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Abstract— Multibaseline interferometric synthetic aperture
radar (InSAR) techniques are effective approaches for retrieving
the 3-D information of urban areas. In order to obtain a plausible
reconstruction, it is necessary to use more than 20 interferograms.
Hence, these methods are commonly not appropriate for large-
scale 3-D urban mapping using TanDEM-X data, where only a
few acquisitions are available in average for each city. This article
proposes a new SAR tomographic processing framework to work
with those extremely small stacks, which integrates the nonlocal
filtering into SAR tomography inversion. The applicability of
the algorithm is demonstrated using a TanDEM-X multibaseline
stack with five bistatic interferograms over the whole city of
Munich, Germany. A systematic comparison of our result with
TanDEM-X raw digital elevation models (DEMs) and airborne
LiDAR data shows that the relative height accuracy of two-third
buildings is within 2 m, which outperforms the TanDEM-X raw
DEM. The promising performance of the proposed algorithm
paved the first step toward high-quality large-scale 3-D urban
mapping.

Index Terms—3-D urban mapping, digital elevation models
(DEMs), interferometric synthetic aperture radar (InSAR), SAR
tomography (TomoSAR), TanDEM-X.
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I. INTRODUCTION

A. TanDEM-X Mission

anDEM-X satellite is a German civil and commercial

high-resolution synthetic aperture radar (SAR) satel-
lite, which has almost identical configuration as its “sister"
TerraSAR-X satellite. Together with TerraSAR-X, they are
aiming to provide a global high-resolution digital elevation
model (DEM) [1]. Both satellites use a spiral orbit constel-
lation to fly in tight formation in order to acquire the image
pair simultaneously, which significantly reduces the temporal
decorrelation error and the atmospheric interference. Since its
launch in 2010, TanDEM-X has been continuously providing
high-quality bistatic interferograms that are nearly free from
deformation, atmosphere, and temporal decorrelation.

B. SAR Tomography Techniques

Tomographic synthetic aperture radar (TomoSAR) is a
cutting-edge SAR interferometric technique that is capable of
reconstructing the 3-D information of scatterers and retrieving
the elevation profile. Among the many multibaseline interfero-
metric synthetic aperture radar (InSAR) techniques, TomoSAR
is the only one that strictly reconstructs the full reflectivity
along the third-dimension elevation. SAR tomography and its
differential form (D-TomoSAR) have been extensively devel-
oped in the last two decades [2], [3] [4]-[9]. They are excellent
approaches for reconstructing the urban area and monitoring
the deformation, especially when using high-resolution data
such as TerraSAR-X [10], [11] or COSMO-Skymed [12].
Compared to the classic multibaseline InSAR algorithms,
compressive sensing (CS)-based methods [13], [14] can obtain
extraordinary accuracy for TomoSAR reconstruction and show
the super-resolution (SR) power, which is very important for
urban areas, since layover is dominant.

Although TanDEM-X bistatic data have many advantages,
there are only a limited number of acquisitions available for
most areas. For a reliable reconstruction, SAR tomography
usually requires fairly large interferometric stacks (> 20
images) because the variance of the estimates is asymptotically
related to the product of SNR and the number of acquisitions.
Therefore, it is not appropriate for the microstacks, which have
a limited number of interferograms [15].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-0586-9413
https://orcid.org/0000-0002-0975-0743
https://orcid.org/0000-0001-5530-3613

SHI et al.: TOMOSAR AT THE LIMIT: BUILDING HEIGHT RECONSTRUCTION

C. Proposed Framework

As mention in Section III-C, the accuracy of 3-D recon-
struction replies on the product of SNR and the number of
measurements N. Since the motivation of this article is the
large-scale urban mapping, the data we adopted are TanDEM-
X strip map coregistered single-look slant-range complex
(CoSSC), whose resolution is about 3.3 m in the azimuth
direction and 1.8 m in the range direction. The typical number
of available interferograms for most areas is 3—5 [16]. In [17],
the pixels with similar height are grouped for the joint sparsity
estimation, which leads to an accurate inversion of TomoSAR
using only six interferograms. Although the unprecedented
result is obtained, the accurate geometric information is usu-
ally not available for most areas. Therefore, the feasible way
to keep the required precision of the estimates is to increase
the SNR.

Recent works [18]-[20] show that SNR can be dramati-
cally increased by applying nonlocal filters to the TomoSAR
processing for different sensors, such as airborne E-SAR,
COSMO-Skymed, and TerraSAR-X. In [18], different nonlocal
filters have been adopted to improve the estimation of the
covariance matrix for distributed scatterers, which leads to a
better height estimation for simulated data and airborne SAR
data. Ferraioli et al. [19] introduced the nonlocal filter and the
total variation regularizer to improve the multibaseline phase
unwrapping process. In [20], it is shown that we can achieve
a reasonable reconstruction using only seven interferograms
and better SR properties when the number of interferograms
is relatively low.

In this article, we extend the concept of nonlocal CS
TomoSAR in [20]-[22] and propose a new framework of
spaceborne multibaseline SAR tomography with TanDEM-X
bistatic microstacks, i.e., 3—5 interferograms. The framework
includes nonlocal filtering, spectral estimation, model selec-
tion, and robust height estimation. Since different spectral
estimators have a different estimation accuracy and computa-
tional cost, we compared the estimation accuracy of different
estimators with microstacks.

The demonstration of different TomoSAR inversion meth-
ods for a large-scale area has shown in [11], [23], and [24].
Only a few works on the validation of single buildings were
reported in [8], [10], and [25]. Therefore, the validation of the
specified quality of the TomoSAR result at a larger scale would
be of considerable interests for the scientific and commercial
users. We choose Munich city as a test site because of a
high-quality LiDAR reference available to us, and we propose
a complete workflow to compare the TomoSAR point cloud
[26] generated by the proposed framework, TanDEM-X DEM
product, and LiDAR data.

D. Contribution of This Article
The major contributions of this article are summarized as
follows.

1) We make possible a new application of bistatic SAR
data for global building height reconstruction.
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Fig. 1. Tllustration of multimaster multibaseline SAR imaging.

2) We have pointed out that for pixelwise multimaster
TomoSAR, the well-known system equation is no longer
valid in the multiscatterer case.

3) We have developed a framework for tomographic stacks
with only 3-5 interferograms. A systematic investiga-
tion on the estimation accuracy and SR power for the
microstacks has been carried out, which was never done
before.

4) We use five TanDEM-X bistatic data to demonstrate the
proposed framework. A systematic validation for a large-
scale TomoSAR reconstruction has been carried out, and
a method for comparing with other reference data is
established. The results are quantitatively compared with
the LiDAR reference for more than 34 000 buildings.

This article is organized as follows. In Section II, the non-
local TomoSAR framework is introduced. In Section III,
the estimation accuracy of TomoSAR with small stacks has
been systematically studied. The experiments using real data
are presented in Section IV. In Section V, the quantitative
validation is carried out. Finally, conclusions are given in
Section V.

II. NONLOCAL TOMOSAR FOR MULTIMASTER INSAR

In this section, we introduce the nonlocal TomoSAR
framework for multimaster multibaseline InSAR configuration.
Fig. 1 illustrates multimaster multibaseline SAR imaging. The
framework consists of several steps: 1) nonlocal filtering;
2) spectral estimation; 3) model selection; and 4) robust
height estimation. Fig. 2 shows the flowchart of the nonlocal
TomoSAR framework.

A. Multimaster TomoSAR Imaging Model

For a fixed azimuth-range position, vy (s) represents the
reflectivity profile along elevation s. The measurement g,,
i.e., the complex value of the corresponding azimuth-range
pixel, in the nth SAR image is then a sample of I'(k)—the
Fourier transform of y (s), where the elevation wavenumber k
is a scaled version of the sensor’s position b, projected on the
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Fig. 2. Workflow of nonlocal TomoSAR framework.

cross-range—azimuth axis b||s

gn=TI(k,) = /V (s) exp(—jkys)ds (1)
with
4z b,
hn == Ar &

Note that b, are no baselines but the positions of the sensor
with respect to some origin. In the case of monostatic multi-
temporal data stacks, a single master g is chosen with by, and
its phase is subtracted from all other acquisitions: g,g;/Igol.
This operation renders the phase spatially smooth and is a pre-
requisite for spatial phase unwrapping, averaging, and graph
(network) processing. It does not reduce information since the
phase of any (master) acquisition is random. Note that the
choice of the point b = 0 only defines the x-r-s coordinate
system. This point need not necessarily be the master track
position by. However, by = 0 is a mathematically convenient
choice and is assumed in all conventional TomoSAR system
model like in [27]. However, all the equations in [27] are
actually independent of this particular choice. Only in the
special case by = 0, the b, are identical to baselines.

Here, we are dealing with stacks of bistatic acquisitions,
i.e., with the multimaster case. From each of these acquisi-
tions, we get a master g,., = ['(k,) taken at bpmager = b, and
a slave g, = ['(k, + Ak,) image taken at bgae = b, + Aby,
where Ab, is the bistatic baseline (which takes the effective
positions of the transmit-receive phase center into account).
If we used a standard, i.e., single-master, TomoSAR inversion
algorithm, we would confuse Ab, and b,. In the case of a
single scatterer in y (s), this misinterpretation would do no
harm because the Fourier transform of a single point has a
constant magnitude and a linear phase. In order to determine
the slope of the phase ramp, we can take any two samples and
divide their phase difference by the difference in wavenumbers
(= baseline). This is no longer true for two or more scatterers.

The example of two symmetric and equally strong scatterers
makes this clear

y (s) = (s + 50) + 6(s — 50)
¢

I'(k) = 2cos(sok) = 2 cos <27r %b). 3)

Hence, acquisitions with the same baseline Ab are dif-
ferent depending on where the two sensors were located
along b. Every bistatic acquisition provides three pieces of
information: the two magnitudes |I'(k,)| and |T'(k, + Ak,)|
as well as the phase difference ZI"(k, + Ak,)T*(k,), i.e., we
must normalize the phase by the respective master in every
acquisition in order to become unaffected by deformation
and atmospheric delay. However, spectral estimation-based
conventional TomoSAR inversion algorithms require complex
spectral samples at several wavenumbers, phase-normalized
to a single-master phase. In a current parallel work by one
of the authors [28], it is shown that pixelwise TomoSAR
using multimaster acquisitions is a nonconvex hard to solve
the problem.

This is true for pixelwise tomographic inversion or point
scatterers. The situation becomes different although once we
talk about averages of pixels, i.e., estimates of expectation
values. Let us assume Gaussian-distributed scattering with a
backscatter coefficient along elevation of

oo(s) = E{ly ()} )

Assume that y (s) is white, its power spectral density is
stationary and is the autocorrelation function of I'(k), i.e., the
Fourier transform of o((s) as a function of the baseline
wavenumber Ak

E{T G+ 8k) 0} = [ on(s) exp(—jAkys)ds. (3

Instead of sampling the Fourier spectrum, we sample its
autocorrelation function by the bistatic data stack. Since this
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relationship is independent of k o b because of stationarity,
it makes no difference, where the two acquisitions have been
taken, only their baseline Ab, counts. In other words, we can
use standard TomoSAR inversion algorithms in this case.

In this article, we use nonlocal filtering to improve SNR
for microstacks. These filters perform ensemble averages with
the number of looks on the order of tens to hundreds. Hence,
we tend to the assumption that we work with reasonably good
estimates of E{I'(k, + Ak,)I'*(k)} and can use the bistatic
interferograms for TomoSAR reconstruction.

By introducing a noise €, the matrix notation of TomoSAR
model can be formulated as

g=RX +¢ (6)

where ¢ = [g1,82,...,8,]" is the vector notation of the
complex-valued measurement with dimension N x 1, and
X ~ ao(s;) = E{|y(s))|?} is the expectation value of the
reflectivity profile along elevation uniformly sampled at s;(I =
1,2,...,L). Ris a sensing matrix with the dimension N x L,
where R, = exp(—j Ak,s).

B. Nonlocal Procedure

Since we have only a limited number of acquisitions for a
large-scale area, the SNR needs to be dramatically increased
to obtain the required accuracy. As shown in [20], the non-
local procedure is an efficient way to increase the SNR of
interferograms without notable resolution distortion. The idea
of patchwise nonlocal means considers all the pixels s in the
search window; when the patch with the central pixel s is
similar to the patch with the central pixel c, the value of s is
selected for calculating the value of pixel c. The value of pixel
c is estimated using a weighted maximum likelihood estimator
(WMLE)

O, = argmax »_ w(is, j;) log p(g,|©) (7

where weights w(iy, j;) can be calculated by using patch-
wise similarity measurement [20]. Assume that we have two
expressions g = (I}, I, ¢) and @ = (y, u,0°), where g
denotes the complex-valued measurement. /; and /I, are the
intensity of the two SAR images. ¢ is the interferometric
phase. ® is the true value of the parameters, where
is the noise-free interferometric phase, u is the coherence
magnitude, and o2 is the variance. The likelihood function
p(gs|®) = p(Il,S, L, ¢sly, w1, 02) is adopted from [29] with
the following formulation:

p(Ila 12’¢|l//’ ;uao-z)
1

= 16720%(1 — 1)
L+ 1 =21 L cos(p — )
20%(1 — u?)

X exp | — (3)
where N'(.) denotes the nonlocal estimator, where N (g) =
f(®). ®© = (w,jr,02) represents the parameters being
estimated, where y is the estimated interferometric phase, ji
stands for the coherence magnitude, and o2 stands for the
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variance. f(©) is the maximum likelihood estimator, and the
estimated parameters can be formulated as

y = —arg <Z wxgl,sg;,s> ©)
s

2 S ) S
Q= Do Welgisllgal (10)

Zs ws(|gl,s|2 + |g2,s|2)

A2 Zs WS(|g1,S|2 + |g2,3|2)
0 = .

45w
The patch size and the search window size are set to be
7 x 7 and 21 x 21 according to the experimental study,
which is also reported by other works [30], [31]. Each pixel
represents 2.17 m in the azimuth direction and 1.36 m in the
range direction.

(1)

C. Spectral Estimation

After the nonlocal procedure, spectral estimation is applied.
The most relevant spectral estimation algorithms, including
singular value decomposition (SVD) [5], [7] and CS, are
introduced in the following.

1) SVD:

X = (RUC;/R+ Cxy) RYC V(). (12)

2) CS:

Xzargmxin{llRX—N(g)llg+/1||X||1} 13)

where C,. is the noise covariance matrix, which is
defined as

C.. = (g—RX)- (g — RX)". (14)

Under the assumption that the model errors are circular
Gaussian-distributed with zero mean, the noise covariance
matrix is formulated as C,, = |o,|’I and |o,|* is the noise
power level. Cyy is the covariance matrix of the prior, if it is
assumed to be white, i.e., Cxyy = L.

The choice of different combinations of spectral estimators
depends on the required accuracy, the computation time, and
others. We follow the procedure proposed in [23]. It consists
of three parts: 1) an efficient low-order spectral estimation;
2) the discrimination of the number of scatterers; and 3) an
accurate high-order spectral estimation. The elevation profile
is first estimated by an efficient low-order spectral estimator in
order to discriminate the number of scatterers in one resolution
cell. Then, CS-based approach is adopted for the pixel, which
has multiple scatterers. This method decreases the amount of
pixels that need the L;-minimization, which leads to reduce
the computational cost. Furthermore, the rest of the pixels
can be efficiently solved by randomized blockwise proximal
gradient method [24].

D. Model Selection

The abovementioned spectral estimators retrieve a nonpara-
metric reflectivity profile. Since our data are in urban area,
we assume only a few dominant scatterers exist along the
reflectivity profile. Therefore, the number of scatterers K is
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Fig. 3. Monte Carlo simulations of a single scatterer with SNR in [0 30] (dB). The X-axis presents N -SNR in dB. The Y-axis is the normalized CRLB o5/ p;.
(a) Comparison of CRLB with different spectral estimators with five acquisitions. SVD (red solid line), CS (blue solid line), and CLRB (black dashed-dotted
line). (b) Comparison of CRLB using SVD with three—five acquisitions. N = 3 (red solid line), N = 4 (blue solid line), N =5 (green solid line), and CLRB
(black dashed-dotted line). The vertical black dashed-dotted line indicates the estimation accuracy for N - SNR = 11 dB. The red, blue, and green markers

represent N = 3,4, and5, respectively.

estimated by a model-order selection algorithm as well as their
elevation in one azimuth-range pixel [7]. The estimator can
be expressed as follows:

K = argmin{—21n p(g|f) + 2C(K)) (15)

where C(k) is a model complexity penalty term, which
avoids more complicated model overfitting the observed data.
The classical penalized likelihood criteria are the Bayesian
information criterion (BIC), the Akaike information criterion
(AIC), and the minimum description length (MDL) principle
[32].

As mentioned in [7], the criteria of the model-order selec-
tion have to be chosen according to the experiments for a
particular situation because it is difficult to remove the bias of
the selection.

E. Robust Height Estimation

To tackle the possible remaining outliers in the height
estimates, the final height will be fused from the result of
multiple neighboring pixels as a postprocessing. But instead
of simple averaging, the height will be adjusted robustly using
an M-estimator. Instead of minimizing the sum of squared
residuals in averaging, M-estimator minimizes the sum of a
customized function p(.) of the residuals

§=argm}n2p(§,~ —5) (16)
1

where §; is the elevation estimates of the ith neighboring pixel.

It is shown that the closed-form solution of (16) is simply a

weighted averaging of the heights of the neighboring pixels

[33]. The weighting function can be expressed as follows: if

the derivative of p(x) exists:

0
o= 282,

A7)

The robust estimated height can be written as follows:

> w(xg) - h

h=
Zi w(xi)

(18)
where i = § - sinf, and 6 is the incident angle. The choice
of the weighting function depends on the distribution of the
heights. Without prior knowledge of the distribution, promis-
ing robust weighting functions are Tukey’s biweight or t-

distributed weighting [33]. For instance, the formulation of
Tukey’s biweight loss function can be written as follows:

-, |x| <¢
4 s ¥
px)y=4 , 6% 6 (19)
c;
. elsewhere
6
and the weighting function can be formulated as
xt 2x? |
—— ——, x| <ec
w(x) = ct 2’ (20)
0, elsewhere.

III. ESTIMATION ACCURACY OF TOMOSAR WITH SMALL
STACKS

This section will discuss the theoretical 3-D reconstruc-
tion accuracy of a microstack with 3-5 interferograms. The
estimation accuracy of TomoSAR has been systematically
investigated. It is exhaustively shown in [15] that the elevation
estimation accuracy and SR power depend asymptotically on
the multiplication N - SNR. In this section, we investigate the
estimation accuracy of TomoSAR with the extremely small
number of interferograms, which is 3-5.
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Monte Carlo simulations of double scatterers with different normalized distances: ¥ € [0.1, 1.5] and SNR = 10 dB. The X-axis represents the
normalized true distance x of simulated facade and ground. The Y-axis is the normalized estimated distance & of simulated facade and ground. The blue dot
marker denotes the estimated location of facade, and the error bar indicates the standard deviation of the estimates, whereas the red dot marker represents

the estimated location of ground. The green dot suggests that the detection rate of double scatterers is below 5% and denotes the estimated result of a single
scatterer. (a) Illustration. (b) SVD. (¢) CS.

A. Lower Bound for Microstacks

In the case of pixelwise TomoSAR inversion, i.e., without
spatial averaging, each of our N bistatic pairs contains three
pieces of information, as mentioned above. If we want to
reconstruct elevation profiles containing M discrete scatterers,
we need to infer 3M parameters, i.e., elevation, magnitude,
and phase for each scatterer. Hence, an absolute lower bound
of the microstack size is N > M.

On the other hand, distributed scatterers are characterized
by only two parameters each: elevation and backscatter coeffi-
cient. Likewise, each interferogram provides only two parame-
ters, magnitude and phase (difference). Since our goal is 3-D
reconstruction based on bistatic data, we disregard motion-
induced phase here. Hence, also in this case, the absolute lower
limit is N > M. This limit is only a necessary condition,
however, not sufficient from the robustness point of view,
because of ambiguities in the inversion cost functions.

For 3-D urban mapping, the single- and double-scattering
cases are the dominant ones. We investigate the cases N =3—5
in this article because these are close to the mentioned limits
and are relevant for TanDEM-X.

B. Cramer—Rao Lower Bound (CRLB)
It is demonstrated in [7] that the CRLB of the elevation

estimates for single scatterer can be expressed as follows:
. Ar
4w -0, -v2-SNR-N

where o), is the standard deviation of the baseline distribution.

N 1is the number of interferograms, and SNR is the signal-to-
noise ratio.

Os

21

For the double-scatterer case, the CRLB can be written as
follows:

Os, = €0 * 05,0

(22)

where o, o represents the CRLB on the elevation estimation
of the gth scatterer without the interference with the others.
¢y is the correction factor of the interference for the scatterers,
which are closely located [15]. It is nearly free from N and
SNR, which can be written as follows:

40 72(1 — x/3)

O = MBI 963 — 26) cosCAg) + (B — 2¢)2°

(23)

where Ag is the phase difference of the two scatterers. x is
the normalized distance between two scatterers (defined in the
next section). Since Ag is a random variable, the approximated

formulation of ¢( can be calculated by integrating the variances
over Ag

(24)

A note on the baseline distribution is worth mentioning:
(21)—(24) are satisfied with large stacks. In the microstacks
with only 3-5 acquisitions, the baseline distribution may be
unfavorable, even if the baseline spread o}, is acceptable. For
example, if two baselines were very similar, the information
content would be reduced. It is, therefore, desirable to have
the baselines possibly statistically uniformly distributed.

co = max{2.57(x "' — 0.11)* + 0.62, 1}.

C. Monte Carlo Simulations

In this section, we compare different spectral estimators
using simulated data. Two cases were carried out. The first
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Fig. 5. Visual comparison of NL-TomoSAR point clouds and TanDEM-X DEM over Munich, Germany. Color code: 565 m (blue)-596 m (red), scene size:
15 km x 9 km, north = top. The violet bounding box indicates the region of interest (ROI) over the area of European bureau of patent, and the white bounding
box indicates the ROI near Munich central station. (a) Point clouds generated by NL-TomoSAR with five interferograms. (b) TanDEM-X DEM.

case considers only a single scatterer in the interest of explor- The second case considers double scatterers to investigate the
ing the effect of N and SNR on the estimation accuracy estimation accuracy and the SR power for different estimators.
for microstacks and the performance of different estimators. The inherent (Rayleigh) elevation resolution p, is inversely
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TABLE I
PARAMETERS OF TANDEM-X STRIPE MAP ACQUISITION OF MUNICH

Name Symbol  Value

Distance from the scene center 7 698 km

Wavelength A 3.1cm

Incidence angle at scene center 6 50.4°

Maximal elevation aperture Ab 187.18 m

Number of interferograms N 5
TABLE II

DETAILED INFORMATION OF TANDEM-X STRIPE MAP ACQUISITION FOR
USED DATA SET

No. Date Baseline [m]  Height Ambiguity [m/cycle]
1 2016-07-25 184.40 50.30
2 2016-09-07 171.92 54.01
3 2017-02-19 32.30 286.03
4 2017-04-26 -2.78 -8710.99
5 2017-07-01 9.30 1073.03

proportional to the maximal elevation aperture Ab [15]

B Ar 25)
Py = oAb
The normalized distance is defined as follows:
k=" (26)
Ps

For the first test case, only one scatterer is placed at
s = 0, and the SNR is in the range between 0 and 30 dB.
For each N - SNR value, 100 different baseline distributions
were generated. We carried out a Monte Carlo simulation for
each baseline distribution with 10000 realizations. Afterward,
the CRLB was evaluated by averaging the value of 100 dif-
ferent baselines. Fig. 3(a) shows a performance comparison
between SVD and CS on simulated data with five acquisitions
for a single scatterer. The X-axis presents N - SNR in dB.
The Y-axis is the normalized CRLB o,/p;. As one can see,
both approaches have similar estimation accuracy. They are
asymptotically toward the CRLB and collapse it when N-SNR
is large. More interesting is when N - SNR is fixed, leaving
N as a variable. Fig. 3(b) presents the estimation accuracy of
SVD with N = 3,4, 5. It shows that the accuracy when N = 3
is the smallest. This indicates that SNR carries more weight
than N on the estimation accuracy when N is very small.

With the 3-D reconstruction accuracy of a single scatterer
clearly analyzed, we switch to the double-scatterer case. In the
simulation, the elevation of one scatterer is fixed at 0. The
normalized elevation of the other scatterer is increased from
0.1 to 1.5 to mimic the layover of a ground layer and a facade
layer. The number of acquisitions is set to N = 3-5 as same
as the first simulation. SNR is set to be 10 dB since the SNR
of TanDEM-X bistatic data is usually higher than this value
in urban area [34].

The Monte Carlo simulation result is shown in Fig. 4. The
x-axis represents the true normalized elevation distance x of
the simulated facade and ground layers. The Y-axis is the
estimated normalized elevation distance & of the simulated
facade and ground layers. The two solid lines in Fig. 4(a)—(c)
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(2) (b)

Fig. 6.  Visual comparison of NL-TomoSAR point clouds and TanDEM-
X DEM, close-up 3-D view over the area of European bureau of patent.
(a) TomoSAR point clouds. (b) TanDEM-X DEM.

(b)

Visual comparison of NL-TomoSAR point clouds and TanDEM-
X DEM, close-up 3-D view over the area of Munich central station.
(a) TomoSAR point clouds. (b) TanDEM-X DEM.

Fig. 7.

represent the true position of the building facade and the
ground, respectively. The dashed lines imply the true position
plus and minus the CRLB. The blue bar and dot imply the
standard deviation and the mean of the estimated elevation of
the facade scatterers, whereas the red ones represent those
of the ground scatterers. The green dot indicates that the
detection rate of double scatterers is below 5% and denotes
the estimated result of the single scatterer. Fig. 4(b) and (c)
shows the estimated results by SVD and CS, respectively.
As one can see in Fig. 4(b) and (c), the result of SVD has
a larger bias and slightly bigger standard deviation than CS.
Note that, compared to SVD, CS can give a better result, not
only the accuracy of the estimation but also the SR power.
As one can see that the SVD has scarcely no SR power,
which can only distinguish double scatterers tile one Rayleigh
resolution py. In contrast, CS can achieve until 0.6 p;.
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Fig. 8.

Optical images of the nine test sites for quantitative comparison of NL-TomoSAR point clouds and TanDEM-X DEM. (a) Munich central station.

(b) European bureau of patent. (c) Technical University of Munich. (d) Railway signal light stand. (e) Train repair garage. (f) Residential building between
two bridges. (g) Munich University of Applied Sciences. (h) Residential building near Lowenbrau beer company. (i) Karstadt (shopping mall).

IV. PRACTICAL DEMONSTRATION

A. Data Description

We make use of a stack of five coregistered TanDEM-X
bistatic interferograms to evaluate the proposed algorithm. The
data set is over Munich, Germany, whose slant range resolution
is 1.8 m and the azimuth resolution is 3.3 m. The images were
acquired from July 2016 to April 2017. The most pertinent
parameters of a TanDEM-X bistatic stripe map acquisition of
Munich are listed in Tables I and II. All the preprocessing
steps, like deramping, are standard that are known from bistatic
forest tomography. For interested readers, please refer to [2].

B. Visual Comparison With TanDEM-X Raw DEM

In this article, the TanDEM-X raw DEM is adopted for
visual comparison with TomoSAR point clouds of the test
area, which is formed by two TanDEM-X bistatic acquisitions
using the integrated TanDEM-X processor (ITP).

A top view of the reconstructed point cloud of TomoSAR
is shown in Fig. 5(a). The black regions in the figure are
where the pixels are not coherent. The corresponding area
of TanDEM-X raw DEM is presented in Fig. 5(b) as a
comparison. It is clear that the result of TomoSAR point cloud
preserves more detailed building structures. The road layer
is also better represented in the TomoSAR result as well.
In Fig. 5(b), the flat ground surface are well-reconstructed.
But when it comes to complex or high-rise buildings, their

accuracy is compromised. For instance, the building of Euro-
pean bureau of the patent in the bottom right (red) along
the Isar river. A closed view of this building can be seen
in Fig. 6. Due to the complex building structure, as well as
the multilooking processing, the TanDEM-X raw DEM merges
several buildings together and exhibits lower accuracy on the
height of the buildings.

As another example, Fig. 7 shows the visual comparison
over the area around Munich central station. It is clear that
NL-TomoSAR result can show more detailed structures, such
as the bridge, the central station, and roads.

V. QUANTITATIVE VALIDATION

In this section, we have quantitatively compared the
TomoSAR point clouds with TanDEM-X raw DEM, as well
as a much more precise LiDAR reference. The LiDAR data
set of Munich is provided by Bavarian State Office for Survey
and Geoinformation with 10-cm accuracy [35].

Since the TomoSAR point cloud is with respect to a refer-
ence point that was chosen during the TomoSAR processing,
its location is not with respect to a geocoordinate system.
We coregistrated the point cloud of TomoSAR with the DEM
and the LiDAR point cloud. In addition, in order to compare
point clouds with DEM, we rasterize the two point clouds.
These preparing steps are briefly explained in this section.
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TABLE III
STATISTICS OF QUANTITATIVE COMPARISON OF THE NINE TEST STRUCTURES. FIRST COLUMN SHOWS THE NUMBER OF EACH STRUCTURE. SECOND

COLUMN IMPLIES THE SOURCE OF EACH RESULT, 1.E., t (TOMOSAR),

1 (LIDAR), AND d (DEM). THIRD AND FOURTH COLUMNS PRESENT

THE STATISTICS (MIN, MAX, MEAN, AND STANDARD DEVIATION) OF SAMPLE POINTS AT TOP AND BOTTOM LAYERS. FIFTH COLUMN
DEMONSTRATES THE RELATIVE HEIGHT OF EACH STRUCTURE, WHICH IS CALCULATED BY USING THE MEAN VALUE OF THE TOP
LAYER MINUS THE MEAN VALUE OF THE BOTTOM LAYER. SIXTH COLUMN SHOWS THE RELATIVE HEIGHT DIFFERENCE
BETWEEN TOMOSAR POINT CLOUDS AND LIDAR DATA, AS WELL AS BETWEEN TANDEM-X RAw DEM AND

LIDAR DATA
Structures ‘ Sources ‘ Top ‘ Bottom ‘ Height ‘ Absolute Height Difference
| | Min Max Std  Mean | Min Max Std  Mean | |
T -3.76 2.59 1.22 -0.75 -19.30  -12.87 1.15 -15.26 14.51 0.69
Structure 1 L - - - 539.01 - - - 525.19 13.82 -
D 583.19 597.58 232 58791 | 566.16 570.15 2.01 568.06 19.84 6.02
T 20.39 2262 056  21.39 -27.85  -22.62 1.18  -25.30 46.70 0.75
Structure 2 L - - - 559.09 - - - 513.14 | 45.95 -
D 598.57 64243 835 62499 | 556.61 58346 445 574.83 50.16 4.21
T 13.84 17.04 097 15.32 -25.52  -21.56  1.09  -23.67 38.49 0.90
Structure 3 L - - - 552.97 - - - 515.38 | 37.59 -
D 59431  599.13 212 596.15 | 562.03 569.28 1.60 565.18 | 30.97 6.62
T -4.61 -1.90 074 291 -13.84  -1035 0.83  -12.05 9.14 0.67
Structure 4 L - - - 535.04 - - - 526.57 8.47 -
D 58241 58494 0.84 584.06 | 572.76 57496 048 573.42 10.64 2.17
T -3.95 -0.96 0.63 -2.44 -1594  -13.67 054 -14.61 12.17 0.96
Structure 5 L - - - 535.62 - - - 524.41 11.21 -
D 583.26 58726 096 584.77 | 572.71 57898 122  575.58 9.19 2.02
T 10.42 1347 049 12.11 -16.05  -1431 082 -15.61 27.72 0.67
Structure 6 L - - - 551.73 - - - 523.34 | 28.39 -
D 587.23 59429 212 589.76 | 567.22 570.82 132 569.36 20.4 7.99
T 271 6.65 0.87 4.99 -27.57 2132 141 -2425 29.24 0.60
Structure 7 L - - - 548.01 - - - 519.37 | 28.64 -
D 57471  597.30 521 58827 | 563.98 571.78 226 568.09 | 20.18 8.46
T 0.06 6.42 1.34 4.06 -2096  -20.27 0.18  -20.69 24.75 0.94
Structure 8 L - - - 542.96 - - - 517.27 25.69 -
D 584.73  598.09 336 59040 | 566.26 57470 2.62 570.12 | 20.28 541
T -7.53 -6.73 0.16 -7.41 -23.13 2257 029 -22.85 15.44 0.89
Structure 9 L - - - 530.39 - - - 515.84 14.55 -
D 580.67 581.22 0.11 580.97 | 567.14 57342 156  569.3 11.67 2.88

A. Geocoding

Since the result of TomoSAR inversion is a 3-D point cloud
in the range—azimuth coordinate, the first step is to transform
the result to Universal Transverse Mercator (UTM) coordinate
with the range-Doppler approach [36].

B. Coregistration of Different Point Clouds

Consequently, when the TomoSAR point cloud is trans-
formed to a UTM coordinate, its position may differ from
the ground truth since the height of the reference point is
unknown. Hence, the alignment of different point clouds is
necessary. The most popular 3-D point cloud registration
algorithm is iterative closest point (ICP) approach [37].

The performance of ICP depends on the initial alignment.
Hence, a coarse alignment is adopted before applying ICP,
which includes three steps: 1) the edge image is extracted by
an edge detector, such as Sobel algorithm [38]; 2) the horizon-
tal coregistration of two edge images is using cross correlation
of two edge images; and 3) the vertical coregistration is using
cross correlation of the two height histograms. After the coarse
alignment, ICP can be applied for the fine alignment [39].

C. Object-Based Raster Data Generation

The direct comparison of TomoSAR and LiDAR points is
not feasible, as the central position of two corresponding points
(one TomoSAR and one LiDAR point) and the footprint of
the points are differing. Consequently, for comparing both
data, an object-based raster needs to be generated by using
geographic information system GIS data.

D. Comparison of Individual Structure

In order to evaluate the estimation accuracy, nine test
sites with high-average SNR have been chosen for individual
quantitative comparison. Fig. 8 shows the optical images of
nine test sites for quantitative comparison of NL-TomoSAR
point clouds and TanDEM-X DEM. They are: 1) Munich
central station; 2) European bureau of patent; 3) Technical
University of Munich; 4) a railway signal light stand near
Hirschgarten; 5) a train repair garage near Hirschgarten; 6) a
residential building between two bridges (Hackerbriicke and
Donnersbergebriicke); 7) Munich University of Applied Sci-
ences; 8) a residential building near Lowenbrau beer company;
and 9) Karstadt (shopping mall). The summary of the results
is shown in Table III.
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TABLE IV
STATISTICS OF QUANTITATIVE COMPARISON OF THE WHOLE CITY

Percentage of buildings  Estimation accuracy

38.7% within 1 m
62.8% within 2 m
93.3% within 15 m
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Fig. 9.
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Histogram of height differences of structures in the whole Munich

From Table IIl, we can see that the height differences
between TomoSAR result and LiDAR data are within 1 m,
and the height differences between TanDEM-X DEM product
and LiDAR data vary from 2.5 to 8.5 m. Similar performance
is shown in the standard deviation; for NL-TomoSAR, it is up
to 1.4 m, and for TanDEM-X DEM, it is up to 8.4 m.

E. Average Accuracy

In order to have an assessment of the overall accuracy
in a city scale, we compared all the 36499 buildings in
the area with the LiDAR point cloud. The 38.7% buildings
are within 1-m accuracy. The 62.8% buildings are within
2-m accuracy. A detailed distribution of accuracy is listed
in Table IV. However, the two data sets (TanDEM-X CoSSC
and LiDAR) were acquired at different times. It is almost
certain that changes happened during the period. Therefore,
in order to obtain a more realistic assessment, we truncated
the distribution of height difference at +=15 m. The truncated
histogram can be seen in Fig. 9. The 34 054 buildings remain
after the truncation. Their overall standard deviation is 1.96 m.

VI. CONCLUSION

A new SAR tomographic inversion framework tailored for
a very limited number of measurements is proposed in this
article. A systematic investigation of the estimation accuracy
of TomoSAR with microstacks is carried out using simulated
data. Our experiments show that SVD and CS-based methods
have almost identical performance on the estimation of single
scatterer and the SNR plays a more important role than N for
the estimation accuracy, when N is small. For the estimation
of double scatterers, CS-based approach outperforms the other
spectral estimators. Experiments using TanDEM-X bistatic
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data showed the relative height accuracy of 2 m can be
achieved in a large scale. Thus, it demonstrates the proposed
framework being a promising solution for high-quality large-
scale 3-D urban mapping.
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