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Abstract— Low-rank and sparsity-matrix decomposition
(LRaSMD) has received considerable interests lately. One of
effective methods for LRaSMD is called go decomposition
(GoDec), which finds low-rank and sparse matrices iteratively
subject to the predetermined low-rank matrix order m and
sparsity cardinality k. This article presents an orthogonal
subspace-projection (OSP) version of GoDec to be called OSP-
GoDec, which implements GoDec in an iterative process by a
sequence of OSPs to find desired low-rank and sparse matrices.
In order to resolve the issues of empirically determining
p = m + j and k, the well-known virtual dimensionality (VD)
is used to estimate p in conjunction with the Kuybeda et al.
developed minimax-singular value decomposition (MX-SVD)
in the maximum orthogonal complement algorithm (MOCA)
to estimate k. Consequently, LRaSMD can be realized by
implementing OSP-GoDec using p and k determined by VD and
MX-SVD, respectively. Its application to anomaly detection
demonstrates that the proposed OSP-GoDec coupled with
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VD and MX-SVD performs very effectively and better than the
commonly used LRaSMD-based anomaly detectors.

Index Terms— Go decomposition (GoDec), low-rank and
sparsity-matrix decomposition (LRaSMD), minimax-singular
value decomposition (MX-SVD), orthogonal subspace projection
GoDec (OSP-GoDec), Reed and Xiaoli anomaly detector
(RX-AD), virtual dimensionality (VD).

I. INTRODUCTION

LOW-RANK and sparsity-matrix decomposition
(LRaSMD) has received considerable interest in hyper-

spectral imaging in recent years. Its idea is to model a
hyperspectral image (HSI) as a linear mixture of background
(BKG), sparse signal, and noise spaces, which can be
characterized by low-rank, sparse, and noise matrices,
respectively, referred to as LRaSMD. The idea of LRaSMD
originated from [1] and [2], where a data matrix X could
be decomposed into a sum of a low-rank component L and
a sparse component S as X = L + S [3]–[14]. Unlike the
classical principal component analysis (PCA), the entries in
S can have arbitrarily large magnitudes and their supports
are assumed to be sparse but unknown. In order to solve
this problem, a tractable convex optimization method called
principal component pursuit is used. When one or two of L
and S were relaxed, a more adaptive model, X = L+ S+N,
was also mentioned in [1], where N was a dense noise and
considered as small perturbation. However, this model was
not studied in [1] until the work in [15], which represents
the low-rank component, the gross sparse errors, and the
small entrywise noise, and guaranteed the stable and accurate
recovery in the presence of the componentwise noise N in
the X = L + S + N model. Ever since, the X = L+ S+N
model was studied extensively [16]–[22] and later interpreted
by the concept of compressed sensing [23]. In this case,
an approach called go decomposition (GoDec) developed
in [24] can be used to find the low-rank matrix L and the
sparse matrix S.

This article is particularly interested in investigating
LRaSMD from the perspective of the linear spectral mixture
model arising in hyperspectral unmixing in the sense that
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these two LRaSMD models can find their corresponding
counterparts in linear spectral unmixing [25], [26], that is,
assume that r is a data sample vector that can be described
as a linear mixture of a signature matrix M and its associated
abundance vector α as r =Mα. Then, the nonnegative matrix
factorization (NMF) [27] used to solve this linear mixture
model is similar to the robust PCA (RPCA) in [1] that is
used to solve X = L + S. Furthermore, if r is described
by r = Mα + N with N introduced as noise, then the fully
constrained least squares (FCLS) developed in [28] used to
solve the fully abundance constrained least-squares problem
is also similar to GoDec used to solve X = L + S + N.
Coincidentally, the two iterative processes used by GoDec to
solve the low-rank matrix L and the sparse matrix S can
also find their counterparts in FCLS that also makes use
of the two iterative processes specified by the nonnegativity
constrained least squares (NCLS) developed [29] and the sum-
to-one constrained least squares (SCLS) [25] to perform fully
constrained linear spectral unmixing.

Inspired by the striking similarities between FCLS and
GoDec, this article revisits GoDec in the context of the
linear mixture model used in the linear spectral unmixing
to reinterpret GoDec. In particular, we rederive GoDec using
the well-established approach in hyperspectral imaging, called
orthogonal subspace projection (OSP) [30], to reinterpret
GoDec. More specifically, the two iterative processes imple-
mented in GoDec to find the low-rank and sparse matrices
can be rederived as the two processes implemented by OSP
iteratively. To be more precise, the decomposition of the low-
rank matrix and the sparsity matrix can be simply carried out
by a series of OSPs in an iterative manner.

However, upon implementing GoDec, two crucial parame-
ters must be predetermined, i.e., the order of a low-rank matrix
L, rank(L), m and sparsity cardinality k of a sparse matrix S,
denoted by card(S) = k. Specifically, the value of m must be
readjusted and updated at each iteration during the iterative
processes. If we further assume that the rank of the sparse
matrix is specified by j , then k can be determined by j with
k = j × N according to [20], where N is the total number
of data samples. Consequently, the issue in determining k is
reduced to determining j . With this interpretation, the well-
known virtual dimensionality (VD) [25], [26], [31]–[34] can
be used to estimate p, which is the total number of spectrally
distinct signatures present in an HSI that accounts for the
basis vectors used to represent the low-rank matrix L and
the sparse matrix S, i.e., p = m + j . Such VD only solves
half a problem. We need to solve the other half by breaking
p into m and j . Fortunately, an algorithm, called minimax-
singular value decomposition (MX-SVD), developed in the
maximum orthogonal complement algorithm (MOCA) [35] fits
exactly what we need where MX-SVD was used to estimate
the rank of the rare vectors in the high-dimensional noisy
signals. Such rare vectors can be considered as sparse signal
sources. In this case, the rank of the sparse-signal matrix can
be simply estimated to be j by MX-SVD. This implies that
the rank of the low-rank matrix m can be, therefore, calculated
by m = p − j . If we further interpret each pixel as a single
signal source of the sparsity dimensionality specified by j ,

then the cardinality of the sparsity matrix S, k turns out to be
k = j × N .

Furthermore, according to [35], MOCA used a binary
hypothesis testing detection theory to estimate the number of
signal sources p. In this case, the VD-estimated p can be
replaced by the MOCA-estimated p, which is the sum of the
number of BKG signal sources m and the number of rare
signal sources j , i.e., p = m + j , where MX-SVD is then
used to find the rare signal space separated from the BKG
space with its dimensionality j = p − m. As also shown
in [36] and [37], MX-SVD is, indeed, an OSP-based algorithm,
called the automatic target-generation process (ATGP) devel-
oped in [38], which also makes use of a sequence of OSPs
to find the target pixels in an exact manner that MX-SVD
finds singular vectors. Consequently, the LRaSMD problem
can be eventually solved by implementing OSP-GoDec in
conjunction with VD and MX-SVD. Such resulting GoDec is
called OSP-GoDec. Unfortunately, GoDec does not have algo-
rithms similar to MX-SVD to solve m as well as VD/MOCA
to determine p. By now, it is clear to see the primary
reason why we rederive GoDec as the OSP-based GoDec
(OSP-GoDec), because VD, MOCA, and MX-SVD are also
the OSP-estimation techniques that are based on eigenanalysis.

In order to demonstrate and illustrate the utility of OSP-
GoDec in hyperspectral imaging, anomaly detection is inves-
tigated for its potential application, where [18] is believed to
be the first work applying LRaSMD to hyperspectral anomaly
detection. Since then, many works on hyperspectral anomaly
detection using two different LRaSMD models described
previously have been reported [9]–[11] for the L + S model
such as robust PCA (RPCA) in [1] and [18]–[22] for the
L+S+N model such as the LRaSMD-based anomaly detection
in [20] along with a commonly used sparse-representation-
based collaborative anomaly detection [39]. This article offers
a rather different view from conventional LRaSMD-based
approaches to develop OSP-GoDec.

II. RELATED WORKS

An earlier development of LRaSMD was derived from the
video-security-surveillance system [40]–[53]. One of the major
problems is how to find the motion objects or the anomalous
targets quickly and precisely. For example, Cevher et al. [40]
and Hale et al. [41] proposed to use compressive sensing
for BKG subtraction based on the fact that BKG generally
changes slowly in a short time period, which means that the
number of the frames is not large. In this case, the BKG
matrix should be a low-rank matrix due to its steady
environment. If we further assume that the foreground is
composed of a few moving objects or the anomalous targets,
then the foreground matrix can be considered as a sparsity
matrix. Because of that, the LRaSMD model has been widely
used for this purpose. Specifically, a low-rank matrix captures
the global BKG information of the videos, while a sparsity
matrix captures the local information of the anomalous
targets. Accordingly, many works have used the L+ S model
to solve the problem of finding targets in video surveillance.
The main differences among these methods are the loss
functions used for optimization and solvers. Since the original

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 03,2020 at 01:40:47 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: OSP-BASED GODEC APPROACH TO FINDING LOW-RANK AND SPARSITY MATRICES 3

formulation can be NP-hard, these methods mainly focused
on how to develop efficient relaxed models and find solvers.
Vaswani et al. [54], [56] and Bouwmans et al. [55] provided
reviews of these recent developments.

In hyperspectral data exploitation, LRaSMD has found its
potential in many applications, such as denoising [4], [10],
[12], [17], target detection [6], unmixing [5], [7], pan-
sharpening [57], [58], compressive sensing and recov-
ery [8], [40], [41], and anomaly detection [9]–[11], [18]–[22].
In these applications, two models of LRaSMD described as
above, X = L + S and X = L + S + N, along with
their variants are generally being used. As for X = L + S,
the randomized approximate matrix decomposition [58] and
RPCA [1] can be used to solve the decomposition problem.
Specifically, Halko et al. [3] shown that a matrix can be
well approximated by its projection onto the column space
of its random projections and provides a fast approximation
of singular value decomposition (SVD)/PCA. On the other
hand, Candes et al. [1] proved that RPCA can be used as
a blind-source-separation technique to decompose the data
matrix into the low-rank and sparse components as the “low
rank + sparse” (i.e., X = L + S) matrix decomposition.
On the other hand, as for X = L + S + N, an approach
called GoDec developed in [24] can be used to find the low-
rank matrix L and the sparse matrix S. Since then, different
variants have also been developed for GoDec. For example,
Zhou and Tao [59] proposed a greedy bilateral smoothing
(GreBsmo) to formulate L with bilateral factorization and
regulate the L1 norm of the entries of S. In addition, the l1
regularization induces soft thresholding in updating S, which
is faster than the sorting caused by the cardinality constraint in
GoDec. In [60], semisoft GoDec (SSGoDec) replaces the hard-
thresholding cardinality constraint used in GoDec with a soft
threshold, which significantly reduces the computational time
and facilitates the parameter tuning. In order to be suitable
for high-resolution or long-time video real-time processing,
Chen et al. [61] developed an incremental low-rank and sparse
decomposition that can effectively handle large-scale video
sequences without much performance loss.

Although GoDec is promising in hyperspectral data
exploitation, there are still two issues in using the X =
L + S + N model. One is how to determine the rank of
the low-rank matrix m, which represents BKG. The other
is how to determine the cardinality of the sparse signals,
k, which is the sparsity of the signal sources. With the
given values of m and k, GoDec breaks up solving two
simultaneous optimization problems for finding the low-rank
matrix and the sparsity matrix into two iterative processes,
which find low-rank matrices and sparse matrices iteratively
instead of finding low-rank and spare matrices simultaneously.
Consequently, to utilize effectively GoDec, the method of
determining these two values is a key success to its use. Until
now, this issue remains unsolved and presents a great challenge
in applications. One goal of this article is to provide a feasible
solution to resolving this issue.

III. GO DECOMPOSITION

Let {ri }Ni=1 be the set of data sample vectors and XN×L =
[r1r2 · · · rN ]T be its data matrix. In addition, let the total

number of spectral bands be denoted by L ≤ N . The LRaSMD
is modeled by

XN×L = LN×L + SN×L + NN×L (1)

where LN×L is an N × L low-rank matrix, SN×L is an N × L
sparsity matrix, and NN×L is an N × L noise matrix. Such
a “low-rank + sparse” decomposition problem in (1) can be
solved by minimizing the following constrained optimization
decomposition error:

min
LN×L ,SN×L

||XN×L − LN×L − SN×L ||2F (2)

subject to rank(LN×L ) ≤ m and card(SN×L ) ≤ k.
The GoDec developed in [24] was designed to solve (2) by

iteratively solving the following two optimization problems:
L(k)

N×L = arg

�
min

rank(LN×L )≤m
||XN×L − LN×L − S(k−1)

N×L ||2F
�

(3)

S(k)
N×L = arg

�
min

card(SN×L )≤k
||XN×L − L(k)

N×L − SN×L ||2F
�

.

(4)

GoDec develops a low-rank approximation based on the bilat-
eral random projection (BRP) as well as its power-scheme
modification [24]. It first generates two random matrices,
�L×m and �N×m to construct YN×m and ZL×m given by

YN×m = XN×L �L×m (5)

ZL×m = XT
N×L �N×m . (6)

Then, the BRP-based m-rank approximation of XN×L can
be obtained by

LN×L

= YN×m
�
�T

N×m YN×m
)−1ZT

L×m

= XN×L �L×m
(
�T

N×m XN×L �L×m
)−1(XT

N×L �N×m
)T

.

(7)

IV. DERIVATION OF OSP-GO DECOMPOSITION

In order to improve the approximation precision of LN×L

in (7), we can use the obtained right random projection (5) to
build a better left projection matrix �N×m and use (6) to build
a better �L×m . In particular, after (5), we update �N×m =
YN×m and calculate the left random projection ZL×m =
XT

N×L �N×m , and then, we update �L×m = ZL×m and
calculate the right random projection YN×m = XN×L �L×m .
A better low-rank approximation LN×L will be obtained when
the new YN×m and ZL×m are applied to (7).

Using the update, �N×m = YN×m and �L×m = ZL×m (7)
can be further expressed as

LN×L = YN×m ((XN×L �L×m)T YN×m )−1ZT
L×m

= XN×L� L×m((XN×L �L×m)T XN×L �L×m)−1

× �
XT

N×L�N×m
)T

= XN×L� L×m((XN×L �L×m)T XN×L �L×m)−1

× �
XT

N×L XN×L �L×m
)T

= XN×L� L×m((XN×L �L×m)T XN×L �L×m)−1

× (XN×L�L×m)T XN×L . (8)
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Let

UN×m = XN×L �L×m . (9)

Then, (8) becomes

LN×L = UN×m
�
UT

N×m UN×m
�−1UT

N×m XN×L

= PUN×m XN×L (10)

where PUN×m is an N × N OSP matrix [30] defined by

PUN×m = UN×m
�
UT

N×m UN×m
�−1UT

N×m . (11)

Then

SN×L = P�(XN×L − LN×L ) = P�(XN×L − PUN×m XN×L )

= P�((I− PUN×m )XN×L ) = P�

�
P⊥UN×m

XN×L
�

(12)

where P�(·) is the projection of a matrix onto an entry set
�, which is the nonzero subset of the first k largest entries of
P⊥UN×m

XN×L . Furthermore

LN×L = PUN×m (XN×L − SN×L )

= PUN×m

�
XN×L − P�

�
P⊥UN×m

XN×L
��

= PUN×m XN×L − PUN×m P�

�
P⊥UN×m

XN×L
�

= PUN×m XN×L (13)

since PUN×m P�(P⊥UN×m
XN×L ) = 0.

Algorithm 1 OSP-GoDec
1. Initial conditions:

Prescribe an error threshold, ε
p determined by MOCA developed in Section V or
VD developed in Section VI.
m estimated by MX-SVD developed in Sections V. j =
p − m with k = j × N
Randomly generate �L×m

Let L(0)
N×L = XN×L , S(0)

N×L = ON×L

2. Calculate for i ≥ 1

U(i)
N×m = (XN×L − S(i−1)

N×L )� L×m (14)

3. In order to implement two iterative loops using (13)
and (12), we need include S(i−1)

N×L in (13) and L(i)
N×L

in (12) as follows.

L(i)
N×L = PU(i)

N×m
(XN×L − S(i−1)

N×L ) (15)

S(i)
N×L = P� (XN×L − L(i)

N×L ) (16)

where P�(·) is the projection of a matrix onto an entry
set � which is the nonzero subset of the first k largest
entries of P⊥

U(i)
N×m

(XN×L ). In other words, these two

iterative loops are carried out by beginning the initial
condition L(0)

N×L and then iterating (13) and (12) as
follows.

L(0)
N×L

(12)⇒ S(0)
N×L

(15)⇒ L(1)
N×L

(16)⇒ S(1)
N×L · · ·

(15)⇒ L(i)
N×L

(16)⇒ S(i)
N×L (17)

4. Stopping rule
If ||XN×L − L(i)

N×L − S(i)
N×L ||2F/||XN×L ||2F > ε, go to

step 2. Otherwise, the algorithm is terminated.

Therefore, when the GoDec [24] can be implemented as
OSP-GoDec, the parameter q in GoDec is set to 0. In this
case, there is no need to determine the value of q as GoDec
does. A step-by-step implementation of OSP-GoDec is given
algorithm 1.

It is worth noting that in OSP-GoDec, the values of m and
j are given. Unfortunately, there is no procedure included
in the original GoDec regarding how to find their values,
which must be adjusted empirically. Specifically, m and j
represent the number of BKG signal sources and sparse-signal
sources, respectively. In the following two sections, instead of
determining m and j directly, we determine the sum of m and
j , p = m + j first and then determine m later. As a result, k
can be determined by j = p − m, i.e., k = j × N [20].

V. DETERMINATION OF LOW-RANK MATRIX AND SPARSE

MATRIX BY MAXIMUM ORTHOGONAL SUBSPACE

PROJECTION

Interestingly, a recent approach developed by
Kuybeda et al. [35], called MOCA can be used to determine
p followed by the MX-SVD to determine m. Its detailed
process is described as follows.

Let X be a data matrix formed by data sample vectors
{ri }Ni=1, i.e., X = [r1r2 · · · rN ]. Define the norm of the data
matrix X by

||X|| = max1≤i≤N ||ri || (18)

where ||ri || is the length of the vector ri = (ri1, ri2, . . . , ri L )T

defined by ||ri ||2 =�L
l=1 r2

il . Assume that

i∗ = arg{max1≤i≤N ||ri ||}. (19)

The norm of matrix X in (18) can be further expressed by

||X|| = ||ri∗ || (20)

which is exactly the brightest pixel ri∗ whose norm has the
maximum vector length.

A. MX-SVD

We first assume that p is given and then determine j .
Initially, let j = 1, i.e., T j = ∅. We then use SVD to find
the first p principal left singular vectors of the data matrix
X = [r1r2 · · · rN ] denoted by s(0)

1 , s(0)
2 , . . . , s(0)

p , in which
case the p-dimensional signal subspace is given by Sp =
[s(0)

1 s(0)
2 · · · s(0)

p ]. Let t1 = arg{maxr∈{ri }Ni=1
[||P⊥Sp

r||]}. Next,
we increase j by 1, i.e., j = 1, and let T1 = [t1].
We once again use SVD to find the first p − 1 principal
left singular vectors s(1)

1 , s(1)
2 , . . . , s(1)

p−1 of the matrix P⊥T1
X

obtained by operating an orthogonal subspace projector P⊥T1
via (11) on the original data matrix X to form Sp =
[Bp−1|T1], where Bp−1 = [s(1)

1 s(1)
2 · · · s(1)

p−1]. Then, we further
find t2 = arg{maxr∈{ri }Ni=1

[||P⊥[Bp−1|T1]r||]} and add it to the
current target subspace T1 to form a new target subspace
T2 = [t1t2]. We repeat the same procedure until j = p
and find min1≤ j≤p[||P⊥[Bp− j |T j ]t j ||], which is the minimum of

the maximum orthogonal projections {t j }pj=1 found in each
previous stage. The j∗ = arg{min1≤ j≤p[||t j ||]}, which yields
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Algorithm 2 MX-SVD
1. Initialization: Let p be given and j = 1, i.e., T1 = ∅.
2. Use SVD to find the first p principal left singular

vectors of the data matrix X = [r1r2 · · · rN ],
denoted by s(0)

1 , s(0)
2 , . . . , s(0)

p and let t1 =
arg

�
maxr∈{ri }Ni=1

�
||P⊥Sp

r||
	


.

3. Let j ← j + 1. Form T j =
�
T j−1r∗j

	
. Use SVD

to find the first p − j principal left singular vectors,
s( j )

1 , s( j )
2 , . . . , s( j )

p− j of the matrix P⊥T j
X and find

t j = arg
�

maxr∈{ri }Ni=1

�
||P⊥[Bp− j |T j ]r||

	

(21)

4. Repeat step 3 until j = p. Continue
5. At this stage, calculate jMX-SVD by

jMX-SVD ≡ arg
�

min1≤ j≤p

�
||P⊥[Bp− j |T j ]t j ||

	

(22)

the minimum, turns out to be the rank of the desired target
subspace, and m = p − j∗ is the rank of the BKG subspace.

The key idea of the above process is to work on (18)
and (19) backward to find the target pixels by a sequence
of orthogonal complement subspace projections {P⊥T j

ri }pj=1
within the data space until it reaches p. Then, j∗ is determined
by j∗ = arg{min1≤ j≤p[||t j ||]}, referred to as jMX-SVD. The
set of target signal sources t1, t2, . . . , t j∗ form a target matrix
T j∗ = [t1t2 · · · t j∗] as the desired target signal subspace, and
the complement subspace within Sp orthogonal to T j∗ is the
BKG subspace Bm∗ with m∗ = p − j∗.

The process described above is called MX-SVD named by
Kuybeda et al. [35]. The details of MX-SVD implementation
can be summarized as follows.

It should be noted that jMX-SVD in (22) is obtained by
assuming that the rank of a signal subspace p is given a
priori. Unfortunately, finding an appropriate p is a challenging
issue, as described in the following section. As an alternative
to (22), it will be nice to implement MX-SVD without actually
determining p, that is, we can assume that there are L
dimensions of an HSI cube (i.e., band dimensionality) and
then carry out MX-SVD by making the rank of a signal
subspace l ranging from 1 to L, in which case the rank of
a signal subspace can be examined by all possible subspaces
in the data space of dimensionality L. Since the sequence
{||P⊥[Bl− j |T j ]t j ||}lj=1 is monotonically decreasing at l, that is

����P⊥[Bl− j |T j ]t j
���� ≥ ����P⊥[B(l+1)− j |T j ]t j

���� for l = 1, . . . , L − 1

(23)

we can plot the values of {||P⊥[Bl− j |T j ]t j ||}Ll=1 against dimen-
sionality l from 1 to L in a similar manner that an eigenvalue
distribution is plotted for the eigenenergy-based methods so
that the dimension p that causes a sudden drop is the desired
rank of the signal subspace Sp . We then use such obtained p
in MX-SVD to find the rank of the desired target subspace
as jMX-SVD and p − jMX-SVD as the rank of the BKG signal
subspace by letting mMX-SVD = p − jMX-SVD.

B. MOCA

When MX-SVD is implemented, it assumes that p is given
a priori. Therefore, for each p, which is supposed to be the
rank of a signal subspace Sp , the data sample vectors {ri }Ni=1
are divided into two index classes: one is the target signal class
IT (p) and the other is the BKG class IB(p). Now, we define

νp = max
i∈IB (p)

����P⊥Sp
ri

����2 (24)

ξp = max
i∈IT (p)

����P⊥Sp
ri

����2 (25)

ηp = max{ξp, νp}. (26)

Then, for each 1 ≤ p ≤ L, we further define

tp = arg
�

maxr
����P⊥Sp

r
����
 (27)

ηp = ||tp||2. (28)

It should be noted that {Sp} is monotonically increasing at p in
the sense that S0 ⊂ S1 ⊂ · · · ⊂ Sp and {ηp} is monotonically
decreasing at p in the sense that η0 ≥ η1 ≥ · · · ≥ ηp . As a
consequence, a prescribed threshold is required to determine
how many signal pixels are needed for an SVD to generate,
i.e., p. MOCA casts its stopping rule as a binary composite
hypothesis testing problem as follows:

H0 : ηp ≈ p(ηp|H0) = p0(ηp)

versus

H1 : ηp ≈ p(ηp|H1) = p1(ηp)

for l = 1, 2, . . . , L (29)

where the alternative hypothesis H1 and the null hypothesis
H0 represent the target signal subspace and the BKG subspace,
respectively. In order to make (29) work, we need to find
the probability distributions under both hypotheses. Because
the orthogonal complement subspace projections of the data
sample vectors P⊥Sp

ri under H0 are supposed to be the noise
sample vectors, it is reasonable for an MOCA to assume that
the vector P⊥Sp

ri under H0 behaves like independent identically
Gaussian random variables. Moreover, ηp is the maximum
residuals of orthogonal projection obtained in < Sp >⊥
under H0. By virtue of the extreme value theory [62], ηp

can be modeled as a Gumbel distribution, i.e., Fv p(ηp) is the
cumulative distribution function (cdf) of v p given by (30), as
shown at the bottom of the next page

Furthermore, MOCA is made another assumption on ηp

under the alternative hypothesis H1, that is, for each pixel
ri , i ∈ IT (p), the maximum of residuals of the orthogonal
complement subspace projections can be modeled as a proba-
bility distribution pξp(ηp), which is assumed to be uniformly
distributed on [0, ηp−1] due to the fact that there is no prior
knowledge available about the distribution of the target pixels,
and assuming ηp under H1 uniformly distributed seems most
reasonable according to the maximum entropy principle in
Shannon’s information theory [63].

Under these two assumptions, we can obtain

p(H0, ηp) = pνp(ηp)Fξp (ηp) = pνp(ηp)(ηp/ηp−1) (31)

p(H1, ηp) = Fνp(ηp)pξp(ηp) = Fνp (ηp)(1/ηp−1). (32)
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Since pηp(ηp) = p(H0, ηp) + p(H1, ηp) =
(1/ηp−1)[ηp pνp(ηp)+ Fνp (ηp)], we can obtain a posteriori
probability distribution of p(H0|ηp) given by

p(H0|ηp) = ηp pνp(ηp)

ηp pνp(ηp)+ Fνp (ηp)
(33)

and a posteriori probability distribution of p(H1|ηp) is given
by

p(H1|ηp) =
Fνp (ηp)

ηp pνp(ηp)+ Fνp(ηp)
. (34)

By virtue of (33) and (34), the rank of the desired signal
subspace can be obtained by

p∗ = arg{min1≤p≤L p(H0|ηp) ≥ p(H1|ηp)}. (35)

Using (35), p determined by MOCA can be found by

pMOCA = p∗. (36)

Now, substituting pMOCA in (36) for the p in (22), which
is used to find jMX-SVD, yields the rank of the BKG signal
subspace mMOCA given by

mMOCA = pMOCA − jMX-SVD. (37)

VI. DETERMINATION OF NUMBER OF SPECTRALLY

DISTINCT SIGNALS: VIRTUAL DIMENSIONALITY

As an alternative to addressing the issue of determining the
values of m and j , we look into the eigenvalue distribution of
the data since all the eigenvectors (EVs) are mutually orthog-
onal and each EV can be used to specify one dimensionality.
Let {λl}Ll=1 be the eigenvalues of the data sample covariance
matrix KL×L . We can rearrange all the eigenvalues {λl}Ll=1
according to their magnitudes in descending order�
λ1 ≥ · · · ≥ λm



BKG

≥ �
λm+1 ≥ · · · ≥ λp=m+ j



sparse signals

≥ �
λp+1 ≥ · · · ≥ λL



noise

. (38)

According to factor analysis in [64] and [65], {λl}Ll=1 can be
decomposed into three categories: a primary set of eigenvalues
{λl}ml=1 corresponding to m BKG sources and a secondary set
of eigenvalues {λl}pl=m+1 with j = p − m corresponding to
sparse j signal sources and {λl}Ll=p+1 corresponding to noise
sources. The challenging issue associated with (38) is how to
break up {λl}Ll=1 into these three categories at the values of m
and j .

This section presents an approach to determining the value
of p, which is quite different from that determined by MOCA.
It takes advantage of the VD recently developed to determine
the number of spectrally distinct signatures p assumed to be
present in hyperspectral imagery [25], [26], [31]–[34], which
can be considered as the sum of the BKG signal sources and

sparse signals, i.e., the value of p in (22) or (36). Its idea
is to formulate the VD-determination problem as a binary
hypothesis testing problem as follows [66].

Let {λ̂l}Ll=1 and {λl}Ll=1 be the eigenvalues of the data sample
correlation matrix RL×L and the data sample covariance
matrix KL×L , respectively. If we assume that the noise in
each spectral band has zero mean and variance σ 2

nl
, then

λ̂l = μ2
l + σ 2

nl
and λl = σ 2

nl
, where μl is the sample mean

of the lth spectral band. If there is a signal present in the
lth band, then λ̂l − λl = μ2

l > 0; otherwise, λ̂l − λl = 0.
With this interpretation, we can formulate a binary composite
hypothesis testing problem as

H0 : zl = λ̂l − λl = s2
l = 0

versus

H1 : zl = λ̂l − λl = s2
l > 0

for l = 1, 2, . . . , L (39)

where the null hypothesis H0 indicates the absence of a
signal source with the case that the correlation-eigenvalue
λ̂l is equal to its corresponding covariance eigenvalue λl

and the alternative hypothesis H1 represents the case that
the correlation-eigenvalue λ̂l is greater than its corresponding
covariance eigenvalue λl , respectively. Using this formula-
tion, a Neyman–Pearson detector, denoted by δNP(zl), can
be derived to test the difference between the correlation-
eigenvalue and the covariance-eigenvalue λ̂l − λl via (39)
by maximizing the detection power PD with a constraint β
imposed on the false-alarm probability PF. According to [66],
δNP(zl) can be obtained by

δNP(zl) =

⎧⎪⎨
⎪⎩

1; if �(zl) > τl

1with probability κ; if �(zl) = τl

0; if �(zl) < τl

(40)

where the likelihood ratio test �(zl) is given by
�(zl) = p1(zl)/p0(zl) given in [25] and [31], and the
threshold value τl is determined by PF = β. Finally, VD is
determined by the number of times the detector δNP(zl)
in (40) fails the test where a test failure for a specific spectral
band l indicates that there is a signal energy contributed to the
eigenvalue λ̂l in the lth spectral band. A method developed
by Harsanyi–Farrend–Chang, called HFC method in [67]
along with its noise-whitened version HFC (NWHFC), can
be used to find VD for (40) via δNP(zl). Such a resulting
VD estimate for p in (36) is denoted by pHFC/NWHFC(PF) by
specifying the constraint β imposed on PF.

VII. APPLICATION TO ANOMALY DETECTION

In previous sections, a theory of OSP-GoDec was derived
by introducing OSP into GoDec, where the number of spectral
distinct signal sources, the order of the low-rank matrix m, and

Fv p (x) ≈ exp

⎧⎨
⎩−e

−(2 log N )1/2
[

x−σ2(L−p)

σ2√2(L−p)
−(2 log N)1/2+ 1

2 (2 log N )−1/2(log log N+log 4π)

]⎫⎬
⎭ . (30)
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the number of sparse-signal sources j can be determined by
MX-SVD in (22) with p estimated by MOCA in (36) or VD
in (40).

A. Anomaly Detectors

In order to demonstrate the utility of the developed OSP-
GoDec along with MOCA/VD-determined p and MX-SVD-
determined m and j in anomaly detection, the well-known
anomaly detector developed in [68], referred to as Reed and
Xiaoli anomaly detector (RX-AD), is used for benchmark
comparison. It is defined by

δRX-AD(r) = (r − μ)T K−1(r − μ) (41)

where r ∈ �L×1 is a data sample currently being processed,
μ is the sample mean of the image, and K ∈ �L×L is
the global sample data covariance matrix given by K =
(1/N)

∑N
i=1 (ri − μ)(ri − μ)T , where N is the total number

of pixels and L is the total number of bands.
As an alternative, RX-AD can also be modified by replacing

K and r − μ by R and r, respectively, as follows:
δR-AD(r) = rT R−1r (42)

referred to as R-AD in [25] and [69], [70], where r ∈
�L×1 is a data sample currently being processed and R ∈
�L×L is the global sample correlation matrix given by R =
(1/N)

�N
i=1 ri rT

i . For simplicity, we use δRX/R-AD(r) to rep-
resent two ADs specified by (41) and (42).

The two key issues to implement δRX/R-AD(r) are imple-
mented. One is the use of inverting the covariance/correlation
matrix K/R to suppress BKG to increase the contrast between
the data sample vector r currently being processed and its
surrounding BKG. The other is the matching of the data
sample vector r with its suppressed K−1r/R−1r by performing
the spectral angle mapper (SAM) between r and K−1r/R−1r
to enhance anomaly detectability. In the past, many research
works have been directed to adjusting the window size of K/R
to limit the surrounding neighborhoods of the data sample
vectors using local, adaptive, and sliding windows but a very
little has been done with the data sample vector r itself. The
LRaSMD model allows us to deal with both issues at the same
time, since the low-rank matrix Lm and sparse matrix S j can
be used for both purposes. To explore fully the information
provided by the LRaSMD model, six types of implementations
for each AD are of particular interest according to the low-rank
matrix Lm and the sparse matrix S j found by OSP-GoDec,
where p and j = p − m are estimated by MOCA/VD and
MX-SVD, respectively, discussed in Sections V and VI.

In what follows, we use the notation of δRX/R-AD
B (rA) to

define various types of implementing an anomaly detector for
experiments, where A should include the sparse signal and B
is used as BKG matrices, respectively.

B. Six Types of Implementations for AD

Since we are interested in the data sample vectors to be
specified by the components containing anomalies, this leads
to six types of δRX/R-AD

B (rA), where the data sample vector r
to be detected should include a signal component specified by

TABLE I

VARIOUS TYPES OF ADS USING LRASMD MODEL

A, which has two cases, S j and Lm + S j , and the BKG to
be suppressed specified by B, which can have three cases, S j ,
Lm , and Lm + S j , that is, (S j , S j ), (S j , Lm), (S j , Lm + S j ),
(Lm + S j , S j ), (Lm + S j , Lm), and (Lm + S j , Lm + S j ).

Table I lists the traditional RX/R-AD and six types of
AD using the LRaSMD model with the low-rank matrix Lm

of rank m and the low-rank + sparsity matrix Lm + S j of
rank p along with their corresponding sample means and
covariance/correlation matrices, which will be used for the
following experiments.

C. Anomaly Detectors to be Used for Comparison

Since L+ S and L+ S+N are the two data representation
models for LRaSMD, they cannot be implemented alone but
need to be used in conjunction with an operator designed for
a particular application, which is the anomaly detector in this
article. To realize the L + S model, RPCA [1]-based RX/R-
AD is used as the candidate for comparison. On the other
hand, to implement the L+ S+N model, an LRaSMD-based
Mahalanobis-distance anomaly detector (LSMAD) developed
in [20] is used as a candidate for comparison due to the
fact that LSMAD used GoDec and was shown to perform
better than the subspace anomaly detector (SSAD) and the
Euclidean distance-based LRaSMD. It should be noted that
the LSMAD implemented two different versions of calculating
the Mahalanobis distance by inverting the covariance matrix
using either full EVs or m EVs, where m is the rank of
the low-rank matrix Lm . In addition to the LRaSMD models,
an anomaly detector based on a sparse-representation-based
model, referred to as l2-norm minimization and the distance-
weighted regularization matrix and the sum-to-one constraint
(CRD-DW-STO), developed in [39] is also used as a can-
didate for comparison, because it was shown to outperform
the sparse-representation-based detector (SRD), RPCA-based
anomaly detector, and local RX-AD.

VIII. SYNTHETIC IMAGE EXPERIMENTS

The image scene to be used to simulate the synthetic images
was real Cuprite image data shown in Fig. 1(a), which is
available at the USGS website http://aviris.jpl.nasa.gov/. This
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Fig. 1. (a) Cuprite AVIRIS image scene. (b) Spatial positions of five pure
pixels corresponding to minerals: alunite (A), buddingtonite (B), calcite (C),
kaolinite (K), and muscovite (M). (c) Five mineral reflectance spectra and
BKG signature (b), which is the sample mean of the image in (a).

scene is a 224-band image with a size of 350×350 pixels and
was collected over the Cuprite mining site, Nevada, in 1997.
It is well understood mineralogically. As a result, a total
of 189 bands were used for experiments, where bands 1–3,
105–115, and 150–170 have been removed prior to the analysis
due to water absorption and low signal-to-noise ratio (SNR)
in those bands.

Although there are more than five minerals in the data set,
the ground truth available for this region only provides the
locations of the pure pixels: alunite (A), buddingtonite (B),
calcite (C), kaolinite (K), and muscovite (M). The locations
of these five pure minerals are labeled as A, B, C, K, and
M, respectively, and are shown in Fig. 1(b). Available from
the image scene is a set of these reflectance spectra shown
in Fig. 1(c) that will be used to simulate the synthetic images.

Since real images generally do not have complete ground
truth about the targets to be detected, we must rely on the
synthetic images simulated by complete knowledge to conduct
quantitative analysis as the way was performed in [71] and [72]
for the performance evaluation of various anomaly-detection
algorithms. Fig. 2 shows a synthetic image simulated by
25 panels using five mineral signatures in Fig. 1(c).

Among 25 panels are five 4× 4 pure-pixel panels for each
row in the first column, five 2× 2 pure-pixel panels for each
row in the second column, five 2 × 2 mixed-pixel panels for
each row in the third column, and five 1× 1 subpixel panels
for each row in both the fourth column and the fifth column,
where the mixed and panel subpixels were simulated according
to the legends in Fig. 2. Therefore, a total of 100 pure pixels
(80 in the first column and 20 in the second column), referred

Fig. 2. Set of 25 panels simulated by A, B, C, K, and M.

TABLE II

m ESTIMATED FOR TI BY MOCA AND HFC/NWHFC USING MX-SVD

to as the endmember pixels, were simulated in the data by
the five endmembers, A, B, C, K, and M. An area marked by
“BKG” at the top-right corner of Fig. 1(a) was selected to find
its sample mean, i.e., the average of all pixel vectors within
the area “BKG,” denoted by b and plotted in Fig. 1(c), to be
used to simulate the BKG for the image scene in Fig. 2. The
reason for this BKG selection is empirical, since the selected
area “BKG” seemed more homogeneous than other regions.
Nevertheless, other areas can also be selected for the same
purpose. This b-simulated image BKG was further corrupted
by an additive noise to achieve a certain SNR that was defined
as 50% signature (i.e., reflectance/radiance) divided by the
standard deviation of the noise in [30].

Once the target pixels and the BKG are simulated, two types
of target insertion can be designed to simulate the experiments
for various applications.

Target Implantation (TI): The first type of target insertion is
target implantation (TI) that can be simulated by removing the
BKG pixels and replacing them with clean target panels where
the image BKG is corrupted by a Gaussian noise. In this case,
TI can be used for endmember finding or extraction.

Target Embeddedness (TE): A second type of target inser-
tion is target embeddedness (TE) that can also be simulated
by embedding clean target panels into the clean image BKG
with additive Gaussian noise by superimposing target pixels
over the BKG pixels in which case TE can be used for signal-
detection model.

A. TI Experiments

According to TI, there are five pure signatures considered
as endmembers and one BKG signature considered to be a
mixed signature. In this case, the value of p is set to 6.
Table II tabulates the value of p estimated by the MOCA
and HFC/NWHFC methods and the value of m estimated by
MX-SVD for TI, where nVD = p of TI is, indeed, also 6 if
PF ≤ 10−3.
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Fig. 3. TI: p = 6, m = 1, and j = 5.

Fig. 4. TI: p = 13, m = 9, and j = 4.

By employing MX-SVD, the dimensionality of the BKG
subspace is m = 1, which is consistent with the construction
of TI data. In this case, the number of sparse signals is
j = 6 − 1 = 5 and the cardinality of sparsity k is estimated
by k = 5 × N , where N = 200 × 200 = 40 000 is the
number of total pixels. On the other hand, if MOCA was
used, p = 19 and m = 14, which gave j = 19 − 14 = 5.
In this case, k = 5× N with N = 40 000.

Based on the results obtained for p and m in Table II,
Figs. 3–5 show the detection maps produced by six types
of δRX/R-AD(r) using (p, m, j) = (6, 1, 5), (13, 9, 4), and
(19, 14, 5). As shown in Figs. 3 and 4, δRX/R-AD

Lm
(rS j ) and

δRX/R-AD
Lm

(rLm+S j ), which used the low-rank matrix Lm to sup-
press the BKG, detected panel pixels in the first three columns
but missed most or all panel subpixels in the fourth and fifth
columns. By contrast, δRX/R-AD

S j
(rS j ) and δRX/R-AD

Lm+S j
(rLm+S j )

could detect mixed-panel pixels in the third column and panel
subpixels in the fourth and fifth columns but missed all panel
pixels in the first two columns. The most interesting finding is
the case of δRX/R-AD

Lm+S j
(rS j ), which showed that δRX-AD

Lm+S j
(rS j ) and

δR-AD
Lm+S j

(rS j ) performed completely differently. Specifically,

δRX-AD
Lm+S j

(rS j ) detected panel pixels in the first three columns
but missed most or all panel subpixels in the fourth and
fifth columns, because δRX-AD

Lm+S j
(rS j ) removed the first-order

statistics, sample mean from the data prior to AD. Conversely,
without removing the sample mean, δR-AD

Lm+S j
(rS j ) detected

the mixed-panel pixels in the third column and the panel
subpixels in the fourth and fifth columns but missed all panel
pixels in the first two columns due to the fact that BKG is
largely characterized by the sample means that was suppressed
by using Lm + S j . From the results in Figs. 3–5, we can

conclude that δRX/R-AD
Lm

(rS j ), δRX-AD
Lm+S j

(rS j ), δRX/R-AD
S j

(rLm+S j ),

and δRX/R-AD
Lm

(rLm+S j ) detected panel pixels in the first three
columns but missed most or all panel subpixels in the fourth
and fifth columns, while δRX/R-AD

S j
(rS j ), δR-AD

Lm+S j
(rS j ), and

δRX/R-AD
Lm+S j

(rLm+S j ) detected mixed-panel pixels in the third
column and panel subpixels in the fourth and fifth columns but
missed all panel pixels in the first two columns. In addition,
by visually inspecting the results in Figs. 3–5, the best one
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Fig. 5. TI: p = 19, m = 14, and j = 5.

Fig. 6. 3-D ROC curves of TI.

was produced by using p = 13, m = 9, and j = 4. It should
be noted that since the signature, Calcite, used to simulate the
panels was very close to the BKG signature, its detection in
the third row was poor.

Using the 3-D ROC analysis developed in [26], [73], and
[74], Fig. 6 plots the 3-D ROC curves and Table III tabulates
the area under curve (AUC) values of their corresponding 2-D
ROC curves [2-D ROC curves of (PD, PF), 2-D ROC curves
of (PD, τ ), and 2-D ROC curves of (PF, τ )], which are all
between 0 and 1 where the best cases for various values of (p,
m, j) are boldfaced. In order to take advantage of the three 2-D
ROC curves of (PD, PF), (PD, τ ), and (PF, τ ), generated by the
3-D ROC curves, we further design a new metric as AUCOD to
measure the overall detection performance, which is defined by

AUCOD = AUC(PD, PF)+ AUC(PD, τ )− AUC(PF, τ )

(43)

where the values of AUC(PD, PF) and AUC(PD, τ ) are
summed with the subtraction of AUC(PF, τ ). This is because
a higher value of AUC(PD, PF) and AUC(PD, τ ) indicates a
higher detection performance. Conversely, a lower value of
AUC(PF, τ ) indicates a better BKG suppression, and thus a
better detection performance. As a result, the AUCOD defined
in (43), indeed, combines the values calculated by the AUC
values produced by these three 2-D ROC curves to produce

a quantitative value of the overall detection performance for
each of the test anomaly detectors where a higher value of
an AUCOD produced by an anomaly detector is a better and
more effective the anomaly detector.

Comparing the quantitative results in Table III with the
qualitative results in Figs. 3–5 by visual inspection, both
results agreed and were consistent. As we can see, the best
performance was δRX-AD

Lm+S j
(rS j ), which produced the highest

AUCOD = 1.8564 for the case of ( p, m, j) = (6, 1, 5)
in Table III and also the best visual inspection in Fig. 3.
In addition, agreed on Table III and Figs. 3–5 were the
best cases, AUCOD = 1.7864 produced by δRX-AD

Lm+S j
(rS j ) for

(p, m, j) = (13, 9, 4) in Fig. 4 and AUCOD = 1.8232
produced by δRX-AD

S j
(rLm+S j ) for (p, m, j) = (19, 14, 5)

in Fig. 5.
A comment is noteworthy. An anomaly is generally invisible

and cannot be inspected visually. In other words, if a target is
visible, it indicates that it can be detected by visual inspection.
In this case, it should be called target detection but not
anomaly detection. Using this definition, the panel pixels in
the first three columns in TI and TE should not be called
anomalies, because we can visually see these panel pixels.
The only targets that can be called anomalies are those ten
panel subpixels in the fourth and fifth columns. In terms of this
interpretation, δRX/R-AD

Lm
(rS j ), δRX-AD

Lm+S j
(rS j ), δRX/R-AD

S j
(rLm+S j ),

and δRX/R-AD
Lm

(rLm+S j ) are actually target detectors as opposed
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TABLE III

COMPARISON OF VARIOUS ANOMALY DETECTORS FOR TI USING AUC VALUES CALCULATED BY (43)

Fig. 7. Detection maps of RX/R-AD, RPCA, LSMAD, and CRD-DW-STO for TI.

Fig. 8. 3-D ROC curves of Fig. 7.

to δRX/R-AD
S j

(rS j ), δR-AD
Lm+S j

(rS j ), and δRX/R-AD
Lm+S j

(rLm+S j ), which
can be considered as the subpixel detectors and are, indeed,
real anomaly detectors. Since the ROC analysis is designed
to evaluate target detection, Table III was calculated based on

all the 130 panel pixels considered as targets to be detected
where the AUC values of their 2-D ROC curves of (PD, PF)
of all six types of AD using Lm and S j were better than those
produced by the traditional RX/R-AD, but the AUC values of
the 2-D ROC curves of (PD, τ ) and the 2-D ROC curves of
(PF, τ ) were quite different. One most intriguing finding from
Table III is the performance of the subpxiel/anomaly detectors:
δRX/R-AD

S j
(rS j ), δR-AD

Lm+S j
(rS j ), and δRX/R-AD

Lm+S j
(rLm+S j ). The AUC

values of their 2-D ROC curves of (PD, τ ) were very low due
to the fact that they could only detect the panel subpixels in the
third, fourth, and fifth columns but missed all panel pixels in
the first two columns. However, the AUC values of their 2-D
ROC curves of (PF, τ ) were the smallest. This indicated that
these detectors produced the smallest false-alarm probabilities
meaning that they performed very well in BKG suppression.
With such a very low PD and the smallest PF, the AUC values
of their 2-D ROC curves of (PD, PF) were still higher than that
produced by RX/R-AD. These results provide evidence that
the classical 2-D ROC analysis was inapplicable to anomaly
detection.
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Fig. 9. TE: p = 6, m = 1, and j = 5.

Fig. 10. TE: p = 8, m = 2, and j = 6.

To conduct a comparative analysis, we performed the
traditional δRX/R-AD(r), RPCA, LSMAD using full EVs
and m EVs with p = 6 and m = 1, and CRD-DW-STO
using the size of outer window wout and the size of the
inner window win, which were specified by (13, 15, 17) and
(1, 3, 5, 7), respectively, with 12 combinations of (wout, win)
and the sparsity parameter set to λ = 10−6 implemented for
experiments. Due to the limited space, we cannot include
all the results but only the best results for each of the
test cases in this article for comparison. Fig. 7 shows the
detection-map results for TI using δRX/R-AD(r), LSMAD
using full bands and m bands for the case p = 6 and m = 1,
and CRD-DW-STO with (wout, win) = (13, 7) along with
their corresponding 3-D ROC curves shown in Fig. 8.

Table IV tabulates the AUC values of the 2-D ROC curves
of (PD, PF), the 2-D ROC curves of (PD, τ ), the 2-D ROC
curves of (PF, τ ) produced in Fig. 8, and their AUCOD
calculated by (43).

Like δRX/R-AD
Lm

(rS j ), δRX-AD
Lm+S j

(rS j ), δRX/R-AD
S j

(rLm+S j ), and

δRX/R-AD
Lm

(rLm+S j ), which detected panel pixels in the first

TABLE IV

AUC OF RX/R-AD, RPCA, LSMAD, AND
CRD-DW-STO FOR TI

three columns but missed most or all panel subpixels in the
fourth and fifth columns in Figs. 3–5, RX/R-AD, RPCA,
LSMAD, and CRD-DW-STO could only detect panel pixels
in the first three columns but failed to pick up the panel
subpixels in the fourth and fifth columns in Fig. 7. Compared
with Table III, the AUCOD produced by RX/R-AD, RPCA,
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Fig. 11. TE: p = 12, m = 3, and j = 9.

Fig. 12. 3-D ROC curves of TE.

LSMAD, and CRD-DW-STO is far below the best results
produced by OSP-GoDec in Table III for each of the three
cases (p, m, j) = (6, 1, 5), (13, 9, 4), and (19, 14, 5), which
are 1.8564, 1.7864, and 1.8232, respectively.

B. TE Experiments

The same experiments conducted for TI were also per-
formed for TE. Table V tabulates the value of p estimated
by the MOCA and HFC/NWHFC methods and the value of
m estimated by the MX-SVD for TE.

Figs. 9–11 show the detection maps produced by six
types of ADs: δRX/R-AD

S j
(rS j ), δRX/R-AD

Lm
(rS j ), δRX/R-AD

Lm+S j
(rS j ),

δRX/R-AD
S j

(rLm+S j ), δRX/R-AD
Lm

(rLm+S j ), and δRX/R-AD
Lm+S j

(rLm+S j ),
with ( p, m, j) = (6, 1, 5), (8, 2, 6), and (12, 3, 9) along with
their corresponding 3-D ROC curves plotted in Fig. 12.

Table VI also tabulates the AUC values of the three 2-D
ROC curves [2-D ROC curves of (PD, PF), 2-D ROC curves
of (PD, τ ), and 2-D ROC curves of (PF, τ )] obtained from the
3-D ROC curves in Fig. 12 along with their AUCOD calculated
by (43), where the best cases for various values of ( p, m, j)
are boldfaced.

Similar conclusion drawn for TI can be also applied to TE as
well, that is, δRX/R-AD

Lm
(rS j ), δRX-AD

Lm+S j
(rS j ), δRX/R-AD

S j
(rLm+S j ),

and δRX/R-AD
Lm

(rLm+S j ) detected panel pixels in the first three
columns but missed most or all panel subpixels in the

TABLE V

m ESTIMATED FOR TE BY MOCA AND HFC/NWHFC USING MX-SVD

fourth and fifth columns but δRX/R-AD
S j

(rS j ), δR-AD
Lm+S j

(rS j ),

and δRX/R-AD
Lm+S j

(rLm+S j ) detected the mixed-panel pixels in the
third column and the panel subpixels in the fourth and fifth
columns but missed all panel pixels in the first two columns.
Interestingly, unlike TI experiments, the best results from
Figs. 10 and 11 and Table VI were produced by using (p, m,
j) = (6, 1, 5). This is because TE is designed for the signal-
detection model, where the target panels were superimposed
over the BKG pixels. In this case, the target panel pixels are
more pronounced than the panel pixels in the TI.

Like TI, we also performed the traditional δRX/R-AD(r),
RPCA, LSMAD using full EVs and m EVs with p = 6
and m = 1, and CRD-DW-STO using the size of the outer
window wout and the size of the inner window win, which were
specified by (13, 15, 17) and (1, 3, 5, 7), respectively, with
12 combinations of (wout, win) implemented for experiments.
Fig. 13 shows the best detection-map results for TI using
δRX/R-AD(r), RPCA, LSMAD using full EVs and m EVs for
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TABLE VI

COMPARISON OF VARIOUS ANOMALY DETECTORS FOR TE USING AUC VALUES CALCULATED BY (43)

Fig. 13. Detection maps of RX/R-AD, RPCA, LSMAD, and CRD-DW-STO for TE.

the case p = 6 and m = 1, and CRD-DW-STO with (wout,
win) = (13, 7) along with their corresponding 3-D ROC curves
shown in Fig. 14.

Table VII tabulates the AUC values of the 2-D ROC curves
of (PD, PF), 2-D ROC curves of (PD, τ ), and 2-D ROC curves
of (PF, τ ) produced in Fig. 14 and their AUCOD calculated
by (43).

Like δRX/R-AD
Lm

(rS j ), δRX-AD
Lm+S j

(rS j ), and δRX/R-AD
Lm

(rLm+S j ),
which detected panel pixels in the first three columns
but missed most or all panel subpixels in the fourth and
fifth columns in Figs. 9–11, RX/R-AD, LSMAD, and
CRD-DW-STO could only detect panel pixels in the first
three columns but failed to pick up the panel subpixels
in the fourth and fifth columns in Fig. 13. According to
Table VII, the AUCOD produced by RX/R-AD, LSMAD, and
CRD-DW-STO are far below the best results produced by
OSP-GoDec for each of three cases, (p, m, j) = (6, 1, 5),
(8, 2, 6), and (12, 3, 9), which are 1.9575, 1.9305, and
1.9359, respectively, and RPCA is 1.9369.

IX. REAL IMAGES TO BE STUDIED

Three real HSIs were used for experiments.

A. HYDICE 15-Panel Scene

The image scene shown in Fig. 15 was acquired by
the airborne hyperspectral digital imagery collection experi-
ment (HYDICE) sensor in August 1995 from a flight altitude
of 10 000 ft. This scene has been studied extensively by many
reports such as [25] and [26]. There are 15 square panels with
three different sizes, 3 m× 3 m, 2 m× 2 m, and 1 m× 1 m,
respectively, as shown in Fig. 15(a). Due to the approximately
1.56-m ground sampling distance, each of the panels in the
first column except the first row contains two panel pixels
highlighted by red, p211 and p221 in row 2, p311 and p312
in row 3, p411 and p412 in row 4, and p511 and p521 in
row 5, as shown in Fig. 15(b), by the ground truth. All the 11
remaining panels in Fig. 15(b) contain one single-panel pixel
for each panel also highlighted by red, p11, p12, and p13 in
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Fig. 14. 3-D ROC curves of Fig. 13.

Fig. 15. (a) HYDICE panel scene which contains 15 panels. (b) Ground-truth
map of spatial locations of the 15 panels.

Fig. 16. HYDICE urban scene. (a) Pseudocolor image of the whole scene.
(b) Pseudocolor image of the selected area. (c) Ground-truth map.

row 1, p22 and p23 in row 2, p32 and p33 in row 3, p42 and
p43 in row 4, and p52 and p53 in row 5. Therefore, there are a
total of 19 panel pixels. Fig. 15(b) shows their precise spatial
locations with the pixels in yellow (Y pixels) indicating panel
pixels mixed with the BKG.

B. HYDICE Urban Scene

A second data set is another HYDICE image with pseudo-
color shown in Fig. 16(a). It is an urban scene and comprised
210 spectral bands with 174 bands being used for experiments

Fig. 17. AVIRIS San Diego Airport scene. (a) Pseudocolor image of the
whole scene. (b) Pseudocolor image of the selected area. (c) Ground-truth
map.

after the noise and water-absorption bands had been removed.
A region with a size of 80 × 100 pixels located at the top right
of the scene was selected as the test image shown in Fig. 16(b)
along with the ground-truth map shown in Fig. 16(c), where
21 pixels were identified as anomalies, which were cars and
roofs, because they had spectra that differ from the BKG.

C. AVIRIS San Diego Airport Scene

A third data set is an AVIRIS airport scene from San Diego,
CA, USA, with pseudocolor shown in Fig. 17(a). It has a
size of 400 × 400 pixels with a 3.5-m spatial resolution and
224 spectral channels in wavelengths ranging from 370 to
2510 nm. After removing the bands that correspond to the
water-absorption regions, low SNR, and bad bands (1–6,
33–35, 97, 107–113, 153–166, and 221–224), 189 available
bands of the data were retained in the experiments. An area
of 100 × 100 pixels at the top-left corner of the scene was
selected as the test image shown in Fig. 17(b) along with
its ground-truth map shown in Fig. 17(c). It is an urban
scene in which the main BKG materials are roof, shadow,
and grass. There are three airplanes in the image, which
consist of 85 pixels and account for 0.33% of the test image,
as shown in Fig. 16(b). The spectral signatures of these
planes are different from those of the main BKG, as shown
in Fig. 17(c), and these pixels were, therefore, selected as the
anomalies to be detected.

First, we calculated the value of p estimated by the MOCA
and HFC/NWHFC methods and the value of m estimated by
MX-SVD for the HYDICE 15-panel and the HYDICE urban
and San Diego Airport scenes tabulated in Table VIII.

X. EXPERIMENTS AND DISCUSSION

The experiments presented in this section consist of three
parts. The first part conducts a comprehensive study and
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Fig. 18. HYDICE 15 panel scene: p = 9, m = 5, and j = 4.

Fig. 19. HYDICE 15 panel scene: p = 13, m = 7, and j = 6.

TABLE VII

AUC OF RX/R-AD, RPCA, LSMAD, AND

CRD-DW-STO FOR TE

analysis of six types of anomaly detectors derived from OSP-
GoDec for the three real HSI scenes with great details.
The second part is a comparative analysis of the first part
results with the best results produced by the traditional RX/R-
AD, RPCA, LSMAD, and CRD-DW-STO. Finally, the third
part presents the discussions of the conclusions drawn from
the experimental results.

A. OSP-GoDec HYDICE 15-Panel Scene
Now, we implemented the Lm + S j +N model using OSP-

GoDec. Using the results in Table VIII, Figs. 18–20 show
the detection maps produced by six types of each
δRX/R-AD(r), i.e., δRX-AD

S j
(rS j ), δRX-AD

Lm
(rS j ), δRX-AD

Lm+S j
(rS j ),

δRX-AD
S j

(rLm+S j ), δRX-AD
Lm

(rLm+S j ), δRX-AD
Lm+S j

(rLm+S j ), and

δR-AD
S j

(rS j ), δR-AD
Lm

(rS j ), δR-AD
Lm+S j

(rS j ), δR-AD
S j

(rLm+S j ),

δR-AD
Lm

(rLm+S j ), and δR-AD
Lm+S j

(rLm+S j ) with ( p, m, j) = (9,
5, 4), (13, 7, 6), and (32, 24, 8). As shown in Figs. 18–20,
δRX/R-AD

Lm
(rS j ) and δRX/R-AD

Lm
(rLm+S j ) detected a partial set

of panel pixels in the first two columns but missed all panel
subpixels in the third column. The worst performance
was produced by δRX/R-AD

S j
(rLm+S j ). Interestingly,

δRX/R-AD
Lm+S j

(rLm+S j ) could detect all 19 panel pixels including
five panel subpixels in the third column at the expense of high
falsely detected BKG pixels. As the value of p was increased,
the false-alarm rate was significantly reduced, as shown
in Figs. 18–20, but it may also sacrifice the detection of
the panel subpixels, as also shown in Figs. 18–20. By the
visual inspection of Figs. 18–20, the best one was produced
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Fig. 20. HYDICE 15 panel scene: p = 32, m = 24, and j = 8.

Fig. 21. 3-D ROC curves of the HYDICE 15-panel scene.

Fig. 22. HYDICE urban: p = 9, m = 5, and j = 4.

by δRX/R-AD
Lm+S j

(rLm+S j ) using p = 13, m = 7, and j = 6
in Fig. 19.

To perform further a quantitative analysis, the 3-D ROC
analysis was conducted, where the 3-D ROC curves of
Figs. 18–20 were plotted in Fig. 21 along with Table IX that
tabulates the AUC values of their corresponding 2-D ROC
curves [2-D ROC curves of (PD, PF), 2-D ROC curves of
(PD, τ ), and 2-D ROC curves of (PF, τ )] and AUCOD, where
the best results for each case of ( p, m, j) are boldfaced.

Among the best cases was AUCOD = 1.6877 produced
by δR-AD

S j
(rS j ) using (p, m, j) = (13, 7, 6).

It is interesting to note the results from Figs. 18–20 and
Table IX that δR-AD

S j
(rS j ) was the best anomaly detector to

detect the anomalies, but δRX/R-AD
S j

(rLm+S j ) was the best
detector to extract the BKG. In other words, when S was used
to specify B and A in an anomaly detector δRX/R-AD

B (rA) as
BKG and the targets to be detected, respectively, the detector
could detect anomalies effectively. Conversely, if S and L + S
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Fig. 23. HYDICE urban: p = 13, m = 7, and j = 6.

Fig. 24. HYDICE urban: p = 61, m = 35, and j = 26.

Fig. 25. 3-D ROC curves of the HYDICE urban scene.

were used to specify B in an anomaly detector δRX/R-AD
B (rA)

as BKG suppression and A as the targets to be detected,
respectively, the detector could detect BKG as shown in
Figs. 18–20.

HYDICE Urban Scene: Figs. 22–24 show the detection
maps produced by six types of each δRX/R-AD(r),
i.e., δRX-AD

S j
(rS j ), δRX-AD

Lm
(rS j ), δRX-AD

Lm+S j
(rS j ), δRX-AD

S j
(rLm+S j ),

δRX-AD
Lm

(rLm+S j ), and δRX-AD
Lm+S j

(rLm+S j ) and δR-AD
S j

(rS j ),

δR-AD
Lm

(rS j ), δR-AD
Lm+S j

(rS j ), δR-AD
S j

(rLm+S j ), δR-AD
Lm

(rLm+S j ), and

δR-AD
Lm+S j

(rLm+S j ) with ( p, m, j) = (9, 5, 4), (13, 7, 6), and
(61, 35, 26), where the detectors that performed well on
anomaly detection should specify B by Lm + S j for the best
possible BKG suppression compared with the detectors that
should specify A by Lm + S j to have better BKG extraction.

For a quantitative analysis, the 3-D ROC analysis was
conducted, where the 3-D ROC curves of Figs. 22–24 were
plotted in Fig. 25 along with Table X that tabulates the AUC
values of their corresponding 2-D ROC curves [2-D ROC
curves of (PD, PF), 2-D ROC curves of (PD, τ ), and 2-D
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Fig. 26. San Diego Airport: p = 10, m = 2, and j = 8.

Fig. 27. San Diego Airport: p = 11, m = 2, and j = 9.

TABLE VIII

m ESTIMATED FOR HYDICE DATA BY MOCA AND HFC/NWHFC
USING MX-SVD

ROC curves of (PF, τ )] and AUCOD, where the best results for
each case of (p, m, j) are boldfaced. Among the best cases
was AUCOD = 1.7019 produced by δRX-AD

Lm+S j
(rLm+S j ) with

(p, m, j) = (9, 5, 4).

Unlike the HYDICE 15-panel scene that showed that
δR-AD

S j
(rS j ) was the best detector, according to Figs. 22–24 and

Table X, δRX/R-AD
Lm+S j

(rS j ) and δRX/R-AD
Lm+S j

(rLm+S j ) were the best

detectors to detect anomalies but δRX/R-AD
S j

(rLm+S j ) was the
best detector to extract the BKG. In other words, when
Lm + S j and S j were used to specify B in an anomaly
detector δRX/R-AD

B (rA) as BKG suppression and A as the
targets to be detected, respectively, the detector could detect
the anomalies effectively. Conversely, if S j and Lm +S j were
used to specify B as BKG suppression and A as the targets
to be detected, respectively, the detector could detect BKG
effectively.

AVIRIS San Diego Airport Scene: Figs. 26–28 show the
detection maps produced by six types of each δRX/R-AD(r),
i.e., δRX-AD

S j
(rS j ), δRX-AD

Lm
(rS j ), δRX-AD

Lm+S j
(rS j ), δRX-AD

S j
(rLm+S j ),

δRX-AD
Lm

(rLm+S j ), and δRX-AD
Lm+S j

(rLm+S j ) and δR-AD
S j

(rS j ),

δR-AD
Lm

(rS j ), δR-AD
Lm+S j

(rS j ), δR-AD
S j

(rLm+S j ), δR-AD
Lm

(rLm+S j ), and
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Fig. 28. San Diego Airport: p = 29, m = 16, and j = 13.

TABLE IX

AUC OF HYDICE 15-PANEL SCENE

δR-AD
Lm+S j

(rLm+S j ) with ( p, m, j) = (10, 2, 8), (11, 2, 9), and
(29, 16, 13).

Unlike Figs. 22–24, for a detector to extract airplanes,
an anomaly detector δB(rA) should specify A by Lm for the
best possible BKG suppression compared with the detectors
that should specify A by Lm + S j and B by S j to have better
BKG extraction, as shown in Figs. 26–28.

To perform further a quantitative analysis, the 3-D ROC
analysis was conducted, where the 3-D ROC curves of Figs.
26–28 were plotted in Fig. 29 along with Table XI that

tabulates the AUC values of their corresponding 2-D ROC
curves [2-D ROC curves of (PD, PF), 2-D ROC curves of
(PD, τ ), and 2-D ROC curves of (PF, τ )] and AUCOD,

where the best results are boldfaced. Among the best cases
was AUCOD = 1.2628 produced by δR-AD

Lm+S j
(rS j ) with

(p, m, j) = (11, 2, 9).
Similar to the experiments conducted for the HYDICE

urban scene, the same interesting observations can also be
made from Figs. 26–28 and Table XI, where δRX/R-AD

Lm+S j
(rS j ) and

δRX/R-AD
Lm+S j

(rLm+S j ) were the best anomaly detectors to detect
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TABLE X

AUC OF HYDICE URBAN SCENE

Fig. 29. 3-D ROC curves of the San Diego Airport scene.

the anomalies but δRX/R-AD
S j

(rLm+S j ) was the best detector
to extract the BKG. In other words, when Lm + S j and S j

were used to specify B in an anomaly detector δRX/R-AD
B (rA)

as BKG suppression and A as the targets to be detected,
respectively, the detector could detect anomalies effectively.
Conversely, if S j and Lm + S j were used to specify B in an
anomaly detector δB(rA) as BKG suppression and A as the
targets to be detected, respectively, the detector could detect
BKG effectively.

B. Comparison With RX/R-AD, RPCA, LSMAD, and
CRD-DW-STO

To conduct a comparative analysis, we performed the tra-
ditional δRX/R-AD(r), RPCA, LSMAD using full EVs and m

EVs with p = 24 and m = 13, and CRD-DW-STO using the
size of the outer window wout and the size of the inner window
win, specified by (11, 13, 15) and (3, 5, 7, 9), respectively, with
12 combinations of (wout, win) implemented for the HYDICE
15-panel and the urban scenes except the San Diego Airport
scene for which we used the size of the outer window wout
and the size of the inner window win specified by (15, 17, 19)
and (3, 5, 7, 9), respectively, with 12 combinations of (wout,
win) for the experiments. Due to the limited space, we cannot
include all the results but only the best scenarios for each
of test cases in this article for comparison. Figs. 30–32 show
the best cases of the detection-map results for the HYDICE
15-panel and the HYDICE urban and San Diego Airport scene
using δRX/R-AD(r), RPCA, LSMAD using full bands and m
bands, and CRD-DW-STO along with their the corresponding
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Fig. 30. Detection maps of RX/R-AD, RPCA, LSMAD, and CRD-DW-STO for the HYDICE 15-panel scene.

Fig. 31. Detection maps of RX/R-AD, RPCA, LSMAD, and CRD-DW-STO for the HYDICE urban scene.

Fig. 32. Detection maps of RX/R-AD, RPCA, LSMAD, and CRD-DW-STO for the San Diego Airport scene.

Fig. 33. 3-D ROC curves of Figs. 30–32.

3-D ROC curves shown in Fig. 33. As for HYDICE 15-panel
detection in Fig. 30, the best detector was CRD-DW-STO
using (wout, win) = (11, 7) by visual inspection. However,
comparing the results in Fig. 30 with those in Figs. 18–20,
CRD-DW-STO could do better for BKG suppression than
δB(rA) using A specified by Lm+ S j and A by S j , respec-
tively, but did worse in extracting the subpixel panels in the
third column. As for the HYDICE urban scene, CRD-DW-STO
performed nearly the same as LSMAD did in Fig. 31 by visual
inspection. Comparing their results with those in Figs. 22–24,
δB(rA) using B specified by Lm + S j and A by Lm + S j

or S j seemed to perform slightly better than CRD-DW-STO
and LSMAD by visual inspection in finding anomalies. As for
the San Diego Airport scene, the best detector seemed to be
LSMAD according to Fig. 32 by visual inspection. However,

if we compare Fig. 32 with Figs. 26–28, δR-AD
L2

(rL2+S9)
worked better than LSMAD by visual inspection in terms
of three-airplane detection and BKG suppression, while the
RPCA seemed to the best detector to extract BKG.

Obviously, the qualitative analysis using Figs. 30–32 by
visual inspection may not be objective. To address this prob-
lem, a quantitative analysis using 3-D ROC analysis was also
conducted, where the 3-D ROC curves of Figs. 30–32 were
plotted in Fig. 33 along with Tables XII–XIV that tabulate the
AUC values of their corresponding 2-D ROC curves [2-D ROC
curves of (PD, PF), 2-D ROC curves of (PD, τ ), and 2-D ROC
curves of (PF, τ )] and their AUCOD calculated by (43), where
the best results are boldfaced. As shown in Tables XII–XIV,
the best results are consistent with the qualitative analysis
made by visual inspection from Figs. 30–32.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 03,2020 at 01:40:47 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHANG et al.: OSP-BASED GODEC APPROACH TO FINDING LOW-RANK AND SPARSITY MATRICES 23

TABLE XI

AUC OF SAN DIEGO AIRPORT SCENE

TABLE XII

AUC OF RX/R-AD, RPCA, LSMAD, AND CRD-DW-STO FOR

THE HYDICE 15-PANEL SCENE

C. Discussion

From the experiments conducted in Sections X-A and
X-B, it clearly demonstrated that anomaly detection using
δRX/R-AD

B (rA) has various advantages over RX/R-AD, RPCA,
LSMAD, and CRD by specifying a different combination of
A and B that can be obtained by the low-rank matrix Lm and
the sparse matrix S j produced by OSP-GoDec. For example,
if the detection of the anomalies is of major interest, matrix
A should be specified by A = S j or Lm + S j , but B must
be specified by Lm + S j. Otherwise, BKG can be detected
by letting A = Lm or Lm + S j and B = S j In addition,
as also shown by the experiments, an appropriate combination
of A and B always outperformed the best cases of RX/R-AD,
RPCA, LSMAD, and CRD-DW-STO. Unfortunately, finding
appropriate values of m, the rank of Lm and the rank of S j , j ,

TABLE XIII

AUC OF RX/R-AD, RPCA, LSMAD, AND CRD-DW-STO FOR

THE HYDICE URBAN SCENE

pose a great challenging issue. To the best of our knowl-
edge, no work of how to determine these two parame-
ters has been reported in the literature. This article takes
advantage of the HFC/NWHFC/MOCA method and the MX-
SVD developed in MOCA to estimate these two parame-
ters. As demonstrated by the experiments, the HFC/NWHFC-
estimated p used to determine m and the MX-SVD-estimated
j used to determine the cardinality of S j , k = j × N
for the OSP-GoDec were effective and more appropriate
to be used for finding Lm and S j . With appropriately
determining m and j , δRX/R-AD

Lm+S j
(rLm+S j ) performed signifi-

cantly better than RX/R-AD, LSMAD, and CRD-DW-STO
in nearly all three counts, i.e., the AUC values of the 2-D
ROC curves of (PD, PF), 2-D ROC curves of (PD, τ ),
and 2-D ROC curves of (PF, τ ).
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TABLE XIV

AUC OF RX/R-AD, RPCA, LSMAD, AND CRD-DW-STO FOR
THE SAN DIEGO AIRPORT SCENE

Since we are interested in anomaly detection, component
matrix A used in the data sample vector, rA, should account
for the anomalies themselves by S j alone or embedded in
BKG by Lm+S j . In either case, there are three scenarios, S j ,
Lm , and Lm +S j , which can specify B used in δRX/R-AD

B (rA).
As a result, for each anomaly detector, δRX/R-AD

B (rA), six
types of ADs are proposed in this article depending on how
to specify matrices A and B used in δRX/R-AD

B (rA) with
different combinations of Lm and S j . In other words, what
δRX/R-AD

B (rA) does is exactly the same as δRX/R-AD(r), which
uses the adaptive/local/sliding windows to detect the anomalies
in the window analogous to matrix B, which includes the data
sample vectors to form the covariance/correlation matrix K/R.
As shown in the experiments conducted above, the role of
matrix B played a key in anomaly detection.

According to TI, TE, and real-image data sets, the targets
can be categorized into two classes: visible targets (such as
panels in the first three columns in TI and TE and the panels
in the first two columns in the HYDICE 15-panel scene,
roofs, grass, and airplanes in the San Diego Airport scene)
and invisible targets (such as ten panel subpixels in the fourth
and fifth columns in TI and TE, five mixed panel pixels in
the third column in the HYDICE 15-panel scene data, and
21 target pixels in the HYDICE urban scene). Of particular
interest are the 2× 2 mixed panels in the third column in TI
and TE, which can be considered as visible targets panelwise
but also as invisible targets pure signaturewise, because a pure
signature of a mixed panel only occupies a single pixel. Using
different matrices to specify the matrix B yields different types
of AD, which can detect these two different types of targets,
visible and invisible targets, separately or altogether. However,
since the anomalies cannot be known a priori and cannot be
visualized by inspection, technically speaking, only invisible
targets can be considered as anomalies. By considering this,
traditional anomaly detectors δRX/R-AD(r) and the most recent
state-of-the-art detection techniques, RPCA, LSMAD, and
CRD-DW-STO, can only detect visible targets and not anom-
alies. Interestingly, when A and B are specified by the same
component, either S j or Lm+ S j , which contains anomalies
as the sparse signals of interest, then δRX/R-AD

B (rA) becomes
δRX/R-AD

A (rA). In this case, invisible targets that are indeed the
anomalies embedded in BKG could be detected by suppressing
the data sample vectors using matrix B surrounding these
anomalies, as shown in Figs. 3–5 for TI, Figs. 9–11 for TE,
and Figs. 18–20 for the HYDICE 15-panel scene. On the

other hand, if an AD uses (A, B) = (S j /Lm + S j , Lm) or
(A, B) = (Lm + S j , S j ), the resulting AD could only detect
visible targets and not invisible targets as anomalies shown in
Figs. 3–5 for TI, Figs. 9–11 for TE, and Figs. 18–20 for the
HYDICE 15-panel scene.

It is generally known that δRX-AD(r) and δR-AD(r) perform
very similarly. However, there is an intriguing scenario that
showed a significant difference between δRX-AD

Lm+S j
(rS j ) and

δR-AD
Lm+S j

(rS j ), where δRX-AD
Lm+S j

(rS j ) and δR-AD
Lm+S j

(rS j ) performed
significantly differently in Figs. 3–5 for TI and Figs. 9–
11 for TE. Specifically, δRX-AD

Lm+S j
(rS j ) detected visible targets as

anomalies as opposed to δR-AD
Lm+S j

(rS j ), which detected invisible
targets as anomalies. This example explained that removing the
first-order statistics, i.e., sample mean, had a crucial impact
on detection when both detectors used Lm + S j to suppress
the BKG. As for the HYDICE, δRX-AD

Lm+S j
(rS j ) and δR-AD

Lm+S j
(rS j )

performed slightly different with a small difference in BKG
suppression.

As a conclusion, the experiments presented in this section
showed that using Lm to suppress BKG can detect visible
targets as anomalies embedded in the BKG, while using
S j to suppress the surrounding of the anomalies can detect
invisible targets as anomalies embedded in S j . Accordingly,
it is suggested that when the LRaSMD model is used for
anomaly detection, the two matrices S j and Lm can be jointly
implemented to detect the visible and invisible anomalies. This
unique advantage offers rare benefits that the commonly used
anomaly detectors in the literature cannot provide.

XI. NOVELTIES AND CONTRIBUTIONS OF OSP-GODEC

A number of novelties presented in this article can be
summarized as follows.

1) OSP is used to reinterpret GoDec as OSP-GoDec. Since
the VD in [25] and [26], MOCA and MX-SVD devel-
oped in [35] are all eigenanalysis-based techniques that
also use the same concept of OSP so that they can be
effectively used to estimate the parameters, the rank of
the low-rank matrix L, m, and the rank of the sparse
matrix S j , j . The developed OSP-GoDec fully explores
the use of OSP in the key concepts of GoDec. It is
believed that OSP-GoDec coupled with VD/MOCA and
MX-SVD is the first work ever reported in the literature
to bridge OSP and GoDec.

2) Instead of directly solving the rank of the low-rank
matrix, m and the rank of sparse matrix, j , VD and
MOCA are used to estimate p = m + j and then
use MX-SVD to determine j . This is a quite different
approach compared with a direct estimation of m and k.

3) The sparsity cardinality k can be found by setting
k = j × N . This is because each data sample has a
sparsity of j , and there are N data samples. It should
be noted that the cardinality of a sparsity matrix is not
the rank of the sparsity matrix S. More specifically, if the
sparse matrix S = SN×L is represented by a matrix
SN×L = [sT

1 sT
2 · · · sT

N ], where N is the total number of
data samples and L is the total number of spectra bands,
then si is an L-dimensional signal with a sparsity order
specified by j in terms of compressive sensing [75],
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[76]. This gives rise to the cardinality of sparsity on all
entries in the sparse matrix S, which is k = j × N .

4) The idea of using the low-rank matrix Lm and the sparse
matrix S j to implement an anomaly detector for BKG
suppression and target detection is completely new and
novel. It can be also applied to any variant of RX/R-AD
as well as any Lm + S j model such as RPCA [1] and
Lm + S j + N model such as LSMAD [20].

5) The 3-D ROC analysis in [73] and [74] can be further
used as an evaluation tool for the overall detection per-
formance analysis. Specifically, a new designed metric,
called AUCOD, is particularly designed in (43), which
can be used as a quantitative detection measure in con-
junction with the qualitative real-valued detection maps
by visual inspection to provide better assessment of
the overall detection performance. The idea of AUCOD
is also believed to be the first ever proposed for this
purpose and has never been explored in the literature.

XII. CONCLUSION

LRaSMD has received much attention lately in various
applications such as data unmixing, anomaly detection, and
classification. The model discussed in this article is a three-
component decomposition Lm +S j +N, where the BKG sub-
space is assumed to be compacted into a low-rank dimensional
space specified by Lm and the target subspace is considered
as a sparse space specified by S j with the noise subspace used
to account for the model error. In order to find the low-rank
matrix and the sparse matrix, GoDec has been widely used
for this purpose, but the two parameters m = rank of Lm and
j = the rank of S j must be provided a priori or empirically in
advance. This article investigates the Lm + S j +N model and
rederives a new OSP version of GoDec called OSP-GoDec
to find the low-rank matrix Lm and the sparsity matrix S j ,
where Lm+S j can be considered as a target signal component
embedded in the noise component N. This is because OSP can
be used as a target detector in [30]. By taking advantage of
OSP-GoDec derived from OSP, this article further develops
two OSP-based techniques to determine the parameters of m
and j with VD and MOCA used to estimate p, the number of
spectrally distinct signal sources that include the BKG sources,
and MX-SVD used to determine j , the number of sparse
signals. As a result, m, the number of BKG signal sources,
can be obtained by m = p − j . The experimental results
demonstrate that the new developed OSP-GoDec using m and
j estimated by VD/MOCA and MX-SVD can decompose the
BKG and sparse-signal matrices effectively to provide better
detection performance.

Finally, synthetic and real-image data sets are used for
experiments to conduct an extensive and comprehensive study
and analysis for OSP-GoDec to perform the commonly used
anomaly detector RX-AD [68] and R-AD [25], [69], [70] with
various types of using different combinations of decomposed
low-rank matrix Lm for BKG suppression and sparse matrix
S j to detect the target signals. These experiments provide
many interesting and intriguing findings on anomalies such
as visible mixed-pixel targets and invisible subpixel targets
that may be very useful for future development of anomaly

detection. In particular, the new developed OSP-GoDec using
VD/MOCA and MX-SVD offers new directions of hyperspec-
tral target detection in the future research.
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