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Abstract— This article addresses the general problem of
single-look multi-master SAR tomography. For this purpose,
we establish the single-look multi-master data model, analyze
its implications for the single and double scatterers, and propose
a generic inversion framework. The core of this framework is the
nonconvex sparse recovery, for which we develop two algorithms:
one extends the conventional nonlinear least squares (NLS) to the
single-look multi-master data model and the other is based on
bi-convex relaxation and alternating minimization (BiCRAM).
We provide two theorems for the objective function of the NLS
subproblem, which lead to its analytic solution up to a constant
phase angle in the 1-D case. We also report our findings from the
experiments on different acceleration techniques for BiCRAM.
The proposed algorithms are applied to a real TerraSAR-X data
set and validated with the height ground truth made available
by an SAR imaging geodesy and simulation framework. This
shows empirically that the single-master approach, if applied to
a single-look multi-master stack, can be insufficient for layover
separation, and the multi-master approach can indeed perform
slightly better (despite being computationally more expensive)
even in the case of single scatterers. In addition, this article
also sheds light on the special case of single-look bistatic SAR
tomography, which is relevant for the current and future SAR
missions such as TanDEM-X and Tandem-L.

Index Terms— Bistatic SAR, nonconvex optimization, SAR
tomography, sparse recovery, synthetic aperture radar (SAR),
Tandem-L, TanDEM-X.

I. INTRODUCTION

SYNTHETIC APERTURE RADAR (SAR) tomography
is an interferometric SAR (InSAR) technique that

reconstructs a 3-D far field from the 2-D azimuth-range
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measurements of the radar echoes [1]–[3]. In the common
case of spaceborne repeat-pass acquisitions, the scatterers’
motion can also be modeled and estimated [4]–[6]. SAR
tomography is sometimes considered as an extension of
persistent scatterer interferometry (PSI) [7]–[9] to the multi-
scatterer case, although the inversion of the latter is
performed on the double-difference phase observations of
the persistent scatterers (PS) [10]. Extensive efforts were
devoted to improving the super-resolution power, robustness,
and computational efficiency of the tomographic inversion in
the urban scenarios [11]–[20].

The publications on SAR tomography can be roughly
classified into the following four categories (see also Table I).
Note that those listed below were only handpicked, and we
have no intention to provide a complete list.

1) Single-Look Single-Master: Reigber and Moreira [1]
did the pioneering work on airborne SAR tomog-
raphy by densifying sampling through the integer
interferogram-combination technique and subsequently
employing discrete Fourier transform on an interpolated
linear array of baselines. Fornaro et al. [3], [5], [21]
paved the way for spaceborne SAR tomography
with long-term repeat-pass acquisitions and proposed
to use more advanced inversion techniques such
as truncated singular value decomposition. Zhu and
Bamler [22] provided the first demonstration of
SAR tomography with very high-resolution spaceborne
SAR data by using Tikhonov regularization and
nonlinear least squares (NLS). Zhu and Bamler [6]
and Budillon et al. [11] introduced compressive-sensing
techniques to tomographic inversion under the assump-
tion of a compressible far-field profile. Zhu and
Bamler [23] proposed a generic algorithm (named
SL1MMER) that is composed of spectral estimation,
model-order selection, and debiasing.

2) Single-Look Multi-Master1: To the best of our knowl-
edge, the publications in this category are rather scarce.
Zhu and Bamler [24] extended the Tikhonov regular-
ization, NLS, and compressive-sensing approaches to
a mixed TerraSAR-X and TanDEM-X stack by using
the preestimated covariance matrix. Ge and Zhu [25]
proposed a framework for SAR tomography using only
the bistatic or pursuit monostatic acquisitions: nondiffer-
ential SAR tomography for height estimation by using

1In this context, “multi-master” can be interpreted as “not single-master”
(see also our definition in Section II-A).
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the bistatic or pursuit monostatic interferograms and
differential SAR tomography for deformation estimation
by using conventional repeat-pass interferograms and the
previous height estimates as the deterministic prior [25].
However, the single-look single-master data model still
underlies the algorithms in both publications.

3) Multi-Look Single-Master: Aguilera et al. [13] exploited
the common sparsity pattern among multiple polarimet-
ric channels by distributed compressive sensing. Schmitt
and Stilla [14] also employed distributed compressive
sensing to reconstruct jointly an adaptively chosen
neighborhood. Liang et al. [26] proposed an algorithm
for 2-D range-elevation focusing on azimuth lines by
compressive sensing. Shi et al. [20] performed nonlocal
InSAR filtering before tomographic reconstruction.

4) Multi-Look Multi-Master: In general, any algorithm
estimating the autocorrelation matrix belongs to this
category. Note that this is closely related to the modern
adaptive multi-looking techniques that also exploit
all possible interferometric combinations [27]–[31].
Gini et al. [2] investigated the performance of different
spectral estimators including Capon, multiple signal
classification (MUSIC), and the multi-look relaxation
(M-RELAX) algorithm. Lombardini [4] extended SAR
tomography to the differential case by formulating it as a
multi-dimensional spectral estimation problem and tack-
led it with a higher-order Capon. Duque et al. [32], [33]
were the first to investigate bistatic SAR tomography
by using ground-based receivers and spectral estimators
such as Capon and MUSIC. Duque et al. [34]
demonstrated the feasibility of SAR tomography using a
single pass of alternating bistatic acquisitions, in which
the eigendecomposed empirical covariance matrix was
exploited for the hypothesis test on the number of
scatterers [34]. Fornaro et al. [15] proposed an algorithm
(named CAESAR) employing principal component
analysis of the eigendecomposed empirical covariance
matrix in an adaptively chosen neighborhood.

This list has a clear focus on the urban scenarios. Needless
to say, SAR tomography in the forested scenarios involving
random volume scattering in the canopy and the double-
bounce scattering between the ground and the trunk [35]–[42]
also falls in the multi-look multi-master category.

Let us follow the common conventions and denote the
azimuth, range, and elevation axes as x , r , and s, respectively,
where s is perpendicular to the xr plane. For the sake of
argument, suppose for any sample at the x and r positions,
the N single-look complex (SLC) SAR measurements
are noiseless. After deramping, each phase-calibrated SLC
measurement can be modeled as the Fourier transform � of the
elevation-dependent far-field reflectivity function γ : R → C
at the corresponding wavenumber k [21]

gn = �(kn) :=
∫
γ (s) exp(− jkns)ds, n = 1, . . . , N (1)

where kn := −4πbn/(λr0) is the nth wavenumber determined
by the sensor position bn along an axis b ‖ s with respect
to an arbitrary reference, the radar wavelength λ, and the

slant-range distance r0 with respect to a ground reference
point. Here, we consider the nondifferential case. An extension
to the differential case, in which the scatterers’ motion is
modeled as the linear combination of the basis functions,
is straightforward.

In the single-look single-master case, one SLC (say the
i th, i ∈ [N]), typically near the center of the joint orbital
and temporal distribution, is selected as the unique master for
generating interferograms, i.e., gngi/|gi |, ∀n ∈ [N] \ {i}. This
process that can also be interpreted as a phase-calibration step
converts kn into the wavenumber baseline �kn := kn − ki ,
∀n ∈ [N]. As a result, the zero position of the wavenumber
baseline is fixed, i.e., �ki = 0. The rationale behind this
is, for example, to facilitate 2-D phase unwrapping for
atmospheric-phase-screen (APS) compensation by smoothing
out the interferometric phase in xr .

Likewise, the data model of random volume scattering is
straightforward in the multi-look multi-master setting. Suppose
that γ (s) is a white random signal. For any master and slave
sampled at k and k+�k, respectively, the Van Cittert–Zernike
theorem implies that the expectation (due to multi-looking) of
the interferogram, being the autocorrelation function R�� of �,
is the Fourier transform of the elevation-dependent backscatter
coefficient function σ0 : R→ R at �k

E
[
�(k+�k)�(k)

]= R��(�k)=
∫
σ0(s) exp(− j�ks)ds (2)

where the property of γ (s) being white, i.e., E[γ (s)γ (s′)] =
σ0(s)δ(s−s′), is used. This leads to an inverse problem similar
to the one in the single-look single-master case.

This article, on the other hand, addresses the general
problem of SAR tomography using a single-look multi-master
stack. Such a stack arises when, for example: 1) a stack
of bistatic interferograms is used in order to diminish the
APS, to minimize the temporal decorrelation of the non-
PSs, and to eliminate the motion-induced phase of the single
scatterers [33], [43], [44] and 2) the repeat-pass interferograms
of small (temporal) baselines are employed so as to limit the
corresponding decorrelation effects of the non-PSs [45]–[47].
While both previously mentioned categories have been
intensively studied, it is not the case for single-look
multi-master SAR tomography. To the best of our knowledge,
all the existing work to date toward single-look multi-master
SAR tomography is still incorrectly based on the single-look
single-master data model [24], [25]. As will be demonstrated
later with a real SAR data set, this approach can be
insufficient for layover separation, even if the elevation
distance between two scatterers is significantly larger than
the Rayleigh resolution. This motivates us to fill the gap in
the literature by revisiting the single-look data model in a
multi-master multi-scatterer configuration and by developing
efficient methods for tomographic reconstruction. Naturally,
this study is also inspired by the prospective SAR missions
such as Tandem-L that will deliver high-resolution wide-swath
bistatic acquisitions in the L-band as the operational
products [48].

Our main contributions can be summarized as follows.
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TABLE I

CLASSIFICATION OF TOMOGRAPHIC SAR ALGORITHMS

1) We establish the data model of single-look multi-
master SAR tomography by means of which both sparse
recovery and model-order selection can be formulated as
the nonconvex minimization problems.

2) We develop two algorithms for solving the aforemen-
tioned nonconvex sparse recovery problem.

a) NLS: We provide two theorems regarding the crit-
ical points of its subproblem’s objective function
that also underlies model-order selection.

b) Bi-Convex Relaxation and Alternating Minimiza-
tion (BiCRAM): We propose to sample its solution
path for the purpose of automatic regularization
parameter tuning, and we show empirically that
a simple diagonal preconditioning can effectively
improve convergence.

3) We propose to correct the quantization errors by
using (nonconvex) nonlinear optimization.

4) We validate the tomographic height estimates with the
ground truth generated by SAR simulations and geodetic
corrections.

The rest of this article is organized as follows. Section II
introduces the data model and inversion framework for the
single-look multi-master SAR tomography. In Sections III
and IV, two algorithms for solving the nonconvex sparse
recovery problem within the aforementioned framework,
namely, NLS and BiCRAM, are elucidated and analyzed,
respectively. Section V reports an experiment with the
TerraSAR-X data including a validation of the tomographic
height estimates. This article is concluded by Section VI.

II. SINGLE-LOOK MULTI-MASTER SAR TOMOGRAPHY

In this section, we establish the data model for single-look
multi-master SAR tomography, analyze its implications for
two specific cases, and sketch out a generic inversion
framework for it.

We start with the mathematical notations that are used
throughout this article.

Notation: We denote scalars as lower- or uppercase letters
(e.g., m, N , and λ), vectors as bold lowercase letters (e.g., g
and γ ), matrices, sets, and ordered pairs as bold uppercase
letters (e.g., R and �), and the number fields as blackboard

bold uppercase letters (e.g., Z, R, and C) with the following
conventions:

1) gn denotes the nth entry of g.
2) am and an denote the mth row and nth column of A,

respectively.
3) Diag(a) denotes a square diagonal matrix whose entries

on the main diagonal are equal to a and Diag(A) denotes
a vector whose entries are equal to those on the main
diagonal of A.

4) Supp(x) denotes the index set of the nonzero entries or
support of x.

5) A, AT , and AH denote the (elementwise) complex
conjugate, transpose, and conjugate transpose of A,
respectively.

6) AR and �(A) denote the real part of A.
7) AI and �(A) denote the imaginary part of A.
8) A ◦ B denotes the Hadamard product of A and B.
9) A 
 0, B ≺ 0 means that A is positive-definite and B is

negative-definite.
10) A� denotes the matrix formed by extracting the columns

of A indexed by �.
11) ‖A‖1,2 denotes the 	1,2 norm of A, i.e., the sum of the

	2 norms of its rows.
12) I denotes the identity matrix.
13) [N] denotes the set {1, . . . , N}.
14) |�| denotes the cardinality of the set �.
15) The nonnegative and positive subsets of a number field

F are denoted as F+ and F++, respectively.

A. Data Model

First, we give a definition for “single-master” and “multi-
master” by using the language of the basic graph theory (see
[49, §1]). Let G := (V(G),E(G)) be an acyclic directed
graph that is associated with an incidence function ψG, where
V(G) := [N] is a set of vertices (SLCs), E(G) is a set of edges
(interferograms), and for each e ∈ E(G), ∃m, n ∈ V(G) such
that ψG(e) = (m, n). Its adjacency matrix A(G) := (am,n) ∈
{0, 1}N×N is given by

am,n :=
{

1 : (m, n) ∈ E(G),
0 : (m, n) /∈ E(G).

(3)
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Fig. 1. Single-master versus multi-master: two exemplary configurations and
the corresponding adjacency matrices A(G).

Since G is acyclic, an,n = 0, ∀n ∈ V(G), i.e., the diagonal of
A(G) contains only zero entries. Without loss of generality,
assume that every vertex is connected to at least another one.

Definition 1: The single-master configuration means that
there exists a unique i ∈ [N] such that ai,n = 1, am = 0,
∀m, n ∈ [N] \ {i}. In this case, we refer to {gngi/|gi |} as the
single-master stack with a master indexed by i .

Definition 2: The multi-master configuration means that
�i ∈ [N] such that ai,n = 1, am = 0, ∀m, n ∈ [N] \ {i}.
In this case, we refer to {gngm} as the multi-master stack.

That is, “multi-master” is equivalent to “not single-master.”
Two exemplary configurations are illustrated in Fig. 1.

In the multi-master case, an interferogram is created for
each (m, n) ∈ E(G)

gngm =
∫ ∫

γ (s)γ (s′) exp
(− j

(
kns − kms′

))
dsds′. (4)

Hereafter, we focus on the case in which the far field
contains only a small number of scatterers such that

gn ≈
∑

l

γl exp(− jknsl), n = 1, . . . , N (5)

where γl ∈ C is the reflectivity of the lth scatterer located
at the elevation position sl . The single-look multi-master data
model (4) becomes

gngm ≈
∑
l,l′
γlγl′ exp(− j(knsl − kmsl′ )) (6)

∀(m, n) ∈ E(G).
In the next section, we analyze the implications of (6) for

the single- and double-scatterer cases.

B. Implications

In the single-scatterer case, (6) becomes

gngm ≈ |γ |2 exp(− j(kn − km)s) (7)

that is, the multi-master observation is actually the Fourier
transform of the reflectivity power at the wavenumber baseline
kn − km . As a result, the nonnegativity of |γ |2 should be

considered during inversion. Since both the real and imaginary
parts of gngm are parameterized by |γ |2, that is

�(gngm) ≈ |γ |2 cos((kn − km)s)
�(gngm) ≈ |γ |2 sin(−(kn − km)s), (8)

the inversion problem can be recast as a real-valued one.
For double scatterers, the multi-master observation is

gngm ≈ |γ1|2 exp(− j(kn − km)s1)

+ γ1γ2 exp(− j(kns1 − kms2))

+ γ1γ2 exp(− j(kns2 − kms1))

+ |γ2|2 exp(− j(kn − km)s2). (9)

In addition to the Fourier transform of the reflectivity power
at kn − km , the right-hand side of (9) contains the second
and third “cross-terms,” in which the reflectivity values of the
two scatterers (and their frequency–time products) are coupled.
This essentially rules out any linear model.

Remark: In the multi-look multi-master setting, the data
model under random volume scattering is

E
[
�(kn)�(km)

] = ∫
σ0(s) exp(− j(kn − km)s)ds (10)

as already indicated in (2), i.e., no coupling is involved.
Remark: A multi-master bistatic or pursuit monostatic (i.e.,

10-s temporal baseline [50]) stack is in general not motion-free
for the double (or multiple) scatterers.

To see this, consider, for example, the linear deformation
model d(tn) := vtn , where v and t denote the linear
deformation rate and the temporal baseline, respectively.
Observe that

gngm

≈
∑
l,l′
γlγl′

· exp(− j(knsl − kmsl′ + 4πdl(tn)/λ− 4πdl′(tm)/λ))
= |γ1|2 exp(− j((kn − km)s1 + 4πv1(tn − tm)/λ))
+ γ1γ2 exp(− j((kns1 − kms2)+ 4π(v1tn − v2tm)/λ))
+ γ1γ2 exp(− j((kns2 − kms1)+ 4π(v2tn − v1tm)/λ))
+ |γ2|2 exp(− j((kn − km)s2 + 4πv2(tn − tm)/λ)). (11)

In the case of tm = tn , the motion-induced phase in the
cross-terms vanishes if and only if v1 = v2.

The next section introduces a generic inversion framework
for the single-look multi-master SAR tomography.

C. Inversion Framework

The data model (6) already indicates a nonlinear system
of equations for a single-look multi-master stack. Suppose G
is the graph associated with this stack that contains a total
of N ′ := |E(G)| multi-master observations and e1, . . . , eN ′ is
an ordered sequence of all the edges in E(G). Let M,S :
[N ′] → [N] be the mappings to the master and slave image
indices, respectively. For each en , n ∈ [N ′], a multi-master
observation gS(n)gM(n) is obtained. Let g ∈ CN ′ be the vector
of the multi-master observations such that gn := gS(n)gM(n),
∀n ∈ [N ′]. Let s1, . . . , sL be a discretization of the elevation
axis s. The data model in the matrix notations is

g ≈ (Rγ ) ◦ (
Sγ

)
(12)
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where R and S ∈ CN ′×L represent the tomographic observation
matrices of the slave and master images, respectively, rn,l :=
exp(− jkS(n)sl), sn,l := exp(− jkM(n)sl), ∀n ∈ [N ′], l ∈ [L],
and γ ∈ CL is the unknown reflectivity vector such that
γl is associated with the scatterer (if any) at the elevation
position sl .

In light of (12), we propose the following framework for
tomographic inversion.

1) Nonconvex Sparse Recovery: We consider the problem

γ̂ := arg min
γ

1

2
‖(Rγ ) ◦ (

Sγ
)− g‖2

2

s. t. | Supp(γ )| ≤ K (13)

where K ∈ Z++. The objective function measures the model
goodness of fit and the constraint enforces γ to be sparse,
as is implicitly assumed in (6). If

∑K
l=0

(L
l

)
is small, (13) can

be solved heuristically by using the algorithms that will be
developed in Section III. Section IV is dedicated to another
algorithm that solves a similar problem based on bi-convex
relaxation.

2) Model-Order Selection: This procedure removes the
outliers and, therefore, reduces the false-positive rate.
By using, for example, the Bayesian information criterion,
model-order selection can be formulated as the following
constrained minimization problem:

�̂ := arg min
�(,δ)

2 ln
(‖(R�δ�) ◦

(
S�δ�

)− g‖2
2/N ′

)
+ (5|�| + 1) ln

(
N ′

)
/N ′

s. t. Supp(δ) = � ⊂ Supp(γ̂ ) (14)

where δ ∈ CL is an auxiliary variable and � is its support.
Since | Supp(γ̂ )| is typically small, (14) can be tackled by
solving a sequence of subset NLS problems in the form of

min
ε

1

2
‖(R�ε) ◦ (

S�ε
)− g‖2

2 (15)

for which two solvers will be introduced in Section III.
3) Off-Grid Correction: The off-grid or quantization

problem arises when the scatterers are not located on
the (regular) grid of the discrete elevation positions s1, . . . , sL .
Ge et al. [17] proposed to oversample γ̂ in the vicinity of the
selected scatterers in order to circumvent this problem. Here,
we propose a more elegant approach that is based on nonlinear
optimization.

Denote K̂ := |�̂| as the number of scatterers after
model-order selection. Let γ R

l and γ I
l be the real and

imaginary parts of the complex-valued reflectivity γl of the lth
scatterer that is located at sl , respectively, i.e., γl = γ R

l + jγ I
l ,

∀l ∈ [K̂ ]. On the basis of the single-look multi-master data
model (6), we seek a solution of the following minimization
problem:

min
γ R

l ,γ
I

l ,sl

∑
n

∣∣∣ gn −
∑
l,l′

(
γ R

l + jγ I
l

)(
γ R

l′ − jγ I
l′
)

· exp
(− j

(
kS(n)sl − kM(n)sl′

))∣∣∣2
. (16)

Note that the objective function is differentiable with respect
to γ R

l , γ I
l , and sl , ∀l ∈ [K̂ ]. Needless to say, the on-grid

estimates from (14) are used as the initial solution. We will
revisit this problem in Section III-A.

Thus far, the inversion framework has been established.
In the next two sections, we will deal with the optimization
problems (13)–(16) from the algorithmic point of view.

III. NONLINEAR LEAST SQUARES

NLS is a parametric method that breaks down a sparse
recovery problem into a series of subset linear least-squares
subproblems [52, §6.4]. Here, we extend the concept of NLS
to the single-look multi-master data model (12) and address
the subproblem (15), or equivalently

min
x

1

2
‖(Ax) ◦ (

Bx
)− b‖2

2 (17)

where A,B ∈ Cm×n , x ∈ Cn , and b ∈ Cm with m > n. As can
be concluded from Section II-C, (17) is clearly of interest,
since it not only solves the nonconvex sparse recovery problem
(13) but also underlies the model-order selection (14).

A. Algorithm

In this section, we develop two algorithms for solving (17).
The first algorithm is based on the alternating direction

method of multipliers (ADMM) [53]. The ADMM solves
a minimization problem by alternatively minimizing its
augmented Lagrangian [54, p. 509], in which the augmentation
term is scaled by a penalty parameter ρ ∈ R++. A short recap
can be found in Appendix A. It converges under very general
conditions with medium accuracy [53, §3.2].

Now, we consider (17) in its equivalent form

min
x,z

1

2
‖(Ax) ◦ (

Bz
)− b‖2

2

s. t. x − z = 0. (18)

This is essentially a bi-convex problem with an affine
constraint [53, §9.2]. Applying the ADMM update rules leads
to Algorithm 1. Note that both x- and z-updates boil down to
solving linear least-squares problems.

Algorithm 1 ADMM-Based Algorithm for Solving (17)

1: Input: A, B, b, z(0), ρ
2: Initialize z← z(0)

3: Until stopping criterion is satisfied, Do
4: Ã← Diag(Bz)A
5: x← (ÃH Ã+ ρI)−1(ÃH b+ ρz− y)
6: B̃← Diag(Ax)B
7: z← (B̃H B̃+ ρI)−1(B̃H b+ ρx + y)
8: y← y + ρ(x − z)
9: Output: z

The second algorithm uses trust-region Newton’s method
that exploits the second-order information for solving the gen-
eral unconstrained nonlinear minimization problems [55, §4].
The rationale behind this choice is to circumvent the
saddle points that cannot be identified by the first-order
information [56]. In each iteration, a norm ball or “trust-
region” centered at the current iterate is adaptively chosen.
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If the second-order Taylor polynomial of the objective function
is sufficiently good for approximation, a descent direction
is found by solving a quadratically constrained quadratic
minimization problem. Suppose f : Rn → R is the objective
function, the subproblem at the iterate x ∈ Rn is

min
�x

f (x)+∇ f (x)T�x + 1

2
�xT∇2 f (x)�x

s. t. ‖�x‖2 ≤ r (19)

where �x ∈ Rn is the search direction, ∇ f and ∇2 f denote
the gradient and Hessian of f , respectively, and r ∈ R++
is the current trust-region radius. By means of the Karush–
Kuhn–Tucker (KKT) conditions for the nonconvex problems,
Nocedal and Wright [55, §4.3] divided (19) into several cases:
in one case, a 1-D root-finding problem with respect to the dual
variable is solved by using, for example, Newton’s method,
while in the others, the solutions are analytic. Since the
technical details are quite overwhelming, we do not intend to
provide an exposition here. Interested readers are advised to
refer to [55, §4.3]. It can be shown that trust-region Newton’s
method converges to a critical point with high accuracy under
general conditions [55, p. 92].

By verifying the Cauchy–Riemann equations (see [57,
p. 50]), it is easy to show that the objective function of (17)
is not complex-differentiable with respect to x. In lieu of
using Wirtinger differentiation that does not contain all the
second-order information, we exploit the fact that the mapping
x �→ (xR, xI ) is isomorphic and let

f (xR, xI ) := 1

2
‖(Ax) ◦ (

Bx
)− b‖2

2 (20)

where f : Rn ×Rn → R is real-differentiable with respect to
xR and xI . Straightforward computations reveal its gradient as

∇ f (xR, xI ) =

⎛
⎜⎜⎝
∂ f

∂xR
∂ f

∂xI

⎞
⎟⎟⎠ =

(�(d)
�(d)

)
(21)

where

d := AH
((
(Ax) ◦ (

Bx
)− b

) ◦ (Bx)
)

+BH
(((

Ax
) ◦ (Bx)− b

) ◦ (Ax)
)

(22)

and its Hessian as

∇2 f (xR, xI ) =

⎛
⎜⎜⎝

∂2 f

∂x2
R

∂2 f

∂xR∂xI

∂2 f

∂xI ∂xR

∂2 f

∂x2
I

⎞
⎟⎟⎠

=
(�(C+ D+ E) −�(C− D+ E)
�(C+ D+ E) �(C− D+ E)

)
(23)

where

C := AH Diag
(
(Bx) ◦ (

Bx
))

A+ BH Diag
(
(Ax) ◦ (

Ax
))

B

D := AH Diag((Ax) ◦ (Bx))B+ BH Diag((Ax) ◦ (Bx))A

E := AH Diag
(
(Ax) ◦ (

Bx
)− b

)
B

+BH Diag
((

Ax
) ◦ (Bx)− b

)
A. (24)

Fig. 2. Convergence curve of NLS using the ADMM (solid line) and
trust-region Newton’s method (dashed line).

Note that d : Cn → Cn and C,D,E : Cn → Cn×n are
essentially the functions of x. Here, we drop the parentheses in
order to simplify the notation. For the same purpose, we adopt
the following convention:

f (x) := f (�(x),�(x)) = f (xR, xI ). (25)

By using the first- and the second-order information of (20),
(17) can be directly tackled by trust-region Newton’s method
by solving a sequence of subproblems in the form of (19). For
any optimal point x
, the KKT condition is

∇ f
(
x


) = 0 ⇐⇒ d
(
x


) = 0. (26)

Remark: Likewise, the objective function of (16) is
real-differentiable with respect to γ R

l , γ I
l and sl , ∀l ∈ [K̂ ].

Therefore, trust-region Newton’s method is directly applicable.
Alternatively, the first-order methods such as Broyden–
Fletcher–Goldfarb–Shanno (BFGS, see [55, §6.1] and the
references therein) can also be used.

Needless to say, it is not guaranteed that these algorithms
always converge to a global minimum. We will demonstrate
later in Section V that the solutions are often good enough.
Fig. 2 shows the typical convergence curves in the case of
double scatterers (#6 in Section V-C). In order to generate
this plot, we first let one algorithm run nonstop until it
converged with very high precision. We then took this solution
as an optimal point x
 and compared the absolute difference
of the objective value | f (x) − f (x
)|. Both ADMM and
trust-region Newton’s method converged to the same solution
(up to a constant phase angle; see Section III-B), although it
only took the latter less than ten iterations. Still, the former
can be interesting due to the simplicity of its update rules
(see Algorithm 1). In Section V, the latter will be used for
demonstration purposes.

B. Analysis of the Objective Function

Due to the nonconvexity of the objective function (20), its
analysis is not straightforward. We are primarily concerned
with the following two questions.
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1) Under which circumstances do critical points or local
extrema exist?

2) If they do exist, how many are they?

This section shall provide a partial answer to these questions.
First, we state the following general observation.
Proposition 1: For any x ∈ Cn and φ ∈ R, any eigenvalue

of ∇2 f (x) is also an eigenvalue of ∇2 f (x exp( jφ)) and vice
versa.

Proof: See Appendix B. �
Informally, this proposition implies that the definiteness of

the Hessian is invariant under any rotation with a constant
phase angle.

Now, we state the main theorem for the general case.
Theorem 2: The properties of the critical points of f (x).
1) 0 is a critical point: it is a local minimum if

AH Diag(b)B+BH Diag(b)A ≺ 0 and a local maximum
if AH Diag(b)B+ BH Diag(b)A 
 0.

2) If there exists a nonzero critical point, then
AH Diag(b)B+ BH Diag(b)A ⊀ 0.

3) Suppose there exists a nonzero critical point z, then the
following holds.

a) ∇2 f (z) is rank-deficient.
b) There exist an infinite number of critical points in

the form of z exp( jφ), φ ∈ R \ {0}. Each has the
same objective function value as z, and its Hessian
has the same definiteness.

Proof: See Appendix C. �
This theorem implies that if there exists one critical point,

then there are an infinite number of them up to a constant
phase angle, and each is good. Furthermore, we conjecture that
AH Diag(b)B+BH Diag(b)A 
 0 is a necessary and sufficient
condition [see Theorem 2(2)], and each nonzero critical point
is also a local minimum under some mild conditions.

For the special case n = 1, i.e., A,B ∈ Cm , x ∈ C, we have
a much stronger result.

Theorem 3 (n = 1): The properties of the critical points of
f (x).

1) 0 is a critical point: it is a local minimum
if �((A ◦ B)H b) < 0 and a local maximum if
�((A ◦ B)H b) > 0.

2) There exists a nonzero critical point if and only if
�((A ◦ B)H b) > 0.

3) Suppose there exists a nonzero critical point z, then the
following holds.

a) ∇2 f (z) is positive-semidefinite and rank-
deficient.2

b) There exist an infinite number of critical points in
the form of z exp( jφ), φ ∈ R \ {0}. Each has the
same objective function value as z, and its Hessian
has the same definiteness.

c) z is a local minimum.
Proof: See Appendix D. �

As a result, a nonzero local minimum exists if and only if
�((A◦B)H b) > 0. If this condition is satisfied, then there are
infinitely many local minima that are exactly as good. Fig. 3

2Note that ∇2 f (z) ∈ R
2×2 by definition.

Fig. 3. Negative logarithm of the NLS objective function (n = 1) with a
circle of local maxima at the verge of the “crater.”

shows as an example the negative logarithm of (20) with a
circle of local maxima.

Finally, Theorem 3 implies the following interesting result.
Corollary 4 (n = 1): Each nonzero local minimum (if it

exists) is given by

z =
�

((
A ◦ B

)H
b
)1/2

‖A ◦ B‖2
exp( jφ) (27)

for some φ ∈ R.
Proof: See the proof of Theorem 3(2). �

Now we return to our problem in SAR tomography. For
the single-look multi-master data model (12), this corollary
motivates the 1-D spectral estimator

|γ̂l| :=

⎧⎪⎨
⎪⎩
�(
(rl ◦ sl)

H g
)1/2

‖rl ◦ sl‖2
, if �(

(rl ◦ sl)
H g

)
>0

0, otherwise

(28)

∀l ∈ [L]. Note that this also provides the solution for any
1-D NLS subproblem up to a constant phase angle. In the
case of multiple scatterers, this estimator does not have any
super-resolution power.

IV. BI-CONVEX RELAXATION AND ALTERNATING

MINIMIZATION

This section introduces a second algorithm for solving the
nonconvex sparse-recovery problem (13).

A. Algorithm

As a starting point, we replace the constraint in (13) with
a sparsity-inducing regularization term, for example

min
γ

1

2
‖(Rγ ) ◦ (

Sγ
)− g‖2

2 + λ‖γ ‖1 (29)

where λ ∈ R++ trades the model goodness of fit for sparsity.
In light of (26), the necessary condition for being an optimal
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point γ 
 is

λ∂‖γ 
‖1 � RH
((

g − (
Rγ 


) ◦ (
Sγ 


)) ◦ (
Sγ 


))
+ SH

((
g − (

Rγ 

) ◦ (

Sγ 

)) ◦ (

Rγ 

))

(30)

that is, the right-hand side is a subgradient of the 	1 norm
at γ 
. Obviously, 0 always satisfies this condition.

In principle, an ADMM-based algorithm similar to
Algorithm 1 can be used to solve (29). However, our
experience with the real SAR tomographic data shows that it
often diverges, presumably due to the high mutual coherence
of R and S under nonconvexity. For this reason, we consider
instead the following relaxed version of (29):

min
γ ,θ

1

2
‖(Rγ ) ◦ (

Sθ
)− g‖2

2 +
λ1

2
‖γ − θ‖2

2+λ2‖
(
γ θ

)‖1,2

(31)

where λ1, λ2 ∈ R++. The objective function CL ×CL → R is
bi-convex, i.e., it is convex in γ with θ fixed and convex in
θ with γ fixed. The first regularization term enforces γ and θ

to have similar entries, and the second one promotes the same
support. Since (31) is essentially an unconstrained bi-convex
problem, it can be solved by using alternating minimization
by Algorithm 2 (see also [58]–[60]).

Algorithm 2 Alternating Algorithm for Solving (31)

1: Input: R, S, g, γ (0), λ1, λ2

2: Initialize γ ← γ (0)

3: Until stopping criterion is satisfied, Do
4: S̃← Diag(Rγ )S
5: θ ← arg minθ

1
2‖S̃θ − g‖2

2 + λ1
2 ‖θ − γ ‖2

2 + λ2‖
(
θ γ

)‖1,2

6: R̃← Diag(Sθ)R
7: γ ← arg minγ

1
2‖R̃γ −g‖2

2+ λ1
2 ‖γ − θ‖2

2+λ2‖
(
γ θ

)‖1,2

8: Output: γ

Each time when either γ or θ is fixed, it becomes a convex
problem in the generic form of

min
x

1

2
‖Ax − b‖2

2 +
λ1

2
‖x − u‖2

2 + λ2‖
(
x u

)‖1,2 (32)

or equivalently

min
x,Z

1

2
‖Ax − b‖2

2 +
λ1

2
‖x − u‖2

2 + λ2‖Z‖1,2

s. t.
(
x u

)− Z = 0 (33)

where Z ∈ CL×2. Applying the ADMM update rules leads to
Algorithm 3.

Algorithm 3 ADMM-Based Algorithm for Solving (32)

1: Input: A, b, u, Z(0), λ1, λ2, ρ
2: Initialize Z← Z(0)

3: Until stopping criterion is satisfied, Do
4: x← (AH A+ (λ1 + ρ)I)−1(AH b+ λ1u + ρz1 − y1)
5: Z← Prox	1,2,λ2/ρ

((
x u

)+ (1/ρ)Y)
6: Y← Y+ ρ((

x u
)− Z

)
7: Output: z1

Fig. 4. Convergence curve of BiCRAM. The horizontal axis refers to the
outer iterations in Algorithm 2.

Prox	1,2,λ : CL×2 → CL×2 is the proximal operator of the
	1,2 norm scaled by λ [61], that is

Prox	1,2,λ(X) := arg min
Z

λ‖Z‖1,2 + 1

2
‖X− Z‖2

F (34)

whose i th row is given by [61, §6.5.4]

Prox	1,2,λ(X)
i = (

1− λ/‖xi‖2
)
+ xi (35)

where (x)+ := max(x, 0). This proximal operator promotes
(the columns of) Z to be jointly sparse and, therefore, x to
share the same support with u.

Due to the nonconvexity of (31), it is very difficult to
establish a convergence guarantee for Algorithm 2 from a
theoretical point of view. However, our experiments with
the real SAR tomographic data (see Section V) show that
it converges empirically. As an example, Fig. 4 depicts a
convergence curve in the case of two scatterers that are closely
located (#6 in Section V-C).

In terms of regularization parameter tuning, we adopt
the approach of sampling the solution path (λ1, λ2) �→ x
and selecting the solution with the highest penalized
likelihood (14). Last, this procedure can be simplified by
performing 1-D search, i.e., fixing one parameter and tuning
the other at a time.

B. Implementation

This section addresses several implementation aspects
that contribute to accelerating Algorithm 3 (and therefore
Algorithm 2). The exposition is based on an ADMM-based
algorithm for solving the 	1-regularized least-squares (L1RLS)
problem

min
x

1

2
‖Ax − b‖2

2 + λ‖x‖1. (36)

This is more suitable for demonstrating the power of different
acceleration techniques, since each of its subproblems has an
analytical solution and does not involve iteratively solving
another optimization problem (see Algorithm 2). In addition,
it will also be used as a reference in Section V.
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Now, consider (36) in its equivalent form

min
x,z

1

2
‖Ax − b‖2

2 + λ‖z‖1

s. t. x − z = 0. (37)

Applying the ADMM update rules leads to Algorithm 4.

Algorithm 4 ADMM-Based Algorithm for Solving (36)

1: Input: A, b, z(0), λ, ρ
2: Initialize z← z(0)

3: Until stopping criterion is satisfied, Do
4: x← (AH A+ ρI)−1(AH b+ ρz− y)
5: z← Prox	1,λ/ρ(x + (1/ρ)y)
6: y← y + ρ(x − z)
7: Output: z

Likewise, Prox	1,λ : CL → CL is the proximal operator of
the 	1 norm scaled by λ (also known as the soft-thresholding
operator [62])

Prox	1,λ(x) := arg min
z

λ‖z‖1 + 1

2
‖x − z‖2

2 (38)

whose i th entry is given by [61, §6.5.2]

Prox	1,λ(x)i = (1− λ/|xi |)+ xi . (39)

The first technique provides an easier way for the x-update.
1) Matrix-Inversion Lemma: In Algorithms 3 and 4, an L-

by-L matrix needs to be inverted. For large L, a direct exact
approach can be tedious. Instead, we exploit the following
lemma.

Lemma 5 (Matrix Inversion Lemma [63]): For any A ∈
Cn×m , B ∈ Cm×n and nonsingular C ∈ Cn×n, we have

(AB+ C)−1 = C−1 − C−1A
(
I + BC−1A

)−1
BC−1. (40)

Lemma 5 suggests a more efficient method if inverting C is
straightforward. This is the case for the matrices in the form
of AH A+ ρI since

(
AH A+ ρI

)−1 = 1

ρ
I− 1

ρ2
AH

(
I + 1

ρ
AAH

)−1

A (41)

that is, instead of the original L-by-L matrix, only an N ′-by-
N ′ matrix needs to be inverted.

Alternatively, the linear least-squares (sub)problems can
be solved iteratively in order to deliver an approximate
solution [64], which is known as inexact minimization [53,
§3.4.4].

The following techniques can be employed to improve
convergence.

2) Varying Penalty Parameter: The penalty parameter ρ can
be updated at each iteration. Besides the convergence aspect,
this also renders Algorithm 4 to be less dependent on the initial
choice of ρ. A common heuristic [53, §3.4.1] is to set

ρ(k+1) :=

⎧⎪⎨
⎪⎩
τρ(k), if ‖r(k)‖2 > μ‖s(k)‖2

ρ(k)/τ, if ‖s(k)‖2 > μ‖r(k)‖2

ρ(k), otherwise

(42)

at the (k + 1)th iteration, where τ, μ > 1 are the parameters,
r(k) := x(k)− z(k) is the primal residual, and s(k) := ρ(k)(z(k)−
z(k−1)) is the dual residual. As k → ∞, r(k) and s(k)

both converge to 0. Intuitively, increasing ρ tends to put a
larger penalty on the augmenting term (ρ/2)‖x − z‖2

2 in the
augmented Lagrangian and, consequently, decreases ‖r(k)‖2

on the one hand, and to increase ‖s(k)‖2 by definition on the
other and vice versa. The rationale is to balance r(k) and s(k)

so that they are approximately of the same order. Naturally,
one downside is that (41) needs to be recomputed whenever
ρ changes.

3) Diagonal Preconditioning: The augmenting term
(ρ/2)‖x − z‖2

2 in the augmented Lagrangian can be replaced
by

(1/2)〈P(x − z), x − z〉 (43)

where P 
 0 is a real diagonal matrix. Note that
this falls under the category of more general augmenting
terms [53, §3.4.2]. By means of this, Algorithm 4 is deprived
of the burden of choosing ρ and the ADMM updates become

x ← (
AH A+ P

)−1(
AH b+ Pz− y

)
z ← Prox	1,λ/p

(
x + P−1y

)
y ← y + P(x − z) (44)

where p := Diag(P), and Prox	1,w : CL → CL is the proximal
operator of the weighted 	1 norm with weights w ∈ RL++

Prox	1,w(x) := arg min
z
‖z‖w,1 + 1

2
‖x − z‖2

2 (45)

whose i th entry is given by

Prox	1,w(x)i = (1−wi/|xi |)+ xi . (46)

In case AH A is ill-conditioned (such as in SAR tomography),
P can be interpreted as a preconditioner. Needless to say,
Lemma 5 can also be applied to invert AH A+ P.

Pock and Chambolle (2011) [65] proposed a simple
and elegant way to construct diagonal preconditioners
for a primal–dual algorithm [54, §15.2] with guaranteed
convergence

pi := 1/‖ai‖αα ∀i ∈ [L] (47)

where α ∈ [0, 2] is a parameter.
4) Over-Relaxation: This means inserting between the x-

and z-updates of Algorithm 4 the following additional update:
x← βx + (1− β)z (48)

where β ∈ [1.5, 1.8] (see [53, §3.4.3] and the references
therein).

Fig. 5 shows the convergence curve of Algorithm 4
using different acceleration techniques, as applied to the real
SAR tomographic data (#6 in Section V). Each technique
did contribute to accelerating Algorithm 4 in comparison
with “baseline,” where we set ρ = 1. The number of
iterations of this and five other cases is listed in Table II.
Obviously, the combination of diagonal preconditioning and
over-relaxation was the most competitive one and will,
therefore, be adopted for all the ADMM-based algorithms in
the following.
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TABLE II

NUMBER OF ITERATIONS USING DIFFERENT ACCELERATION TECHNIQUES

Fig. 5. Convergence curve of Algorithm 4 using different acceleration
techniques. “Baseline”: ρ = 1. “Vary”: varying penalty parameter.
“Precondition”: diagonal preconditioning. “Relax”: over-relaxation. (Bottom)
Close-up of the top figure.

V. EXPERIMENT WITH TERRASAR-X DATA

In this section, we report our experimental results with a
real SAR data set.

A. Design of Experiment

As a demonstration, we used 31 TerraSAR-X staring
spotlight repeat-pass acquisitions of the central Munich area
from March 31, 2016 to December 7, 2017. This data set
was processed with the DLR’s Integrated Wide Area Proces-
sor [66], [67], as was elaborately described in [17]. In addition

Fig. 6. Eastern facade of the six-storey TUM-Nordbau building in our region
of interest [68]. (Left) In situ photograph. (Right) 3-D facade model. The black
shape corresponds to a metallic window.

Fig. 7. Single-master absolute vertical wavenumbers. The largest one is
approximately 0.31 m−1.

to sidelobe detection (see [17] and the references therein),
any nonpeak point inside a main lobe was also removed,
since it would otherwise lead to a “ghost” scatterer in the
result, as any sidelobe point would do too. Our region of
interest contains a six-storey building (“Nordbau”) of the
Technical University of Munich (TUM) shown in Fig. 6 (left).
The building signature in the SAR intensity image can be
observed in Fig. 9, where the regular grid of salient points
within the building footprint is a result of triple reflections on
three orthogonal surfaces: metal plate (behind window glass),
window ledge, and brick wall [68]. After main and sidelobe
detection, a total of 594 looks were left, whose azimuth-range
positions are shown in Fig. 8 (bottom).

A single-master stack was formed by choosing the
acquisition from December 20, 2016 as the one and only
master. Its vertical wavenumbers are shown in Fig. 7.
A sinusoidal basis function was used for modeling periodical
motion induced by temperature change. The vertical Rayleigh
resolution at the scene center is approximately 12.66 m.
The Crámer–Rao lower bound (CRLB) of height estimates
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given the aforementioned periodical deformation model [25]
and a nominal signal-to-noise ratio (SNR) of 2 dB is
approximately 1.10 m. NLS and L1RLS were applied to this
stack for tomographic reconstruction. The latter was solved
by Algorithm 4 augmented with diagonal preconditioning and
over-relaxation (see Section IV-B), where we set β = 1.8
and the choice of α is irrelevant (since A is a Fourier
matrix). The solution path of L1RLS was sampled 11 times
with the regularization parameter varying logarithmically from
λmin := 5 · 10−2‖RH g‖∞ to λmax := 5 · 10−1‖RH g‖∞.

We constructed a multi-master stack of small temporal
baselines: suppose 1′, 2′, 3′, 4′, . . . is a chronologically ordered
sequence of SLCs, the interferograms (edges) are (1′, 2′),
(3′, 4′), and so on (see Fig. 1). As a result, this stack
consists of 15 interferograms. Due to the small-baseline
feature of this stack, we did not employ any deformation
model for the sake of simplicity. NLS and BiCRAM
were applied to reconstruct the elevation profile, where
the latter was solved by Algorithm 3, employing diagonal
preconditioning and over-relaxation. Likewise, the solution
path of BiCRAM was also sampled 11 times, where λ1

was fixed as 1 (since it was deemed relatively insignificant
as far as our experience went), and λ2 was set to vary
logarithmically from λmin := 5 ·10−2 max{‖RH g‖∞, ‖SH g‖∞}
to λmax := 5 · 10−1 max{‖RH g‖∞, ‖SH g‖∞}. The initial
solution was given by γ (0) = (R ◦ S)H g due to its simplicity.
Alternatively, (28) could be used. In terms of off-grid
correction, forward-mode automatic differentiation [69] was
employed in order to circumvent analytically differentiating
the objective function of (16) for any number of scatterers,
and the optimization problem was solved by means of a BFGS
implementation [70].

Finally, we built a second small-baseline multi-master
stack in the identical way as the previous one. In addition,
we normalized each interferogram with the corresponding
master amplitude. We will refer to this as the fake single-
master stack, since we treated it as if it had been a single-
master one. In order to apply the single-master approach,
we calculated for each interferogram the difference between
the slave and master wavenumbers and used it as if it had been
the wavenumber baseline, i.e., by inadequately assuming

gngm ≈
∑

l

γl exp(− j(kn − km)sl) (49)

for each (m, n) ∈ E(G). Needless to say, NLS and L1RLS
were employed exactly the same as that in the single-master
case.

The next section briefly explains how we generated the
ground-truth data.

B. Generation of Height Ground Truth

Height ground-truth data were made available by an
SAR imaging geodesy and simulation framework [68].
The starting point was to create a 3-D facade model
from terrestrial measurements, by a (drone-borne) camera,
tachymeter, measuring rod, and differential global positioning
system (GPS), with an overall accuracy better than 2 cm and
a very high level of details [68]. Ground control points were

Fig. 8. SAR intensity image and height ground truth of our region of interest.
(Top) RaySAR height simulations at 30 matched PS coordinates (Level 1).
(Bottom) Interpolated height at 594 facade looks (Level 2).

Fig. 9. Locations of six looks subject to facade-roof layover.

used for referencing this facade model to an international
terrestrial reference frame. A visualization of the 3-D facade
model is provided in Fig. 6 (right). The ray-tracing-based
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Fig. 10. Height profile estimate of #1–3 in Fig. 9. Vertical line: before model-order selection. Circle: after model-order selection.

RaySAR simulator [71] was employed to simulate the
dominant scatterers that, as already mentioned in Section V-A,
correspond to the triple reflections on the building facade.
With the help of atmospheric and geodynamic corrections from
the DLR’s SAR Geodetic Processor [72], [73] and the newly
enhanced TerraSAR-X orbit products [74], their absolute
coordinates were converted into azimuth timing, range timing,
and height that we refer to as the Level-0 ground-truth data.

Level-1 ground-truth data consist of height at 30 simulated
PSs that are matched with the real ones. The matching was
conducted in the azimuth-range geometry, so as not to be
affected by any height estimate error [75]. Fig. 8 (top) shows
the height simulations at the subpixel azimuth-range positions

of the corresponding 30 PSs. This height is relative to a corner
reflector that is located on the top of a neighboring TUM
building and next to a permanent GPS station [68].

In addition, we performed height interpolation for a total
of 594 looks (see Section V-A) in the following way.
First, the height of each simulated PS was converted into
interferometric phase. Next, the distance to the polyline
representing the nearest range cross section of the building
facade was used as the independent variable to construct a
1-D interpolator. In the end, the phase was interpolated at
the previously mentioned 594 looks and converted back into
height. This interpolated height is referred to as the Level-2
ground truth and shown in Fig. 8 (bottom). Needless to
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Fig. 11. Height profile estimate of #4–6 in Fig. 9. Vertical line: before model-order selection. Circle: after model-order selection.

say, one assumption is that each scatterer, if it does exist,
should lie on the building facade. A cross-validation of this
1-D interpolator was performed in [68], where the standard
deviation (SD) and the median absolute deviation (MAD) were
shown to be 0.004 and 0.002 m, respectively.

In the next section, our preliminary results are reported.

C. Experimental Results

The experiments can be divided into three cate-
gories: single-master, multi-master, and fake single-master
(see Section V-A). In each category, two algorithms were
applied for tomographic reconstruction.

As a proof of concept, we selected six looks that are very
likely subject to the facade-roof layover. These six looks

were chosen in a systematic way: we performed tomographic
reconstruction on the single-master stack by using Tikhonov
regularization (i.e., the 	1 norm in the regularization term
of (36) is replaced by the 	2 norm), extracted all the seven
looks containing double scatterers, and discarded one look
whose height distance is almost identical to the one of another
look. These six looks are shown in Fig. 9, where the indices
increase with the decreasing estimated height distance from
approximately 1.5 to 0.8 times the vertical Rayleigh resolution.
This ordering agrees approximately with intuition under the
assumption that the roof is entirely flat: the higher the scatterer
on the facade, the less the height distance to the roof.

The estimated height profile is shown in Figs. 10 (#1–3)
and 11 (#4–6), where we used the vertical Rayleigh resolution
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Fig. 12. Single-master height estimates of single and double scatterers. (Top) NLS. (Bottom) L1RLS.

TABLE III

SINGLE- AND MULTI-MASTER HEIGHT ESTIMATES OF SIX LAYOVER CASES [M]

TABLE IV

SINGLE- AND MULTI-MASTER RUNTIME

of the single-master stack (see Section V-A) for normalizing
the x-axis. The height estimates are listed in Table III. In the
single-master setting, NLS and L1RLS produced very similar
height profiles, despite the occasional sporadic artifacts in the
latter, which are known to be an intrinsic problem of 	1-
regularization. Moreover, the height estimates were identical

TABLE V

SINGLE- AND MULTI-MASTER NUMBER OF SCATTERERS

after off-grid correction. In each case, the height estimate
of the lower scatterer fits very well the Level-2 RaySAR
simulation of facade. Overall, the multi-master results are
consistent with the single-master ones, with deviations of
height estimates typically of several decimeters. In the fake
single-master setting, however, layover separation was only
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Fig. 13. Multi-master height estimates of the single and double scatterers. (Top) NLS. (Bottom) BiCRAM.

Fig. 14. Fake single-master height estimates of the single and double scatterers. (Top) NLS. (Bottom) L1RLS.

successful in the fifth case, presumably due to the high
SNR (see the brightness of the look in Fig. 9). When the

height distance is significantly larger than the vertical Rayleigh
resolution (#1 and 2), both NLS and L1RLS could reconstruct
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TABLE VI

STATISTICS OF HEIGHT ESTIMATE ERROR [M]: 30 PSS (LEVEL 1)

TABLE VII

STATISTICS OF THE HEIGHT ESTIMATE ERROR [M]: EXTRACTED FACADE SCATTERERS (LEVEL 2)

Fig. 15. Normalized histogram of the height estimate error of 30 PSs
(Level 1). SM: single-master. MM: multi-master. FSM: fake single-master.

double scatterers, but only the one with larger amplitude
could pass model-order selection. When the height distance
approaches the vertical Rayleigh resolution or becomes even
smaller (#3, 4, and 6), neither algorithm could reconstruct
a second scatterer, and the height estimate of the single
scatterer after off-grid correction is also arguably wrong.
We are, therefore, convinced by this simple experiment that
the conventional single-master approach, if applied to a
multi-master stack, can be insufficient for layover separation.

Naturally, we also performed tomographic reconstruction
for all the 594 looks within the building footprint in Fig. 8
(bottom). Table IV lists the overall runtime on a desktop with
a quad-core Intel processor at 3.40 GHz and 16-GB RAM.
Note that the periodical deformation model was only used

Fig. 16. Normalized histogram of the height estimate error of the extracted
facade scatterers (Level 2). SM: single-master. MM: multi-master. FSM: fake
single-master.

in the single-master case, and the solution path of L1RLS
or BiCRAM was sampled 11 times (see Section V-A). The
height estimates of the single and double scatterers are shown
in Figs. 12–14 for the three categories, respectively. In the case
of double scatterers, the higher one was plotted. The seemingly
messy appearance in the left column is due to the fact that
single scatterers originate from both facade and roof. In spite
of this, the gradual color transition at the 30 PSs from far range
to near range agrees visually very well with the Level-1 ground
truth in Fig. 8 (top). Table V lists the number of scatterers in
each case. In the single-master setting, NLS detected almost
twice as many double scatterers as L1RLS. This is presumably
due to a higher false-positive rate: 2 out of 30 PS (fifth/second
row from the near range and fifth/fifth column from the
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Fig. 17. Scatter plot of the simulated and estimated heights of the single scatterers using Level-2 height ground truth. Black: extracted facade scatterers.
Gray: extracted nonfacade scatterers.

late azimuth on the 6 × 5 regular grid) double scatterers
were detected, although there should only be single ones.
The number of double scatterers in the multi-master case
is in the same order as the single-master L1RLS, and the
ratio between the number of single and the one of double
scatterers is also similar. We attribute the smaller number
of single scatterers to the nonconvexity of the optimization
problem. In particular, as Theorem 2(2) suggests, a certain
condition needs to be fulfilled for any nonzero solution of the
height profile estimate to exist at all, let alone whether an
algorithm can provably recover it. In the fake single-master
category, many fewer double scatterers were produced. This
is presumably due to the double scatterers being misdetected
as single scatterers, which occurred five out of six times in
the previous experiment (see Figs. 10 and 11).

The next section elucidates how we validated the height
estimates with the Level-1 and Level-2 ground-truth data.

D. Validation
Since the height ground truth is limited to facade only (see

Section V-B), the validation was focused on single scatterers
by the following two approaches: the first one uses 30 PSs and
the second one is based on the extracted facade scatterers.

As already mentioned in Section V-A, the 30 PSs
constituting the Level-1 ground truth in Fig. 8 (top) are caused
by triple reflections on the building facade and are located on
a regular grid of salient points. Due to the (almost) identical
scattering geometry, these PSs should have similar SNRs and
are, therefore, ideal for height estimate validation. In each of
the six cases, single scatterers were correctly detected at all
the 30 PSs—with the exception that double scatterers were
misdetected by the NLS in the single-master setting (see
Section V-C). For this reason, the height estimate error could
be evaluated straightforwardly. Fig. 15 shows the normalized
histogram and Table VI lists some of its statistical parameters.
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As a reference, the SD and MAD of the height estimate
error of the PSI result are about 0.28 and 0.22 m,
respectively [68]. In each of the three settings (single-master,
multi-master, and fake single-master), the respective two
algorithms performed similarly and no significant difference
is visible. A cross-comparison between the multi-master and
fake single-master cases revealed the superiority of the former:
its histogram is more centered around zero, and both of its
SD and MAD are slightly smaller. This is unsurprising, since
we already analyzed the implications of the single-look multi-
master data model for the single scatterers in Section II-B.
At this point, we could confidently assert that it does make
a difference in practice, albeit small, despite the longer (by
approximately one order considering that the solution path of
BiCRAM was sampled 11 times) processing time. Somewhat
surprisingly, the multi-master result is also slightly better than
the single-master one. We suspect that this is due to the
complication of the single-master tomographic processing by
using the (imperfect) periodical deformation model and the
justified simplification in the multi-master case thanks to the
small-baseline configuration (so that the deformation-induced
phase is mitigated by forming interferograms).

The second approach is based on all facade scatterers
(Level-2 ground truth) in Fig. 8 (bottom), given that they
do exist. The scatter plots of the simulated and estimated
heights of the single scatterers are shown in Fig. 17. It is
obvious that many single scatterers are located on the building
roof (see the gray dots above the diagonal line). In order
to extract the facade scatterers, we used a threshold of
±3×CRLB added to the simulated value. The extracted facade
scatterers, whose number is given in Table V for each case,
are shown as black dots and were used for height estimate
validation. The normalized histogram is shown in Fig. 16, and
some of its statistical parameters are provided in Table VII.
Likewise, the two respective algorithms performed similarly
in each setting, and the multi-master height estimate error has
slightly less deviation. The SD and MAD are worse than those
in Table VII due to the much larger range of SNRs.

The next section concludes this article and suggests some
prospective work.

VI. CONCLUSION AND DISCUSSION

The previous sections provided new insights into the
single-look multi-master SAR tomography. The single-look
multi-master data model was established, and two algorithms
were developed within a common inversion framework. The
first algorithm extends the conventional NLS to the single-look
multi-master data model, and the second one uses bi-convex
relaxation and alternating minimization. Extensive efforts were
devoted to studying the nonconvex objective function of
the NLS subproblem and to experimenting with different
acceleration techniques for the ADMM-based algorithms.
We demonstrated with the help of a real TerraSAR-X data
set that the conventional single-master approach, if applied to
a multi-master stack, can be insufficient for layover separation,
even when the height distance between the two scatterers
is significantly larger than the vertical Rayleigh resolution.

By means of an SAR imaging geodesy and simulation frame-
work, we managed to generate two levels of height ground
truth. The height estimates in each of the three settings were
validated at either 30 PSs or hundreds of extracted facade scat-
terers. Overall, the multi-master approach performed slightly
better, although it was computationally more demanding.

A special case of the general problem analyzed so far is
single-look SAR tomography using only bistatic (or pursuit
monostatic) interferograms. On the one hand, the advantages
are that bistatic interferograms are (almost) APS-free, and
the data model is still linear for any single scatterer whose
reflectivity can be estimated up to a constant phase angle (7).
On the other hand, the disadvantages are that, for double or
multiple scatterers, bistatic interferograms are not motion-free
(see Section II-B), and the data model is nonlinear (9).

An alternative way to formulate the problem in the
bistatic setting is to parameterize APS without forming any
interferogram. Let g and h be the bistatic observations of the
master and slave scenes, respectively. We have essentially two
data sets

g ≈ (Rγ ) ◦ exp( jφ), h ≈ (Sγ ) ◦ exp( jφ) (50)

where φ ∈ RN ′ is the APS vector. Under the sparsity
or compressibility assumption of γ , one could consider the
following problem:

min
γ ,φ

1

2
‖(Rγ ) ◦ exp( jφ)− g‖2

2

+ 1

2
‖(Sγ ) ◦ exp( jφ)− h‖2

2 + λ‖γ ‖1 (51)

or more compactly

min
γ ,φ

1

2
‖(R̃γ

) ◦ (
Ĩ exp( jφ)

)− g̃‖2
2 + λ‖γ ‖1 (52)

where R̃ :=
(

R
S

)
, Ĩ :=

(
I
I

)
, and g̃ :=

(
g
h

)
. Note that this

problem is bi-convex in γ and φ.
Inspired by PSI, another related problem is SAR tomogra-

phy on the edges. Let γ and θ represent the reflectivity profiles
of the two neighboring looks, and their phase-calibrated SLC
measurements be denoted as g and h, respectively. Consider
the following problem:

min
γ ,θ

1

2
‖(Rγ ) ◦ (

Sθ
)− g ◦ h‖2

2 + λ1‖γ ‖1 + λ2‖θ‖1 (53)

which is bi-convex in γ and θ . Likewise, the rationale of g◦h
is to mitigate APS for the neighboring looks. Alternatively,
a parametric approach similar to (51) could also be considered.

APPENDIX A
RECAP OF ADMM

The ADMM [53] solves a minimization problem in the form
of

min
x,z

f (x)+ g(z)

s. t. Cx + Dz = e (54)
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by alternatively minimizing its augmented Lagrangian
[54, p. 509]

Lρ(x, y, z) := f (x)+ g(z)+�〈y,Cx + Dz− e〉
+(ρ/2)‖Cx + Dz− e‖2

2 (55)

that is

x(k+1) := arg min
x

Lρ
(
x, y(k), z(k)

)
z(k+1) := arg min

z
Lρ

(
x(k+1), y(k), z

)
y(k+1) := y(k) + ρ(

Cx(k+1) + Dz(k+1) − e
)

(56)

in the kth iteration, where ρ ∈ R++ is a penalty parameter.

APPENDIX B

PROOF OF PROPOSITION 1

The proof uses the following minor result.
Lemma 6: For any F,G ∈ Rn×n and c, d ∈ R such that

c2 + d2 = 1, the following equalities hold:(
cI dI

−dI cI

)−1(F −G

G F

)(
cI dI

−dI cI

)
=

(
F −G

G F

)
(

cI dI

−dI cI

)−1(F G

G −F

)
=

(
F G

G −F

)(
cI dI

−dI cI

)
. (57)

Proof: Observe that for any a, b ∈ R such that a2+b2 �= 0

(
aI bI

−bI aI

)−1

= 1

a2 + b2

(
aI −bI

bI aI

)
. (58)

The rest of the proof follows by straightforward computations.
�

Now, we turn our attention to the proposition.
Proof of Proposition 1: First, we prove that ∇2 f (x) and
∇2 f (x exp( jφ)) are similar, i.e., there exists an invertible P
such that ∇2 f (x) = P−1∇2 f (x exp( jφ))P.

Observe that

C(x exp( jφ))

= AH Diag
(
(Bx exp( jφ)) ◦ (

Bx exp( jφ)
))

A

+BH Diag
(
(Ax exp( jφ)) ◦ (

Ax exp( jφ)
))

B

= C(x)

D(x exp( jφ))

= AH Diag((Ax exp( jφ)) ◦ (Bx exp( jφ)))B

+BH Diag((Ax exp( jφ)) ◦ (Bx exp( jφ)))A

= D(x) exp( j2φ)

E(x exp( jφ))

= AH Diag
(
(Ax exp( jφ)) ◦ (

Bx exp( jφ)
)− b

)
B

+BH Diag
((

Ax exp( jφ)
) ◦ (Bx exp( jφ))− b

)
A

= E(x). (59)

Let C := C(x), D := D(x), and E := E(x). The Hessian
becomes

∇2 f (x exp( jφ))

=
(�(C) −�(C)
�(C) �(C)

)

+
(�(D exp( j2φ)) �(D exp( j2φ))
�(D exp( j2φ)) −�(D exp( j2φ))

)

+
(�(E) −�(E)
�(E) �(E)

)

=
(�(C+ E) −�(C+ E)
�(C+ E) �(C+ E)

)

+
(�(D) �(D)
�(D) −�(D)

)(
cos(2φ)I sin(2φ)I
− sin(2φ)I cos(2φ)I

)
. (60)

The choice of P can be divided into two cases depending
on the value of φ.

In the trivial case, φ = (2k + 1)π/2 for some k ∈ Z. Let

P :=
(

0 −I
I 0

)
. (61)

This leads to

P−1∇2 f (x exp( jφ))P

=
(

0 −I
I 0

)−1(�(C+ E) −�(C+ E)
�(C+ E) �(C+ E)

)(
0 −I
I 0

)

+
(

0 −I
I 0

)−1(�(D) �(D)
�(D) −�(D)

)(−I 0
0 −I

)(
0 −I
I 0

)

=
(�(C+ E) −�(C+ E)
�(C+ E) �(C+ E)

)

+
(�(D) �(D)
�(D) −�(D)

)(
0 −I
I 0

)(−I 0
0 −I

)(
0 −I
I 0

)

=
(�(C+ E) −�(C+ E)
�(C+ E) �(C+ E)

)
+

(�(D) �(D)
�(D) −�(D)

)
= ∇2 f (x) (62)

where the second equality follows from Lemma 6.
In the nontrivial case, φ �= (2k + 1)π/2 for any k ∈ Z. Let

P :=

⎛
⎜⎜⎝

√
1+ cos(2φ)

2
I − sin(2φ)√

2(1+ cos(2φ))
I

sin(2φ)√
2(1+ cos(2φ))

I

√
1+ cos(2φ)

2
I

⎞
⎟⎟⎠. (63)

Likewise, the same equality holds.
Finally, we use the similarity property to show that an eigen-

value of ∇2 f (x) is also an eigenvalue of ∇2 f (x exp( jφ)).
Let (λ, v) be an eigenpair of ∇2 f (x). The similarity

property implies

λv = ∇2 f (x)v = P−1∇2 f (x exp( jφ))Pv

�⇒ ∇2 f (x exp( jφ))Pv = λPv (64)

that is, (λ,Pv) is an eigenpair of ∇2 f (x exp( jφ)). The proof
in the other direction is straightforward. �
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APPENDIX C
PROOF OF THEOREM 2

Before we delve into the proof, it is useful to define a few
auxiliary variables. Let

C̃ :=
(�(C) −�(C)
�(C) �(C)

)

D̃ :=
(�(D) �(D)
�(D) −�(D)

)

Ẽ :=
(�(E) −�(E)
�(E) �(E)

)
(65)

so that ∇2 f (x) = C̃+D̃+Ẽ. Likewise, C̃, D̃, Ẽ : Cn → R2n×2n

are the de facto (composite) functions of x. The proof of the
main theorem is based on the following minor result.

Lemma 7: For any x := xR + jxI , the following equalities
hold: (

xT
R xT

I

)
C̃

(
xR

xI

)
= xH Cx

(
xT

R xT
I

)
D̃

(
xR

xI

)
= �(

xH Dx
)

(
xT

R xT
I

)
Ẽ

(
xR

xI

)
= xH Ex

C̃
(

xR

xI

)
=

(�(Cx)
�(Cx)

)

D̃
(

xR

xI

)
=

(�(Dx)
�(Dx)

)

Ẽ
(

xR

xI

)
=

(�(Ex)
�(Ex)

)
. (66)

Proof: The proof follows by straightforward computa-
tions. �

Proof of Theorem 2: (1) Since ∇ f (0) = 0, 0 is a critical
point. Observe that

C(0) = D(0) = 0

E(0) = −AH Diag(b)B− BH Diag
(
b
)
A. (67)

For any x := xR + jxI �= 0

(
xT

R xT
I

)∇2 f (0)
(

xR

xI

)

= (
xT

R xT
I

)
Ẽ(0)

(
xR

xI

)
= xH E(0)x (68)

where the second equality is given by Lemma 7. Since E(0)
is Hermitian, we have{

xH E(0)x > 0, if AH Diag(b)B+ BH Diag
(
b
)
A ≺ 0

xH E(0)x <0, if AH Diag(b)B+ BH Diag
(
b
)
A 
 0

(69)

for any x ∈ Cn \ {0}.
(2) Suppose ∃z �= 0 such that ∇ f (z) = 0. Equation (26)

implies

d(z) = AH
((
(Az) ◦ (

Bz
)− b

) ◦ (Bz)
)

+BH
(((

Az
) ◦ (Bz)− b

) ◦ (Az)
)

= 0. (70)

A few manipulations lead to

AH
(
(Az) ◦ (

Bz
) ◦ (Bz)

)+ BH
((

Az
) ◦ (Bz) ◦ (Az)

)
= AH Diag(b)Bz+ BH Diag

(
b
)
Az. (71)

Multiplying both sides with zH on the left-hand side yields

zH
(
AH Diag(b)B+ BH Diag

(
b
)
A

)
z=2‖(Az) ◦ (

Bz
)‖2

2 ≥ 0

(72)

which implies AH Diag(b)B+ BH Diag(b)A ⊀ 0.
(3a) We prove that ∇2 f (z) is rank-deficient by showing

∇2 f (z)
(

xR

xI

)
= 0, where x := zI − jzR. Observe the

following.

1) (Ax) ◦ (Bz)+ (Az) ◦ (Bx) = 0.
2) For any F, Fz = 0 �⇒ Fx = 0, which together with

(70) implies

0 = AH Diag
(
(Az) ◦ (

Bz
)− b

)
Bx

+BH Diag
((

Az
) ◦ (Bz)− b

)
Ax. (73)

By Lemma 7, it suffices to check Cx + Dx + Ex

Cx + Dx + Ex

= AH Diag
(
(Bz) ◦ (

Bz
))

Ax

+BH Diag
(
(Az) ◦ (

Az
))

Bx

+AH Diag((Az) ◦ (Bz))Bx

+BH Diag((Az) ◦ (Bz))Ax

+AH Diag
(
(Az) ◦ (

Bz
)− b

)
Bx

+BH Diag
((

Az
) ◦ (Bz)− b

)
Ax

= AH Diag(Bz)
(
(Ax) ◦ (

Bz
)+ (Az) ◦ (

Bx
))

+BH Diag(Az)
((

Az
) ◦ (Bx)+ (

Ax
) ◦ (Bz)

)
= 0. (74)

(3b) For any φ ∈ R, it is obvious that

d(z exp( jφ)) = d(z) = 0

f (z exp( jφ)) = f (z), (75)

that is, z exp( jφ) is also a nonzero critical point that is as good.
By Proposition 1, ∇2 f (x exp( jφ)) has the same eigenvalues
as ∇2 f (x) and, therefore, the same definiteness. �

APPENDIX D
PROOF OF THEOREM 3

Without loss of generality, assume that ‖A ◦ B‖ �= 0.
Proof of Theorem 3: (1) When n = 1, observe that

AH Diag(b)B+ BH Diag
(
b
)
A = 2�

((
A ◦ B

)H
b
)
. (76)

The rest follows directly from Theorem 2(1).
(2) For any z ∈ C \ {0}, we have

d(z) = AH
((
(Az) ◦ (

Bz
)− b

) ◦ (Bz)
)

+BH
(((

Az
) ◦ (Bz)− b

) ◦ (Az)
)

= z|z|2AH
(
A ◦ B ◦ B

)− zAH (b ◦ B)

+ z|z|2BH
(
A ◦ B ◦ A

)− zBH
(
b ◦ A

)
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= z|z|2‖A ◦ B‖2
2 − z

(
A ◦ B

)H
b

+ z|z|2‖A ◦ B‖2
2 − z

(
A ◦ B

)H
b

= 2z
(
‖A ◦ B‖2

2|z|2 − �
((

A ◦ B
)H

b
))

(77)

which has a nonzero root if and only if �((A ◦ B)H b) > 0.
If this condition is satisfied, its power is given by

|z|2 = �
((

A ◦ B
)H

b
)
/‖A ◦ B‖2

2. (78)

(3a) Suppose ∃z �= 0 such that ∇ f (z) = 0. Equations (26)
and (2) imply

‖A ◦ B‖2
2|z|2 −�

((
A ◦ B

)H
b
)
= 0. (79)

By Lemma 7, we have for any x := xR + jxI �= 0

(
xT

R xT
I

)∇2 f (z)
(

xR

xI

)

= xH C(z)x +�(
xH D(z)x

)+ xH E(z)x

= |x|2AH Diag
(
(Bz) ◦ (

Bz
))

A

+ |x|2BH Diag
(
(Az) ◦ (

Az
))

B

+ �(
x2AH Diag((Az) ◦ (Bz))B

)
+ �(

x2BH Diag((Az) ◦ (Bz))A
)

+ |x|2AH Diag
(
(Az) ◦ (

Bz
)− b

)
B

+ |x|2BH Diag
((

Az
) ◦ (Bz)− b

)
A

= 2‖A ◦ B‖2
2|x|2|z|2 + 2‖A ◦ B‖2

2 �
(
x2z2

)
+ 2|x|2

(
‖A ◦ B‖2

2|z|2 −�
((

A ◦ B
)H

b
))

= ‖A ◦ B‖2
2

(
2|x|2|z|2 + 2�(

x2z2
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= ‖A ◦ B‖2
2(xz+ xz)2 ≥ 0 (80)

where the equality can be attained with x = zI − jzR.
That ∇2 f (z) is rank-deficient is implied by Theorem 2(3a).
(3b) This follows directly from Theorem 2(3b).
(3c) Let us perturb z by ε ∈ C with |ε| being arbitrarily

small and observe

f (z+ ε) = 1

2
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where the last equality is given by Equation (79). As a result

f (z+ ε)− f (z) = 1

2
‖A ◦ B‖2

2

(
2�(εz)+ |ε|2)2 ≥ 0, (82)

that is, z is a local minimum. �
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