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Abstract—Supervised classification algorithms require a suffi-
ciently large set of representative training samples to generate
accurate land-cover maps. Collecting reference data is difficult,
expensive and unfeasible at large scale. To solve this problem,
this paper introduces a novel approach which aims to extract
reliable labeled data from existing thematic products. Although
these products represent a potentially useful information source,
their use is not straightforward. They are not completely reliable
since they may present classification errors. They are typically
aggregated at polygon level, where polygons do not necessarily
correspond to homogeneous areas. Finally, usually there is a
semantic gap between map legends and Remote Sensing (RS)
data. In this context, we propose an approach which aims to:
(i) perform a domain understanding to detect the discrepancies
between the thematic map domain and the RS data domain, (ii)
use RS data contemporary to the map to decompose the thematic
product from the semantic and spatial view point, and (iii) extract
a database of informative and reliable training samples. The
database of weak labeled units is used for training an ensemble
of classifiers on recent data, which results are then combined in
a majority voting rule. Two sets of experimental results obtained
on MS images by extracting training samples from a crop type
map and the 2018 Corine Land Cover (CLC) map, respectively,
confirm the effectiveness of the proposed approach.

Index Terms—Weak learning classification, remote sensing
(RS), unsupervised methods, land-cover map update.

I. INTRODUCTION

THE major bottleneck of supervised Remote Sensing (RS)

data classification is the availability of an adequately

large set of representative training samples (i.e., reference

data). At operational level this is a crucial issue, since it is

impossible to obtain a large amount of either ground reference

data or annotated data by photo-interpretation. Besides the

amount of training samples, it is also necessary to have

a set of informative labeled units being able to represent

the behavior of the classes in different portions of a scene.

This is particularly evident when classifying multispectral

(MS) or hyperspectral optical images, because of the spatial

variability of the spectral signatures of the land-cover classes

[1]. Different ground conditions strongly affect the spectral

response of the same land-cover class, which should be prop-

erly characterized to guarantee accurate classification results

(i.e., training samples collected all over the scene). Moreover,

if the number of labeled units is relatively small compared

to the number of features, the system architecture may fail

in estimating accurately the classifier parameters and lead to

classifier with poor generalization capabilities [2]–[4].

To tackle these problems, in the last years many semi-

supervised approaches have been proposed [2]–[7]. These

methods aim to enlarge the set of labeled data by using

the unlabeled data to better model the distributions of the

classes, thus increasing the classification accuracy. Typically,

iterative procedures gradually include unlabeled units in the

training set to progressively adjust the classification func-

tion [3], [5], or graph-based methods are used to connect

labeled and unlabeled units according to their similarity [8]–

[13]. When the graph is established, unlabeled units can be

naturally associated with their land-cover classes under the

assumption of consistency (i.e., nearby points should belong

to the same class) [14]. Although these strategies can be

effective in enlarging small training datasets, often results

of semisupervised methods are affected by the initial model

assumptions, i.e., inaccurate matching of pattern structure may

lead to a degradation of classifier performances. Thus, the

possible use of semisupervised techniques requires the choice

of strategy robust to initial conditions.

To ensure a reliable transfer of labeled units, several works

exploit the multitemporal correlation of Time Series (TS) of

RS images. When ground truth is available for at least one

image of the TS, it is possible to transfer the labeled units to

more recent images in a reliable way [15]–[17]. In [17], Yang

et al present a domain adaptation framework for multitemporal

hyperspectral data. By assuming that local geometries between

multitemporal data are similar, two manifold alignment strate-

gies are defined for classifying the hyperspectral images in

a common manifold space. In [15], Demir et al first detect

unchanged areas between the image to be classified and the

one where training samples are available. Then, the labels

of the unchanged reference areas are used to classify the

more recent image. Although these approaches are effective

at local level, at country or continental scale most of these

methods do not guarantee robust solutions to generate training

sets representative of the whole study area. Due to the high

spatial variability of the spectral signatures of classes, different

portions of the scene present different spectral behavior for

the same land-cover classes because of physical factors (e.g.,

soil moisture, vegetation), and atmospheric conditions [18].

Thus, by extracting samples from small local areas, there

is no sufficient information for modelling this variability.

Moreover, samples taken from the same region usually have

high correlation, thus violating the required assumption of

independence [18].

The need of large sets of training samples is even more ev-



2

ident at operational level, when the goal is to generate/update

land-cover maps at country, continental or global level. In the

last decades, a lot of effort has been devoted to develop the-

matic/cartographic products due to their valuable contribution

to a wide range of applications (e.g., climate change models,

monitoring of natural resources, spatial distribution of ecosys-

tems and landscapes, etc). At global level, various thematic

products are available [19]–[22]. However, they present many

discrepancies when harmonized and compared [23], [24]. This

is mainly due to the fact that these land-cover maps were gen-

erate by using different data sources, classification schemes,

and methodologies. At European level, the Corine Land Cover

(CLC) map [25] is one of the most accurate cartography [26],

with its detailed classification scheme composed of 44 classes

(mixed land-cover and land-use classes). Nevertheless, the

minimum mapping unit of 25 Ha does not allow the direct

extraction of training samples from the map. At such coarse

scale, many pixels aggregated within the same polygon are

not correctly associated to their labels. Including them in the

training set leads to poor classification accuracies [27].

To generate reliable thematic products, some methods pro-

pose to fuse different maps [26], [28], [29]. In [28], Lesiv et

al generate a hybrid forest map by fusing several well-known

cartographic products (e.g., GLC2000, GlobCover 2005, etc)

with crowd-sourced data on forest cover collected through the

Geo-Wiki project [30]. A Crowd-sourced thematic product is

also used in [31], where the authors extract training samples

from OpenStreetMap to classify a TS of MS images. A noise

tolerant classifier is used to handle the mislabeled units present

in the extracted training set due to the inaccurate matching

between the polygon boundaries and the real land-cover class.

In [26], Pérez-Hoyos et al generate a hybrid land-cover map

at European level by combining the GLC2000, the MODIS

GLC, the GlobCover and the CLC Map. All the maps are

re-projected and co-registered into the GLC2000 grid (1km

spatial resolution) and the legends of the existing products are

linked using semantic rules based on affinity scores. Although

mixing different products can be effective, the result strongly

depends on the diversity and the initial accuracy of the fused

thematic maps. While diversity ensures that the dataset make

uncorrelated errors, the initial accuracy is necessary to avoid

poor classifications when combining the maps.

Similar results are obtained in [32], [33], where different

cartographic products are merged to extract large databases

of training samples in an unsupervised way. To deal with

the considerable amount of mislabeled units present in the

resulting training set, the authors exploit a tolerant to noise

classifier [34]. Although the selected classifier can tolerate

more than 15% of mislabelled units in the training step, due

to the difficult heterogeneous landscape the obtained land-

cover map contains numerous classification errors. In [32],

better classification results are obtained since the authors

merge databases provided at national level (more accurate

and updated) and ground data collected during fieldwork

campaigns. In particular, the French National Land Cover

database produced by the French mapping agency at 1 m

spatial resolution is used together with the French Land Parcel

Information System database (which maps annually the French

crop fields). However, from an operational view point it is

not feasible to assume such updated and high resolution

cartographic products available at large scale.

Few works introduced approaches to reduce the class noise

(i.e., pixels with wrong class assignments) present in the

extracted training set [27], [35]. Since thematic products are

usually provided at polygon level, within the same polygon

not all the pixels belong to the polygon label. To increase

the probability of selecting pixels correctly associated to their

labels, typically pixels on the polygon boundary are discarded

via a simple erosion performed along the edges of the polygon

[27], [35]. Moreover, a spectral analysis of the labeled units

extracted from the map associated to the same class can

be performed to remove the outliers from the distribution

(i.e., pixels associated to wrong labels) [36]. Although these

outliers removal strategies increase the probability of selecting

reliable units from the map, their main drawback is the risk

of removing diverse but informative training samples [34],

thus strongly affecting the generalization capability of the

classifier. In [37] Lin et al propose a transfer learning approach

to frequently update land-cover maps of rapidly urbanizing

regions. First, a rule-based approach based on prior knowledge

is used to extract labeled units from the 2010 GlobeLand30

map available at global level. Then, a relational knowledge

transfer technique is applied to transfer the labels to a recent

RS image and update the map.

Besides their large uncertainty, leverage on existing thematic

products seems to be a promising way to generate large

databases of labeled units. Thematic/cartographic products

represent an extremely interesting source of information to

generate reference data at large scale. However, their use is

not straightforward. As emerged from the literature overview,

these products are not completely reliable since they may

present misclassified units. They are typically aggregated at

polygon level, where the polygon label represents the predom-

inant class, i.e., most of the units belonging to the polygon are

correctly associated to the polygon label but not all of them.

Moreover, the polygon boundaries do not perfectly match the

grid of pixels of the RS data, thus leading to spurious pixels

associated to a single label. Besides the spatial component,

it is also necessary to accurately manage the semantic gap

between the map legend and the RS data. Most of these

products have been generated by multiple sources (e.g., photo-

interpretation, ancillary data, crowd sourcing assessment), thus

leading to a map legend which does not necessarily correspond

to classes discriminable using RS data. In addition, frequently

map legends present semantic classes which aggregate natural

classes discriminable through the information provided by the

RS data, i.e., the land-cover classes. In this context, it is

necessary to accurately model the discrepancy between the

map domain and the RS domain to extract reliable information

from existing thematic products.

This paper presents a novel approach for the extraction

of labeled units from existing thematic maps. The approach

is based on four main components: (i) source domain un-

derstanding, (ii) source domain decomposition, (iii) design

the training database and, (iv) land-cover map production.

The properties of the thematic product are analyzed to point
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Fig. 1: Work flow of the proposed approach for the automatic extraction of reliable training samples from existing thematic

products for the classification of recent RS data.

out its main discrepancy with respect to the RS data. In

particular, we analyze the relationship between the spatial

properties of the RS data and the map (i.e., map projection,

spatial resolution and minimum mapping unit), as well as the

semantic gap between the map legend and the set of classes

discriminable with the RS data. Then, the approach performs a

spatial and a semantic decomposition of the map to facilitate

the detection of pure spectral pixels correctly associated to

their labels. The training database is designed by selecting

informative and reliable labeled units. Finally, the obtained

database of weak labeled units is used to produce a high

resolution land-cover product provided at pixel level. Due to

the complex ill-posed problem faced, the method is based on

the following assumptions: (1) RS data contemporary to the

map are available, (2) the vector map has been converted into

raster and accurately co-registered to the RS data, and (3)

the map legend has been converted into an exhaustive set of

classes discriminable with the considered RS data.

The rest of the manuscript is organized into nine sections.

Section II gives an overview of the proposed approach. Section

III describes the source domain understanding component

providing a taxonomy of the semantic and spatial properties

of the existing thematic products. Section IV focuses on the

source domain decomposition component, while Section V

explains the design of the training database. In Section VI the

production of the land-cover map is presented. Section VII

reports the employed dataset in terms of thematic products

and RS data images employed, while Section VIII discusses

the experimental results obtained. Finally, Section IX draws

the conclusion of the paper and presents possible future

developments.

II. PROPOSED APPROACH TO THE EXTRACTION OF

RELIABLE TRAINING SAMPLES FROM EXISTING

THEMATIC PRODUCTS

Fig. 1 shows the work flow of the proposed approach for

the design of systems which extract reliable labeled units

from existing cartographic products. Once the discrepancies

between the RS data and the thematic product are understood,

the elements of the system architecture can be implemented

with data analysis techniques that handle the inconsistencies

between the selected thematic map and the RS data. The

proposed approach is based on the following four components:

1) Understand the source domain properties. The thematic

map is analyzed from the spatial and semantic view point

to detect its discrepancy with respect to the considered

RS data. This requires an a priori understanding of the

set of land-cover classes that can be recognized using

the spectral information provided by the MS data.

2) Decompose the source domain. The systems is designed

to generate a map decomposed from the semantic and

spatial view point, which guarantees the extraction of

training samples having the highest probability of being

correctly associated to their labels.

3) Design the training database. This is the phase in which

the pixels having the highest probability of being reliable

and informative are extracted from the decomposed map.

The database is designed in order to model the prior

probabilities of the land-cover classes present in the

scene.

4) Land-cover map production. The database of reliable

labeled units is used to generate a pixel-level classifi-

cation map. A supervised learning approach is applied

to high spatial resolution RS data contemporary to the

map to obtain a new updated map characterized by

better geometric details than the initial one. If RS data

more recent than the map are used, a standard domain

adaptation technique should be employed to produce the

high spatial resolution updated map.

The proposed approach is conceived for MS optical images

since these data are typically used to generate and update

land-cover maps with many classes. However, it is flexible

and its general concept can be applied to any RS data (e.g.,

polarimetric synthetic aperture radar data [38], [39]) under the
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assumption that the considered data allow the discrimination

of the set of classes present in the map legend. It is worth

noting that once the setup and the design of the architecture

are over, the system automatically extracts the training samples

from the thematic product in an unsupervised way without any

labor intensive manual analysis. To the best of the author’s

knowledge, current research on the extraction of training sets

from existing maps focuses on the removal of mislabeled units

at the end of the extraction procedure. There is no work in the

literature addressing the spatial and semantic decomposition

of the thematic map to increase the probability of detecting

reliable and informative samples during the selection process.

III. SOURCE DOMAIN UNDERSTANDING

Many land-cover products are now available at regional,

national, continental and global level. At local scale, very high

spatial resolution RS data are typically used to detect detailed

spatial patterns. When moving to large scales, coarse spatial

resolution RS images become a primary data source to map

the extent and the distribution of the major land-cover classes.

In this context, it is necessary to understand the properties of

the considered thematic product to extract reliable knowledge

from it. Fig. 2 reports a categorization of the spatial and

semantic properties of existing thematic products.

A. Semantic Understanding

First, it is necessary to analyze and understand the nomen-

clature of the thematic map. The main goal of this step is

to identify the type of classes present in the legend. Indeed,

cartographic products usually present semantic classes that do

not correspond to land-cover classes that can be discriminated

by using the MS information. At the highest level, we can

distinguish among four main types of semantic in thematic

products: 1) land-use classes (ΩUse), 2) land-cover classes

(ΩCov), 3) spatially aggregated classes (ΩSpa), and 4) semanti-

cally aggregated classes (ΩSem). Each category is detailed as

follows.

Land-Cover Classes (ΩCov): Natural classes which can

be discriminated with the spectral information provided by

the MS image. These classes represent different physical

and biological cover of the Earth’ surface, which are thus

characterized by different spectral signatures (e.g., “Grass”,

“Water”, etc.).

Land-Use Classes (ΩUse): classes that describe the socio-

economic purpose of the territory assigned by photo-

interpretation but not discriminable using the spectral informa-

tion provided by the MS data. For instance, at pixel level, the

“Industrial Units” class is not characterized by a pure spectral

signature but can include different natural classes [23].

Spatially Aggregated Classes (ΩSpa): The definition of the

thematic product is constrained by the minimum mapping unit,

even though the corresponding natural classes are present in

the map legend. For instance, even though the land-cover

classes “Broad-leaves” and “Conifers” are represented, the

“Mixed forest” class has to be assigned to areas where both

“Broad-leaves” and “Conifers” are present in the scene with

an extension smaller that the minimum unit (e.g., minimum

mapping unit of 5 ha).

Fig. 2: Taxonomy of the semantic and spatial properties of

existing thematic products.

Semantically Aggregated Classes (ΩSem): natural classes

that have been semantically aggregated in the map, since

their labels are not present in the map legend. This typically

occurs in thematic products provided at large scale. The larger

is the map scale, the higher is the level of abstraction. A

clear example is the agricultural case. At large scale, it is

not possible to include in the map legend all the different

cultivations present in the scene. While at continental level,

typically thematic products present classes such as “Winter

crops” or “Summer crops”, at continental or global scale they

may be categorized simply as “Crops”.

B. Spatial Understanding

In the second step of this component, we analyze the spatial

properties of the thematic products. From the spatial view

points, the cartographic products can be categorized according

to the data structure used to encode the spatial information:

1) vector thematic product, and 2) raster thematic product.

Vectors have been widely employed for surveying and map-

making due to their capability of capturing topological infor-

mation difficult to achieve with the raster model. However,

raster maps are particularly useful to easily perform spatial

analysis and comparison [40].

Vector Thematic Products: Databases made up of geo-

referenced polygons where each element is associated to a

thematic attribute. Due to the predefined minimum mapping

unit, some polygons may include different land-cover classes

even though they are associated to a single label. Typically, the

majority rule approach is employed to assign the label to the

polygon, i.e., the dominant class is the polygon label. Since the

polygon boundaries do not perfectly match the pixel grid of

the optical data, when re-sampling the map on the pixel grid of

a MS image, several pixels may fall across vector boundaries.

Raster Thematic Products: Maps sampled on a geo-

referenced grid according to a predefined ground sampling

distance (GSD). The need of projecting the land-cover areas

on a predefined grid penalizes the naturally fuzzy boundaries

between classes as well as the topological details of complex

geometric structures. Typically raster products generated at

large scale (continental of global) are provided at coarse spatial

resolution. Note that, if the MS data used are characterized

by a different map projection and spatial resolution, the map

has to be re-sampled to match the grid of the MS data. These

maps can be provided at polygon or pixel level.

In both cases, there are a one-to-many and a many-to-one

relations between the label assigned to the minimum mapping
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unit (i.e., polygon or pixel) and the ones correctly associated to

the pixels of the MS data since: (i) the minimum mapping unit

may include different classes, and (ii) re-sampling the thematic

product on the MS image pixel grid leads to spurious pixels

associated to partially correct labels.

IV. SOURCE DOMAIN DECOMPOSITION

Fig. 3 summarizes the source domain properties that should

be accurately modeled to extract reliable knowledge from the

considered thematic product. The goal of this component is

to convert the initial thematic product into a map which is: 1)

spatially decomposed, and 2) semantically decomposed into

an exhaustive set of land-cover classes. According to the tax-

onomy presented in Section III-A, Ω may be partitioned into

the following categories {ΩCov,ΩUse,ΩSem,ΩSpa}. While ΩCov

can be directly inherited, the ΩUse should be converted into

land-cover labels according to the Land-Cover Classification

System (LCCS), which is the standard common land-cover

language for translating and comparing existing legends [41].

For instance, the “Industrial Units” class, which is a land-use

definition that can be assigned by photo interpretation, should

be converted into “Artificial Surfaces” since at pixel level

no pure spectral signature can be unambiguously associated

to the “Industrial Units” definition [23], [24]. The spatially

aggregated classes ΩSpa can be neglected since the land-

cover classes included in ΩSpa are already present in the

legend. Thus, the pixels belonging to these classes will be

replaced by the corresponding land-cover classes if correctly

classified. In contrast, ΩSem should be decomposed. Thus,

first the thematic map is converted in order to have only

classes Ω1 = {ΩCov,ΩSem}. Then, the spatial and semantic

decomposition is performed.

Let Xt1 be the MS image acquired at time t1 and Mt1
Ω1

the

contemporary thematic product co-registered and re-sampled

at the same spatial resolution of Xt1 . The MS image is made up

of N×M pixels and characterized by B spectral channels, i.e.,

Xt1 ∈ R
N×M×B . The considered map Mt1

Ω1
is characterized

by a set of K classes Ω1 = {ωk}
K
k=1 and a set of J polygons

P = {Pj}
J
j=1. The number of polygons is expected to be

different from the number of classes since many polygons can

be associated to the same label (i.e., J ≫ K). Therefore, the

ith pixel xi ∈ Xt1 is a B-dimensional spectral vector xi ∈ R
B ,

with i ∈ [1, · · · , N×M ], associated to a unique label ωk ∈ Ω1

and a unique polygon Pj ∈ P .

A. Spatial Decomposition

According to the spatial analysis presented in Section III-B,

the approach has to deal with: the possible presence of more

than one natural class in each polygon (i.e., minimum mapping

unit decomposition), and (ii) spectrally spurious pixels asso-

ciated to unique labels (i.e., pixel decomposition). Note that

the map is assumed to be characterized by a coarser spatial

resolution with respect to the MS data used. In this context, it

is necessary to spatially decompose the map into a pixel map

having the same spatial resolution of the considered MS data.

Let Pj = (xj
1; x

j
2; · · · , xjnj

) ∈ R
nj×B be the jth polygon

composed of nj pixels and characterized by the B spectral

channels of Xt1 . Let us assume that the polygon label is ωk.

The proposed system aims to exploit the MS information to

detect the pixels belonging to Pj that are correctly associated

to ωk. To this end, the polygons are partitioned into Vj clusters

according to their spectral similarity. The number of clusters

Vj is automatically detected by using the Calinski Harabasz

(CH) Index [42], which is widely employed for determining

the optimal number of clusters in a data set. This index

is computed as the ratio between the overall within-cluster

variance and the overall between-cluster variance, as follows:

Vj = argmax
Vj∈[2,L]

{

[traceBj/(Vj − 1)]

[traceWj/(nj − Vj)]

}

(1)

where Bj and Wj are the between and within cluster scatter

matrices computed for Pj , respectively, and Vj is the optimal

clustering value among the L tested. Due to the spectral

similarity of the labeled units belonging to the same class,

the algorithm automatically detects homogeneous clusters be-

longing to different land-cover classes. Here, for simplicity we

use the standard K-means clustering algorithm, but any other

clustering technique can be employed. At each iteration, the

method adjusts the centroid position with respect to the cluster

centers by minimizing the intra-cluster variance in the feature

space, i.e.,:
nj
∑

q=1

Vj
∑

v=1

||xjq − mv||
2 (2)

where mv is the centroid of cluster v. For the land-cover

classes ΩCov, it is reasonable to assume that the cluster having

the highest number of labeled units represents the dominant

polygon class. For the semantically aggregated classes ΩSem,

which may include several land-cover classes, the method re-

moves the cluster having the smallest number of labeled units

which has the highest probability to be wrongly associated to

its polygon label.

B. Semantic Decomposition

The spatial decomposition step allows us to discard most

of the pixels having the highest probability of being associ-

ated to wrong labels. Then, the main goal of the semantic

decomposition step is to ensure that all the land-cover classes

aggregated under the same semantic label are identified. Let

us focus on the generic semantic class ωk ∈ ΩSem. In the

considered implementation, we assume to know the number of

land-cover classes of ωk. First, we fit a multivariate Gaussian

Distribution to the labeled units belonging to the semantic

class by considering its number of modes (i.e., number of

land-cover classes). Then, for each pixel xi (still associated to

the ωk label after the spatial decomposition step), we calculate

the vector of Mahalanobis distances from each Gaussian mode

as follows:

DM (xi) =

√

(xi − µk)
TΣ

−1
k (xi − µk) (3)

where µk and Σk are the mean vector and the covariance

matrix of the multivariate Gaussian distribution representing

ωk. The unit xi is associated to the nearest natural class

(i.e., Gaussian mode) from the spectral view point (i.e., the
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Fig. 3: Qualitative representation of the source domain properties in a vector polygon map. (i) Each polygon may present a

spatial aggregation of parcels (homogeneous spectral areas) due to the minimum mapping unit of the map, (ii) each parcel may

present a semantic aggregation of land-cover classes, and (iii) each polygon/parcel has to be mapped onto the geo-referenced

pixel grid of the MS images thus leading to spurious pixels associated to partially correct labels.

class having minimum Mahalanobis distance). At the end of

this step we have the decomposed thematic product Mt1
Ω2

characterized by a set of G land-cover classes Ω2 = {ck}
G
k=1

where the pixels having the highest probability to be wrongly

associated to their labels are neglected.

V. DESIGN OF TRAINING DATABASE

Due to the large availability of labeled units extracted from

the map, we are in the condition of selecting the ones that will

be use to generate a training database. To extract reliable and

informative training samples from existing thematic products it

is necessary to: 1) accurately represent the land-cover classes

present in the scene from the spectral view point, 2) define

a strategy for identifying pure spectral pixels associated to

a valid label. Thus, even though the spatial decomposition

strongly increases the probability of selecting labeled units

correctly associated to their labels, we need to take into

account that: (i) the cluster analysis may fail in detecting

the pixels correctly associated to their label, and (ii) some

polygons may be wrongly associated to their labels.

Under the reasonable assumption that the classes are

Gaussian-distributed, we extract from each natural class

present in the decomposed map Mt1
Ω2

, the labeled units closer

to the core of the distribution. Hence, it is reasonable to assume

that these units have the highest probability of being correctly

associated to their labels. Moreover, due to the semantic

decomposition performed in the previous phase, we are in

the condition of generating informative databases since we

guarantee the selection of units belonging to all the land-cover

classes present in ΩSem.

The number of labeled units per class is defined according

to a stratified random sampling strategy, by taking advantage

from the information provided by the thematic product in

terms prior probabilities of the land-cover classes. Thus, the

amount of pixels per class present in the original map is used

as reference to define the number of units per class [43].

VI. LAND-COVER MAP PRODUCTION

The last component of the proposed approach generates

the high resolution land-cover map at pixel level. If MS data

contemporary to the map are employed, the approach generates

a thematic product characterized by a better geometric detail

with respect to the initial one (i.e., supervised learning case). If

recent MS data are considered, a standard domain adaptation

technique is employed to produce an updated map (i.e., domain

adaptation case). In the following details are given.

A. Supervised Learning

The main advantage of the proposed approach is the possi-

bility of including a huge amount of units in the database

of weak labeled pixels extracted from the map. Thus, the

database can be sampled without replacement in order to

generate a set of S statistically independent weak training

sets {T1, T2, · · · , TS}. These weak training sets are then used

to train an ensemble of classifiers combined with a majority

voting rule. In this paper we use the Support Vector Machine

(SVM) classifier but any classification technique can be used

with the proposed approach.This classifier has been widely

employed in the RS literature since it does not require an

estimation of the statistical distributions of classes to perform

the classification task [44]. Moreover, SVM is intrinsically

effective compared to traditional classifiers due to the struc-

tural risk minimization principle, which leads to accurate

classification results and good generalization capabilities [44].

Let {fs}
S
s=1 be the decision functions of the ensemble of S

classifiers trained using the S training sets extracted from the

weak database of labeled units. The majority voting decision

of the ensemble of SVMs for xi is given by:

xi ∈ ck if

ck = argmax
ck∈Ω2

(#{fs(xi) = ck}), s ∈ [1, S] (4)

where #{fs(xi) = ck} is the number of SVMs whose

decision for the pixel xi is the class ck.

B. Domain Adaptation

If the considered thematic product is outdated, the database

of weak labeled units can be employed to classify a more

recent MS image. Let Xt2 be the MS image acquired at

time t2 and used to perform the update. The multitemporal
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correlation between the MS images is employed to transfer

the knowledge in a reliable but effective way. As we are

considering a multitemporal dataset, we assume to deal with a

covariate shift problem, where the prior probabilities of the

classes in t1 and t2 are different [i.e., Pt1(x) 6= Pt2(x)],
while the conditional probabilities are almost the same [i.e.,

Pt1(ck|x) ≈ Pt2(ck|x) with ck ∈ Ω2].

In the considered implementation, we exploit the semisu-

pervised LapSVM [10] to maintain consistency with the su-

pervised learning step. LapSVM has been extensively applied

to RS domain adaptation problems [9], [10] since it models

the data distribution by using both the labeled pixels and

the information provided by the high number of available

unlabeled pixels. LapSVM formulation takes advantage from

both the kernel function of the SVM and the graph Laplacian

for manifold regularization. The data are first projected into a

high dimensional feature space by means of the SVM kernel

function, thus increasing the separability of the labeled units.

Then, the intrinsic geometry of marginal distribution of data

is captured by a graph in which nodes are both labeled and

unlabeled units connected by weights [45]. The weights are

calculated by minimizing the regularized function representing

the graph in the kernel space, thus improving the estimate of

the marginal distribution of the considered land-cover classes.

We refer to [10] for more details on LapSVM. Although

LapSVM allows us to face the covariate shift problem, more

sophisticated domain adaptation method can be employed

[46]. Similar to the supervised classification step, Xt2 is

classified by an ensemble of LapSVM classifiers using the

weak database of labeled units {T1, T2, · · · , TS} derived from

the decomposed map.

VII. DATASET DESCRIPTION

A. Dataset 1: Czech Republic

To assess the effectiveness of the proposed system in

updating outdated thematic products, we considered a crop

type vector map of Czech Republic generated in the framework

of the Sen2Agri project [47]. The data used to generate this

map are Sentinel 1A, Sentinel 2A, Landsat 7 (L7), Landsat

8 (L8) images, the Crop Parcel Dataset [Czech Land Parcel

Identification System (LPIS)], in situ crop data, IACS (crop

declaration data) and IACS (OTCS results - ground truth data)

[48]. The RS data were acquired from November 2014 to

September 2015 to characterize the main annual cultivations.

The map is characterized by 7 classes, where four of them

present semantic aggregation (see Tab. I). In greater detail,

“winter cereals”, “spring cereals” and “fodder crops” present

three land-cover classes, while “annual crops” includes five

land-cover classes. The map has been aggregated at polygon

level according to the GIS-tabase Czech LPIS [49]. Almost

20% of the polygons of the full Czech LPIS dataset present

more cultivations in a single polygon. The crop label has been

assigned following the majority rule criterion.

For the experimental analysis, we considered a portion of

the whole thematic product (5129 km2). The coordinates of

the central point of the study area are 50.272588 latitutde,

14.354876 longitude (see Fig. 4). In situ data acquired on

TABLE I: Semantic properties of the crop type map. (Czech

Republic dataset)

Map Legend Class Type Land-Cover Classes

Rapeseed ΩCov -

Winter Cereals ΩSem winter wheat

winter triticale

winter barley

Spring Cereals ΩSem spring barley

oat

spring wheat

Sugar Beet ΩCov -

Maize ΩCov -

Fodder Crops ΩSem alfalfa

grass

trefoil

Annual Crops ΩSem Soy

Peas

Poppy

Mustard

Wheat

TABLE II: Reference data collected by field survey in 2016

divided per class. The data have been used to validate the

results obtained when classifying the 2016 TS of L8 images

with the training set extracted from the 2015 crop type map.

(Czech Republic dataset)

ID Class # Validation Units

ω1 Rapeseed 4932

ω2 Winter Cereals 9177

ω3 Spring Cereals 2259

ω4 Sugar beet 2855

ω5 Maize 437

ω6 Fodder Crops 119

ω7 Annual Crops 1200

TABLE III: L8 images used in the experiments. The TS

acquired at time t1 (contemporary to the map) was used

to perform the spatial, the semantic decomposition and to

generate weak training set. The TS acquired at time t2 was

classified to generate the updated land-cover map.

TS of L8 images (t1) TS of L8 images (t2)

13/01/2015 31/12/2015

18/03/2015 04/03/2016

19/04/2015 21/04/2016

06/06/2015 24/06/2016

09/08/2015 27/08/2016

12/10/2015 28/09/2016

2016 were used to quantitatively evaluate the obtained updated

LC map. The spatial distribution of the reference data is
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(a)

(b)

Fig. 4: Czech Republic dataset: (a) 2016 validation dataset superimposed on the true color composite of the L8 image acquired

on the 06th June 2015, (b) outdated thematic product representing the 2015 crops. Coordinates are reported in the UTM

WGS84 33N system.



9

represented in Fig. 4, while Tab. II shows the number of

labeled units divided per class. Please note that the considered

study area is complex due to the crop rotation practice which

leads to many land-cover changes on the ground. An accurate

extraction of reliable and informative labeled units from the

initial map is thus fundamental to generate an accurate land-

cover product.

The satellite optical data considered are L8 images, due to

the availability of these data in 2015 (i.e., contemporary to the

considered thematic product). The L8 spectral channels con-

sidered are the seven bands acquired at 30m spatial resolution.

Thus, each pixel is characterized by 42 features. To perform

the source domain modeling and the domain adaptation step,

we considered a TS of six L8 images acquired in 2015 and

2016, respectively (see Tab. III). The acquisition dates of the

considered TS allow us to model the phenological cycle of

the crops present in the study area in both years. Clouds were

detected considering the Fmask algorithm [50] and removed

according to [51].

B. Dataset 2: France

To assess the capability of the proposed approach to in-

crease the spatial resolution of existing thematic products, we

considered the 2018 Corine Land Cover (CLC) generated by

the European Environment Agency. The classification scheme

is composed of 44 classes (mixed land-cover and land-use

classes) with 25 ha minimum mapping unit. This map is

generated and updated at national level by means of visual

interpretation of satellite images. This data set is located in

France and is characterized by a spatial extent of 1840 km2.

The coordinates of the central point of the study area are

45.687477 latitutde, 4.625595 longitude. The complex legend

of the thematic product is suitable to test the capability of

the proposed approach to extract a reliable and informative

training set. In particular, in the considered study area there

are seven ΩCov classes, seven ΩUse classes, four ΩSpa classes

and two ΩSem classes (see Tab. IV).

The satellite optical data considered are Sentinel 2 images

contemporary to the map. In particular, we considered a TS

of four cloud-free Sentinel 2 images (see Tab. V for the

acquisition dates). The Sentinel 2 spectral channels considered

are the four bands acquired at 10m and the six bands acquired

at 20m spatial resolution. This leads to a feature vector of 40

spectral channels. The data were downloaded atmospherically

corrected directly from the ESA’s Sentinel 2 Scientific Data

Hub [52].

To quantitatively evaluate the accuracy of the updated land-

cover maps, we employed a reference dataset made up of 1023

pixels manually labeled by photo-interpretation and distributed

all over the region. First, the prior probabilities of the classes

were estimated by considering the information provided by the

CLC Map. Then, a stratified random sampling strategy was

applied to establish the validation samples locations. Finally,

the label of each sample was defined by photo-interpretation

by visually checking both Sentinel 2 data and ESRI ArcGIS

Online World high-resolution aerial optical images. The spatial

distribution of the reference data is represented in Fig. 5,

where the scale of the samples is exaggerated to improve their

visibility. The number of labeled units divided per class is

reported in Tab. VI.

TABLE IV: Semantic properties of the 2018 CLC map for the

considered study area. (France dataset)

CLC Class Type Land-Cover Classes

Continuous urban fabric ΩCov Artificial Surfaces

Discontinuous urban fabric ΩSpa Artificial Surfaces

Bare Soil

Vegetated Areas

Industrial Units ΩUse Artificial Surfaces

Road and rail networks ΩUse Artificial Surfaces

Port areas ΩUse Artificial Surfaces

Bare Soil

Airports ΩUse Artificial Surfaces

Bare Soil

Vegetated Areas

Mineral extraction sites ΩCov Mineral Site

Green urban areas ΩUse Parks in the Cities

Trees in the Cities

Sport facilities ΩUse Artificial Surfaces

Grass

Non-irrigated arable land ΩSem Cereals

Legumes

Fodder crops

Permanently irrigated land ΩSem Arable crops

Non-permanent grass

Greenhouses Crops

Pastures ΩCov Dense grass cover

Complex cultivations ΩSpa Annual crops

Pasture

Permanent crops

Agriculture and vegetation ΩSpa Agriculture

Grass

Broadleaved forest ΩCov Broadleaved

Coniferous forest ΩCov Conifers

Mixed forest ΩSpa Broadleaved

Conifers

Natural grasslands ΩCov Grass

Inland Marshes ΩCov Inland Marshes

Water courses ΩUse Water

Water bodies ΩUse Water
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(a)

(b)

Fig. 5: France dataset: (a) reference data superimposed on the true color composite of the Sentinel 2 image acquired on the

26th August 2018, (b) original thematic product. Coordinates are reported in the UTM WGS84 31N system. The scale of the

validation units is exaggerated to improve their visibility.
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TABLE V: Sentinel 2 images dataset classified by using the

training set extracted from the 2018 CLC map (France dataset).

TS of Sentinel 2 images (t1)

18/04/2018

27/06/2018

26/08/2018

05/10/2018

TABLE VI: 2018 reference data used to validate the classifi-

cation results obtained on the 2018 Sentinel 2 images (France

dataset).

ID Class # Validation Units

ω1 Artificial Surfaces 110

ω2 Mineral Site 28

ω3 Grass 41

ω4 Non Irrigated Crops 334

ω5 Irrigated Crops 45

ω6 Pastures 164

ω7 Broadleaved 149

ω8 Conifers 57

ω9 Inland Marshes 26

ω10 Water 69

VIII. EXPERIMENTAL RESULTS

In this section, first we present the experimental setup,

introducing the baseline methods used for comparison and

defining the parameter setting used in the work. Then, the

obtained decomposed maps are analyzed from the qualitative

view point, whereas the results obtained in terms of updated

land-cover products are quantitatively evaluated. Finally, an

analysis on the quality of the extracted training set is carried

out for the 2nd dataset (France).

A. Experimental Setup

To prove the effectiveness of the proposed approach, we

compared the results obtained with the tolerant noise Random

Forest classifier [53] and a standard outlier filtering approach

[35] used in the literature to extract labeled units from existing

thematic products. When performing the domain adaptation,

the proposed system was compared also with the standard

LapSVM [10], while for the supervised learning analysis we

considered the standard SVM with Radial Basis Function

(RBF) kernel functions [54]. The parameters of the Random

Forest classifier are tuned according to [53], where Pelletier et

al suggest to use Random Forest classifier when dealing with

noisy training sets (such as the one extracted from the thematic

products) by setting the number of trees to build equal to 200,

the number of input features per node equal to the square root

of the total number of features, the maximum depth of the tree

growth equal to 25 and the minimum number of instances in

the node equal to 10.

To perform the spectral filtering step, in [35], Radoux et al

suggest to tune the probabilistic iterative trimming considering

α ∈ [0.05, 0.1, 0.2]. In the following, we reported the best

results that were achieved with α = 0.05. For the supervised

learning analysis, the proposed system employed an ensemble

of five SVMs with RBF kernels. For the proposed system, the

standard RBF SVM and [35], the optimal kernel parameters

(i.e., the regularization parameter C and the spread of the

kernel γ) were selected by a 5-fold cross-validation. For the

domain adaptation analysis, we need to tune two regularization

parameters of the LapSVM, namely γM and γL. While γM
controls the complexity of the classifier decision function in

the geometry of the marginal data distribution, γL controls its

complexity in the associated Hilbert space. According to [9],

[10] γM was set equal to 0.5 for both the baseline and the

proposed methods, while γL was set equal to γM/(u + l)2,

where u and l are the numbers of unlabeled and labeled units,

respectively.

B. Results: Source Domain Modelling

Fig. 6 reports some examples of the obtained map decom-

position results by showing the original crop type maps (Fig.

6a, 6f, 6k, 6p, 6u), the spatially decomposed maps (Fig. 6b,

6g, 6l, 6q, 6v), the semantically decomposed maps (Fig. 6c,

6h, 6m, 6r, 6w), the false color representations of the NDVI

derived from three L8 images of the considered TS (Fig. 6d,

6i, 6n, 6s, 6x) and the true color compositions of the L8

image acquired in April 2015 (Fig. 6e, 6j, 6o, 6t, 6y). The

false color composition of the NDVI was stretched for visual

enhancement to emphasize the different cultivations present in

the scene.

From the results obtained it turned out that even though

the units of the LPIS polygon database represent agricultural

parcels managed by single farmers [49], more cultivations

may be present in the same polygons. This is mainly due to

the multiple cropping practice (growing two or more crops

in the same piece of land in same growing seasons) or can

be related to possible outdated information present in the

database. However, the TS of images contemporary to the map

allows the accurate discrimination of different crops present

in the same polygon. For instance, in Fig. 6u, the two largest

polygons associated to the “sugar beet” label include different

cultivations (parcels characterized by different spectral behav-

iors) clearly visible in the false color composition of the NDVI

(see Fig. 6x). In contrast the smallest “sugar beet” polygon

is associated with an homogeneous area from the spectral

view point and similar to the ones selected by the proposed

system. The spatial decomposition step accurately removes the

labeled units belonging to the minor clusters, thus increasing

the probability of selecting units correctly associated to the

“sugar beet” label (Fig. 6v). Similarly, in Fig. 6p the largest

crop labeled as “maize” includes a parcel having spectral

behavior similar to the “spring cereal” cultivation (see Fig. 6s),

which is discarded by the spatial decomposition step. Note that

no post-processing was performed on the decomposed maps

and the results are presented at pixel level.

Due to the semantic aggregation of the map legend, it is

necessary to guarantee the selection of labeled units belonging
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Fig. 6: Examples of map decomposition results of the 2015 crop type map: (a),(f),(k),(p),(u) original thematic products;

(b),(g),(l),(q),(v) maps spatially decomposed; (c),(h),(m),(r),(w) maps semantically decomposed; (d),(i),(n),(s),(x) false color

representations of three NDVI derived from the TS of the L8 images; and (e),(j),(o),(t),(y) true color compositions of the L8

image acquired on April 2015. The false color composition of the NDVI was stretched for visual enhancement to emphasize

the different cultivations present in the scene. (Czech Republic dataset)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Fig. 7: Examples of map decomposition results of the 2018 CLC map: (a),(f),(k),(p),(u) original thematic products;

(b),(g),(l),(q),(v) converted map; (c),(h),(m),(r),(w) maps spatially decomposed; (d),(i),(n),(s),(x) maps semantically decom-

posed; and (e),(j),(o),(t),(y) true color compositions of the Sentinel 2 image acquired on June 2018. (France dataset)
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to all the land-cover classes belonging to the same semantic

class to accurately model the class distribution. Also in this

case, the qualitative evaluation confirms the effectiveness of

the proposed approach. For instance, in Fig. 6b, the “winter

cereals” class (i.e., ω2) includes cultivation having different

spectral behaviors (see Fig. 6d). Its semantic decomposition,

reported in Fig. 6c, associates different parcels to different

land-cover classes (i.e., c3 and c4). Fig. 6f depicts a similar

example related to the “spring cereals” semantic label (i.e.,

ω3), decomposed in Fig. 6h in c6 and c7 that clearly have

different spectral behaviors with respect to most of the pixels

present in the polygon (see Fig. 6i). Fig. 6s shows different

crops associated with the “annual crops” label (i.e., ω7) clearly

visible in Fig. 6s and accurately discriminated in Fig. 6r

(i.e., c13, c14, c15 and c17). It is worth mentioning that the

spatial decomposition of the previous step correctly removes

minor crops associated to the wrong labels. However, since

we need to transfer the labels to a multitemporal dataset, it

is fundamental to accurately characterize all the land-cover

classes included into the semantically aggregated ones, in

order to face possible shift of the class distribution. Also in this

case, no post-processing was performed on the decomposed

maps in order to show the results at pixel level. Note that this

step is fundamental to extract an informative database of weak

labeled units from the source map. Thus, the missed selection

of labeled units belonging to dominant land-cover classes

present in the scene would result in a poorly representative

training set that does not allow accurate land-cover map

updates.

Fig. 7 reports several examples of the decomposition result

obtained from the 2018 CLC map on the France dataset. Fig.

7a, 7f, 7k, 7p, 7u show the original thematic maps, Fig. 7b, 7g,

7l, 7q, 7v the converted thematic products, Fig. 7c, 7h, 7m, 7r,

7w the spatially decomposed maps, Fig. 7d, 7i, 7n, 7s, 7x the

semantically decomposed maps, and Fig. 7e, 7j, 7o, 7t, 7y the

true color compositions of the Sentinel 2 image acquired on

June 2018. Differently from the crop type map, the 2018 CLC

map presents a complex classification scheme characterized

by land-cover, land-use classes, spatially and semantically

aggregated classes. In the semantically converted thematic

product, the spatially aggregated classes are removed. For

instance, in Fig. 7a the polygons associated with the “Complex

Cultivation Pattern” are discarded (Fig. 7b) since this class

includes land-cover classes already present in the map legend

(i.e., “Crops”, “Pastures” and “Vegetation”). The land-use are

converted into land-cover when possible according to the

LCCS. In Fig. 7p the “Industrial Units” and “Roads” labels

are converted into “Artificial Surfaces” since all these classes

present similar spectral behavior (see Fig. 7q). Finally, the

semantic classes are decomposed according to their number

of land-cover classes. In the considered study, the semantic

classes are “Irrigated Crops” and “Non Irrigated Crops”. Both

the classes present three land-cover classes according to the

definition of the CLC map legend.

Due to the minimum mapping unit of 25 Ha, most of

the polygons include many pixels wrongly associated to their

labels. In such thematic product, the spatial decomposition

step is fundamental to sharply increase the probability of

selecting pixel correctly associated to their labels. Due to

the high spatial resolution provided by the Sentinel 2 images

(i.e., 10 m), we are in the condition of accurately removing

wrong labeled units. For instance, Fig. 7p shows a urban area

associated to the “Artificial Surfaces” label which includes

also many “Grass” pixels. The spatial decomposition accu-

rately removes those labeled units (see Fig. 7r) by correctly

delineating the geometrical details of the buildings. In Fig. 7c

the spatial decomposition step accurately removes the small

island present in the river (see Fig. 7e), by keeping only the

water pixels. Similarly, in Fig. 7k the pixels which do not

belong to the mineral site are discarded from the polygon

(see Fig. 7m and Fig. 7o). Accurate results are obtained

also for the complex case of the semantically aggregated

classes. In Fig. 7f a polygon associated to the “Non Irrigated

Crops” label is reported. By removing the pixels belonging to

the smallest parcels, the spatial decomposition automatically

enhances the crop boundaries while keeping all the land-cover

classes belonging to the semantic class (see Fig. 7h).

The importance of the semantic decomposition step can be

assessed from the qualitative view point. Fig. 7n and Fig.

7i show the capability of the method of accurately detecting

different cultivations belonging to the “Non Irrigated Crops”

semantic class. The true color compositions of the Sentinel

2 image acquired in June (Fig. 7o and Fig. 7j) demonstrate

the presence of different cultivations that should be accurately

represented to obtain reliable classification results. Thus, the

lack of one of those land-cover classes in the training set

hampers the possibility of producing an accurate thematic

product. Similar results are visible in Fig. 7b and Fig. 7v.

Also in these cases, parcels characterized by different spectral

responses are associated with the same semantic labels (Fig.

7e and Fig. 7y). However, the semantic decomposition allows

us to accurately distinguish the land-cover classes present in

the scene (see Fig. 7d and Fig. 7x).

C. Results: Updated Land-Cover Map Production

The qualitative evaluation of the decomposed maps is con-

firmed by the quantitative classification results of the obtained

pixel land-cover maps. Tab VII and Tab. VIII report the

classification accuracy of the obtained land-cover products

derived by extracting the database of weak labeled units from

the crop type map and the 2018 CLC map, respectively. The

Producer Accuracy (PA %), the User Accuracy (UA %), the

Fscore (F1 %) and the Overall Accuracy (OA %) metrics

calculated on the validation set are reported for the baseline

methods (on 5 trials) and the proposed system.

Let us focus the attention on the Czech Republic dataset.

The Outlier Filtering method achieves an F1% ranging from

4.57 % (for the “Annual Crops” class) to 87.20% (for the

“Rapeseed” class), whereas the Random Forest F1% ranges

from 29.13% (for the “Sugar Beet” class) to 88.43% (for

the “Winter Cereals class). By taking advantage from the

multitemporal information, the LapSVM obtains better clas-

sification results with respect to the other baselines, with

an F1% that ranges from a minimum of 57.82% (for the

“Fodder Crops” class) to a maximum of 94.29% (for the
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TABLE VII: Land-cover map update results of the Czech Republic dataset. The Overall Accuracy (OA%), User Accuracy

(UA%), Producer Accuracy (PA%) and Fscore (F1%) are reported for: 1) the reference method based on a outlier filtering

procedure [35]; 2) the Random Forest noise-tolerant classifier [53]; 3) the standard LapSVM [10]; and 4) the proposed

unsupervised approach.

Baselines Proposed

Map Legend Outlier filtering [35] Random Forest [53] LapSVM [10] Method

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Rapeseed 77.46 99.80 87.22 79.57 99.89 88.58 95.28 93.20 94.23 89.50 96.78 93.00

Winter Cereals 85.56 82.06 83.77 95.48 79.57 86.80 97.23 89.01 92.94 96.14 93.52 94.81

Spring Cereals 90.30 63.36 74.47 66.58 53.66 59.43 61.52 74.84 67.53 71.92 97.96 82.95

Sugar beet 69.64 93.40 79.79 17.20 99.63 29.34 69.56 96.65 80.90 96.59 89.18 92.73

Maize 95.24 53.09 68.18 43.20 94.40 59.27 52.59 92.29 67.00 72.94 62.93 67.57

Fodder Crops 64.87 30.64 41.62 25.24 41.54 31.40 45.59 79.69 58.00 76.96 55.53 64.51

Annual Crops 2.38 100 4.65 91.85 38.25 54.01 83.65 47.08 60.25 82.51 57.42 67.71

OA% 76.73 73.85 85.18 89.55

TABLE VIII: Classification results of the France dataset. The Overall Accuracy (OA%), User Accuracy (UA%), Producer

Accuracy (PA%) and Fscore (F1%) are reported for: 1) the reference method based on a outlier filtering procedure [35]; 2)

the Random Forest noise-tolerant classifier [53]; 3) the standard RBF SVM [54]; and 4) the proposed unsupervised approach.

Baselines Proposed

Map Legend Outlier filtering [35] Random Forest [53] SVM [54] Method

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Artificial Surfaces 85.82 64.39 73.58 64.18 88.03 74.24 81.82 82.42 82.12 89.09 94.23 91.59

Mineral extraction sites 14.29 6.33 8.77 36.43 92.73 52.31 50.00 60.87 54.90 92.86 92.86 92.86

Grass 74.63 83.61 78.87 78.54 90.45 84.08 85.37 90.67 87.94 90.24 97.37 93.67

Non Irrigated Crops 25.75 81.59 39.15 74.55 75.18 74.86 78.38 89.47 83.56 91.32 92.99 92.15

Irrigated Crops 48.44 19.75 28.06 49.33 28.46 36.10 64.00 48.65 55.28 91.11 61.19 73.21

Pastures 84.02 51.73 64.03 73.41 54.93 62.84 86.71 61.99 72.30 92.07 87.79 89.88

Broadleaves 53.02 78.84 63.40 81.48 77.32 79.35 77.18 84.06 80.47 88.59 92.31 90.41

Conifers 51.93 73.27 60.78 71.58 89.08 79.38 80.70 81.56 81.13 91.23 88.14 89.66

Inland Marshes 47.69 13.36 20.87 0 0 0 20.00 35.14 25.49 57.69 71.43 63.83

Water 88.41 100 93.85 92.75 99.07 95.81 83.48 91.43 87.27 91.30 100 95.45

OA% 54.40 71.43 77.77 89.93

“Rapeseed” class). The proposed system outperforms all the

baseline techniques, with a minimum F1% of 64.51% (for the

“Fodder Crops” class) and a maximum F1% of 94.81% (for

the “Winter Cereals” class).

Both the Outlier Filtering and the Random Forest meth-

ods obtain very poor classification accuracy on semantic

aggregated classes ΩSem. In particular, the worst results are

obtained on the “Annual Crops” class (i.e., F1% of 4.57 and

54.05 for the Outlier Filtering and Random Forest, respec-

tively), which includes five land-cover classes. Due to the large

amount of changes present in the scene, poor classification

accuracy are achieved also on some land-cover classes (i.e.,

F1% of 28.16 on the “Sugar Beet” class with the Random

Forest). This problem is alleviated by the use of the LapSVM.

However, the most balance classification results are achieved

by the proposed system. Thus, even though the considered

classification problem is complex due to the crop rotation

practice (which leads to many changes on the ground) and

the complex structure of the semantically aggregated classes,

the proposed system is able to achieve good F1% for all the

land-cover classes. This is confirmed by the OA %, which

is 89.55 % for the proposed approach, which is much higher

than those obtained by the baseline methods (i.e., 76.73, 73.85

and 85.18 for the Outlier Filtering, the Random Forest and the
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LapSVM classifier, respectively).

Similar results are obtained on the pixel land-cover method

generated by extracting the labeled units from the 2018 CLC

map on the France dataset. The proposed system sharply

improves the classification accuracy with respect to the base-

line methods by achieving an OA % of 89.93% compared

to 54.40%, 71.43% and 77.77% of the Outlier Filtering,

the Random Forest and the SVM classifier, respectively. In

particular, the F1% achieved by the proposed system ranges

from a minimum of 63.83% (for the “Inland Marshes” class)

to a maximum of 95.45% (for the “Water” class). The Outlier

Filtering method ranges from 8.77% (for the “Mineral Site”

class) to a maximum of 93.85% (for the “Water” class),

whereas the Random Forest ranges from 0% (for the “Inland

Marshes” class) to 95.81% (for the “Water” class). The best

results among the baseline are achieved by the standard SVM

that reaches an F1% ranging from a minimum of 25.49% (for

the “Inland Marshes” class) to a maximum of 87.94% (for

the “Grass” class). The Outlier Filtering fails in modeling the

land-cover classes penalized by the spatial aggregation rule

(i.e., “Mineral Site” and “Artificial Surfaces”) and the semantic

aggregated classes (i.e., “Irrigated Crops” and “Non Irrigated

Crops”). Thus, discarding the outliers using a spectral filtering

technique for such complex land-cover class distributions leads

to the removal of informative labeled units which are funda-

mental for accurately training the classifier. Similar problems

are encountered also with the Random Forest classifier, which

is not able to deal with the semantically aggregated classes

as well as to manage classes having a low number of training

samples (i.e., “Inland Marshes”). In contrast, the standard RBF

SVM can handle the noisy training set extracted from the

map, even though some classes achieves low F1% (e.g., Non

“Irrigated crops” and “Inland Marshes”).

Due to the capability of the system of extracting reliable

an informative training samples, high classification accuracies

are achieved on all the land-cover classes. In particular, the

spatial decomposition results strongly increase the probability

of selecting correctly labeled units. For instance, on the

“Artificial Surfaces” class the proposed system achieves an

F1% of 91.59% compared to the 73.58%, 74.24% and 82.12%

obtained by the Outlier Filtering, the Random Forest and the

SVM, respectively. Note that due to the minimum mapping

unit of 25 Ha, the “Artificial Surfaces” polygons include

many “Grass” pixels which are discarded by the proposed

system. Similar results are obtained on the “Mineral Site”

class, where the proposed system achieves an F1% of 92.86%

compared to the 8.77%, 52.31% and 54.90% of the Outlier

Filtering, the Random Forest and the SVM, respectively. Also

in this thematic product, the baseline methods achieve low

classification accuracy on the ΩSem. For instance, the F1%

obtained for the “Non Irrigated Crops” are 39.15%, 74.86%

and 83.56% for the Outlier Filtering, the Random Forest

and the SVM, respectively, compared to the 92.15% of the

proposed system.

D. Results: Weak Training Set Analysis

In this section, we evaluate the quality of the extracted

weak training set. First, the sensitivity of the OA% of the

Fig. 8: Overall Accuracy (OA%) classification performance

versus the number of training samples for the: 1) outlier

filtering procedure [35]; 2) the Random Forest classifier [53];

3) the standard SVM [54]; and 4) the proposed method.

proposed approach versus the considered number of training

samples was analyzed. Fig. 8 reports the OA% obtained by

increasing the number of samples from 1641 to 8271 for the

outlier filtering procedure [35], the Random Forest classifier

[53], the standard SVM [54] and the proposed method. Note

that for each trial, the number of samples selected per class has

been calculated according to the stratified random sampling

strategy considering the original thematic product. From the

results obtained, one can notice that the proposed approach

outperforms the baseline methods for all the trials. Moreover,

it is slightly affected by the number of training samples by

obtaining an OA% that ranges from almost 85% to 90%. This

proves the effectiveness of the method used for the selection

of the training samples, as increasing the number of samples

we increase the amount of information given to the classifier.

Then, we evaluate the reliability of the labeled units ex-

tracted from the map. The main goal of the proposed approach

is to extract training units that: (i) have the highest proba-

bility to be correctly associated to their labels, and (ii) are

representative of the land-cover class distribution. Although

it is reasonable to assume that classifiers trained with high

quality samples achieve high classification accuracy, this is an

indirect measure that does not guarantee that the training set

is made up of reliable training sample. To verify the quality

of the extracted labeled units, a quantitative evaluation of the

training samples was performed by checking their labels via

photo-interpretation of both Sentinel 2 data and ESRI ArcGIS

Online World high-resolution aerial optical images. To this

end, we focused the attention on one of the five training

set automatically extracted by the method and we randomly

selected the 10% of samples per class (for a total number

of 822 samples checked). Differently from the previous ex-

perimental results, this analysis has been carried out only for

the 2nd dataset (France), since a reliable identification of the

different crop types in Czech Republic is not possible by

photo-interpretation.

The proposed method was compared with the Bayesian

uncertainty evaluation strategy, which is used in sample se-
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TABLE IX: Comparison between the training labels automatically extracted from the thematic product and the ones assigned

by photo-interpretation and classification results obtained on the validation set. The Overall Accuracy (OA%) and Fscore (F1%)

are reported for: 1) the proposed method; and 2) a Bayesian uncertainty method. The number of training units extracted per

class is reported.

# training Training Set Validation Set

units Map Legend Proposed Method Bayesian Method Proposed Method Bayesian Method

extracted F1% F1% F1% F1%

587 Artificial Surfaces 82.76 83.76 91.59 76.70

282 Mineral extraction sites 94.34 65.12 92.86 47.37

281 Grass 83.58 96.30 93.67 75.79

2768 Non Irrigated Crops 95.09 95.34 92.15 82.20

950 Irrigated Crops 93.26 97.33 73.21 29.03

1473 Pastures 88.42 87.97 89.88 77.42

974 Broadleaves 76.54 85.85 90.41 75.19

367 Conifers 89.74 86.15 89.66 68.09

257 Inland Marshes 63.16 63.16 63.83 32.08

278 Water 100 88.52 95.45 96.24

8217 OA% 88.81 90.02 89.93 74.78

lection [55]. To this end, first the prior probabilities and the

conditional density functions of the land-cover classes were

estimated by using the 2018 CLC thematic product and the TS

of Sentinel 2 images. Then, for each sample, we computed the

Bayes decision rule that maximizes the posterior probability

(i.e., that minimizes the error probability in the sense of

Bayesian theory) [55]. Only the most reliable samples per class

were selected to generate the training set.

Tab. IX reports the comparison between the labels of the

training units automatically extracted from the map and the

ones assigned by photo-interpretation for both the proposed

method and the Bayesian strategy. For each class, the number

of samples extracted is presented. Moreover, the classification

results obtained on the validation set with the considered train-

ing sets are reported. In particular, the OA% and F1% scores

are presented for the proposed method and the Bayesian uncer-

tainty strategy. Note that the results obtained with the proposed

method on the validation set are the same of Tab. VIII and are

replicated here to help the reader in the comparison with the

Bayesian method. As expected the Bayesian approach is able

to select more reliable samples, by selecting the samples closer

to the cores of the land-cover Gaussian distributions. However,

the results on the validation set demonstrate the importance

of selecting also training units that describes more complex

classes and better represent their distributions. Although the

training set extracted with the proposed method is slightly

less accurate compared to the Bayesian ones, the proposed

approach allows for a database of labeled units which is more

representative of the considered study area. This is particularly

evident for semantically aggregated classes such as “Irrigated

Crops”, where the selection of most reliable training units

leads to a poor representation of all the land-cover classes

aggregated under the same semantic label (i.e., the F1% of the

Bayesian method is 29.03 on the validation set compared to the

73.21 of the proposed method). In contrast, due to the semantic

and spatial decomposition steps, the proposed method achieves

high F1% scores for all the land-covers.

IX. CONCLUSION

In this paper we have presented a novel approach to the au-

tomatic extraction of labeled units from existing cartographic

products. The goal is extract training samples having the

highest probability of being correctly associated to their labels

according to the information provided by the satellite RS data.

The main assumptions of the approach are that: (i) RS data

contemporary to the map used for extracting the labels of the

units are available, (ii) the vector map has been converted

into raster and accurately co-registered to the RS data, and

(iii) the map legend has been converted into an exhaustive

set of classes discriminable with the considered RS image.

In the considered implementation we focused the attention

on satellite MS optical data. To prove the effectiveness of

the proposed approach we considered two thematic products

characterized by different spatial properties and classifications

scheme: a 2015 crop type map of the Czech Republic and the

2018 CLC map representing a study area located in France.

The crop type map has a better spatial resolution compared

to the 2018 CLC map (i.e., smaller mapping units). However,

it represents a complex dataset since it is characterized by

a classification scheme made up very similar cultivations,

where many semantic classes are present. Moreover, due to

the crop rotation practice, the update of this thematic product

is not trivial since many changes happened on the ground. In

contrast, the 2018 CLC map is characterized by a minimum
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mapping unit of 25 Ha which leads to large polygons that

include many pixels associated to wrong labels. Moreover, its

classification scheme is characterized by spatially aggregated

classes, semantically aggregated classes, land-use and land-

cover classes. Thus, this dataset demonstrates the importance

of performing the spatial and semantic decomposition to

extract a reliable and informative database of labeled units.

From the results obtained one can observe that the pro-

posed system outperforms the baseline methods in both the

experiments. By accurately understanding the properties of

the considered map, the proposed approach is able to convert

the thematic product into a set of land-cover classes that can

be discriminated by the spectral properties of the MS data.

For each polygon, the approach accurately extracts (in an

unsupervised way) the pixels which have high probability to be

correctly associated to their labels. This spatial decomposition

step strongly increases the probability of extracting reliable

labeled units from the maps. Although the spatial decomposi-

tion is fundamental to increase the probability of selecting

correctly labeled units, to generate an informative training

set it is fundamental to accurately decompose the thematic

product from the semantic view point. The importance of this

step is highlighted by the capability of the proposed approach

to achieve accurate classification results on the semantically

aggregated classes.

As future developments, we aim to exploit the proposed

system to extract huge databases of labeled units from existing

thematic products to train deep network tailored to the specific

properties of RS data. Indeed, even though deep architectures

typically outperform standard machine learning classification

systems, their main bottleneck is the need of hundred of

labeled units to train the network to avoid over-fitting problem.

While in the computer vision community, huge databases of

training samples have been created, when moving to the RS

community we clash with the major problem of limited train-

ing data. In this context, the proposed approach is promising

to generate in an unsupervised way large databases of weak

training samples to train the network. Moreover, we plan to

investigate the possibility of integrating the proposed method

with a further step which aims to detect new land-cover classes

that may appear in the most recent RS data.
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