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Abstract— In this article, ALOS-2/PALSAR-2 dual-polarized
[horizontal-transmit–horizontal-receive and horizontal-transmit–
vertical-receive (HH/HV)] ScanSAR mode L-band synthetic aper-
ture radar (SAR) imagery over an Arctic study area was evalu-
ated for their suitability for operational sea ice (SI) monitoring.
The L-band SAR data are studied for the estimation of different
SI parameters: SI concentration, SI thickness, SI type, and SI
drift. Also, some comparisons with nearly coincident C-band data
over the same study area have been made. The results indicate
that the L-band SAR data from ALOS-2/PALSAR-2 are very
useful for estimating the studied SI parameters and equally good
or better than using the conventional operational dual-polarized
C-band SAR satellite data.

Index Terms— ALOS-2/PALSAR-2, dual polarized, L-band,
synthetic aperture radar (SAR), sea ice (SI).

I. INTRODUCTION

OOPERATIONAL sea ice (SI) monitoring has mainly
been based on C-band synthetic aperture radar (SAR)

since the 1990s (ERS-1/2, ENVISAT/ASAR, RADARSAT-
1/2, and Sentinel-1), and also, some X-band SAR instruments
(TerraSAR-X, TanDEM-X, and COSMO-SkyMed constella-
tion) have been used mainly as complementary information
(for better temporal coverage). Previous studies have shown
that the L-band SAR data can provide complementary infor-
mation to the C- and X-band data, e.g., in [1]–[3]. The L-band
is less sensitive to wet snow layer over SI, and it also has a
deeper penetration depth in SI, thus being able to retrieve more
information on the ice volume structure (volume scattering)
than the C- or X-band SAR data. The L-band is also more
sensitive to the degree of ice deformation and there is a higher
backscatter contrast between the deformed and level ice at L-
band. In general, the information content of the X- and C-band
images is largely equivalent, whereas the L-band data are able
to provide some complementary information.

Our objective is to study the SI parameter estimation
based on the ALOS-2/PALSAR-2 L-band dual-polarized
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ScanSAR data. SI parameter estimation over the Baltic Sea
using SAR imagery has extensively been studied at the Finnish
Meteorological Institute (FMI) since the early 1990s. Baltic
Sea is covered with a dense network of in situ measurements
and daily ice charting, producing daily SI thickness (SIT),
SI concentration (SIC), and degree of SI deformation, thus
providing a good test bed for novel SI parameter estimation
algorithms. FMI has also studied automated SI parameter
estimation in other ice-covered sea areas, such as European
parts of the Arctic ocean, Caspian Sea, Gulf of Saint Lawrence,
and Bohai Sea. Our methods for SI parameter retrieval include
SAR image feature extraction algorithms, SAR image segmen-
tation algorithms, and both linear and nonlinear estimation
algorithms based on segment-wise backscattering statistics
(e.g., median or average) and texture features (see [4]–[8] for
more details).

In this article, we have studied the possibilities to use
the L-band dual-polarized SAR data with the horizontal-
transmit–horizontal-receive and horizontal-transmit–vertical-
receive (HH/HV) polarization combination for SI detection,
and SI parameter estimation and classification. Five SI prop-
erties were specifically studied here: discrimination between
SI and open water (OW), estimation of SIC, SI -type classifi-
cation, estimation of SIT, and estimation of SI drift (SID). In
addition to HH and HV backscattering coefficient magnitude
(σ 0 or more specifically σ 0

HH and σ 0
HV for the HH and HV

channels), several SAR texture features were studied. We have
used the C-band Sentinel-1 SAR data, Russian ice charts, Nor-
wegian ice model data, and SIC estimates based on microwave
radiometers (MWRs) reference data sets.

II. STUDY AREA AND DATA SETS USED IN THIS ARTICLE

The FMI Arctic study area is located in the Kara and
Barents seas. The study area is shown in Fig. 1. The coordinate
system (CS) used in this article is the polar stereographic
projection, with a center longitude of 55◦ E, reference latitude
(latitude of the correct scale) of 70◦ N, and the WGS84 data.
The upper left (UL) and lower right (LR) coordinates, given
as polar stereographic CS northing and easting in meters, in
this CS are the following: UL = (700 000, −1 100 000) and
LR = (2 550 000, 1 100 000).

Totally, 138 ALOS-2/PALSAR-2 ScanSAR dual-polariza-
tion mode (HH/HV) images over the study area acquired
during the period of January–August 2017 were included
in this article. Our reference data set consists of Sentinel-1
C-band SAR data, Russian Arctic-Antarctic Research Institute
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Fig. 1. Study area in Kara and Barents Seas.

Fig. 2. Monthly distribution of the ALOS-2/PALSAR-2 imagery.

(AARI) ice charts (online: http://www.aari.ru/odata/_d0015.
php), Advanced Microwave Scanning Radiometer 2 (AMSR-2)
SIC [9], CryoSat-2 SIT [10], and TOPAZ4 ice model SIT [11].
The TOPAZ4 model data we use are the nowcast data, i.e., the
first time step (T = 0) of each model run.

The monthly distribution of the ALOS-2/PALSAR-2 images
is shown in Fig. 2. Most of the images (73 frames) were
acquired during March 2017, but there were also a significant
amount of images that were acquired in April (21) and
June (27). The locations (bounding boxes) of the ALOS-2/
PALSAR-2 images are shown in Fig. 3, and the month of
image acquisition is indicated by the frame boundary color.

The data sets were divided into a training data set and test
data set. The training data set consists of 30 randomly selected
ALOS-2/PALSAR-2 SAR images and the corresponding ref-
erence data. The remaining 108 images were used as a test
data set. The training data sets were used in defining the
classification parameters, and all the classification results are
given for the test data set in Sections II-A–II-C.

A. C-Band SAR Data From Sentinel-1

We used dual-polarized extra-wide (EW) swath Ground
Range Detected Medium (GRDM) resolution mode Sentinel-1
SAR data with the HH/HV polarization combination over

Fig. 3. Locations of the test ALOS-2/PALSAR-2 imagery in the study area,
indicated by the image bounding boxes.

the study area as a reference C-band SAR data set. The
Sentinel-1 data were georectified to our polar stereographic CS
and were resampled into 500-m resolution. For compatibility,
the comparisons to Sentinel-1 data sets were made in the
500-m resolution after downsampling the ALOS-2/PALSAR-2
imagery. The Sentinel-1 data were processed similarly as
the ALOS-2/PALSAR-2 data, i.e., an incidence angle correc-
tion [12] was applied before georectification of the imagery.

B. Russian Ice Charts

The Russian Arctic ice charts are provided weekly by
the AARI, located in St. Petersburg, Russia, on their
web page (the English version on http://www.aari.ru/odata/
_d0015.php?lang=1, last access: February 1, 2020). They
are provided as thematic maps and in the SIGRID-3 vector
format [13] in the polar stereographic projection with the
midlongitude of 90◦E. For this study, the AARI ice charts
were reprojected into the polar stereographic CS used in this
article. The ice charts contain information on the ice type,
ice stage of development, and partial ice concentrations for
the ice categories within each polygon identified by the ice
analysts. SI attributes are attached to each ice chart polygon
by the ice analysts. The attached attributes are described by
the polygon-wise World Meteorological Organization (WMO)
SI egg code [14], [15], and the ice parameters used in this
article have been derived from these polygon attributes. The
nominal resolution of ice charts is typically about 1 km, but
this only applies for the polygon boundaries, the polygons
are typically rather coarsely drawn and only give information
on the outlines of the ice situation within a polygon, and
many SI details within polygons have been ignored. This
can be understood in the light that the ice analysts draw
ice charts over vast areas and have tight schedules for the
ice chart completion. The ice thickness values used in this
article are weighted averages of the average ice thickness of
the ice stages of development within each polygon, the weights
in the weighted average calculation being the proportion of
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Fig. 4. ALOS-2/PALSAR-2 statistical incidence angle dependence for HH
(red curve) and HV (blue) channels and their linear LSs fits (green).

each stage of development class within the polygon. As ice
thickness for a stage of development class in the ice charts
is given as a thickness range, we have used the midrange
value of each thickness range in our computations. The ice
classes used, here, in the ice classifying experiment are the
major (mode) ice classes for each polygon. The classes used
in this article are shown in the legend of Fig. 12: OW, nilas
ice (NI), young ice (YI), first-year ice (FYI), old ice (OI), and
land-fast ice (LFI).

C. Preprocessing of ALOS-2/PALSAR-2 Data

The ALOS-2/PALSAR-2 data were first calibrated accord-
ing to the guidelines given in [16]. Then, the ALOS-2/
PALSAR-2 SAR data were georectified to our polar stereo-
graphic CS in 100-m resolution.

Before any classification or estimation tests, we performed
a statistical analysis of the incidence angle dependence for
the ALOS-2/PALSAR-2 training data set. The analysis was
performed over the ice-covered areas of the training data set
imagery (SIC over 80% according to the AMSR2-based SIC
estimation using the methods presented in [17]). At the HH
channel (log scale), σ 0 has a linear incidence angle depen-
dence on the incidence angle with a slope of −0.246 for SI
defined by a least-squares (LSs) fit (see Fig. 4, red curve). The
slope is very similar as for C-band (RADARSAT-2, Sentinel-
1) HH channel [18], [19]. At the HV channel, the incidence
angle dependence is more complex, mainly due to the varying
noise floor along the range. A surprising property was that the
average backscattering at the HV channel was even slightly
increased as a function of increasing incidence angle for the
training data set (a slope of 0.085 based on the LS fit) as a
function of the incidence angle. Also, the noise floor variation
within the PALSAR-2 subswaths is clearly visible in the HV
channel plot of Fig. 4 (blue curve).

A linear incidence angle correction for our ALOS-2/
PALSAR-2 HH channel data was then applied, using the
detected slope (−0.246). For the HV channel, no incidence
angle correction was applied. The SAR data were then also
downsampled to 500-m resolution (pixel size) for segmenta-
tion. Finally, a land mask based on the Global Self-consistent,

Hierarchical, High-resolution Geography (GSHHG) Database
coastline data set [20] was applied to the SAR images to
exclude land areas from the computation.

III. METHODOLOGY

To classify SAR imagery or to extract SI parameters,
the pixel-wise SAR backscattering coefficients (σ 0) are not
very useful. This is because of the speckle noise present in
SAR imagery and also due to the fact that different types of
SI in many cases have wide and overlapping σ 0 distributions.
Better results can be achieved by utilizing texture features
computed from the SAR σ 0 images in addition to filtered σ 0

values. In our case, the filtering is performed by first applying a
segmentation to the imagery and then using segment median
values instead of single SAR pixel values. Segment median
was applied for both σ 0 data and SAR texture features.

The downsampled (500 m) images were first segmented
using the iterated conditional mode (ICM) algorithm [21]. The
segmentation was applied to the principal component (PC)
image of the two SAR polarization channels. After the ICM
segmentation segments, smaller than 100 pixels were merged
to the neighboring segment with the closest PC image segment
median. This was done to reduce the random variation due to
speckle noise.

Multiple texture features were computed from the SAR data.
The texture features were computed within each SAR segment
using the 100-m resolution and assigned to each segment
in the 500-m resolution. The texture features computed for
each segment and separately for both HH and HV channels
were autocorrelation (CA), entropy (E), local signal-to-noise
ratio (SNR), variogram slope V1, and HH/HV cross correla-
tion (CC). The segment-wise median values of each texture
feature were used in our experiments here.

The features were computed in a round-shaped sliding
window W with a diameter of 11 pixels (i.e., the window
has a radius R of 5 pixels and has an odd size diameter such
that it has a center point in the middle of a pixel location).
The total number of pixels in the window was 81 pixels.

Entropy E [22] was computed as

E = −
255∑
k=0

pklog2 pk (1)

where pk values are the proportions of each gray tone k
within each computation window W . Autocorrelation CA was
computed as

CA(k, l) =
∑

i j∈W (I (i −k, j −l)−μW )(I (i, j)−μW )

Nσ 2
W

(2)

where I (i, j) is the pixel value at location (i, j), i and j
refer to the row and column coordinates of the image pixel,
respectively, and k and l here refer to the displacement of the
row and column coordinates from (i, j), respectively. Mean
over the directions horizontal, vertical, and diagonal directions,
i.e., (k, l) = (0, 1), (k, l) = (1, 0), (k, l) = (1, 1), and
(k, l) = (1,−1) was used because the statistic CA describes
2-D data [23], [24]. The size of the computation window W in
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pixels is denoted by N (N = 81). μW and σW are the window
pixel value mean and standard deviation, respectively.

The cross correlation Cc between the SAR HH and HV
channels, denoted by IHH and IHV, respectively, is

Cc(k, l)

= 1

NσHHσHV

×
∑

i, j∈W

(IHH(k+i, l+ j)−μHH)(IHV(k+i, l+ j)−μHV) (3)

where N (N = 81) is the number of pixels within the
computation window W . Round-shaped windows with R = 5
were again used for Cc. The mean values μHH and μHV are
computed as averages of the pixel values within W .

SNR was estimated within a data window W by dividing
the data window average (μw) by the data window standard
deviation (σw)

SNR = μw/σw. (4)

We also computed certain features based on variograms that
also described the spatial autocorrelation in a slightly different
manner. The variograms were also locally estimated, again
in a round-shaped window W with R = 5 pixels using the
original georectified SAR resolution (100 m); the computation
was performed in five pixels steps such that the result became
downsampled to 500-m resolution. Assuming a stationary and
isotropic process, the variogram γ is (locally) dependent only
on the interdistance (h) and can be estimated as [25]

γ (h) = 1

2|Nh |
∑

i, j∈Nh

|Ii − I j |2 (5)

where Ii and I j are the pixel values at locations i and j , whose
distance is h, Nh is the set of pairs of observation z with
indices k and l such that |Ik − Il | = h, and |Nh | is the number
of such pairs. We modeled the range of the variogram from
the origin (nugget) to the sill by fitting a linear variogram as a
function of h on this interval. The slope and intercept value of
the linear fit can be used as SAR texture features. The slopes
and intercepts are referred here as V ch

1 and V ch
2 , respectively,

where the superscript ch is the SAR channel, either HH or HV.
However, here, we have used only V1 because V2, at least
alone, does not have a very good performance in distinguishing
between SI classes.

IV. COMPARISON BETWEEN L-BAND AND C-BAND DATA

We first performed a comparison between the L-band data
and the corresponding C-band data over the area of each
ALOS-2/PALSAR-2 image acquired during the same day as
the PALSAR-2 images. The common areas of Sentinel-1
and PALSAR-2 data were that cropped from the same day
images. This was performed in the 500-m resolution that is
the resolution of the FMI operational SI products (SIC and
SIT, [17], [26]) and thus had the 500-m C-band SAR data
easily available. The main idea of this intercomparison was to
compare how well details can be distinguished in the L-band
imagery of SI (and included OW areas) and the correspon-
dence to C-band imagery over the same area. For this purpose,

Fig. 5. (a) Typical example of an HH channel of ALOS-2/PALSAR-2
and (b) cropped Sentinel-1 image of the same day over the ALOS-2/
PALSAR-2 image area, March 26, 2017.

we computed the σ 0 standard deviation, kurtosis, histogram
width (from 5% to 95% of the histogram values), and aver-
age gradient for each L-band image and the corresponding
cropped C-band data in the 500-m resolution. The results were
computed separately for HH and HV polarization channels.
The gradient was computed at each 500-m SAR pixel as the
maximum absolute value of the differences between the center
pixel and its eight neighboring pixels. The average gradient
was then computed based on these pixel-wise gradient grids.

Here, we only discuss on the average values of the above-
mentioned quantities. The average HH σ 0 standard deviations
(3.0 dB for L-band and 2.9 dB for C-band) did not differ
significantly between the L- and C-bands. The HH kurto-
sis for the L-band and the C-band σ 0 data was 0.04 and
0.29, respectively, indicating that the distributions of both the
bands were mostly slightly super-Gaussian and for C-band
more super-Gaussian. Naturally, there were larger variations
between single images (C-band from about −1 up to 14 and
L-band from about −1 to 6). The HH histogram widths were
quite similar to L-band and C-band data, on average a little
over 9 dB. However, the average HH channel gradient value
for L-band (1.5 dB) was higher than that for C-band (1.3 dB),
indicating that the L-band is able to distinguish more details
than C-band at HH polarization. For the HV polarization,
the differences were more apparent than for HH. The L-band
HV σ 0 standard deviation was significantly higher than for
C-band (3.2 versus 1.8 dB), and L-band histogram width was
also significantly larger than for C-band (9.9 versus 5.6 dB) as
well as the average gradient (1.35 versus 0.96 dB). The average
kurtosis values were some above three for both L- and C-band
HV data. These numbers indicate that significantly more
details and more distinguishable edges over SI can be found
in L-band imagery compared with the C-band imagery. This
was also confirmed by visual inspection of the corresponding
L- and C-band imagery.

As an example in Figs. 5 and 6, an example of the
ALOS-2/PALSAR-2 L-band and the corresponding day’s over-
lapping Sentinel-1 C-band image HH (see Fig. 5) and HV
channels (see Fig. 6) of March 26, 2017, is shown. There was
a time difference of about 12 h between the L- and C-band
images, and some ice drift near the ice boundary had occurred
during this period, but basically the same ice fields can be
seen and compared in both the SAR images. The contrast
difference between the C- and L-bands is visually clear for
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Fig. 6. (a) HV channel of ALOS-2/PALSAR-2 and (b) cropped Sentinel-1
HV channel image of the same day, March 26, 2017, corresponding to the
HH channel images in Fig. 5.

both the polarization channels, and more ice details can be
seen and extracted in the L-band channel images. It can also
be seen that the HH backscattering from OW overlaps with the
backscattering from sea ice for both L- and C-bands. There are
bright OW areas in both the channels in the areas where the
waves have a suitable wavelength and direction with respect to
the SAR instrument to produce strong Bragg scattering. This
is the reason why backscattering cannot directly be used to
distinguish between SI and OW. The air temperature during
March 26, 2017, in the area was around −5◦ according to
the National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) model [27]
reanalysis data, and also, the temperatures during the period
before the SAR acquisitions were below zero, so there was no
wet snow or water on SI on March 26, 2017.

V. STUDIED SI PARAMETERS AND DIFFERENCE

MEASURES USED IN EVALUATION

In this article, we specifically studied the discrimina-
tion between SI and OW, SIC estimation, SIT estimation,
SID estimation, and SI-type classification based on our
ALOS-2/PALSAR-2 L-band SAR data set. Ice concentration
can be estimated based on the SI/OW discrimination using a
sliding window and counting the OW and SI pixels within the
window or by applying analysis based on segment-wise SAR
texture features. SIT estimation studied here is also based on
the segment-wise SAR texture features. We also performed a
test of ice drift estimation using the only properly overlapping
image pair with a reasonably short-time difference between
the SAR image acquisition times and the detectable ice drift
(very large drift cannot be detected anymore as the algorithm
search area is limited). SI/OW discrimination is studied in
Section V-A, SIC estimation in Section V-B, SIT estimation
in Section V-C, and SID estimation in Section V-D.

In the comparisons made to evaluate the performance of the
presented ice parameter estimation methods, we have used the
following measures of difference between the L-band estimate
and reference data sets:

RMSD =
√∑M

i=1

(
Xi − X ref

i

)2

M
(6)

DL1 = 1

M

M∑
i=1

∣∣Xi − X ref
i

∣∣ (7)

Dsgn = 1

M

M∑
i=1

(
Xi − X ref

i

)
. (8)

M refers to the number of samples (number of grid points)
used in the comparison and Xi (i = 1, . . . , Nc) are the
estimated values of the parameter (e.g., SIC or SIT) and X ref

i
are the values of the reference data at the same location as
Xi . RMSD is the root mean-squared difference, DL1 is the
L1 difference, and Dsgn is the signed L1 difference giving
the estimation bias, positive bias indicating overestimation and
negative bias indicating underestimation.

We have also used the correlation Rc as a measure of
similarity of two pairwise ordered data sets, i.e., sets of pairs of
estimated value and reference data value at the same locations

Rc = 1

Mσxσref

M∑
i=1

(Xi − μx)
(

X ref
i − μref

)
(9)

where μx and μref are the means of the estimate values and the
reference values, respectively, and σx and σref are the standard
deviations of estimate values and the reference values.

A. Discrimination Between OW and SI, SIC

The reference data were extracted from the FMI AMSR-2
SIC estimation algorithm [17] using ALOS-2/PALSAR-2 seg-
mentation by the ICM algorithm and then assigning an SIC
value to each segment. Classification to OW/SI was made
using the following thresholding: SIC < 0.2 → OW and
SIC > 0.8 → SI, and the rest of the data, representing a
mixture of SI and OW, were excluded.

Based on the training data set, a Bayesian threshold for σ 0

and each SAR texture feature was defined, and the discrimi-
nation capability of applying these thresholds was estimated.
The Bayesian classification rule in case of Nc classes Ck with
k = 1, . . . , Nc and with a data vector X is

c = argmaxk=1...Nc
P(x |ck)P(ck) (10)

where P(x |ck) is the value of the class ck PDF at x and P(ck)
is the prior probability of the class ck such that

∑Nc
k=1 P(ck) =

1. Here, as we have used only one feature at a time, x is just
a single value and normalized histograms have been used as
the PDFs.

The discrimination results for C-and L-band σ 0 and single
L-band texture features are presented in Table I.

According to the performed tests, σ 0 is not a particularly
good OW/SI discriminator at neither L- nor C-band. HV σ 0

performs some better than HH σ 0. The best texture feature
discriminators were HH autocorrelation (0.88), HH entropy
(0.84), and HH variogram slope (0.84). The best HV chan-
nel discriminators were autocorrelation (0.83), followed by
entropy (0.79). In the Bayesian thresholding, we here simply
assumed equivalent prior probabilities (P(C1) = P(C2) =
0.5) for SI and OW.

In Fig. 7, the histograms of ALOS-2/PALSAR-2 HH auto-
correlation and HH entropy for the two classes (SI and OW)
are shown. It can be seen that most of the OW can be
distinguished from SI since it has a low texture value, but
there still are some OW data points overlapping with the SI
class.
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TABLE I

OW/SI DISCRIMINATION POWER OF SELECTED TEXTURE
FEATURES USING A BAYESIAN THRESHOLDING

Fig. 7. (a) Histograms for the ALOS-2/PALSAR-2 HH autocorrelation and
(b) HH entropy.

We also studied the estimation of SIC based on a multilayer
perceptron (MLP) neural network using a similar algorithm as
introduced in [8] for C-band SAR. To train the MLP, we used
the error backpropagation algorithm. The number of hidden
layer neurons was 11 in our experiment. The training and
reference data used here were based on the SIC estimated
from AMSR2 MWR data for each SAR segment (see [17]
for details). Table II shows the estimation errors for the
training and test data sets, and the values in parentheses are
standard deviations. An example of the SIC estimation based
on the method for one ALOS-2/PALSAR-2 image of the
test data set is shown in Fig. 8, and also, the corresponding
AMSR2 SIC estimation is shown in Fig. 8. This ALOS-2/
PALSAR-2 image is from early June and at that time of the

Fig. 8. (a) ALOS-2/PALSAR-2 HH channel and (b) HV channel on
8 June 2017 (©JAXA) and the corresponding SIC estimate based on
(c) AMSR2 MWR data and (d) PALSAR-2 data. SIC is given in percent.

TABLE II

ERROR MEASURES FOR THE MLP SIC ESTIMATION,
THE UNIT IS PERCENTAGE POINT

year ice is already in the melting stage. Compared with our
visual interpretation, AMSR2 SIC is underestimated in some
areas. In this case, L-band SAR SIC estimation seems to work
better. The SIC underestimation by the MWR algorithm is
based on the change of brightness temperature due to wet
snow cover and liquid water on top of the SI [28]. It seems that
L-band SAR is less sensitive to wet snow cover than MWR.
Dsgn, i.e., bias between the ALOS-2/PALSAR-2 SIC estimate
and the MWR SIC was in the range −1.8–2.8 percentage
points during January–May but in June it was 31.8 percentage
points, indicating that the SAR SIC was on average that
much higher. Also, the correlation between SAR and MWR
SIC dropped from the values around 0.90 in January–May to
0.46 in June–August and DL1 from 7.8 to 37.4 percentage
points.

The values in Table II are some better than those reported
for C-band SAR over the Baltic Sea in [8]. However, it should
be noted that in [8], SIC from Baltic SI charts was used for
training. It should also be noted that the data include the
melting period data (June–August), and during the melting
period, the AMSR2 SIC is often underestimated, thus affecting
the SAR-based estimation results also through the incorrect
training.
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B. SIT and SI Volume

We also studied the estimation of SIT based on SAR
data. For training, the SIT estimation we used our ALOS-2/
PALSAR-2 training data set and the corresponding CryoSat-2
(CS-2) SIT estimates. The CS-2 thickness data were assigned
to SAR segments as segment medians of the CS-2 estimates
of the same day within the segment. Only segments with 11 or
more CS-2 samples during the same day of assigning the SAR
image were included in the comparison. This was done to get
more reliable CS-2-based SIT estimates for the SAR segments.
The algorithm used in the CS-2 SIT estimation is described
in detail in [29].

There were 17 ALOS-2/PALSAR-2 images with an AARI
ice chart of the same day in our test data set, and we
use this subset for evaluating our SIT estimation here. We
first studied the correlation of single SAR features and SIT
from CS-2 assigned to SAR segments, but not a very high
correlation (Rc) between any single SAR texture feature and
SIT was found. The most significant features with this respect
were EHH, CHH

A , V HH
1 , SNRHH, and SNRHV. The range of Rc

for these single features was from 0.2 to 0.36. Then, we studied
a linear combination of the five most significant features based
on a PC analysis (PCA). The features selected based on PCA
were EHH, CHH

A , V HH
1 , SNRHV, and SNRHH. Because there

were no in situ SIT measurement available, the reference data
sets used were the segment-wise CS-2 SIT (also for training),
AARI ice chart SIT, and TOPAZ4 ice model SIT.

We tested the SIT estimation performance with our
ALOS-2/PALSAR-2 test data set. The correlation Rc between
the reference SIT from CS-2 and the estimation was Rc = 0.54
for the test data set and the corresponding L1 difference was
DL1 = 22.4 cm using our independent test data set. When
compared to AARI SIT, Rc = 0.41 and DL1 = 18.0 cm, and to
TOPAZ4 model, SIT Rc = 0.54 and DL1 = 19.8 cm. We also
made a similar test for C-band SAR data over the same area.
The results were inferior compared with the L-band results,
the L1 differences with respect to AARI SIT and TOPAZ4 SIT
were reasonable (18.7 and 22.2 cm), but the correlations were
very low for both the comparisons, around 0.15. An example
of an ALOS-2/PALSAR-2 HH channel image HH, the SIT
estimate based, and the corresponding AARI ice chart and
TOPAZ4 ice model SIT are shown in Fig. 9. This SAR
image covers an area northeast of the Novaya Zemlya island
(northeastern part of the island can be seen in the SAR image
as a white mask area). It can be seen that both the AARI and
TOPAZ4 SIT have very little local variation and only give a
very general view of the ice thickness.

SI volume over an area W can be computed when SIC (C)
and SIT (H ) over the area are known in a straightforward
manner

Vice = A p

∑
(r.c)∈W

C(r, c)H (r, c) (11)

where A p is one product grid cell (pixel) area (0.25 km2 in our
500-m grid). Based on the L1 accuracy estimates for SIC and
SIT, we can roughly estimate the accuracy in estimating Vice.
The accuracy of the derived quantities, such as ice volume, can
be estimated based on the multivariate Taylor expansion. If we

Fig. 9. (a) ALOS-2/PALSAR-2 HH channel, March 14, 2017 (©JAXA).
(b) SIT estimate. (c) SIT derived from AARI ice chart. (d) SIT from
TOPAZ4 ice model. Ice thickness unit in the color mapping is cm.

further assume that the errors are relatively small, we can also
assume the higher order terms to be neglectable and estimate
the error (roughly) only by the first-order terms. If the derived
quantity here is Vice, then the first-order estimation error or
accuracy �Vice can thus be estimated as [30]

�Vice ≈ A p(C�H + H�C). (12)

If we, for example, assume 2-m-thick ice and 100% ice con-
centration and using L1 differences of C and H with respect
to reference data �H = 0.2 m and �C = 0.11 (11 percentage
points), we get a relative accuracy of about 20% for the ice
volume estimates based on the ALOS-2/PALSAR-2 data with
these assumptions. For thinner ice, the relative uncertainty
would then be some larger, e.g., for 1-m SI around 30%
assuming a high SIC.

C. SI Type

We also studied the possibility to perform a SI-type clas-
sification based on the available ALOS-2/PALSAR-2 data.
We used the ice typing of AARI ice charts as a basis for
the classification and computed single feature histograms
corresponding to the six classes of the AARI ice charts for
our training data set. We excluded the LFI class because this
class is defined differently from the other classes, i.e., based
on its static nature, and it can include a large variety of ice
types if classified based on the criteria applied to other ice
fields. The AARI ice classes studied here were OW, NI, YI,
FYI, and OI present in the AARI ice charts over the study
area. We again noticed that SAR σ 0 is not at all useful for
SI-type classification neither at HH nor HV channel. Texture
features had a better distinguishing performance between the
ice classes, and the best-performing single texture feature
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for ice-type classification was the HH variogram slope, V HH
1 .

It is quite obvious that the classification can be improved to
a certain extent by including more complementary features,
e.g., HV channel features complement the HH features. How-
ever, we have not performed such experiments here but only
studied the performance of single SAR features in ice-type
classification. We noticed that a good separation of all the
six classes is impossible based on the dual-polarized SAR
data. This may partly be due to the coarse accuracy of the
training data (AARI ice charts) and also due to the fact that
the classes used in ice charts are not best suitable for detection
based on the L-band or C-band SAR data. For example, degree
of ice deformation [31] would be a better parameter to be
estimated based on the SAR data. Unfortunately, we do not
have any reference data over our study area for evaluating this.
Histograms of σ 0

HH and V HH
1 are shown in Fig. 10. The V HH

1
histogram suggests that three or four classes (including OW)
could rather well be distinguished, but the remaining classes
would mainly be mixed with the distinguishable classes. For
comparison in Fig. 11, the same histograms for the Sentinel-1
C-band SAR data are shown. It can be seen that the σ 0

HH
histograms of the classes for C-band are overlapping and
C-band σ 0

HH cannot be used for classification. It can also
be seen that the class-wise C-band V HH

1 histograms overlap
significantly more than for L-band and this texture feature is
neither suitable for SAR classification at C-band.

It should also be noted that the classes derived from SAR
imagery do not directly correspond to the classes available
in ice charts. The classes derived from SAR imagery rather
describe the physical properties of the SI surface layer (to the
electromagnetic radiation penetration depth), and only some
SI classes present in ice charts can directly be derived from
the SAR classes, such as level ice/smooth ice and deformed
(older) ice which has gone through deformations and thus has
a rougher surface compared to new ice. SAR classification
can also provide additional classes that are not described in
ice charts (such as different classes of deformed ice).

We tested a classification scheme based on the (optimal)
Bayesian thresholding of V HH

1 , which seemed to have the
best ability to distinguish between the given classes based
on the histogram for the training data set. LFI class (white)
was not included in our classification as it is difficult to
distinguish from other classes. However, it can be rather
reliably identified based on temporal cross correlation of
multitemporal SAR imagery [32] if there is a dense enough
temporal SAR cover over the study area. We again used
equivalent prior probabilities (weights) for the ice classes.
Applying more truthful prior class weights would likely have
improved the classification. However, defining such realistic
weights, which are dependent on the time and location, would
require a larger comprehensive training data set, preferably
covering a time period of several years. In our experiment
using V HH

1 alone and Bayesian thresholding to distinguish
between the ice classes, the OW class (blue in Fig. 10), FYI
class (yellow), and OI class (red) were best distinguished,
the overall correct classification being 55%, 79%, and 72%
compared with the AARI ice charts of the same day (totally,
17 ALOS-2/PALSAR-2 images acquired during the weekly ice

Fig. 10. (a) Class-wise histograms for the L-band HH σ 0 and (b) HH
variogram slope.

chart dates were found in our data set). For the other classes,
the classification rates were worse (31% for nilas and 29%
for YI). Two examples of the ice-type classification based on
the Bayesian thresholding of V HH

1 are shown in Fig. 12.

D. SI Drift

In [33], SID estimation over the Baltic SI using the C-
and L-band single-polarization (HH) image pairs, including
mixed L- and C-band pairs, was evaluated. The method used
was a pairwise cross correlation. According to the results,
a pair of two L-band SAR images was found to be the best
option, a pair of two C-band images also performed well,
and a mixed C-/L-band pair performed worse but was still
found to give useful ice drift estimates. In our ALOS-2/
PALSAR-2 test data set, there were not many suitable image
pairs for ice drift estimation testing. We found only one
overlapping image pair with a reasonable time difference and
some detectable ice drift in our data set. This image pair has
almost a three-day time difference between the acquisitions;
the acquisition times were March 20, 2017, 20:05:19 UTC
and March 23, 2017, 14:28:57. We applied the algorithm
presented in [34] to this image pair using linear combinations
of the HH and HV channels as inputs. The weights of the
linear combination between HH and HV channels were defined
based on PCA. The algorithm produced an ice drift field in
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Fig. 11. (a) Class-wise histograms for the C-band HH σ 0 and (b) HH
variogram slope.

agreement with our visual interpretation. The visual evaluation
was made by selecting points that could visually be identified
in both the images of the image pair and their location was
manually defined. The points were selected over different areas
of the image pair. Then, the visually detected motion was
defined as a difference between the location coordinates of
the corresponding points in the two images. The differences
between the visually estimated drift and the drift produced by
the algorithm were in the range of 0–2 pixels (0–200 m), which
corresponds to the accuracy of the visual detection of the
locations. Based on this evaluation, we can say that the ice drift
detection algorithm performed well for this L-band SAR image
pair, thus supporting the understanding that L-band data are
well suitable for SI drift estimation. The UL and LR corners
of the image are (81.8◦1N, 2.54◦ E) and (81.38◦N, 26.26◦ E),
respectively. The locations of the two images within our study
area are shown in Fig. 13, and the images also cover areas
located north of Svalbard. The image pair and the resulted
drift vectors are shown in Fig. 14.

VI. DISCUSSION

We have studied the potential of L-band data for SI moni-
toring with a data set from ALOS-2/PALSAR-2. To evaluate
the SI parameter estimation results, reliable reference data
would be required. However, in general, SI in situ reference

measurements over the Arctic for method evaluation is in
practice missing, and we only have SI parameter and clas-
sification data derived from the measurements of other earth
observation (EO) instruments. In practice, we have their visual
interpretations, mainly in the form of gridded ice charts, at our
disposal. Actual in situ measurements on ice fields are difficult
and laborious to perform, and for this reason, very little such
measurements over Arctic exist. Even the existing in situ data
also are very local (both in space and time), and for example,
even the few Russian SI measurement are very difficult to
obtain.

It should be noticed that the ALOS-2/PALSAR-2 ScanSAR
HV-channel processing parameterization was changed on
April 11, 2018: the onboard ATT (attenuator) setting was
changed from 25 to 20 dB. Before changing this setting,
ScanSAR HV-polarization images sometimes became dark and
blurred over ocean and coastal regions [35]. As the imagery of
this article has been acquired in 2017, this degradation at the
HV channel also applies to the imagery used in this article and
may have affected negatively on the HV band classification
and estimation results presented.

SI/OW classification and SIC estimation can be performed
quite reliably based on dual-polarized SAR imagery. The
results at L-band are quite similar to the earlier results using
C-band SAR, e.g., in [8]. Especially, the MLP approach
for estimating SIC from L-band dual-polarized SAR data
gave promising results, comparable or even slightly better
compared with those using C-band SAR data. Even better SIC
estimation results can be achieved by combining multiple SAR
features or even combining with MWR data. One approach to
combine C-band SAR features and AMSR2 MWR brightness
temperature gradient and polarization ratios for the Baltic SI
is presented in [12]. According to this study, the L1 error of
the SIC estimates was reduced by about five percentage points
by including the MWR data in the estimation. The reference
SIC in the Baltic Sea study was the SIC of the gridded FMI
Baltic SI charts. Also, other approaches to combine SAR and
MWR for SIC estimation have been proposed, such as the data
assimilation approach presented in [36]. However, based on the
experiments performed, SIC can, in most cases, be estimated
solely from L-band dual-polarized SAR data well enough,
e.g., for SI navigation. The problems occur in warm conditions
with wet snow or liquid water on SI, i.e., during the melting
period. According to our visual analysis, L-band SAR can
estimate SIC better than MWR that underestimates SIC during
the melting period.

More realistic prior probabilities would very likely improve
the Bayesian OW/SI classification mentioned in Section V-A
because now we have applied equivalent prior probabilities
of 0.5 for both the classes; this is not realistic in most cases,
in the midwinter time, ice is more probable than OW and in
the freeze-up and melting period, OW is more dominant. The
probabilities in different areas also differ, e.g., in general, ice
is more probable in the north than in the south. The prior
probabilities of the two classes could also be varied according
to the area and time of the year using a representative historical
data set to define meaningful prior probabilities. By applying
a (linear or nonlinear) combination of the features, at least
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Fig. 12. (a) and (e) HH and (b) and (f) HV SAR images of (c) and (g) two SAR images FMI classification, and (d) and (h) AARI ice types corresponding
to two SAR images. Both SAR images shown were acquired on April 18, 2017.

Fig. 13. Locations of the ALOS-2/PALSAR-2 image pair used in testing
ice drift estimation. The images only partly overlap with the study area, but
whole images were used in the ice drift estimation experiment.

similar accuracies as using C-band in SI/OW discrimina-
tion [24], [37] and SIC estimation can be achieved. There
also probably exist some inaccuracies in the reference data set.
More accurate reference data set would lead to more accurate
and consistent estimates. SIC estimation at a high resolution
is also possible using the SI/OW classification methods and
counting the proportions of the OW and SI grid points either
within a sliding window or within SAR segments.

According to this study, SI classification into four classes
in the AARI ice charts using a single SAR texture feature
is possible according to the histograms shown in Fig. 10(b).
However, according to the histogram figure, perfect classifica-
tion is not possible, but the classes are only partially separable,

and some overlaps between the classes exist. These overlaps
are at least partially due to the spatially coarse classification
provided in the ice charts (small details are ignored in manual
classification and the classes assigned to rather large polygons
in the ice charts). This can, for example, be seen in the
examples of C-band SAR classification and their comparison
to the ice chart classification given in [38]. Also, different clas-
sification schemes from the classification in AARI ice charts
would be more favorable for SAR-based SI classification. SI
SAR imagery could, for example, be classified based on degree
of SI deformation. The degree of SI deformation from L-band
SAR data should still be studied in more detail. According to
our experience in the Baltic Sea, degree of ice deformation is
a better suitable parameter to be estimated from SAR data
than the ice classes given by ice charts [31]. Using more
realistic prior probabilities in the Bayes classification could
improve the classification, but as for SI/OW classification,
a large comprehensive historical data set would be required
to capture the seasonal and spatial variations.

Our SIT estimation algorithm was trained and tested with
CS-2 data assigned to SAR segments. In addition, we used
the SIT reference data from TOPAZ4 ice model and AARI ice
charts. We have noticed that SIT reference data given by the
TOPAZ4 ice model are not very accurate and they do not have
much local variation, in practice giving only very large-scale
average SIT forecasts. The same applies to the AARI ice chart
polygons; they are rather coarse lacking details. The compar-
isons showed rather low correlations, but the L1 differences
with respect to reference data were reasonable. Also, visual
comparison of the SIT results with the reference SIT data
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Fig. 14. Overlapping areas of the PALSAR-2 images of (a) March 20, 2017, 20:05:19 UTC and (b) March 23, 2017, 14:28:57 UTC and (c) corresponding
ice drift vector field between the acquisitions. The SAR images gray scales have been normalized for better visual quality. The vector field is presented in
sparse resolution, and the vectors have been scaled longer for better visual quality. The dominant ice drift direction is to south/southwest.

looks reasonable, locations of thin ice and thick ice fields
agree quite well, and the SAR SIT just contains more details
than the reference data. SI volume can be estimated from SIC
and SIT by integrating, or summing in the case of a discrete
grid, the product of SIC and SIT over a desired area. Based
on the uncertainty estimates for SIC and SIT, we can also
derive rough uncertainty estimates for ice volume estimation.
Based on L-band data, we could estimate ice volume over
our study area with an uncertainty of 20%–30% depending
on the prevailing ice conditions (SIC and SIT). This number
indicates that dual-channel L-band SAR data and the presented
methods are not very accurate for ice volume estimation but
perform better than C-band SAR data anyway. A better and
more accurate solution for SIT estimation would be to use
a combination of multiple instruments, e.g., SAR, altimeter,
and MWR. An SIT estimation method combining data from
C-band SAR, MWR, and TOPAZ4 ice model was proposed
in [26], but more preferable would be to replace the model
data by altimeter data to get an SIT product based solely on
the EO data.

According to an earlier study [33], ice drift can rather reli-
ably be estimated from L-band SAR data. Here, we were only
able to make a test with one image pair, and the result supports
the earlier observations. For our data set, SID could only be
estimated over the common areas of one SAR image pair and
the estimates were in agreement with the visually observed
drift. A major problem related to ALOS-2/PALSAR-2 ice
drift detection is that the temporal resolution of the currently
available L-band data over Arctic is most of the time all too
coarse for ice drift detection. A benefit of any available L-band
data would be that they could also be used for SID estimation
in combination with C-band SAR data (mixed image pairs),
and thus, they could also be used as complementary data in the
ice drift estimation for the already existing operational C-band
missions.

All the test were run on a Linux workstation with 24 Intel
Xeon X5650 cores running at 2.67-GHz clock speed and with
48 GB of RAM. The software was not designed to run in
parallel and thus was also executed in only one CPU core
sequentially. The execution times for one classification or one

parameter estimation were a few minutes or less, indicating
that the proposed methods can, in this respect, directly as such
be used for operational SI monitoring.

VII. CONCLUSION

In this article, we have explored the suitability of ALOS-2/
PALSAR-2 dual-polarized L-band SAR data for Arctic SI
remote sensing. We studied the classification of SI into ice
classes provided by ice charts, distinguishing between OW
and SI, and estimation of three essential SI parameters: SIC,
SIT, and SID.

This article clearly shows that the L-band data are well
suitable for Arctic SI parameter estimation and classification.
The study was made in a study area in Kara and Barents seas
and there was not much multiyear (second year or older ice)
present, and the capability to distinguish between FYI and
multiyear ice is thus based on a rather limited amount of grid
points (image pixels in 500-m resolution). However, according
to this limited data set, it seems that the SI class of “OI,”
corresponding to SI older than one year, was rather well
distinguished from many other ice classes even using a single
texture feature (HH channel variogram slope, V HH

1 ). Based
on this study, it can be said that the L-band dual-polarized
(HH/HV) SAR data can be used to estimate SIC and SIT with
equal or better performance than the corresponding C-band
data. Also, SI classification results using a simple single
texture feature approach were better than those for C-band.
C-band performance was here evaluated only based on the
class-wise feature histograms that had more overlap between
the classes than L-band feature histograms. Also, ice drift
can be reliably estimated using the multitemporal L-band
SAR data according to our experience. The slightly better
performance of L-band SAR compared to C-band is likely
due to the deeper penetration of L-band and thus backscatter
from a larger volume than for C- and X-bands.

JAXA’s ALOS-2/PALSAR-2 is a research instrument, and
the typical delays from image acquisition to user are too
long for the near-real-time requirements of, e.g., ice navi-
gation. Also, the spatiotemporal coverage of only one SAR
satellite, even if operated continuously over the Arctic,
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is too restricted for operational monitoring alone. Current
ALOS-2/PALSAR-2 makes acquisitions only during a few
short-time campaigns over the Arctic in a year. However,
L-band data could even now be used more in operational
SI monitoring to complement the data available from opera-
tional C-band and X-band instruments. A preferable alternative
would be an operational L-band SAR mission or rather a
constellation of two or more satellites carrying L-band SAR
instruments.

In the future studies, using nonlinear methods and iterative
self-focusing algorithms in SI parameter estimation will be
studied more. Also, joint use of L- and C-band data for
improved SI parameter estimation would need more investiga-
tion. Additional comparisons between L- and C-band, possibly
also X-band, data will be needed, also including more detailed
comparisons between C-band texture, L-band texture, and joint
texture (e.g., cross correlations between nearly simultaneous
coregistered different frequency bands) measures, and also
including more texture measures, e.g., multiscale features,
such as fractal dimension, and segment-wise corner point
densities, such as in [12].

Methods using multitemporal SAR data over the same area
should be studied more because they give information on
changes (ice drift and deformation) and indicate the static
ice areas. Multitemporal data can also be used to reduce the
noise in SAR imagery by applying multitemporal filtering
(e.g., median) over the same ice field recognized in many
SAR images acquired at different time instants. This would
require accurate tracking of the ice fields if they are moving.
Multitemporal filtering is easier to be applied to static SI
areas, such as LFI [32]. However, this would also require a
significantly higher temporal resolution than we have with the
currently available L-band data set.
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