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Abstract— The trade-off between feature representation power
and spatial localization accuracy is crucial for the dense classi-
fication/semantic segmentation of remote sensing images (RSIs).
High-level features extracted from the late layers of a neural
network are rich in semantic information, yet have blurred spatial
details; low-level features extracted from the early layers of a
network contain more pixel-level information but are isolated
and noisy. It is therefore difficult to bridge the gap between
high- and low-level features due to their difference in terms
of physical information content and spatial distribution. In this
article, we contribute to solve this problem by enhancing the
feature representation in two ways. On the one hand, a patch
attention module (PAM) is proposed to enhance the embedding
of context information based on a patchwise calculation of local
attention. On the other hand, an attention embedding module
(AEM) is proposed to enrich the semantic information of low-level
features by embedding local focus from high-level features. Both
proposed modules are lightweight and can be applied to process
the extracted features of convolutional neural networks (CNNs).
Experiments show that, by integrating the proposed modules into
a baseline fully convolutional network (FCN), the resulting local
attention network (LANet) greatly improves the performance
over the baseline and outperforms other attention-based methods
on two RSI data sets.

Index Terms— Convolutional neural network (CNN), deep
learning, remote sensing, semantic segmentation.

I. INTRODUCTION

THE dense classification of remote sensing images (RSIs),
which is often referred to as semantic segmentation,

is a crucial step for the automatic analysis of remote sensing
data. It is widely used in a variety of applications, such
as land-use and land-change mapping, urban management,
environment monitoring, and so on. With the development of
convolutional neural networks (CNNs) and their application
to dense classification (introduced in the fully convolutional
network (FCN) [1]), the accuracy of semantic segmentation
on RSIs has been greatly improved [2]. A commonly used
design in CNNs is based on stacked convolutions and pooling
operations, which constantly reduce the spatial size of features
to enhance their semantic representations [3]. Although this
feature embedding design (referred to as “encoders”) has the
benefits of enlarging the receptive field and learning more
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intrinsic feature representations, it has the cost of losing
detailed spatial information. Thus, the semantic segmentation
results are generated by considering a large area as a whole
instead of precisely classifying each pixel. As a result, small
objects may be neglected and the contours of objects are
ambiguous. To conquer this problem, “decoders” are intro-
duced, which typically employ the low-level features from
“encoders” to retrieve the lost spatial information [4]–[6].
However, the low-level and high-level features have significant
differences in both semantic information and spatial distribu-
tions (e.g., low-level feature are more sensitive to gradient
changes and distinct points, while the high-level features
have stronger activation in the center of objects), thus the
fusion of them does not bring significant improvements to the
segmentation accuracy [7].

This trade-off between feature embedding power and spa-
tial localization accuracy is crucial for the semantic seg-
mentation of RSIs. On the one hand, different categories
of the ground objects may share similar spectral features,
thus requiring for an aggregation of context information [8].
On the other hand, many applications of the analysis of the
RSIs require high precision in mapping contours of ground
objects. Therefore, detailed spatial information is needed for
accurately identifying both the boundary of regions and small
objects.

The introduction of the attention mechanism is an effective
strategy to reduce the confusion in predicted categories without
losing spatial information. With the global statistics aggregated
from the whole image, scene information can be embedded to
highlight (or suppress) the features with strong correlations [9].
However, the spatial size of RSIs is usually much larger
than that of natural images, whereas the number of object
categories is often smaller. For example, each image in the
ISPRS semantic labeling data set (Potsdam area) [10] has
6000 × 6000 pixels divided into six object categories in this
data set. As a result, almost every image contains all the
object categories, and no clear global scene information can
be embedded at the global level. In other words, we argue
that the typical attention-based techniques cannot be directly
applied to the semantic segmentation of large-size RSIs.

In this article, we propose the generation of patch-level local
attention to improve the semantic segmentation of RSIs. The
proposed approach is based on the finding that the image-level
semantic information of RSIs is not clear, whereas the local
image patches have clear semantic references (an illustration
example of this observation is given in Fig. 1). Therefore, we
propose a novel patch attention module (PAM) to exploit
patchwise local attention. This module operates on extracted
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Fig. 1. Examples of the image-level information for RSIs. The information
of a whole RSI cannot be deduced more specifically than just “urban area,”
but the information of image patches can be easily attributed to classes like
“car,” “tree,” and “building.”

feature maps and can aggregate context information from
the local patch to reduce confusion. In our model, the PAM
is appended after both the high-level and low-level features
to enhance their representation. Moreover, to bridge the gap
between high-level and low-level features, an attention embed-
ding module (AEM) is proposed to embed semantic focus
from high-level features into low-level features. This module
can greatly improve the semantic representation of low-level
features without losing their spatial details, thus improving the
effectiveness of the fusion between high-level and low-level
features. The proposed modules are lightweight and can be
incorporated into existing CNN architectures to improve the
segmentation accuracy. The experiments on two RSI data sets
have validated the effectiveness of the proposed architecture.

To summarize, the main contributions in this article are as
follows.

1) Proposing both a PAM to embed scene information from
local patches and an AEM to enhance the semantic rep-
resentation of low-level features by introducing attention
from high-level features.

2) Proposing a local attention network (LANet) to improve
the semantic segmentation of RSIs by enhancing the
scene-related representation in both encoding and decod-
ing phases.

3) Performing extensive ablation studies on two RSI data
sets by incorporating the proposed modules into baseline
FCN network in sequence. The resulting LANet is
further compared with other networks with decoding or
attention-based designs to evaluate its performance.

The remainder of this article is organized as follows.
Section II introduces the related works on semantic segmen-
tation tasks. We then describe our LANet in Section III.
In Section IV, we present a detailed experimental evaluation
and discussion. Finally, we conclude this article in Section V.

II. RELATED WORK

A. Semantic Segmentation of RSIs

Studies on CNN-based semantic segmentation of RSIs begin
to thrive after the emergence of several open data sets and con-
tests, including the ISPRS data sets,1 the DeepGlobe contest,2

and the SpaceNet competition.3 One of the focuses of the

1http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
2http://deepglobe.org/challenge.html
3https://spacenetchallenge.github.io/

studies on semantic segmentation of RSIs is the collaborative
use of CNNs and statistical modeling methods to improve the
accuracy [11], [12]. Another research direction is related to
the multiscale feature extraction. In this context, the multiscale
pyramid pooling module has been introduced to the semantic
segmentation of RSIs in [13]. In [14], a two-stage design
operating on seven different scales is presented to enlarge the
receptive field of the network. The multiscale alignment of
edges and outputs are introduced in [15] and [16], respectively.
The exploitation of additional training information has also
been studied in the semantic segmentation of RSIs, such as
the use of Open Street Maps in [17] and [18], the explicit
use of the digital surface model (DSM) in [19] and [20], and
the supervision of object boundaries in [21]. However, limited
attention has been paid to the special properties of RSIs,
such as their large spatial size and relatively low number of
categories with respect to natural images. In this article, these
major differences with natural images are taken into account
when designing the relevant processing modules.

B. Encoder-Decoder Designs

The encoder-decoder networks have been successfully used
in many computer vision tasks such as image generation
[22], [23], object/saliency detection [24], [25], crowd count-
ing [26], and semantic segmentation [1], [27]. Usually,
the encoder–decoder networks contain two subnets: 1) an
encoder subnet that gradually reduces the feature maps and
captures higher semantic information and 2) a decoder subnet
that gradually recovers the spatial information. The encoder
subnet is the focus of most existing studies. There are plenty
of works on enlarging the receptive field while minimizing
the number of parameters, including well-known architec-
tures such as the PSPNet [28] and the DeepLabV3+ [27].
They both add parallel context-aggregation branches at the
top of encoding networks. PSPNet employs global average
pooling operations to exploit contextual information, while
DeepLabV3+ employs dilated convolutions with different
rates. One of the limitations of these works is that their decoder
subnets are not as powerful as the encoders. Although in some
studies there are cascade decoding designs that aim to exploit
the features from early CNN layers [4]–[7], these features
are usually concatenated or summed to the high-level features
without enhancing their semantic representation. Thus, they
provide a limited contribution to the accuracy. To overcome
this limitation, we propose the use of the attention mechanism
for enhancing the representation of low-level features during
the decoding phase.

C. Attention Mechanism

Attention mechanism refers to the strategy of allocating
biased computational resources to the processed signal to
highlight its informative parts. In the tasks related to the under-
standing of image content, a typical solution for generating
attention statistics is to gather information from a global scale,
namely, to exploit the scene or image-level information. This
is because the scene information may provide clues about the
possible contents in an image. In [29], the attention of the
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Fig. 2. Architecture of the proposed LANet. The PAM generates attention maps to highlight patchwise focus in feature maps. The AEM embeds semantic
information from high-level features to low-level ones.

feature map is aggregated using an hourglass module in a
residual manner. This residual attention network introduced
a chunk-and-mask module, where the global attention is
aggregated in the Soft Mask Branch through stacked down-
sampling convolutions. In [9], a squeeze-and-excitation (SE)
block is proposed, which uses global-pooling to generate
channelwise attention. In this way, spatial-irrelevant informa-
tion can be learned to emphasize the scene-relevant feature
channels. The design of “squeezing” spatial information and
the parallel connection of attention branch introduced in
this article have been widely adopted in subsequent studies.
In EncNet [30], a context encoding module is proposed to
capture the scene-dependent global context as channelwise
attention. CBAM [31] introduced a spatial attention module to
highlight the informative spatial regions. The spatial attention
maps are generated by using pooling operations along the
channel axis. BAM [32] has a similar module to exploit spatial
correlations but it is implemented by applying dilated convolu-
tions. PSANet [33] introduced the modeling of long-range cor-
relation for each spatial position, but the channels of its inner
layers are related to the input image size and cannot be applied
to the prediction of full-size RSIs. A parallel design that
models both channelwise and pointwise attention is introduced
in DANet [34]. A limitation of the nonlocal reasoning-based
networks is that the reasoning of global spatial correlation is
calculation intensive. A lightweight graph-based module for
reasoning latent correlations has been presented in [35].

Some works use the attention mechanism for the segmenta-
tion of RSIs. In [36], a channel attention block is designed to
enhance the decoding branch of the CNN. In [37], the attention
mechanism is used to match the caption nouns with the
objects in RSIs. The global attention upsampling module [38]
is introduced in [39] to provide global guidance from high-
level features to low-level ones. In [8], the attention-based
reasoning of both positional and channelwise relations and
their integration in serial and parallel manners have been
studied. In [40], a multiscale design has been introduced to
aggregate context information through different branches.

Building on top of these studies, we propose a simple yet
effective approach that extends the use of the attention mecha-
nism to the spatial dimension without significantly increasing
the computational load.

III. PROPOSED APPROACH

In this section, we present the proposed LANet devised for
improving semantic segmentation of RSIs. First, an overview
of the network is given to introduce the general motivation and
architecture. After this, the proposed modules are described in
detail. Finally, further explanation is given on the integration
of the proposed modules into two backbone networks (ResNet
and HRNet).

A. Overview of the Proposed LANet

Contextual information is known to be crucial for the
semantic segmentation of RSIs. Global pooling is an effec-
tive operation to aggregate contextual information since it
utilizes the scene information to learn biased focus on object
categories. However, this approach is less effective on RSIs,
since the image-level information is not clear, as discussed in
Section I. To address this problem, we propose the LANet to
utilize patch-based scene information on RSIs.

The motivation of this article is twofold: 1) employing
patch-based attention to enhance the embedding of contextual
information and 2) enriching the semantic representation of
low-level features to better utilize the spatial information.
To achieve this goal, two separate modules are introduced
in LANet: 1) a PAM to enhance the embedding of local
context information and 2) an AEM to improve the use of
spatial information. Specifically, we designed two parallel
branches to process features from different layers. As shown
in Fig. 2, in the upper branch, high-level features (produced
by late layers of a CNN) go through a PAM to enhance
their feature representation; in the lower branch, low-level
features (produced by early layers of a CNN) are first enhanced
by PAM, then embedded with semantic information from
high-level through AEM. The final segmentation results are
produced by the fusion of the features from both branches.

B. PAM

Semantic segmentation of RSIs suffers greatly from the
problem of intraclass inconsistence since the discrimination
of object categories is a comprehensive task affected by both
the surface type and the context of an image. To alleviate this
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Fig. 3. Detailed design of the PAM. Descriptors are calculated patchwisely
to aggregate local context information.

problem, we propose a PAM to enhance the aggregation of
context information in the extracted features.

Fig. 3 shows the design of the PAM. This article is inspired
by the design of the SE-block [9]. The original SE-block
introduced global average pooling to generate one single
descriptor for each feature channel. However, as discussed in
Section I, this cannot be applied to the processing of large-size
RSIs. In our approach, we limit the generation of descriptors
to local patches, so that each descriptor contains meaningful
information of the local context. Let us first consider a single
patch. The descriptor zc for the cth channel of a generic patch
is calculated as

zc = 1

h pwp

h p∑

i=1

wp∑

j=1

xc(i, j) (1)

where h p and wp denote the horizontal and vertical spatial
size of the pooling window, respectively, and xc denotes a
pixel at cth channel. In this way, a c-channel vector zp

can be generated, which contains the statistics describing the
patch p. After this, we follow the bottleneck gating design
in [9] to learn an attention vector ap ∈ R

c×h p×wp for the
patch p. Instead of using fully connected layers, we employ
convolutional operations so that they can be applied to process
other patches without assigning extra weights. The gating
operation to generate attention maps can be symbolized as

ap = FU {σ [Hiδ(Hrzp)]} (2)

where σ and δ denote sigmoid and ReLU functions [41],
respectively; Hr represents the 1 × 1 dimension-reduction
convolution with the reduction ratio r ; Hi denotes the 1 × 1
dimension-increasing convolution that recovers the feature
dimension back to c; and FU is the upsampling operation.

Let us now extend the case of a single local patch to the
global level. Given a feature map X ∈ R

C×H×W , maps of
descriptors Z ∈ R

C×H �×W �
can be generated. Here, H � and W �

are determined by the size of each patch (pooling window) as

H � = H

h p
, W � = W

wp
(3)

where h p and wp are set according to the spatial reduc-
tion ratio of the corresponding encoding layer to ensure

Fig. 4. Detailed design of the AEM. Low-level features are semantically
enriched by embedding local focus from high-level features.

a remarkable enlargement of the receptive field. An alternative
is to use a sliding window for generating the descriptors,
so that the descriptor maps have the same size of input
images. However, this option will tremendously increase the
calculation; thus, it is not adopted in our implementation. After
the convolutional layers, attention maps A ∈ R

C×H×W can be
produced. Finally, the original input features X are multiplied
elementwise with A to enhance their representation. A residual
design is adopted to ensure the stable backpropagation of
gradients.

C. AEM

An effective exploitation of low-level features is difficult
due to their difference with high-level features in terms
of spatial distribution and physical meaning. The most fre-
quently used way of employing low-level features is to con-
catenate them with high-level features, which brings only
slight improvement in performance (refer to discussion in
Section IV). To make the best use of low-level features,
we propose an AEM to enrich their semantic meaning. This
operation bridges the gap between high-level and low-level
features without sacrificing the spatial details of the latter.

Fig. 4 shows the design of the proposed AEM. The intuition
of this approach is to embed local attention from high-level
features into the low-level features. In this way, low-level
features are embedded with context information that goes
beyond the limitation of their receptive fields, while their
spatial details are kept. First, we generate descriptors from
high-level features through the same calculation as in (1).
Let us denote these maps of descriptors as Zh ∈ R

Ch×H �×W �
,

and the low-level features as Xl ∈ R
Cl ×Hl×Wl . We generate

attention maps for the low-level features Al by transforming
Zh through bottleneck convolutions as

Al = FU {σ [Hlδ(HrZh)]} (4)

where Hr is a dimension reduction convolution and Hl changes
the number of channels to be the same as Xl . To avoid
excessive interference of high-level features, we add a residual
design to emphasize the importance of low-level features. The
enhanced low-level features are calculated as

Xl = Xl + Xl Al . (5)

D. Feature Fusion Between Different Layers

After being processed by AEM, low-level features are
semantically enriched and can potentially give a higher
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contribution to the prediction of the pixel class. Both the high-
level and low-level features keep their dimensions after the
processing of PAM and AEM. Accordingly, classic feature
fusion operations (e.g., concatenation) can be applied to the
outputs of the two branches. Since the specific feature fusion
operation is not the focus of this article, also considering the
interest in validating the output from each branch, we simply
train two separate classifiers for each branch and perform an
elementwise sum to generate the final results.

IV. DATA SET DESCRIPTION AND

DESIGN OF EXPERIMENTS

To assess the effectiveness of the proposed method, exper-
iments have been conducted on two RSI data sets, i.e., the
Potsdam data set and the Vaihingen data set. In this section,
we provide a short description of both data sets and then
present the design of experiments providing implementation
details.

A. Descriptions of Data Sets

We employ two publicly available data sets to evaluate
the proposed methods. The first data set is the Potsdam data
set [10], which consists of 38 true orthophoto (TOP) tiles and
the corresponding DSMs collected from a historic city with
large building blocks; 24 imageries are used for training and
the remaining 14 for testing. There are four spectral bands
in each TOP image (red, green, blue, and near-infrared) and
one band in each DSM. All data files have the same spatial
size, equal to 6000 × 6000 pixels. The ground sampling
distance (GSD) of this data set is 5 cm. The reference data are
labeled according to six land-cover types: impervious surfaces,
building, low vegetation, tree, car, and clutter/background.

The second data set is the Vaihingen data set [10], which
contains 33 TOP tiles and the corresponding DSMs collected
from a small village; 16 images are used for training and the
remaining 17 ones for testing. Different from the Potsdam
data set, each TOP in the Vaihingen data set contains three
spectral bands (near-infrared, red, and green bands) and one
DSM band. The spatial size of the images varies from
1996 × 1995 pixels to 3816 × 2550 pixels. The GSD of this
data set is 9 cm. The reference data are divided into the same
six categories as the Potsdam data set.

B. Design of Experiments

Following the evaluation method provided by the data
publisher [10] and used in literature [13], [21], [42], three
evaluation metrics are used to evaluate the performance of
methods, i.e., overall accuracy (OA), per-class F1 score and
average F1 score. OA is calculated by dividing the correctly
classified number of pixels with the total number of pixels.
The F1 score for a certain class is defined as the harmonic
mean of precision and recall

F1 = 2 · precision · recall

precision + recall
. (6)

The same preprocessing, data augmentation, and weight
initialization settings have been used in all the experiments.

TABLE I

RESULTS OF THE ABLATION STUDY ON THE POTSDAM DATA SET.
(∗) LOW-FEAT INDICATES THE USE OF LOW-LEVEL FEATURES

The DSMs are concatenated with TOPs as input data, so that
we obtain five channels for the Potsdam data set and four
channels for the Vaihingen data set. Due to the limitation
of computational resources, the input data are cropped using
a 512 × 512 window during the training phase. However,
the prediction for the test set is performed whole-imagewise
to obtain an accurate evaluation of the compared methods.
Random-flipping and random-cropping operations are con-
ducted during each iteration of the training phase as an aug-
mentation approach. We use ResNet50 as the backbones for
all compared networks with the pretrained weight for Pascal
VOC data set loaded from the PyTorch library. Following the
design of DeepLabv3+ [27], we choose the output features
of the first convolutional block of ResNet50 as the low-
level features in the implementation. This has been done
considering as empirical criterion a spatial scaling rate of the
features equal to 1/4. Considering the different GSD of the
two data sets, the downsampling stride for the Potsdam data
set is set to 32, while for the Vaihingen data set it is set
to 16. The networks are implemented with PyTorch, and the
experiments are conducted on a server with NVIDIA Quadro
P6000 23GB GPU.

V. EXPERIMENTAL RESULTS

In this section, we present the tests of the proposed modules
through an ablation study. Then, we compare the proposed
LANet with state-of-the-art methods and conclude our exper-
imental validation.

A. Ablation Study

In order to verify the effectiveness of the proposed modules,
ablation studies have been conducted on the two data sets.
FCN (ResNet-50) is used as the baseline network for com-
parison. Since the proposed LANet uses low-level features,
the effect of considering low-level features has also been
measured.

Table I shows the results of the ablation study on the
Potsdam data set. Three groups of observations can be done
from the results. When no low-level features are involved in
the decoding stage, the use of only one PAM (added on top
of the FCN) increases the OA of 0.19%. With the inclusion
of low-level features (concatenated with high-level features),
the OA of the baseline FCN increases by only 0.16%.
However, when two PAMs are added to process the high-
level and low-level features separately, the OA increases by
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TABLE II

RESULTS OF THE ABLATION STUDY ON THE VAIHINGEN DATA SET.
(∗) LOW-FEAT INDICATES THE USE OF LOW-LEVEL FEATURES

another 1.07%. When the proposed AEM is used instead to
enhance low-level features, the OA increases by 1.02%. With
the use of both PAM and AEM, the proposed LANet increases
the OA and average F1 compared with the baseline FCN
(with the use of low-level features) of 1.26% and 0.72%,
respectively.

The results of the ablation study on the Vaihingen data
set are presented in Table II. The inclusion of low-level
features improves the OA of the baseline FCN of 0.18%.
However, the use of both low-level features and PAM brings
an increase of 0.7% on OA and 1.35% on average F1. The use
of low-level features and AEM brings an increase of 0.39% on
OA and 0.63% on average F1. Under the condition that low-
level features are considered, the proposed LANet improves
the average F1 score and OA by about 1.57% and 0.99%,
respectively.

B. Qualitative Analysis of Features

To visually confirm the effectiveness of the proposed
modules, we present comparisons of the segmented features
generated independently before and after the use of the pro-
posed modules. Fig. 5 shows the effect of applying the PAM
module on high-level features. Since high-level layers already
have relatively large receptive field before using the PAM,
the enhancement is not significant. However, one can still
observe that some of the meaningless small segments are
removed, and the segmentation of easily confused areas is
improved.

Fig. 6 shows the changes of the segmented low-level fea-
tures before and after the sequenced use of PAM and AEM.
In the original low-level feature maps, pixels are only related to
their neighborhoods due to the limitation of the small receptive
field. This leads to fragmented results and confusion of object
classes. However, after the enhancement obtained with the
proposed modules, the semantic representation of low-level
features is significantly improved. The pixels are classified
based on not only the surface type of objects but also the
context information. Moreover, one can verify from the clearly
segmented boundaries the spatial details of low-level features.

C. Quantitative Comparison With State-of-the-Art Methods

Comparisons are made between the proposed LANet
and approaches presented in the literature. All the tested
approaches use the same backbone network (resnet50) and
conduct the prediction on full-size test data. The experiments

Fig. 5. Comparison of segmented high-level features before and after
the use of PAM. (a) and (b) are selected from the Potsdam data set.
(c) and (d) are selected from the Vaihingen data set.

Fig. 6. Comparison of segmented low-level features before and after the
use of PAM and AEM. (a)–(c) are selected from the Potsdam data set.
(d) and (e) are selected from the Vaihingen data set.

consider several recent works that have used the attention
mechanism, including the SE block [9], the BAM [32],
the CBAM [31], the GloRe [35], and the DANet [34].
The PSPNet [43] and DeepLabv3+ [27] with receptive-
field-enlarging designs are also included in the comparisons.
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TABLE III

RESULTS IN TERMS OF PER-CLASS F1 SCORE, AVERAGE F1 SCORE AND OA (POTSDAM DATA SET)

TABLE IV

RESULTS IN TERMS OF PER-CLASS F1 SCORE, AVERAGE F1 SCORE AND OA (VAIHINGEN DATA SET)

TABLE V

COMPARISON OF MODEL SIZE AND CALCULATIONS EXPRESSED IN TERMS OF PARAMS (MB) AND FLOPS (GBPS), RESPECTIVELY

Tables III and IV report the quantitative results on the Potsdam
data set and the Vaihingen data set, respectively. Compared
with the baseline FCN, the use of most attention-based
modules, such as SE, BAM, and CBAM, does not involve
noticeable performance improvement. The use of the SE-block
even causes decreases in terms of F1 scores, especially for
the car class. This is because the channelwise descriptors are
calculated on the whole feature map, and the classes that
account for a small portion of total pixels are suppressed.
This proves our assumption that the global-level calculation of
attention descriptors is not suitable for processing large-size
RSIs. The DANet with a spatial dependence modeling design
improves the OA of 0.3% on the Potsdam data set, but there
is a decrease of OA on the Vaihingen data set. DeepLabv3+,
which uses both low-level features and dilated convolutions,
has good performance in F1 scores. The proposed LANet, with
the use of both context aggregation and attention embedding
strategies, shows significant advantages over the compared
methods. It shows the best performance in terms of both

average F1 score and OA, and obtains better F1 scores in
all the predicted categories.

To evaluate the required amount of calculation resources
of the compared models, Table V represents the values of
two metrics, i.e., the size of parameters and the floating point
operations per second (FLOPS) (for processing each batch of
data). The calculations are based on the input channels and
pooling stride of processing the Potsdam data set. Overall,
the attention-based methods (SE, BAM, CBAM, and GloRe)
are lightweight, whereas the context-aggregation-based meth-
ods (PSPNet and DeepLabv3+) require more calculations. The
proposed LANet does not significantly increase the calcula-
tions compared to the baseline FCN.

D. Qualitative Analysis of the Semantic Segmentation Results

Examples of the predicted patches on the two data sets are
shown in Fig. 7. The segmentation maps provided by FCN are
ambiguous (especially at the contours of objects) due to the
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Fig. 7. Examples of semantic segmentation results. (a) and (b) are selected from the Potsdam data set. (c) and (d) are selected from the Vaihingen data set.

Fig. 8. Example of large-size semantic segmentation results (Potsdam data set). Major differences are marked with orange squares (zoomed-in view for more
details).

loss of spatial information. The direct use of attention-based
methods (e.g., SE and DANet) brings limited improvements.
The context-aggregation based approaches (e.g., PSPNet and
Deeplabv3+) not only show improvements in segmenting con-
fusing areas but also produce many fragmented segments. With
the aggregation of local contextual information, the proposed
LANet not only significantly reduces the errors but also better
preserves the spatial details. Specifically, the discrimination
between cars and impervious surfaces, as well as between

buildings and clutters has been greatly improved. There are
also noticeable improvements in preserving the boundaries
of objects. Figs. 8 and 9 show the large-size predictions on
the Potsdam data set and the Vaihingen data set, respectively.
Observing from a larger scale, the results of DANet are more
reliable compared to FCN, but still suffer from low spatial
accuracy; the results of PSPNet and Deeplabv3+ are more
fragmented. As a comparison, in the predicted maps of the
proposed LANet, there are less false alarms in the surrounding
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Fig. 9. Example of large-size semantic segmentation results (Vaihingen data set). Major differences are marked with orange squares (zoomed-in view for
more details).

areas of buildings, which can be attributed to the embedding
of contextual information. Meanwhile, the segmentation of
small objects (e.g., cars, paths, and small clutters) is more
accurate, which is due to the incorporation of enhanced low-
level features. This points out that the proposed method
improves both the discrimination of critical categories and the
preservation of spatial details.

VI. CONCLUSION

The attention mechanism is a commonly used strategy
in CNNs for aggregating context information in images.
However, RSIs have a large spatial size and a relatively small
number of classes with respect to natural images and do not
express clear image-level scene information, which limits the
use of the attention mechanism. In this article, we present a
LANet that employs patch-level scene information to improve
the semantic segmentation of RSIs. Specifically, two modules
are proposed for enhancing the representation of features based
on the exploitation of local attention: 1) the PAM enhances
the encoding of context information based on the patchwise
calculation of local descriptors and 2) the AEM embeds
attention from high-level layers into low-level ones to enrich
their semantic information.

Experimental results on two benchmark RSI data sets
(Potsdam and Vaihingen data sets) show that the proposed
approach greatly improves the representation of extracted
features. The aggregation of local attention (using the PAM)
is beneficial for classifying the easily confused areas, while
the embedding of attentions from high-level features to
low-level ones improves the preservation of spatial details.
Comparative results show that the proposed LANet outper-
forms other global-attention- and receptive-field-enlarging-
based approaches. However, one of the remaining problems
in the semantic segmentation of RSIs is that the objects in
segmented maps are still more-or-less fragmented, especially
at the boundaries. To conquer this limitation, as a further
development of this article, we plan to study feature encoding
strategies to improve the embedding of high-level features in
the network.
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