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Fig. 1. Canonical models involved in the four-component scattering power
decompositions.

Comparing (20) and (15), we can realize that (20-2) enables
a dichotomy to (15-2). The redundancy makes that (20)
has no such exact solution like (15) but some approximate
ones. Singh et al. preferred the first equation of (20-2) only
(as shown in Fig. 2 of [31] in terms of the expression of
parameter C)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fS + fD |α|2 + fV a = T �
11 −1)

fSβ + fDα + fV d = T �
12 + T �

13 −2)

fS|β|2 + fD + fV b + fC

2
= T �

22 −3)

± j
fC

2
= j Im

{
T �

23

} −4)

fV c + fC

2
= T �

33 −5).

(21)

The only difference between (15) and (21) lies in the expres-
sion of (15-2) and (21-2): T �

13 is included into the right side
of (21-2). By analogy to the S4R/Y4R decomposition in (16),
we can also formulate the G4U decomposition as follows:〈[

T �]〉 =
〈[

T
�G4U
M

]〉
+

〈[
T

�G4U
R

]〉
. (22)

In view of the reality that the modeled part �[T �G4U
M ]� in

G4U is also composed by four components like �[T �S4R/Y4R
M ]�

in (10) and (17), we can then simply obtain from (21) that

〈[
T �G4U

M

]〉 =
⎡
⎣ T �

11 T �
12 + T �

13 0
T �

21 + T �
31 T �

22 j Im
{

T �
23

}
0 j Im

{
T �

32

}
T �

33

⎤
⎦ (23)

whereas the corresponding residual part �[T �G4U
R ]� becomes

〈[
T �G4U

R

]〉 =
⎡
⎣ 0 −T �

13 T �
13

−T �
31 0 0

T �
31 0 0

⎤
⎦. (24)

As a result, T �
13 is included in the modeled part, and all the

nine parameters in coherency matrix are finally utilized by
G4U.

IV. FROM G4U TO GG4U

A. General Expression of the Approximate Solutions

The unitary transformation in (19) makes T �
13 modeled at

the cost of producing a redundant equation, which brings (20)
a lot of approximate solutions, while G4U just indicates one
of them. Here, we focus on the general formulation of the
solutions to (20) for the unknowns fS , fD , fV , fC , α, and β.

Fig. 2. Flowchart of GG4U. μ is a real decomposition constant, based on
which GG4U can be customized to any preferable form. GG4U changes to
S4R when μ = 0, to G4U when μ = +1, and to a dual G4U, i.e., DG4U
when μ = −1.

Let ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S = T �
11 − fV a

C1 = T �
12 + T �

13 − fV d

C2 = T �
12 − T �

13 − fV d

D = T �
22 − fV b − fC

2
.

(25)
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Based on C1 and C2, we further define

C = 1 + μ

2
C1 + 1 − μ

2
C2 (26)

where μ is a real constant.2 Then, (20) can be rearranged as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fS + fD|α|2 = S −1)

fSβ + fDα = C −2)

fS|β|2 + fD = D −3)

fC = 2|Im{
T �

23

}| −4)

fV = 1

2c

(
2T �

33 − fC

) −5)

(27)

Equation (27) comprises of five equations and six
unknowns. Following van Zyl [49], Freeman–Durden [13], and
Yamaguchi et al. [14], we can fix α or β in terms of the sign
of Re�SHH S∗

VV� or the sign of S − D for the superior between
surface scattering and double-bounce scattering3{

BC>0 ⇒ dominant surface scattering ⇒ α = 0

BC≤0⇒dominant double-bounce scattering⇒β=0

(28)

where

BC= S−D =T �
11−T �

22−
a − b

c

(
T �

33 − fC

2

)
+ fC

2
. (29)

As expressed in (11), for volume models �[T �
V 1]� to �[T �

V 3]�,
we have (a − b)/c = 1, and BC then just becomes the
parameter BC0 used in both S4R [29] and G4U [31]

BC0 = T �
11 − T �

22 − T �
33 + fC . (30)

While as for volume model �[T �
V 4]�, we have (b−a)/c = 7/8,

BC then changes to the BC1 in (13). Substitute BC0 and BC1

for BC, we can also formulate (28) as{
α = 0, BC0 > 0 and BC1 > 0

β = 0, BC0 ≤ 0 or BC1 ≤ 0.
(31)

Combine (28) or (31) into (27), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BC>0⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α = 0, β = C

S

fS = S, fD = D − |C|2
S

fC = 2
∣∣Im{

T �
23

}∣∣, fV = 1

2c

(
2T �

33− fC
)

BC≤0⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α = C

D
, β = 0

fS = S − |C|2
D
, fD = D

fC = 2
∣∣Im{

T �
23

}∣∣, fV = 1

2c

(
2T �

33− fC

)
.

(32)

2μ is defined real in this article. Nonetheless, the related findings here can
be likewise extended to μ with imagery or complex value.

3In view of the fact that T �
11−T �

22 = 2Re�SHHS∗
VV�, we can also use the sign

of T �
11−T �

22 as a criterion here. Since the surface scattering and double-bounce
scattering are identified after the volume scattering and helix scattering in four-
component scattering power decomposition, we should remove the volume and
helix contributions from T �

11 and T �
22 before the ruling, and then T �

11 and T �
22

change to S and D, respectively, as formulated in (25). Hence, the sign of
S − D can be used as an alternative to the sign of Re�SHHS∗

VV� here.

B. Generalized Decomposition

Substitute (25) and (26) into (27), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fS + fD|α|2 + fV a = T �
11 −1)

fSβ + fDα + fV d = T �
12 + μT �

13 −2)

fS|β|2 + fD + fV b + fC

2
= T �

22 −3)

± j
fC

2
= j Im

{
T �

23

} −4)

fV c + fC

2
= T �

33 −5).

(33)

Obviously, (33) actually indicates a generalized G4U (GG4U)〈[
T �]〉 = 〈[

T �GG4U
M

]〉 + 〈[
T �GG4U

R

]〉
(34)

where the modeled part also comprises of four compo-
nents like �[T �S4R/Y4R

M ]� in (10). One can then simply obtain
from (33) that

〈[
T �GG4U

M

]〉 =
⎡
⎣ T �

11 T �
12 + μT �

13 0
T �

21 + μ∗T �
31 T �

22 j Im
{

T �
23

}
0 j Im

{
T �

32

}
T �

33

⎤
⎦
(35)

with the corresponding residual part �[T �GG4U
R ]�

〈[
T �GG4U

R

]〉 =
⎡
⎣ 0 −μT �

13 T �
13

−μ∗T �
31 0 0

T �
31 0 0

⎤
⎦. (36)

We can easily obtain, from (32), the scattering powers of the
four components such as PS , PD , PV , and PC⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PS = fS

(
1 + |β|2) =

⎧⎪⎨
⎪⎩

S + |C|2
S
, BC>0

S − |C|2
D
, BC≤ 0

PD = fD

(
1 + |α|2) =

⎧⎪⎨
⎪⎩

D − |C|2
S
, BC>0

D + |C|2
D
, BC≤ 0

PC = fC H
(
T �

33 − |Im{
T �

23

}|)
PV = 1

2c

(
2T �

33 − PC
)

(37)

where H (·) denotes the Heaviside step function

H (t) =
{

1, t > 0

0, t ≤ 0
(38)

which is used here to adjust the value of PC for nonnegative
PV ruling: PC = fC only when PV > 0; otherwise, we attain
PC = 0 [22]. It can be easily formulated from (20-5), (25),
(37), and the relationship a + b + c = 1 that

PS + PD + PV + PC = T �
11 + T �

22 + T �
33 = SPAN (39)

where SPAN denotes the total scattering power. Hence, GG4U
provides a decomposition of scattering power. The flowchart
of GG4U is shown in Fig. 2.
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C. Special Decompositions

PV and PC are independent of the decomposition constant μ
so is the addition of PS and PD because

PS + PD = S + D. (40)

We can, thus, simply employ S + D for SPAN reservation
ruling in GG4U before the calculation of PS and PD , as shown
in Fig. 2. Nevertheless, PS and PD depend on μ due to the
parameter C in (26). To obtain nonnegative PS and PD , the
following condition on μ can be simply extracted from (37):

|C|2 = |1 + μ

2
C1 + 1 − μ

2
C2|2 ≤ SD. (41)

Solve (41), we obtain that

μ−≤μ≤μ+ (42)

where

μ± =
|C2|2−|C1|2 ± 2

√
SD|C1−C2|2−Im2

(
C1C∗

2

)
|C1 − C2|2 . (43)

By taking appropriate value to μ, we can have some different
decompositions which are denoted as a function G(μ). Here,
we are particularly interested to the following special cases
of G(μ):

1) G(+1) := G4U

C = C1 = T �
12 + T �

13 − fV d = CG4U. (44)

This is just the parameter C used in G4U. Then, (37) denotes
the scattering powers in G4U. GG4U changes to G4U in this
case.

2) G(−1) := DG4U

C = C2 = T �
12 − T �

13 − fV d. (45)

This acts as the complement of case 1), thus, we name it
as the dual G4U (DG4U). The duality G(±1) provides a
nice extension to G4U (EG4U). This will be presented in
Section V.

3) G(0) := S4R

C = (C1 + C2)/2 = T �
12 − fV d = CS4R. (46)

This is the parameter C adopted in S4R, i.e., S4R also signifies
a special form of GG4U. Hence, the essential difference
between S4R and G4U just lies in the different definition of
parameter C in (44) and (46). The unitary transformation is
just to enable the T �

13 entry contained in CG4U and finally in
PS and PD . Parameter C defined in (26) is the generalization
of CG4U and CS4R.

A general model-based decomposition (GMD) was pro-
posed in [19] to minimize the L2-norm of the residue for
model inversion. We adopt this criterion here to identify a
minimum GG4U∥∥〈[T �GG4U

R

]〉∥∥
2 =

√
2
(
1 + |μ|2)∣∣T �

13

∣∣. (47)

Obviously, the minimum is obtained when μ = 0∥∥〈[T �GG4U
R

]〉∥∥min

2 =
∥∥∥〈[T �Y4R/S4R

R

]〉∥∥∥
2

= √
2
∣∣T �

13

∣∣. (48)

Fig. 3. Physical mechanism underlying GG4U. The decomposition constant
μ determines G(μ) by creating a scattering matrix [SC ] first. We can then
bridge [SC ] to G(μ) and treat it as the scattering preference of G(μ). [SC ]
denotes a ψ-rotated double-bounce scatterer. Therefore, we can also express
G(μ) as G(ψ) to directly reveal the physical mechanism underlying GG4U.

The minimized residue is achieved in Y4R and S4R, i.e., S4R
is the optimal GG4U if the minimizing of the L2-norm of
residue is adopted as the optimization criterion. Bring μ = ±1
into (47)∥∥〈[T �G4U

R

]〉∥∥
2 = ∥∥〈[T �DG4U

R

]〉∥∥
2 = 2

∣∣T �
13

∣∣. (49)

The L2-norm of G4U and DG4U residues is equal and
always

√
2 times larger than the residues of Y4R and S4R.4

D. Physical Mechanism

As formulated in (35), parameter μ determines G(μ)mainly
through the (1, 2) element of �[T �GG4U

M ]�: T �GG4U
M12 = T �

12+μT �
13.

From the mathematical point of view, this indicates that a
given μ will preserve certain polarimetric information into
�[T �GG4U

M ]�. Hence, we can have a chance to explore the
physical mechanism of the related GG4U. T �GG4U

M12 in (35) can
be further expressed in terms of the elements of scattering
matrix as

T �GG4U
M12 = 〈

(SHH + SVV) · Tr
(
[S]†[SC ]

)〉
(50)

where Tr(·) denotes the extraction of matrix trace, and [SC ] is
a scattering matrix

[SC ] = 1

2

[
1 μ
μ −1

]
. (51)

Equation (50) indicates that the reserved information T �GG4U
M12

is directly related to [SC ], which is controlled by parameter
μ only, i.e., μ creates a GG4U via [SC ]. Then, we can relate
G(μ) to [SC ], as shown in Fig. 3. The polarimetric similarity
between two scatterers [S] and [SC] is defined in [51]–[53]

r([S], [SC ]) = |Tr
(
[S]†[SC ]

)|2
|Tr

(
[S]†[S]

)|2|Tr
(
[SC ]†[SC ]

)|2 . (52)

Then, (50) indicates that the nonnormalized complex scattering
similarity between [S] and [SC ] is reserved in T �GG4U

M12 . Thus,
the obtained GG4U prefers [SC ]. As for S4R[

SS4R
C

] = 1

2

[
1 0
0 −1

]
. (53)

4We should note that the residual analysis is only a mathematical evaluation.
It cannot be a proof to say G4U is not better than Y4R and S4R. Singh et
al. [31] compared among G4U, S4R, and Y4R by validating whether the
decomposition can strengthen double-bounce scattering in urban area while
strengthen the surface scattering in land and water area. This idea will be
trailed in Section V for EG4U. Moreover, the quantitative evaluation of Y4O,
Y4R, S4R, G4U, and GMD was also contributed by Xie et al. [40] and
Ballester-Berman et al. [50], recently.
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This shows the preference of S4R for double-bounce scat-
tering, which is consistent with the proposition of S4R,
i.e., to account for the double-bounce scattering from urban
area [29]. As for μ, we can always define

μ = tan 2ψ (54)

where ψ is an angle within the interval [(1/2) tan−1 μ−,
(1/2) tan−1 μ+]. We can then express [SC ] in (51) as

[SC ] = sec 2ψ[U2(ψ)]
[
SS4R

C

]
[U2(ψ)]

T (55)

where superscript T shows the matrix transpose, and [U2(ψ)]
is the SU(2) counterpoint of the SU(3) rotation matrix [U3(θ)]
in (4)

[U2(ψ)] =
[

cosψ − sinψ
sinψ cosψ

]
. (56)

Thus, [SC ] indicates a ψ-rotated double-bounce scatterer.
From (54), we can easily obtain that

ψ = 1

2
tan−1 μ ⇒

⎧⎨
⎩
ψG4U = +π

8
ψDG4U = −π

8
.

(57)

Hence, G4U and DG4U prefer the π/8-rotated and
−π/8-rotated double-bounce scatterers, respectively, and we
can denote them as G(+π/8) and G(−π/8) to reveal the
scattering preferences, respectively. By adjusting ψ , we can
achieve GG4U of different preferences. The expression of
G(μ) as G(ψ) provides a direct indication of the physical
mechanism underlying each GG4U.5

V. EG4U

A. Theoretical Evaluation of S4R and G4U on PS and PD

Despite sharing the same modeled part (17) and residual
part (18), S4R introduces the volume model �[T �

V 4]� in Y4R
so as to improve the double-bounce scattering in urban
area [29], [31]. Singh et al. [31] indicated that G4U could
further improve S4R in this aspect by adding the unitary trans-
formation. As revealed in Tables I and II of [31], compared
with S4R, G4U strengthens the surface scattering in area where
surface scattering is preferable to double-bounce scattering,
while increases the double-bounce scattering in urban area
where the double-bounce scattering is preferable to surface
scattering. By combining the ruling in (28), we can formulate
these observations as{

PG4U
S ≥ PS4R

S , BC > 0

PG4U
D ≥ PS4R

D , BC ≤ 0.
(58)

Singh et al. obtained (58) on image patches extracted from
both the ALOS-PALSAR and Radarsat-2 data sets of San
Francisco. In terms of the general expression of PS and PD

in (37), here, we give a simple validation to (58) by combining

5It should be noted that, however, scattering preference just provides a
physical description of the reservation of GG4U, which cannot replace the
modeled part to determine the scattering mechanism of targets.

μ = 0 and μ = 1 into (26) and (37)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

PG4U
S = S + |C1|2

S

PS4R
S = S + |C1 + C2|2

4S
,

BC > 0

⎧⎪⎨
⎪⎩

PG4U
D = D + |C1|2

D

PS4R
D = D + |C1 + C2|2

4D
,

BC ≤ 0.

(59)

From (59), we have⎧⎪⎨
⎪⎩

PG4U
S − PS4R

S = |2C1|2 − |C1 + C2|2
4S

, BC > 0

PG4U
D − PS4R

D = |2C1|2 − |C1 + C2|2
4D

, BC ≤ 0.
(60)

Then, (58) will hold iff |2C1|2−|C1 + C2|2 ≥ 0. Obviously,
this condition is not always tenable. This will be further
validated in Section VI on Radarsat-2 data of San Francisco.
Hence, despite the better performance in some areas, G4U
cannot improve S4R in every target area. To tackle with
this, the EG4U is developed in the following as an adaptive
combination of G4U and DG4U.

B. EG4U: Adaptive Combination of G4U and DG4U

The preference analysis in Section IV-D shows that G4U
and DG4U are just symmetric around S4R. Hence, the dual-
ity G(±1) may provide an improvement to S4R. Combine
μ = −1 into (26) and (37), DG4U surface and double-bounce
scattering powers can be formulated as⎧⎪⎨

⎪⎩
PDG4U

S = S + |C2|2
S
, BC > 0

PDG4U
D = D + |C2|2

D
, BC ≤ 0.

(61)

Combine (59) and (61), after some simple deduction,
we obtain⎧⎪⎨

⎪⎩
PG4U

S + PDG4U
S

2
− PS4R

S = |C1 − C2|2
4S

≥ 0, BC>0

PG4U
D + PDG4U

D

2
− PS4R

D = |C1 − C2|2
4D

≥ 0, BC≤0
(62)

⎧⎪⎨
⎪⎩

PG4U
S − PDG4U

S = |C1|2 − |C2|2
S

, BC > 0

PG4U
D − PDG4U

D = |C1|2 − |C2|2
D

, BC ≤ 0.
(63)

We can immediately obtain from (62) that{
max

{
PG4U

S , PDG4U
S

} ≥ PS4R
S , BC > 0

max
{

PG4U
D , PDG4U

D

} ≥ PS4R
D , BC ≤ 0.

(64)

From (63), we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
max

{
PG4U

S , PDG4U
S

}= PG4U
S ,BC > 0

max
{

PG4U
D , PDG4U

D

}= PG4U
D ,BC ≤ 0,

BC3>0{
max

{
PG4U

S , PDG4U
S

}= PDG4U
S ,BC > 0

max
{

PG4U
D , PDG4U

D

}= PDG4U
D ,BC ≤ 0

BC3≤ 0

(65)

where

BC3 = |C1| − |C2|. (66)
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Equation (65) just lays the foundation for EG4U, which is
defined as follows:

EG4U :=G(±1) =
{
G(+1) = G4U, BC3>0

G(−1) = DG4U, BC3≤ 0.
(67)

As the adaptive combination of G4U and DG4U, EG4U is
also a special case of GG4U. Hence, we denote it as G(±1) or
G(±π/8). By bringing μ = +1 or μ = −1 into (26) and (37)
based on the BC3, we can achieve the scattering powers of four
components in EG4U, which also reserve the conservation (39)
and (40). Furthermore, from (64), (65), and (67), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PEG4U
S =max

{
PG4U

S , PDG4U
S

}≥{
PS4R

S , PG4U
S , PDG4U

S

}
,

BC > 0

PEG4U
D =max

{
PG4U

D , PDG4U
D

}≥{
PS4R

D , PG4U
D , PDG4U

D

}
,

BC ≤ 0.

(68)

Compared with S4R, G4U, and DG4U, the EG4U increases
the surface scattering in area where surface scattering
is superior to double-bounce scattering and strengthens
double-bounce scattering in area where double-bounce scat-
tering is preferable to surface scattering. Therefore, EG4U
achieves not only a nice improvement to S4R but also an
effective extension to G4U. Based on the flowchart of GG4U
shown in Fig. 2, the procedure of EG4U is outlined in
Algorithm 1.

VI. EXPERIMENTS AND VALIDATION

We test GG4U by comparing S4R, G4U, DG4U, and EG4U
on C-band Radarsat-2 data of San Francisco acquired on
April 9, 2008. Fig. 4(a) shows the Pauli image of the data,
where Z1–Z5 denote five selected zones for comparison.
The c
Google Earth optical image of the area and zones
are shown in Fig. 4(b). We use a 12 × 6 boxcar filtering
to suppress the speckles first. Then, S4R, G4U, DG4U, and
EG4U are employed for decomposition. The decomposed
results of the four are found very consistent with one another
as they all observe the conservation of PV , PC , PS + PD , and
PS + PD + PV + PC . Therefore, only the pseudocolor power
decomposition result of EG4U is shown in Fig. 5 by encoding
{R,G, B} with {PEG4U

D , PEG4U
V , PEG4U

S }.

A. Conservation Versus Nonconservation

In fact, as for Y4R, S4R, and G4U, Singh et al. [31] also
evaluated the conservation. They indicated that S4R breaks
the conservation of PS + PD in the South of Market (SoMa)
region of San Francisco6 (i.e., Z1 in Fig. 4). As a result, the
summation PS + PD + PV + PC is smaller than S P AN , and
a relative error is then achieved and the relative error order
is G4U < Y4R < S4R [31]. To examine this, Fig. 6(a)–(d)
shows PS + PD , PV , PC , and PS + PD + PV + PC extracted
by S4R, G4U, DG4U, and EG4U along the red line in Z1 of

6SoMa is a dense urban district in San Francisco. The streets there are
about 40◦ tilted. As a result, the normal of vertical wall of buildings will be
no longer within the radar incidence plane and orientation is created. Such
the misalignment aggravates the scattering complexity further, which is hard
to be compensated by any unitary deorientation method [54].

Algorithm 1 EG4U
01: Input: �[T ]�
02: Conduct deorientation to �[T ]� for �[T �]�
03: Compute helix power PC = 2|Im{T �

23}|H (T �
33 −

|Im{T �
23}|)

04: Calculate BC0, BC1, and BC2

05: Determine volume scattering model based on BC1 and
BC2

06: Obtain volume scattering power PV = (2T �
33 − PC)/2c

07: Calculate decomposition parameters S, D, C1, and C2,
and BC3

08: Implement S P AN reservation ruling based on S + D
09: if S + D > 0
10: Adaptively select between G4U and DG4U based on

BC3

11: if BC3 > 0
12: C = C1

13: else
14: C = C2

15: end if
16: Calculate surface scattering power PS and double-

bounce scattering power PD according to BC0 and
BC1

17: if BC0 > 0 and BC1 > 0
18: PS = S + |C|2/S, PD = D − |C|2/S
19: else
20: PS = S − |C|2/D, PD = D + |C|2/D
21: end if
22: Implement nonnegative PS and PD ruling
23: else
24: PS = PD = 0, PV = S P AN − PC

25: end if
26: Output: PS, PD, PV , PC

Fig. 4(a), respectively. As shown, the conservation holds well
and conforms to the strict formulations in Section IV. Thus,
we prefer to attribute the deviation of PS + PD + PV + PC from
S P AN observed in SoMa by Singh et al. to the potential
approximation in the software implementation of S4R. It is
also shown in Fig. 6 that PS + PD is averagely larger than PV .
This is helpful to the understanding of the complex scattering
in SoMa.

B. GG4U Versus S4R

Despite the good coherence and conservation of PS + PD ,
the powers PS and PD depend on constant μ and vary with
different GG4U algorithms. Treating S4R as a reference,
we first examine whether G4U, DG4U, and EG4U can adap-
tive enhance double-bounce scattering or surface scattering in
comparison with S4R.

To better show the difference among algorithms, we nor-
malize PS and PD with PS + PD for ηS and ηD first⎧⎪⎨

⎪⎩
ηS = PS

PS + PD
× 100%

ηD = PD

PS + PD
× 100%.

(69)
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Fig. 4. (a) Radarsat-2 polarimetric Pauli image and (b) Google Earth optical image of San Francisco. Z1 to Z5 denote five focused zones for deep analysis.

Fig. 5. Color-coded scattering power decomposition result (red: PD , green:
PV , blue: PS) obtained by EG4U on Radarsat-2 data of San Francisco.

A pseudocolor difference image between S4R and any a
GG4U is then obtained by treating {ηGG4U

D − ηS4R
D , 0, ηGG4U

S −
ηS4R

S } as {R,G, B}, and we denote such difference image as
GG4U − S4R. The conservation of PV indicates that the green
component G of GG4U − S4R is always zero, whereas the
conservation of PS + PD shows ηGG4U

D −ηS4R
D = ηS4R

S −ηGG4U
S .

Taking the nonnegative reality of R and B into consideration,
then the difference image GG4U − S4R will always present
itself in an either red or blue pattern: the red pixel denotes
ηGG4U

D ≥ ηS4R
D , whereas the blue one indicates ηGG4U

S > ηS4R
S .

This enables an excellent visualization of the change from
S4R to GG4U. Fig. 7(a)–(c) shows EG4U − S4R, G4U − S4R,
and DG4U − S4R, respectively. It is interesting to observe
that the distribution of red and blue pixels in Fig. 7(a) is
highly corresponded to the typical targets in the scene: red
pixel mainly arises in building and urban area, whereas blue
pixel mainly appears in area such as ocean, mountain, and
airport. However, this perfect correspondence seems lost in
Fig. 7(b), because we can also see blue pixels in urban area
and red pixels in ocean and mountain, i.e., G4U cannot always
enhance the surface scattering power in ocean and mountain
nor strengthen double-bounce scattering power in building and
urban area, and DG4U in Fig. 7(c) similarly. To rigorously
check these, Fig. 8(a) shows the binary image of BC, where
the white pixel denotes BC > 0 or S > D, i.e., surface
scattering is stronger than double-bounce scattering, which
occupies area of ocean, airport, and mountain,7 whereas the

7Since the surface and double-bounce components are attained after volume
and helix components, BC only determines the dominance between surface
and double-bounce components not that among all the four components.
Therefore, although volume scattering usually dominates the mountain and
forest area, we can also have BC > 0 or even BC≤ 0 there.

black one denotes BC ≤ 0 or D ≥ S, i.e., the stronger
double-bounce scattering, which occupies the urban area.
BC is widely used in model-based decompositions as a crucial
feature to discriminate surface scattering and double-bounce
scattering [13]–[45]. Taking BC as a priori scattering truth,
we can further classify the pixel in GG4U − S4R into four
categories.

1) S|S: GG4U correctly improves S4R by enhancing the
surface scattering contribution over area where surface scat-
tering is stronger than double-bounce scattering. We denote
this as S|S, which is ruled by (ηGG4U

S > ηS4R
S )&(S > D).

2) D|S: GG4U wrongly improves double-bounce scattering
power over area dominated by surface scattering rather than
double-bounce scattering. We denote this as D|S and rule it
by (ηGG4U

D ≥ ηS4R
D )&(S > D).

3) D|D: GG4U correctly enhances double-bounce scatter-
ing power over area dominated by double-bounce scattering
rather than surface scattering. We denote this as D|D and rule
it if (ηGG4U

D ≥ ηS4R
D )&(D ≥ S).

4) S|D: GG4U wrongly strengthens the surface scattering
contribution over a area dominated by double-bounce scatter-
ing rather than surface scattering. We denote this as S|D and
rule it by (ηGG4U

S > ηS4R
S )&(D ≥ S).

We conduct this classification to every pixel of
EG4U − S4R and render pixel attributed to S|S, D|D,
D|S, or S|D in blue, red, purple, or yellow in Fig. 9(a).
By relating it to the binary image of BC in Fig. 8(a), we can
observe a high consistency: S|S aligns with BC > 0, whereas
D|D corresponds to BC ≤ 0, and we can hardly detect any
D|S or S|D pixels in Fig. 9(a). The similar classification can
also be done to G4U − S4R and DG4U − S4R, as shown in
Fig. 9(b) and (c), which, however, present clear inconsistency
with Figs. 8(a) and 9(a). For instance, Fig. 9(b) & (c) shows
many yellow pixels in urban area and purple pixels in ocean,
indicating the impropriety of G4U and DG4U. To obtain a
quantitative measure of the consistency and inconsistency,
we define a pseudoprobability of occurrence p for each of
the four categories. The p(S|S) and p(D|D) measure the
consistency

⎧⎪⎪⎨
⎪⎪⎩

p(S|S) = #
{(
ηGG4U

S > ηS4R
S

)
&(S > D)

}
#{S > D} × 100%

p(D|D) = #
{(
ηGG4U

D ≥ ηS4R
D

)
&(D ≥ S)

}
#{D ≥ S} × 100%

(70)
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Fig. 6. Decomposition scattering power profiles of (a) PS + PD , (b) PV , (c) PC , and (d) PS + PD + PV + PC achieved by S4R, G4U, DG4U, and EG4U
along the red transect line in Z1 of Fig. 4(a) for various targets.

where #{·} denotes “the number of.” Then, the complementary
principle tells us p(D|S) = 1 − p(S|S), p(S|D) = 1 −
p(D|D), which measure the inconsistency, and thus, only
p(S|S) and p(D|D) are shown in Table I for comparison.
As shown, both p(D|D) and p(S|S) achieved by EG4U on the
Radarsat-2 data set of San Francisco are 100%, i.e., EG4U can
completely strengthen S4R in area dominated by either surface
or double-bounce scattering. The p(D|D) attained by G4U is
60.47%, i.e., G4U enhances the double-bounce contribution
on about 60% of urban area of San Francisco, whereas on
the other 40% area, G4U does not enhance but reduces the
double-bounce scattering. If we use G4U in this area to
extract building and evaluate damage caused by tsunami or
earthquake, the reduced double-bounce scattering caused by
G4U may result in the underestimation of building scale and
the overestimation of the damage level. The p(S|S) attained by
G4U is 65.03%, higher than p(D|D); nevertheless, G4U also
fails to improve but reduces the surface scattering on the other
34.97% of the majority of the ocean and mountain area in San
Francisco. Such a reduced surface scattering power may lead
to the incorrect estimation and mapping of snow density and

wetness if G4U is employed in the quantitative remote sensing
of snow. The scale of landslide and deforestation may also be
underestimated if we employ the reduced surface scattering
for the remote sensing of mountain and forest. The similar
situation also occurs in DG4U, as shown in Table I, and p(S|S)
and p(D|D) achieved by DG4U on the same scene are 54.14%
and 60.16%, respectively, even lower than that obtained by
G4U. Furthermore, according to the law of total probability,
we define a pseudo-probability p(C|T ) from p(D|D) and
p(S|S) to show the total consistency between GG4U − S4R
and the a priori scattering truth BC

p(C|T ) = p(S|S)p(S)+ p(D|D)p(D) (71)

where p(S) gives the probability taken up by BC > 0 or
S > D, and p(D) is the probability accounted for by BC ≤ 0
or D ≥ S. Similarly, the total inconsistency p(I|T ) is simply
derived from the complementary principle by p(I|T ) = 1 −
p(C|T ). Table I further shows the p(C|T ) obtained by EG4U,
G4U, and DG4U on San Francisco data set. The highest 100%
consistency indicates EG4U’s universal improvement of S4R
everywhere. The worst consistency on this data is provided
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Fig. 7. Evaluating the performance of EG4U, G4U, and DG4U on the scattering power difference image constructed by taking S4R as reference. (a)
EG4U − S4R, (b)G4U − S4R, (c)DG4U − S4R, and (d) (G4U + DG4U)/2−S4R. EG4U − S4R here denotes the normalized difference of the color-coded
scattering power images of EG4U and S4R. The meaning of difference images G4U − S4R, DG4U − S4R, and (G4U + DG4U)/2−S4R can be likewise
inferred.

Fig. 8. Binary display of (a) BC and (b) BC3. The white pixels in (a) and (b) denote BC > 0 and BC3 > 0, respectively, while the black pixels correspond
to BC ≤ 0 and BC3≤0, respectively.

by DG4U with half a little more improvement (54.78%) and
nearly half degradation. G4U improves S4R in 64.55% of
the data area but also degrades the performance in the other
35.45% area. To remove the potential bias from PolSAR
data set, we also evaluate GG4U algorithms on other nine
PolSAR data sets acquired by both spaceborne and airborne
systems from different places. The result is also shown in
Table I. On all the nine data sets, p(S|S), p(D|D), and p(C|T )
attained by GG4U are forever 100% as ever. However, G4U
does not always obtain a better consistency than DG4U. The
performance of G4U and DG4U is comparable. None of them
can strengthen S4R without any degradation only when we
integrate them into EG4U.

C. EG4U Versus G4U and DG4U
The performance of GG4U is evaluated in Section VI-B

by referring EG4U, G4U, and DG4U to S4R for the dif-
ference images, respectively. In this section, the underlying
relation among EG4U, G4U, and DG4U is investigated on
PolSAR data to further demonstrate the outperformance of
EG4U over G4U and DG4U. We start from the total consis-
tency p(C|T ) shown in Table I. The addition of the p(C|T )
attained by G4U and DG4U on each of the ten exemplified
PolSAR data sets is higher than 100%, so is the addition of
p(S|S) and that of p(D|D). Hence, there must be data cells
where both G4U and DG4U strengthen the performance of
S4R. Nevertheless, as the other side of the medal, actually,
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Fig. 9. Evaluating the performance of EG4U, G4U, and DG4U by classifying the scattering power difference images (a) EG4U − S4R, (b)G4U − S4R,
(c)DG4U − S4R, and (d) (G4U + DG4U)/2 − S4R based on a priori scattering truth BC .

TABLE I

QUANTITATIVE EVALUATION OF THE PERFORMANCE OF G4U, DG4U, AND EG4U ON TEN TYPICAL
POLSAR DATASETS IN TERMS OF p(S|S), p(D|D), AND p(C|T)

we care more about whether there are data cells where
both G4U and DG4U degrade S4R. We investigate this by
taking the average of the difference images G4U − S4R and
DG4U − S4R for (G4U + DG4U)/2 − S4R. Fig. 7(d) shows
the average difference image achieved on the Radarsat-2
data set of San Francisco. Although the red color in certain
urban area and the blue color in ocean area are somewhat
light, Fig. 7(d) shows the similar perfect correspondence to
the typical targets as that shown in Fig. 7(a). To illustrate
this more clearly, taking BC as a priori scattering truth,
a classification is also conducted to the average difference
image (G4U + DG4U)/2 − S4R for S|S, D|D, D|S, or S|D.

The result is shown in Fig. 9(d), which looks the same as
Fig. 9(a). We can hardly detect any D|S or S|D, but the
good correspondence between S|S and BC > 0, and perfect
consistency between D|D and BC ≤ 0. This is also validated
in term of pseudo-probability: all the p(S|S), p(D|D), and
p(C|T ) change to the highest 100% after averaging, and they
maintain 100% also on the other nine PolSAR data sets.
Therefore, there never exists a situation that both G4U and
DG4U degrade S4R. They either improve S4R separately or
achieve this at the same time. We use duality to depict such
complementary redundancy. To deeply display the duality,
particularly the complementation, S4R, G4U, and DG4U are
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TABLE II

NORMALIZED FOUR-COMPONENT SCATTERING POWERS OBTAINED
BY S4R, G4U, DG4U, AND EG4U IN Z2, THE SAN ANDREAS LAKE OF

SAN FRANCISCO

TABLE III

NORMALIZED FOUR-COMPONENT SCATTERING POWERS OBTAINED

BY S4R, G4U, DG4U, AND EG4U IN Z3, THE

NAVAL AIR STATION ALAMEDA

further carried out on the four typical zones from Z2 to Z5
shown in Fig. 4. We average the �[T ]� matrices in each zone
and decompose the mean target for the normalized scattering
power of the four components. Tables II–V show the obtained
result on each zone. Z2 denotes the San Andreas Lake. The
Cloude–Pottier entropy H and α angle here are 0.3889 and
15.3208◦, respectively, indicating the preeminent low-entropy
Bragg scattering [10]. As shown in Table II, in comparison
with S4R, G4U successfully improves the surface scattering
power, whereas DG4U improperly strengthens double-bounce
scattering but decreases the surface scattering contribution.
Nevertheless, as shown in Table III, the performance of G4U
and DG4U is exchanged in Z3, which is extracted from the
former naval air station Alameda. The parameters H and α
here are 0.7300 and 29.8487◦, respectively, indicating the
medium-entropy random surface scattering. We should resort
to DG4U for improvement. Different from Z2 and Z3, Z4
and Z5 are dominated by double-bounce scattering of different
scattering randomness. Z4 shows a San Francisco urban area
with α = 29.8487◦ and H = 0.7300, corresponding to the
dihedral scattering with moderate entropy. Just as that claimed
in [31], compared with S4R, G4U improves the double-bounce
scattering contribution here and reduces the surface scattering
power, whereas DG4U just behaves in precisely the opposite
way, as shown in Table IV. Unlike Z4, Z5 is not a building
area but a harbor in Point Richmond of California. The surface
scattering here should be dominant just like that occurs in the
airport Z3. The scattering powers achieved by S4R, G4U, and
DG4U in Table V, however, all exhibit the overwhelmingly
dominant double-bounce scattering, which takes up about 83%
of the total scattering power. This interesting finding is further
ensured by H = 0.4432 and α = 68.1058◦, which attribute Z5
as the double- or even-bounce scattering of low entropy [10].
To explain this, we also exhibit the optical image of Z5 in Fig.
4(b), which shows that there are always a lot of cars parked
neatly in the harbor through the year. Thus, the dominant
double-bounce scattering here may mainly be credited to the

TABLE IV

NORMALIZED FOUR-COMPONENT SCATTERING POWERS OBTAINED
BY S4R, G4U, DG4U, AND EG4U IN Z4, AN URBAN

AREA OF SAN FRANCISCO

TABLE V

NORMALIZED FOUR-COMPONENT SCATTERING POWERS OBTAINED
BY S4R, G4U, DG4U, AND EG4U IN Z5, A HARBOR

IN POINT RICHMOND, CA

numerous aligned ground-vehicle backscatterers at C-band.
As shown in Table V, rather than G4U, DG4U should be
selected to improve S4R for the enhanced retrieval of the
double-bounce scattering here.

The duality of G4U and DG4U indicates that the appropriate
combination of them will not only solve the deficiency in G4U
and DG4U themselves but also achieve a full improvement of
S4R by adaptively strengthening the double-bounce scattering
or surface scattering according to the preferable scattering.
One simple strategy to obtain this is to conduct G4U and
DG4U first and then compare them on scattering power PS

or PD according to BC for the larger one. Despite feasible,
this requires us to do both decompositions to the same data.
EG4U obtains this based on BC3, which enables us an adaptive
selection between DG4U and G4U ahead of decomposition:
DG4U operates if BC3 ≤ 0, otherwise, G4U functions. This
makes the combination of G4U and DG4U more natural. The
binary image in Fig. 8(b) shows BC3 attained on Radarsat-2
data set of San Francisco. The white pixel (i.e., BC3 > 0)
indicates the data cell where G4U operates, whereas the black
one (i.e., BC3 ≤ 0) signifies the data cell where DG4U works.
The white and black pixels account for 54.91% and 45.09%
of the whole image, respectively. Therefore, G4U improves
S4R only on 54.91% area of the San Francisco scene. As for
the rest area, we should resort to DG4U for improvement.
Tables II–V also show the normalized scattering power of the
four components decomposed by EG4U on the four zones
from Z2 to Z5. EG4U achieves the same excellent result
as G4U in Z2 and Z4 just because of the positive BC3

here, whereas in Z3 and Z5, it achieves the same excellent
scattering power decomposition as DG4U also because of
the negative BC3 there. Therefore, BC3 and the G4U-DG4U
duality are the key to the success of EG4U. Nevertheless, in
comparison with BC, the physical significance of BC3 is still
unclear yet. Further investigation is necessary so as to make
it as widely-accepted and widely-used as BC.
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VII. DISCUSSION

G4U was developed to incorporate T �
13 into the modeled

part �[T �G4U
M ]� based on the SU(3) matrix [U3(ϕ)], as shown

in (23). Nonetheless, if we turn attention to (24), the equivalent
−T �

13 is also observed in the residue �[T �G4U
R ]� since �[T �G4U

M ]�
includes T �

13 in the (1, 2) entry rather than (1, 3) entry. Such
incomplete utilization of T �

13 also exists in GG4U, as given
in (35) and (36). Matrix [U3(ϕ)] devised by Singh et al.
looks to account for one more DoF by eliminating Im{T �

23}
for G4U. However, Im{T �

23} has already been accounted for in
S4R and Y4R by helix power fC , as formulated in (15-4).
Hence, although all the elements in �[T ]� are involved in
�[T �G4U

M ]�, the DoF completely modeled in G4U is still seven,
the same as S4R, i.e., GG4U in the form of G(μ) shares
the same DoF. Theoretically, G4U and S4R indicate two
special solutions of GG4U of equal status only. Therefore,
G4U cannot fully improve S4R only if we ascend the status
of G4U by combining the duality of G4U, i.e., DG4U and
G4U together for EG4U. EG4U can adaptively increase the
surface scattering and double-bounce scattering. Hence, it will
definitely improve the competence and performance of G4U
in the remote sensing of agriculture, forestry, snow, wetland,
environment, man-made targets, glaciated terrain, as well as
damages caused by landside and earthquake/tsunami. We will
investigate these in the future.

Are there any other SU(3) matrices that can be used to
obtain GG4U? The answer is affirmative. For instance, we can
replace [U3(ϕ)] in G4U with the following SU(3) helix matrix
[U3(τ )]:

[U3(τ )] =

⎡
⎢⎢⎣

cos 2τ 0 j sin 2τ

0 1 0

j sin 2τ 0 cos 2τ

⎤
⎥⎥⎦. (72)

[U3(τ )] has been used to evaluate the symmetry–asymmetry
nature of targets in Touzi decomposition [11]. Its performance
on the indication of helicity and asymmetry has been proven
by comparing with the related indicator in Paladini decompo-
sition [12] and Cameron decomposition [55]. It has also been
adopted recently by Bhattacharya et al. [56] to develop an
adaptive G4U (AG4U).8 Similarly, a new generalized balance
equation system different from (33) can be created if we
replace [U3(ϕ)] in G4U with [U3(τ )]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fS + fD |α|2 + fV a = T �
11 + ρIm

{
T �

13

} −1)

fSβ + fDα + fV d = T �
12 −2)

fS |β|2 + fD + fV b + fC

2
= T �

22 −3)

± j
fC

2
= j Im

{
T �

23

} −4)

fV c + fC

2
= T �

33 −5)

(73)

8Unlike G4U which transforms both �[T �]� and �[T �S4R/Y4R
M ]� in (8)

and (19) for the decomposition of �[T �]� in (22), AG4U is essentially a S4R
dedicated to adaptively adopt S4R for the decomposition of �[T ��]� by unitarily
transforming �[T �]� only. The only difference between S4R and AG4U is to
carry out S4R to �[T �]� or to �[T ��]�. �[T ��]� is created in AG4U by adaptively
transforming �[T �]� based on matrix [U3(ϕ)] or [U3(τ )] according to the
degree of polarization m. Please refer to [56] for details.

where

ρ = tan4τ. (74)

The redundancy in this case appears in (73-1), which
includes T �

13 information in the (1, 1) entry of �[T �G4U
M ]�. This

signifies a new type of GG4U, and we denote it as G(ρ) or
G(τ ). By taking an appropriate value to ρ or τ , we can also
have GG4U of different forms, while G(0) just corresponds to
S4R which also bears the minimized residue. The preference
analysis conducted on G(ψ) in Section IV can be similarly
extended to G(τ ). A different type of GG4U and redundancy
will be, of course, achieved if we use a different SU(3) matrix.
Nonetheless, the unitary invariance of L2-norm indicates that,
for whatever SU(3) matrix used, there is always a T �

13-related
residue in GG4U, while S4R always bears the minimized
residue. Therefore, the incorporation of unitary transformation
in S4R for the complete modeling of scattering information in
coherency matrix is impossible in theory.

To fully reserve T �
13 in the modeled part, we should con-

sider to introduce a T �
13-related independent equation into the

balance equation system instead of a redundant one, which
indicates that the canonical scattering model with nonzero
(1, 3) entry should be used, while Y4R, S4R, G4U, and GG4U
cannot obtain this just because the (1, 3) element of all the
models in (10) is zero. One way to achieve this is to adopt the
general model of surface and double-bounce scatterings [10],
which has been applied by Cui et al. [20] and An and Xie [36]
in the complete three-component model-based decomposition
and has been further employed by Chen et al. [19] and Xie et
al. [40], [43] in GMD to tackle with the limitation of Y4R and
S4R on inversion priority, orientation effects, BC, and negative
powers. Another way to obtain this is to introduce some new
physical scattering models into four-component decomposi-
tion. Singh and Yamaguchi [44] recently derived two new
models, i.e., the oriented dipole scattering and the oriented
quarter-wave reflection, to account for the real and imaginary
parts of T �

13, and added them into S4R for a six-component
model-based decomposition (6SD), which, recently, has been
further extended to a seven-component decomposition (7SD)
by Singh et al. [45]. Both G4U/GG4U and 6SD/7SD are
dedicated to improve S4R to account for T �

13: the former
obtains this based on unitary transformation, whereas the
latter depends on the T �

13-related models. Strictly speaking,
6SD/7SD no longer belongs to the series of four-component
decomposition because of the newly added scattering compo-
nents. Nonetheless, EG4U may be also beneficial to 6SD/7SD
as an alternative to S4R to strengthen the double-bounce
scattering and surface scattering. Full information utilization
requires an exact fit of all scattering components. Nevertheless,
the exact fit is not always necessary because a coherency
matrix may have some noise and/or show variations across
the mixed targets, and the exact fit will just be fitting noise
then. From the minimum residue point of view, the residue
of EG4U is

√
2 times larger than that of S4R, but EG4U can

adaptively improve S4R based on the preferable scattering.
This article just enables a mathematical extension to G4U.
We should be scrupulous when evaluating the performance of
a decomposition algorithm based on only one criterion.
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From the power estimation point of view, the progress
from FDD to EG4U is just aimed to better retrieve the
contribution of double-bounce and surface components. FDD
overestimates PV while underestimates PS and PD . Y4O
decreases PV to increase PS and PD by introducing a helix
component and two additional volume models. Y4R further
decreases PV and increases PS and PD by implementing
deorientation. S4R continues this progress by introducing
an even-bounce structure-related volume model to reduce
PV and improve PD . G4U adopts an imagery rotation of
coherency matrix to strengthen PD in urban and building
area while improve PS in land and water area further, but
which is not always the case. To enable a full enhance-
ment of G4U and S4R, EG4U reserves the minimized PV

obtained in the previous progress and adaptively integrates the
G4U-DG4U duality so that PD in building and urban region
and PS in land and water region can be always improved.
It signifies a state-of-the-art four-component scattering power
decomposition.

Model-based decompositions provide a set of parameters
of physical significance, PS , PD , PV , PC , ϕ, β, and α.
Nevertheless, these parameters have not attracted fair treatment
and attention in existing researches. We attribute it mainly
to the availability of ground truth. Undoubtedly, among these
parameters, PS , PD , PV , and PC , especially the first three,
attracted the most attention because they can establish an
intuitive relationship with ground truth by visualizing the
decomposition result in terms of pseudocolor. Such the ground
truth can be easily achieved from the optical image and/or
map of region of interest. Hence, the model-based decom-
position is also referred to as the model-based scattering
power decomposition, and seeking the best balance among the
scattering powers has become the main driving force behind
the model-based decompositions. To make all the parame-
ters fairly treated and any new model-based decomposition
appropriately evaluated on all the parameters, benchmark data
sets with complete ground truth are of crucial importance.
We highly acknowledge the initiative made by Ballester-
Berman et al. [50] recently, “The use of benchmark data sets
available to any researcher and agreed by the community for
validation purposes is a way to better quantify the potential
progress by any new proposal.”

Except for few recent progress [50], [40], the existing
model-based decompositions are mostly evaluated from the
qualitative point of view. The quantitative assessment of the
whole set of parameters involved in model-based decomposi-
tions has been almost overlooked in the field [50]. The strength
of quantitative assessment is to quantify the performance of
an algorithm. As a necessary complement to the qualitative
evaluation and identification, the quantitative analysis is more
qualified to promote model-based parameters to the quantita-
tive remote sensing application. Nonetheless, whether for the
qualitative or quantitative assessment, estimation accuracy is
always affected by many random factors because of the miss-
ing of “entropy control” in radar polarimetry. The combination
of polarimetry and interferometry can help us to obtain a better
parameter estimation, even in the presence of high entropy and
strong depolarization [3].

From a quantitative point of view, the progress from FDD to
EG4U can be attributed into two phases. Phase 1 corresponds
to the progress from FDD to S4R, including FDD, Y4O, Y4R,
and S4R, which is aimed to significantly adjust PS , PD , and
PV so as to correct their relationship from PV > PS, PD

to PD > PS, PV in some urban and building areas and to
PS > PD, PV in some land and water areas. The changes in
this phase are so significant that the color-coded scattering
power images are sufficient to show them. Phase 2 involves
in the progress from S4R to EG4U, including S4R, G4U, and
EG4U, which is more like a fine tuning process. It conserves
the relative relationship among PS , PD , and PV but finely
revises PD and PS so as to adaptively enhance the surface or
double-bounce contribution further. It is then better to reveal
the resulted differences with the color-coded differential power
images (Fig. 7) or quantify the changes based on the statistical
consistencies and normalized scattering powers (Tables I–V).

S4R, G4U, DG4U, and EG4U denote four typical algo-
rithms of GG4U, which can be also expressed as G(0),
G(+1), G(−1), and G(±1), or G(0), G(+π/8), G(−π/8), and
G(±π/8). We suggest naming them with G(μ) or G(ψ) to
directly reveal their mathematical relationship and underlying
physical mechanism. By taking an appropriate value to μ
or ψ even ρ or τ or integrating any other SU(3) matrix
into S4R, we can, of course, obtain some other forms of
GG4U which may provide us as competent or even better
target decomposition performance than S4R, G4U, DG4U, and
EG4U. We leave all these as the future work.

VIII. CONCLUSION

The unitary transformation plays an important role in G4U.
It accounts for T �

13 by adding a T �
13-related but redundant

balance equation into the originally self-contained S4R/Y4R
scattering balance equation system. We then have no exact
solution to the system but the approximate ones. The gen-
eral expression of the approximate solutions enables us a
GG4U, while G4U and S4R denote two special forms of
it. Information accounted for in the modeled components
shows the scattering preference of GG4U for the ψ-rotated
double-bounce scattering. G4U cannot always improve S4R
unless we combine G4U and its duality for EG4U. EG4U
provides an adaptive improvement to both S4R and G4U by
strengthening the surface scattering or double-bounce scat-
tering. A generalized decomposition other than GG4U will
be achieved by considering a different unitary transformation.
However, for whatever unitary transformation adopted, there
is always a T �

13-related unaccounted residue in GG4U. Com-
plete T �

13 modeling is not obtained unless canonical scattering
models with nonzero (1, 3) entry of coherency matrix are used
to add an independent T �

13-related equation to the S4R/Y4R
balance equation system.

APPENDIX A

The balance equation system (20) is deduced in Appendix
A. Bring matrices �[T �

S]�, �[T �
D]�, �[T �

V ]�, and �[T �
C ]� into (10),

entry T
�S4R/Y4R
Mi j (i, j = 1, 2, 3) of �[T �S4R/Y4R

M ]� is expressed
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as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
�S4R/Y4R
M11 = fS + fD|α|2 + fV a −1)

T
�S4R/Y4R
M12 = T

�S4R/Y4R∗
M21 = fSβ + fDα + fV d −2)

T
�S4R/Y4R
M13 = T

�S4R/Y4R∗
M31 = 0 −3)

T
�S4R/Y4R
M22 = fS|β|2 + fD + fV b + fC

2
−4)

T
�S4R/Y4R
M23 = T

�S4R/Y4R∗
M32 = ± j

fC

2
−5)

T
�S4R/Y4R
M33 = fV c + fC

2
−6).

(A1)

G4U first adopts [U3(ϕ)] to carry out unitary transformation
to �[T �]� for �[T ��]� in (8) and to �[T �S4R/Y4R

M ]� for �[T ��G4U
M ]�

in (19). Entries T ��
i j of �[T ��]� and T ��G4U

Mi j of �[T ��G4U
M ]� are

obtained in (A2) and (A3), shown at the bottom of the page.
By forcing T ��G4U

Mi j = T ��
i j , G4U then associates the unknowns

fS , fD , fV , fC , α, and β with the entry T �
i j of �[T �]� so as to

combine (A2) and (A3) for (A4), shown at the bottom of this
page. (A4-2) − j × (A4-3), we have

fSβ + fDα + fV d = T �
12 + T �

13. (A5)

Similarly, (A4-2) + j × (A4-3), we obtain

fSβ + fDα + fV d = T �
12 − T �

13. (A6)

(A4-4) + (A4-6)

fS |β|2 + fD + fV (b + c)+ fC = T �
22 + T �

33. (A7)

(A4-4) − (A4-6)

(
fS|β|2 + fD + fV (b − c)

)
cos 4ϕ ± fC sin 4ϕ

= (
T �

22 − T �
33

)
cos 4ϕ+2Im

{
T �

23

}
sin 4ϕ. (A8)

sin 4ϕ × (A4-5) + cos 4ϕ×(A8)

fS|β|2 + fD + fV (b − c) = T �
22 − T �

33. (A9)

sin 4ϕ × (A8) − cos 4ϕ × (A4-5)

± j
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2
= j Im

{
T �

23

}
. (A10)

(1/2)× ((A7) + (A9))

fS|β|2 + fD + fV b + fC

2
= T �

22. (A11)

(1/2)× ((A7) − (A9))

fV c + fC

2
= T �

33. (A12)
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(A2)
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Replace (A4-2) with (A5), (A4-3) with (A6), (A4-4) with
(A11), (A4-5) with (A10), and (A4-6) with (A12), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fS + fD |α|2 + fV a = T �
11 −1)

fSβ + fDα + fV d = T �
12 + T �

13 −2)

fSβ + fDα + fV d = T �
12 − T �

13 −3)

fS|β|2 + fD + fV b + fC

2
= T �

22 −4)

± j
fC

2
= j Im

{
T �

23

} −5)

fV c + fC

2
= T �

33 −6).

(A13)

Obviously, (A13-2) and (A13-3) are redundant. They cannot
provide independent information on decomposition and should
be merged into one equation; then, (A13) just becomes (20).
The general balance equation system (73) under SU(3) helix
matrix (72) can be derived likewise. �
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