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Iterative Scale-Invariant Feature Transform for
Remote Sensing Image Registration

Shuhan Chen , Graduate Student Member, IEEE, Shengwei Zhong , Bai Xue, Member, IEEE,
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Abstract— Due to significant geometric distortions and illu-
mination differences, developing techniques for high precision
and robust multisource remote sensing image registration poses
a great challenge. This article presents an iterative image
registration approach, called iterative scale-invariant feature
transform (ISIFT) for remote sensing images, which extends
the traditional scale-invariant feature transform (SIFT)-based
registration system to a close-feedback SIFT system that includes
a rectification feedback loop to update rectified parameters
in an iterative manner. Its key idea uses consistent feature
point sets obtained by maximum similarity to calculate new
alignment parameters to rectify the current sensed image and
the resulting rectified sensed image is then fed back to update
and replace the current sensed image as a new sensed image
to reimplement SIFT for next iteration. The same process is
repeated iteratively until an automatic stopping rule is satisfied.
To evaluate the performance of ISIFT, both the simulated and
real images are used for experiments for the validation of ISIFT.
In addition, several data sets are particularly designed to conduct
a comparative study and analysis with existing state-of-the-art
methods. Furthermore, experiments with different rotation are
also performed to verify the adaptability of ISIFT under different
rotation distortions. The experimental results demonstrate that
ISIFT improves performance and produces better registration
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accuracy than traditional SIFT-based methods and existing state-
of-the-art methods.

Index Terms— Image registration, iterative scale-invariant fea-
ture transform (ISIFT), random sample consensus (RANSAC),
scale invariant feature transform (SIFT), similarity metric.

NOMENCLATURE

FS j j th feature point set.
ISIFT Iterative scale-invariant feature transform by

rectification.
ISIFTD ISIFT with a direct feedback rectification.
IS_M ISIFT with mutual information.
IS_NM ISIFT with normalized mutual information.
IS_RM ISIFT with regional mutual information.
IS_RIM ISIFT with rotationally invariant regional

mutual information.
MI Mutual information.
NMI Normalized mutual information.
PS j j th parameter set obtained by the FS j .
R Reference image.
RANSAC Random sample consensus.
RIRMI Rotationally invariant regional mutual informa-

tion.
RMI Regional mutual information.
RMSE Root mean square error.
RMSE_D RMSE by ISIFTD.
RMSE_M RMSE by IS_M.
RMSE_N RMSE by IS_NM.
RMSE_R RMSE by IS_RM.
RMSE_RI RMSE by IS_RIM.
RMSE_S RMSE by scale-invariant feature transform.
S Sensed image.
SAD Spectral angular distance.
SIFT Scale-invariant feature transform.
SV Similarity value.

I. INTRODUCTION

IMAGE registration is a fundamental process of aligning
two or more remote sensing images of the same scene

and transforming them into one image in a single coor-
dinate system. This process geometrically aligns the two
images (referred to as the reference image and the sensed
image) acquired by either the same sensor in different times
or different sensors from various viewpoints of the same

0196-2892 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on September 01,2020 at 03:48:45 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9996-0666
https://orcid.org/0000-0001-8317-728X
https://orcid.org/0000-0001-7611-845X
https://orcid.org/0000-0002-9276-8679
https://orcid.org/0000-0002-5450-4891


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

scene [1]. Therefore, image registration is a crucial preprocess
in many remote sensing applications, such as change detec-
tion [2]–[4], image fusion [5][7], superresolution reconstruc-
tion [8], [9], image retrieval [10][12], and image caption [13],
[14]. Accordingly, designing and developing an accurate,
effective, and robust image registration process to yield high
registration accuracy is critical to image data analysis since
it has significant impact on follow-up data processing. Over
the past decades, many research efforts have been directed
for developing various methods for remote sensing image
registration which can be generally categorized into feature-
based methods [15]–[34], area-based methods [35][38], and
joint area–feature-based methods [39][42], [47], [48], [58][61].
In the following, we briefly discussed these works and detailed
reviews are provided in Section II.

The first category comprises works based on local invariant
features due to their robustness to significant geometric and
illumination differences and focuses on how to extract enough,
uniform distribution and stationary features, construct robust
and distinctiveness descriptors, and match feature with outlier
elimination. Many feature-based methods are proposed and
take advantage of extracted features to obtain better perfor-
mance for registering remote sensing images with significant
geometric differences.

The second category consists of methods developed based
on similarity metrics because of their invariance to nonlinear
intensity differences. They attempt to construct robust similar-
ity metrics to evaluate the similarity of overlapping regions of
image pairs to be registered. Thus, the similarity also reflects
the quality of the registration parameters to some extent.
The more accurate the correspondence between the similarity
metric and the registration error, the better the registration
parameters selected based on the similarity metric which is
expected to reflect the registration parameters to a greater
extent. However, these methods require prior knowledge of
the initial parameters or are used for images with the same
resolution.

The third category includes methods that align images by
combining intensity information with local features. By taking
advantage of the robustness of features to scale variances and
the high precision of similarity metrics to grayscale differ-
ences, this type of methods integrates information obtained
from local features and similarity metrics to be able to
effectively register images with large geometric and grayscale
differences. There are many existing works that use a feature-
based method as a coarse registration to calculate parameters,
which can be used as the initial condition to perform fine
registration using an area-based method. Usually, such fine
registration is achieved by solving an objective function or
tuning local features based on their similarity values (SVs) to
obtain the final registration parameters.

Different from the above-mentioned methods, all of which
are indeed feedforward open systems, this article develops
an iterative registration system, called iterative scale-invariant
feature transform (ISIFT), to further improve the registration
accuracy. However, a simple repeatedly implementing image
registration system in an iterative process does not work. This
is because such a direct iterative image registration system

does not guarantee that the resulting registration error will be
reduced through an iterative process. To address this issue,
a judicious updating rule must be developed to ensure that
the registration error will not be increased after each iteration.
The proposed ISIFT particularly designs an intelligent strategy
that combines spatial consistency and intensity similarity to
produce better consistent feature point sets to rectify the
current sensed image by a feedback loop via an iterative
process.

There are several novelties derived from ISIFT which can
be described as follows.

The first and the foremost is to develop a close-feedback
registration system to provide a new rectified sensed image that
can be used to update and replace the current sensed image via
a feedback loop as to improve the registration accuracy. Unlike
many modified and extended versions of SIFT which are still
feedforward open systems, the proposed ISIFT implements a
consistent feature point set selection strategy coupled with a
spatial intensity similarity method to obtain consistent feature
point sets and then compares the resulting rectified image
against the current sensed image to determine whether the
current sensed image should be updated and replaced. If it
does, the SIFT-rectified image will be fed back to replace the
current sensed image for next iteration. Such a feedback loop
is referred to as rectification feedback loop. Otherwise, the cur-
rent sensed image will remain unchanged and be used again
for the next iteration. So, ISIFT is not a simple direct iterative
process but rather an iterative process of implementing SIFT
with an intelligent automatic updating strategy that uses feed-
back provided by the spatial information obtained from an
intensity similarity metric. Technically, ISIFT combines two
separate processes, a feature extraction method and a spatial
consistency registration based on intensity similarity into a
close-feedback system to update currently being processed
sensed images iteratively. The use of a feature extraction
method combined with an intensity similarity metric method
to find consistent feature point sets to rectify the currently
being used sensed image via feedback loops is considered as
a major novelty derived from ISIFT and believed to be the
first work ever reported in the image registration literature.

Another important novelty is the iterative process carried
out by ISIFT which provides progressive profiles of how
SIFT-matched feature point sets are changed iteration by
iteration. During such an iterative process, some feature sets
are stable and stay unchanged, but some are not. Such profiles
of iterative changes in feature matching point sets offer a rare
view of how SIFT works from one iteration to another.

Since the rectified sensed image from a direct feedback of
a SIFT does not always work, the third novelty is to include
a similarity metric to measure the similarity between the
rectified image and the reference image to determine whether
their similarity difference is less than the difference between
the current sensed image and reference image. If it does, the
rectified image is then fed back to replace the current sensed
image. Otherwise, the current sensed image will remain the
same and unchanged for next iteration. So, ISIFT is not a
straightforward iterative process. It includes a custom-designed
feedback rule which utilizes intensity similarity information
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to determine whether the current sensed image needed to be
updated by feedback.

The fourth novelty is to develop a spatial–intensity registra-
tion method which uses RANSAC to select spatial-consistent
feature point sets followed by a similarity metric to further
select one feature point set with maximum similarity from
the RANSAC-obtained spatial-consistent feature point sets.
Although many feature-area-based methods have been pro-
posed in the past, most of them are based on a coarse-to-fine
strategy or a similarity metric-based local feature matching.
Our proposed spatial consistency based on intensity similarity
method develops a new and novel registration strategy which
can improve the registration results. Most importantly, this
strategy is very suitable for an iterative process. Specifically,
the used similarity metric not only can be used to select
spatial-consistent feature point sets but also can be used to
determine whether the iterative process should be continued
or terminated.

As a summary, two great benefits can be offered by ISIFT.
One is the joint use of spatial consistency and intensity
similarity to select consistent feature point sets which are
then used to rectify the currently sensed image to reduce
registration errors. The other is the use of feedback resulting
rectified sensed image to improve the registration accuracy
iteratively by using the SV between two consecutive iterations
as an effective measure for registration accuracy and as a
stopping rule to determine whether an iterative process should
be terminated.

The remainder of this article is organized as follows. The
related work is reviewed in Section II. The proposed new
iterative image registration method, ISIFT is described in
Section III. The experimental setting is detailed in Section IV
followed by a comparative study and analysis of exten-
sive experiments along with their results and discussions
in Section V. Finally, a brief conclusion and contributions
are summarized in Section VI. In addition, the appendix is
included to discuss various similarity metrics and provide a
list of acronyms used in this article.

II. RELATED WORKS

This section provides a review of previous works relevant
to the work presented in this article.

A. Feature-Based Methods

One of the most widely used feature-based registration
methods is the scale-invariant feature transform (SIFT)-based
method [15] which uses the difference of Gaussian (DoG)-
based scale space functions and the distributions of gradients
to detect and describe local features followed by a similarity
metric or distance to find matching features by a spatial-based
or statistical model-based method to eliminate mismatching
features. In order to obtain high robustness and accuracy,
existing algorithms usually focus on the distribution and signif-
icance of local features, the robustness and distinguishability
of feature descriptors, and the stability and accuracy resulting
from feature matching.

From the perspective of local feature extraction, most
methods work on extracting stable, salient, and reasonably
distributed local features. To have the feature quality guaran-
teed, [16] developed a uniform robust scale-invariant feature
(UR-SIFT) method based on the stability and distinctive-
ness constraints which select local feature among the initial
SIFT-selected features in the full spatial and scale resolutions.
UR-SIFT divides an image into uniform cells as to achieve
uniform spatial distribution, which can be used for register-
ing images with large-scale differences. In order to further
distribute features in each cell, [17] modified UR-SIFT set
a minimum Euclidean distance, r to the number of pixels
that should be maintained when the features are selected
from input images. Besides, [18] developed optical-SAR SIFT
(OS-SIFT) to utilize two methods, multiscale ratio of expo-
nentially weighted averages (ROEWAs) operator and multi-
scale Sobel detector, to calculate gradients of a SAR image
and an optical image, respectively. Instead of building a
Gaussian scale space as SIFT does, OS-SIFT constructed
two Harris scale spaces for both images. Furthermore,
Chang et al. [19] employed a bilinear interpolation method
to down-sample the image during the construction of a
scale space and used a more accurate coordinate transfor-
mation to solve accuracy problems which are caused by
shrinking the sensed image without interpolation. Sedaghat
and Mohammadi [20] used a novel competency criterion,
which is based on a weighted ranking process using three
quality measures, including robustness, spatial saliency, and
scale parameters, and performed in a multilayer gridding
schema to improve the quantity and distribution of local
features.

As for the local feature description, some SIFT-modified
feature descriptors were developed to divide grids and con-
struct a gradient direction histogram in a local region to
account for statistics. Bay et al. [21] proposed a SIFT-like
descriptor, called speeded-up robust features (SURFs) descrip-
tor, which used Haar’s wavelets to extract local features.
Both SIFT and SURF used the grid Cartesian coordinate
system as opposed to gradient location and orientation his-
togram [22] and DASIY [23], both of which used the grid
layout in the polar coordinate system. In order to make
local geometric distortions robust, Sedaghat and Ebadi [24]
proposed an adaptive binning scale-invariant feature trans-
form which used an adaptive histogram quantization strat-
egy to compute feature locations and gradient orientations
to be robust and resistant to a local view distortion so
that the discriminability and robustness are significantly
improved. Chen et al. [25] developed a descriptor, partial
intensity-invariant feature descriptor (PIIFD), to modify and
limit gradient orientations between 0 and π during computing
PIIFD. Sedaghat and Ebadi [26] proposed a SIFT local feature-
based distinctive order self-similarity descriptor which ranked
correlation values among data points in a local region to con-
struct a descriptor. Sedaghat and Mohammadi [27] proposed a
novel descriptor based on an extended self-similarity measure,
called histogram of oriented self-similarity (HOSS), which
computed the self-SVs in multiple directions using an oriented
rectangular patch. Moreover, a novel index map called rotation
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index of the maximal correlation (RIMC) incorporated with an
adaptive log-polar spatial structure was proposed.

Based on the extracted local feature locations with their
descriptors, the best matching candidate for each keypoint
can be obtained as the initial matching feature point pairs by
comparing the ratio of the closest neighboring distance to that
of the second-closest neighboring distance. One challenge of
these feature point-matching methods is to remove outliers as
to increase correct matches. To eliminate incorrect matches,
statistical model-based methods using geometric constraints
and methods using spatial information are commonly used.
The most frequently used robust statistical model-based esti-
mator for eliminating feature mismatching is random sample
consensus (RANSAC) [28], which selected the maximum con-
sistent feature points as desired matching points for calculating
the final alignment parameters. Song et al. [29] proposed
a SIFT-based robust estimation algorithm, called histogram
of triangle area representation sample consensus for remote
sensing image registration. Wu et al. [30] also proposed a fast
sample consensus to find an initial correct matching feature
set and to iteratively select correct matches to increase the
correct matches. Finally, an imprecise point removal strategy is
further proposed to increase the accuracy of feature matching.
Ma et al. [31] developed a locally linear transformation
(LLT) algorithm, which formulated the outlier elimination and
parameter estimation as a maximum-likelihood estimation of
a Bayesian model with hidden variables. In order to solve the
problem, a local geometrical constraint was introduced and the
expectation–maximization (EM) algorithm was used. Based on
local geometrical relationship, Ma et al. [32], [33] proposed
a locality preserving matching (LPM), which formulated the
neighborhood structures of potential true matches between
two images as a mathematical model and obtained a simple
closed-form solution. Ma et al. [34] proposed a method based
on spatial consistency with a progressive matching strategy
and then a sparse approximation was applied to the estimate
of spatial consistency, which preserved inner features and
eliminated outliers.

B. Area-Based Methods

An area-based method is a nonconvex optimization tech-
nique. One of the most successfully used area-based meth-
ods is mutual information (MI)-based [35] methods which
make use of statistics on intensity correlation of overlapping
regions between a reference image and a sensed image.
However, such MI-based methods do not take spatial infor-
mation into account. Thus, many methods modified from
MI were proposed to include spatial information. Spatial
MI (SMI) [36] integrates MI, which is used to obtain the
local optimal transformation with spatial information based
on phase congruency, which is invariant to illumination and
contrast condition. Region MI (RMI) [37] effectively took
care of intensity of pixels in a neighborhood region by
using high-dimension statistical analysis. In [38], rotationally
invariant regional MI (RIRMI) was developed by combining
MI with regional information obtained from the statistical
relationship with rotationally invariant description within the

overlapping region as to improve the robustness of intensity
difference and geometric distortion. All the above-mentioned
spatial information-based MI methods mainly focused on how
to improve their robustness and distinctiveness simultaneously.

C. Joint Area–Feature-Based Methods

There are two ways to implement joint area–feature-based
methods by fusing feature-based and area-based methods. One
is to perform preregistration using feature-based matching
methods followed by area-based methods to refine the reg-
istration accuracy. For example, Gong et al. [39] used SIFT
to obtain the initial matching parameters and implemented
a fine-tuning process by maximizing MI via a modified
Marquardt–Levenberg search strategy in a multiresolution
framework. Zhao et al. [40] implemented a fine registra-
tion process by maximizing the RMI via a chaotic quantum
particle swarm optimization. The other is also to perform
preregistration but differently from the first one by combining
feature-based and area-based methods to refine the registra-
tion accuracy. Ye and Shan [41] proposed a coarse-to-fine
automatic registration scheme in which preregistration was
first implemented by the scale restriction SIFT [42] and then
followed by Harris’ corner detection integrated with a local
self-similarity descriptor to yield a more accurate piecewise
transformation using normalized correlation coefficients for
fine registration.

III. ITERATIVE SIFT

The idea of ISIFT was briefly discussed in Section I. This
section presents its ideas and details of how the classical SIFT
is extended to an iterative version of SIFT. The entire iterative
process is described in Fig. 1 and accomplished by three
stages. In the first stage, SIFT is implemented to extract and
describe feature points via spectral angular distance (SAD)
to measure the matching between two feature sets. It is
then followed by the second stage which uses RANSAC
to obtain candidate feature sets based on the initial SIFT-
matched feature sets and a similarity metric to find a feature
set corresponding to the maximum SV as the final feature set.
Finally, ISIFT is completed by the third stage which feeds
back the sensed image rectified by the transformation matrix
obtained by the final feature set to replace the current sensed
image as a new sensed image for next round iteration provided
that an updating rule is satisfied. The details of implementing
each of the above-mentioned three stages are described stage-
by-stage as follows.

A. Stage 1: Feature Matching by SIFT

The goal of the first stage is to find the initial matching
feature points. Let two images to be registered be denoted by
the reference image R and the sensed image S, both of which
are input to SIFT [15] to extract and describe local features,
denoted by FR and FS , respectively.

For feature extraction, the potential feature points are
detected by searching over all their scales and spatial loca-
tions. The detection of scale-space extrema is implemented
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Fig. 1. Graphic diagram of implementing ISIFT based on maximum similarity and random sample consensus.

by detecting the local maxima and minima of D(x), which
is defined as the convolution of the DoG function with an
image, i.e., FS or FR. In order to exact locations of features,
a detailed fit to the nearby data samples is performed. Since
there are low-contrast points or poorly localized edge points
among these candidate feature points, their contrast values and
principal curvature ratios are used to reject the unstable feature
points.

After stable candidate features are detected, a dominant
orientation is assigned to each keypoint based on local image
gradient direction histogram, thereby achieving invariance to
image rotation. Then, it is followed by a descriptor vector
which is computed for each feature point. Such a descriptor is
a 3-D histogram of gradient magnitudes and orientations. The
gradient orientation angle is quantized into eight orientation
bins and the location is quantized into a 4 × 4 location grid
to form a 128-D descriptor.

As the last step, the initial matching process is performed
by SAD [43] between feature descriptor vectors defined by

θ = cos−1

(
AT

i Bi

‖Ai‖‖Bi‖
)

(1)

where Ai is the i th feature descriptor vector in the sensed
image, Bi is the i th feature descriptor vector in the reference
image, and θ is the angle between the two vectors. The ratio
of the first minimum angle to the second minimum angle [44]
denoted by θratio is used to improve the reliability of the initial
match features. If the initial match features with angle distance
ratios are greater than a threshold θratio, they are rejected.

B. Stage 2: Consistent Feature Point Set Selection by
Intensity–Spatial Information

The main idea of the second stage is to use both spatial
consistency and intensity similarity metrics to select consistent
feature point sets to calculate parameters where SAD is used
to obtain the initial matching feature point sets. Consistent
feature point sets are selected by RANSAC [28] and then a
transformation matrix is calculated for each consistent feature
set. If the number of each feature set is less than 3, it will

be eliminated. Finally, SV is calculated based on each trans-
formation matrix and a consistent feature set. The feature set
corresponding to the maximum SV is selected and used in the
current iteration.

More specifically, because of the existence of repetitive
features or the limitation of feature descriptors, they may have
mismatched features among candidate feature points. Thus,
a reliable outlier removal procedure should be implemented
to eliminate outliers. RANSAC is a widely used model-based
parameter estimation approach to select consistent feature
point sets. However, the traditional RANSAC that calculates
geometric model parameters to be used to select maximum
consistent feature point set as the final selected set is only
based on spatial geometric information and does not account
for gray level intensity information. Although this method can
obtain relatively better results in most cases, its performance
degrades if there are many outliers. To address this issue,
we improve RANSAC by combining intensity and spatial
information to select consistent feature point sets where inten-
sity information is measured by a similarity metric and spatial
information is obtained by RANSAC. Specifically, we improve
RANSAC by adding an extra piece of information, which
is gray-level intensity information to find a set of consistent
feature point sets, denoted by Sfeature = {FS j}, where FS j is the
j th feature point set, then further use these feature point sets
{FS j} to calculate registration parameter set Sparameter = {PS j},
where PS j is the j th parameter set obtained by the j th feature
point set, FS j . Let SVF S j denote the SV between the reference
image R and the rectified sensed image Srect which is obtained
by geometric rectification using the j th feature point set, FS j

in the registration parameter set Sfeature. Then SVFS j∗ is the
maximum SV obtained by the feature point set FS j∗ where

j∗ = arg

{
max

FS j∈Sfeature

SVFS j

}
. (2)

An affine transformation is a transformation that preserves
collinearity (i.e., all points lying on a line initially still remain
on a line after transformation) and the ratio of distance (e.g.,
the midpoint of a line segment remains the midpoint after
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transformation). Here, the sensed image is rectified by an
affine transformation [41] defined by[

x1

y1

]
=

[
a1 b1

a2 b2

][
x2

y2

]
+

[
c1

c2

]
(3.1)

where (x1, y1) represents the coordinate of feature in the
reference image, (x2, y2) represents the coordinate of feature in
sensed image, (a1, a2, b1, b2) represents the rotation and scale
differences, and (c1, c2) is the translation between the sensed
image and the reference image. In this case, the parameter set
is denoted by PS = {a1, a2, b1, b2, c1, c2}.

Because of low operating altitude of consumer unmanned
aerial vehicles (UAVs), there exist perspective geometric defor-
mations for aerial remote sensing registration. A projective
model [45], [46] is introduced as the most appropriate global
transformation model, which can handle the affine transform
(translation, rotation, and scale) and perspective transform.
Thus, we use this projective model to rectify the aerial
imagery. Here, the sensed image is rectified by a projective
transformation defined by⎡

⎣ x1

y1

1

⎤
⎦ =

⎡
⎣ a1 b1 c1

a2 b2 c2

a3 b3 1

⎤
⎦
⎡
⎣ x2

y2

1

⎤
⎦ (3.2)

where (x1, y1) represents the original coordinate, (x2, y2)
represents the transformed coordinate, (a1, a2, b1, b2) repre-
sents the rotation and scale differences, (c1, c2) is the shift
difference, and (a3, b3) is the perspective difference between
the sensed image and the reference image. The parameter set
is denoted by PS = {a1, a2, a3, b1, b2, b3, c1, c2}.

It is worth noting that in order to define an affine transfor-
mation or projective transformation, we need to pick three
noncollinear correspondences (affine model) or four non-
collinear correspondences (perspective model) from the sensed
image and the reference image separately. In practice, for the
registration of remote sensing images, it is generally suggested
to obtain more than three pairs of points for affine model
(four pairs of points for perspective model) and estimate the
coefficients through the least squares method.

Among many similarity metrics, MI is robust to nonlinear
intensity differences to some extent and has been success-
fully applied to multispectral or multisensor image registra-
tion [47], [48]. Because it can measure significant intensity
difference or nonlinear gray difference, some modified sim-
ilarity metrics based on MI have been proposed for image
registration. The four MI-based similarity metrics, NMI, RMI,
and RIRMI, to be used in ISIFT are described in detail in the
Appendix.

C. Stage 3: Rectification Loop Based on Registration
Parameters

Finally, the third stage uses the {PS j } calculated from
the second stage for the sensed image to create a new rectified
sensed image which will be used to replace the current
sensed image for the next round iteration. Upon implementing
the third stage, a stopping rule is also custom designed to
determine when the iterative process should be terminated.

In order to implement a rectification feedback loop, the SV
between two consecutive iterations is compared to determine

whether updating registration parameter set {PS j } is needed.
Since the alignment has randomness caused by a random
selection of feature point sets from Sfeature = {FS j }, a direct
feedback of the iterative results does not necessarily give
better registration results. To resolve this dilemma, a similarity
metric is used to calculate registration accuracy between two
consecutive iterations to determine whether the iterative results
should be fed back. Such similarity metric plays three roles.
First, it uses gray-level intensity information to obtain a
consistent feature point set FS j∗ with the maximum similarity
among sets of feature points Sfeature = {FS j} according to
(3.1) or (3.2). Specifically, for an initial matched feature set,
we randomly select three feature pairs and calculate the trans-
formation matrix. The remaining feature sets are substituted
into the transformation matrix to select the candidate sets
for the current matrix. This random selection is repeated N
times (setting 100 times) to obtain N candidate sets. If the
number of candidates in a candidate set is larger than 3
[29], the candidate set is retained and used to calculate the
transformation matrix (affine) to rectify the sensed image. For
projective transformation matrix, the number is 4. During the
rectification process, the sensed image is transformed based
on the reference image coordinate and using the bicubic
interpolation to resample the sensed image based on the gray-
level intensity of the sensed image in the last iteration. For
each rectified sensed image, the SV of its overlapping region
with the reference image is first calculated. The transformation
matrix corresponding to the maximum SV is then selected.
Second, a similarity metric can be used to quantify the accu-
racy of the aligned results between two consecutive iterations
and then initiate a close-loop rectification. Finally, a similarity
metric is used to determine when the iterative process should
be terminated. Specifically, when the SV difference between
two consecutive iterations is less than a prescribed threshold,
the iterative process is terminated.

Updating and stopping rules for ISIFT are given as follows.
1) Updating Rule: The proposed updating rule is based on

the difference between two consecutives SV(k)
max and SV(k−1)

max
defined by

�(k)
max = SV(k)

max − SV(k−1)
max (4)

where SV(k)
max = SV(k)

FS j∗ and SV(k−1)
max = SV(k−1)

FS j∗ are obtained

by using FS(k)
j∗ and FS(k−1)

j∗ in (3), respectively. If �(k)
max > τ ,

then the rectified sensed image obtained by the kth parameters
replaces the rectified sensed image obtained by the (k − 1)th
parameters.

2) Stopping Rule: The stopping rule is determined by the
fact that the two maximum SVs, SV(k)

max and SV(k−1)
max , generated

at the kth and the (k−1)th iterations are sufficiently close with
a tolerance value, τ . If �(k)

max > τ , then an updating is needed.
Let n be the number of times that no updating is needed. In this
case, n = n+ 1, else n = 0, where τ denotes the threshold of
SV difference and

n > nτ (5)

where nτ is a threshold used to limit the number of times that
no update is performed, and the initial value of this number is
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Algorithm 1 ISIFT

Input: reference image R(0), sensed image S(0), the number
of iterations, k, the number of no updating, n, maximum
iterative number N , threshold τ and nτ

Output: Final registration parameters

1) Initialize: R = R(0), S = S(0) and k = 0, n = 0.
2) At the kth iteration, implement SIFT and random sam-

ple consensus on reference image R and sensed image
S to obtain initial consistent feature point sets S(k)

feature =
{FS(k)

j }Mk
j=1, Mk is the number of consistent feature point

sets in the kth iteration. Adopt S(k)
feature = {FS(k)

j }Mk
j=1

to calculate registration parameters set S(k)
parameter =

{PS(k)
j }Mk

j=1 and calculate similarity {SV(k)
FS j
}Mk

j=1 using

S(k)
feature = {FS(k)

j }Mk
j=1 for image R and rectified sensed

image S(k)
rect based on S(k)

parameter. The parameter set PS(k)
j∗

obtained by using FS(k)
j∗ to yield the maximum simi-

larity SV(k)
max is selected and its corresponding rectified

sensed image S(k)
rect_SVmax

is used as a new sensed image
in the next iteration.

3) Check if k = 0, go to step 2 and let k ← k + 1.
Otherwise, continue.

4) Comparing the similarity value SV(k)
max and SV(k−1)

max in
(4). If �(k)

max > τ , then S(k)
rect_SVmax

is used to replace S
and nτ = 0; else S← S(k−1)

rect_SVmax
and n← n + 1.

5) Check if k or nτ satisfy the stopping rule described in
the Section III-B.

6) ISIFT is terminated and S(k)
parameter is the final registration

parameters matrix.

set to n = 0. The details of implementing ISIFT step-by-step
are described as follows.

IV. EXPERIMENTAL SETTING

In order to substantiate ISIFT, two groups of data sets
are used to validate the utility of ISIFT. The first group
contains three simulated images and three real data sets,
both of which were used for experiments to demonstrate
the superior performance of ISIFT to SIFT without using
feedback loops. The image pair of each set is composed of
a reference image and a sensed image, which were acquired
from different spectra. The details of characteristics of data
sets are described in Section IV-A. The second group contains
80 images which are randomly selected from two public
available data sets [19], [49], [52]. The detailed information
of these two data sets is given in Section IV-B. These
images were used for statistical evaluation performance and
comparison with other state-of-the-art methods. Moreover,
ten images are randomly selected from the 80 images in
Group 2 of data sets to further verify the performance of
ISIFT under different rotational transformations. All these data
sets along with detailed data descriptions are made available
at http://wiki.umbc.edu/display/rssipl/10.+Download. Since
ISIFT is implemented by four different similarity metrics, MI,
NMI, RMI, and RIRMI, it yields four versions of ISIFT, called

ISIFT with MI (IS_M), ISIFT with NMI (IS_NM), ISIFT with
RMI (IS_RM), and ISIFT with RIRMI (IS_RIM).

A. Group 1: Data Sets Used for Performance Evaluation of
ISIFT

1) Simulated Images: As shown in Table I, three simulated
image sets contain different bands of multisource images.
To demonstrate the applicability of ISIFT to spatial resolution
difference, three image pairs (interband images of the same
sensor) were obtained by selecting one band of the correspond-
ing multispectral images as the reference image and applying
a known transformation (2.5-times scale and 20◦ rotational
changes by ENVI [40]) to one band of the corresponding
multispectral images as the sensed image. The correspond-
ing spatial resolutions of the simulated sensed images were
calculated based on the scale difference tabulated in Table I.
These image pairs also cover a variety of spatial resolutions
from 5 to 30 m. For the three image sets, the spatial resolution,
sensor, image size, band information, and acquisition time are
given in Table I. The reference images are shown in Fig. 2(a1),
(b1), and (c1) and the corresponding sensed images are shown
in Fig. 2(a2), (b2), and (c2), respectively.

2) Real Images: The three real image sets were selected
from different sensors and taken during the same or different
years. These image sets have changes in intensity, geometric
difference, and scene. These image pairs also cover a variety
of spatial resolutions from 2 to 30 m. For the three image
sets, the spatial resolution, sensor, image size, band infor-
mation, and acquisition time are provided in Table I. The
reference images are shown in Fig. 2(d1), (e1), and (f1). The
corresponding sensed images are shown in Fig. 2(d2), (e2),
and (f2).

B. Group 2: Data Sets Used for Statistical Evaluation
Performance and Comparison

To further conduct the performance evaluation and compari-
son, we combined two public available data sets, which contain
many satellite images and aerial images. The first public
available data set contains 107 multispectral and multitemporal
remote sensing image pairs with 512 × 512 [19], [49],
obtained from the United States Geological Survey (USGS)
website [50]. The pixel resolution of these images is 1 m.
The second public available data set [51], [52] contains a
12-class scene and a total of 1200 images with 256 × 256,
which were manually extracted from the USGS National Map
Urban Area Imagery collection for various urban areas around
the country. The pixel resolution of this public domain images
is 0.3 m.

In order to verify the statistical evaluation performance
under two types of the simulated deformation, affine trans-
formation, and perspective transformation, three data sets of
images were generated for experiments as follows.

1) Set A(SA): It consisted of 40 image cubes randomly
selected from the first public available data set. For
each image cube in SA, one band image was randomly
selected as a reference image, denoted by bR

A, and
another band image was also randomly selected from the
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TABLE I

INPUT IMAGE PAIRS

Fig. 2. Input image. (a1), (b1), and (c1) Reference image of simulated image 1, simulated image 2, and simulated image 3. (a2), (b2), and (c2) Sensed
image of simulated image 1, simulated image 2, and simulated image 3. (d1), (e1), (f1) Reference image of true image 1, true image 2, and true image 3.
(d2), (e2), (f2) Sensed image of true image 1, true image 2, and true image 3.

image cube, denoted by bS
A, which applied the simulated

affine transformations (scaling, rotation, and translation)
to create a new sensed image b̂S

A to produce an image
pair, (bR

A, b̂S
A). These 40 image pairs were then used to

form a new data set, denoted by �A = {(bR
A, b̂S

A)}SA for
experiments.

2) Set B(SB): In analogy with SA, another data set SB was
also generated by 40 image cubes randomly selected

from the second public available data set. For each image
cube in SB, one band image was randomly selected as a
reference image, denoted by bR

B, and another band image
was also randomly selected from the image cube, bS

B,
which applied the simulated projective transformations
(scaling, rotation, translation, and perspective) to create
a new sensed image, b̂S

B. As a result, each image cube in
SB also produced a pair of two band images, (bR

B, b̂S
B).
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These 40 resulting image pairs (reference image, sensed
image) formed a new data set, denoted by �B =
{(bR

B, b̂S
B)}SB to be used for experiments.

3) Set C(SC ) : In order to further validate the robustness
of ISIFT under different rotation deformation, a third
data set was a mixed data set generated by the above
two data sets, SA and SB,denoted by �C. It randomly
selected ten image cubes from the joint set of SA and SB,
i.e., SA ∪ SB to form SC. In this case, SC contains of ten
image cubes mixed by SA and SB. Now, for each image
cube in SC, one band image was randomly selected as
a reference image, bR

C, and another band image was
also randomly selected from the same image cube as a
candidate sensed image, bS

C, which was used to create
four new rotated sensed images with four different
rotations by a transformation (2.5-times scale and
different rotational changes, which 20◦, 40◦, 60◦, and
80◦) to produce four pairs of (bR

C, b̂S(20◦)
C ), (bR

C, b̂S(40◦)
C ),

(bR
C, b̂S(60◦)

C ), and (bR
C, b̂S(80◦)

C ). These ten sets of
resulting 40 image pairs with each set containing four
image pairs produced a new data set, denoted by �C =
{(bR

C, b̂S(20o)
C ), (bR

C, b̂S(40o)
C ), (bR

C, b̂S(60o)
C ), (bR

C, b̂S(80o)
C )}SC ,

which would be used to conduct experiments under
different rotations.

C. Parameter Settings
Regarding the parameters used for experiments, their spec-

ifications are described as follows. Since the smaller the θratio

in an initial matching process is, the smaller the number of
the initial matching feature pairs are and thus, the stricter the
condition of constructing correspondence will be. So, as a
tradeoff between the number of correct matches and the rate of
correct matches, θratio was set to 0.7. Another parameter is the
maximum number of iterations for RANSAC which was set
to 100 [28] based on the calculation equation and experience.
In addition, the threshold of the model referred in [15] was
set to 0.5. All these parameter settings were done empirically.
For the proposed updating rule, the threshold of difference
between SVs was set to τ = 10−4. For the proposed stopping
rule, the maximum number of iterations for ISIFT was set to
20. The number of continuous nonupdates, nτ was used for the
stopping rule. This parameter is closely related to the running
time and registration accuracy of the algorithm. In this article,
we set nτ = 5. That is, if the nτ = 5, it means that the iterative
process is terminated once nτ = 5.

D. Evaluation Criteria
Root mean square error (RMSE) is used to quantitatively

evaluate the alignment accuracy of these algorithms. For an
affine transformation, it is defined by

RMSE

=
√

1

k
·
∥∥∥∥∥∥
(

â1 − a1 b̂1 − b1 ĉ1 − c1

â2 − a2 b̂2 − b2 ĉ2 − c2

)⎛
⎝ x1

2 x2
2 . . . xk

2
y1

2 y2
2 . . . yk

2
1 1 . . . 1

⎞
⎠

∥∥∥∥∥∥
2

(6.1)

where a1, a2, b1, b2, c1, c2 are the real values of the model
parameter, â1, â2, b̂1, b̂2, ĉ1, ĉ2 are the estimated values of the
model parameters, and k is the number of tested pixels.

For a projective transformation, it is defined by

RMSE

=
√

1

k

∥∥∥∥∥∥
⎛
⎝ â1 − a1 b̂1 − b1 ĉ1 − c1

â2 − a2 b̂2 − b2 ĉ2 − c2

â3 − a3 b̂3 − b3 0

⎞
⎠

⎛
⎝ x1

2 x2
2 . . . xk

2
y1

2 y2
2 . . . yk

2
1 1 . . . 1

⎞
⎠

∥∥∥∥∥∥
2

(6.2)

where a1, a2, a3, b1, b2, b3, c1, c2 are the real values of the
model parameter, â1, â2, â3, b̂1, b̂2, b̂3, ĉ1, ĉ2 are the estimated
values of the model parameters, and k is the number of tested
pixels. In this case, RMSE can be used as an evaluation
criterion of quantified registration accuracy. As for the ground
truth (the simulated images) or the reliable reference geometric
transformation parameters, they were calculated by manual
registration using ENVI [53].

In addition, for the experiment of performance evaluation
based on Group 1 data sets, the pairwise linking of fea-
ture point pairs pairwise between the reference and sensed
images, checkboard mosaicked image, and red–green fusion
registration image [54] are provided for visual inspection of
the registration results.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed ISIFT was implemented in MATLAB. ISIFT
with a direct feedback rectification loop (ISIFTD) without
using an update rule is developed in comparison with ISIFT.

More specifically, both SIFT and ISIFTD select consistent
feature point sets in each iteration using RANSAC to maxi-
mize the number of candidate sets, which are further used to
calculate registration parameters to rectify the sensed image.
However, there is a key difference between ISIFTD and ISIFT
as described by the first and fourth novelties in Section I.
ISIFTD always uses the feedback loop to directly update
and replace the sensed image by the rectified sensed image
generated in the previous loop without using an updating rule
to determine whether such feeding back is needed. In contrast,
ISIFT includes an updating rule to always check and validate
the need of the feedback from the rectified image prior to next
iteration. Specifically, ISIFT selects consistent feature point
sets in each iteration using RANSAC and SV to maximize
the SV of candidate sets. At the end of the kth iteration,
ISIFT compares the SV between the reference image and the
kth rectified image obtained from the current kth iteration,
denoted by SV(k) against the SV between the reference image
and current sensed image, denoted SV(k−1). If SV(k) is larger
than SV(k−1), then the kth rectified image is fed back to replace
the current sensed image for next round iteration. Otherwise,
the kth rectified image will not be fed back, and the current
sensed image will remain the same and further be used for
next round iteration. Such validation process is referred to as
an updating rule.

Compared to ISIFT, ISIFTD directly feeds back the rectified
image to replace the current sensed image without an updating
rule for validation. Consequently, ISIFTD does not necessarily
guarantee that the kth rectified image will be a better sensed
image than the current sensed image for next round regis-
tration. The experiments conducted in the following sections
demonstrate this scenario.
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Fig. 3. SV plots for simulated image 1. (a) MI plots (index is 29 and SVMI = 0.1876). (b) NMI plots (index is 29 and SVRMI = 0.1771). (c) RMI plots
(index is 46 and SVRMI = 1.119).

To evaluate ISIFT, ISIFT using four different similarity
metrics, i.e., IS_M, IS_NM, IS_RM, and IS_RIM, was imple-
mented to compare ISIFTD and SIFT, for performance analy-
sis. So, a total of six methods were tested for comparison.
Specifically, experiments were performed for ISIFT with and
without feedbacks to illustrate that ISIFTD did not always
succeed in improving registration accuracy. This was because
it did not feedback the best rectified image that could improve
the current sensed image. In addition, to further conduct
quantitative analysis, the RMSEs were calculated and the
visual displays of the final fused registered images resulting
from six methods using selected consistent feature point sets
are also plotted for comparison.

A. Performance Evaluation of ISIFT

1) Simulated Image Experiments: For simplicity, the RMSE
calculated by six methods, IS_RIM, IS_RM, IS_NM, IS_M,
ISIFTD, and SIFT are denoted by RMSE_RI, RMSE_R,
RMSE_N, RMSE_M, RMSE_D, and RMSE_S. For ISIFTD,
RMSE was calculated to select consistency feature point sets
from the candidate feature points.

Fig. 3 shows the SV calculated by RIRMI, RMI, NMI,
and MI along with the total number of consistent feature
sets and RMSEs in each candidate feature set for simulated
image 1 without any iteration yet. In all the figures of Fig. 3,
the horizontal axes are the indexes of candidate feature sets

and the vertical axes in Fig. 3(a)–(d) are SVs produced
by RIRMI, RMI, NMI, and MI, while the vertical axis
in Fig. 3(e) is the total number of features in each candidate
feature set. Fig. 3(f) shows the RMSE versus the index of
candidate feature sets where RMSE was calculated by each
candidate feature set. In above experiments, the total number
of candidate sets was set to 100 and only the number of
features in each candidate set larger than 3 was retained.
However, it should be noted that the resulting number of
each candidate set varies with different images, for example,
81 in Fig. 3 but 45 obtained from the real image pair
in Fig. 7.

As shown in Fig. 3, all the candidate feature sets are shown
by light solid dots, which are connected by dotted lines.
The final feature sets highlighted by large solid circles were
selected by IS_RIM, IS_RM, IS_NM, and IS_M and their
corresponding RMSE. The RMSE calculated by ISIFT are
relatively smaller than or equal to the RMSE calculated by
RANSAC. In order to demonstrate the effectiveness of the
selection strategy in ISIFT, we analyze its results in detail
in Fig. 3. The feature set index corresponding to the maximum
SV is abbreviated as j∗MI, j∗NMI, j∗RMI, j∗RIRMI, and j∗RANSAC.
Intuitively, Fig. 3(a), (b), and (d) shows that j∗MI = j∗NMI =
j∗RIRMI = 29 with their calculated RMSE corresponding to
1.046 pixels as shown in Fig. 3(f). In contrast, Fig. 3(c)
shows that j∗RMI = 46 with its RMSE corresponding to
1.411 pixels as shown in Fig. 3(f). On the other hand, Fig. 3(e)
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Fig. 4. Iterative plots for simulated images 1–3. (a) SVs for the simulated image. (b) RMSE plots for simulated image 1. (c) SVs for simulated image 2.
(d) RMSE plots for the simulated image. (e) SVs for simulated image 3. (f) RMSE plots for simulated image 3.

presents that j∗RANSAC = 16with its RMSE corresponding to
2.045 pixels as shown in Fig. 3(f). Thus, compared to using
the number of features as a selection criterion, using SV as a
measurement can obtain a better final feature set with a lower
RMSE. This shows that the maximum feature set selected by
RANSAC could not represent the real geometric relationship
between the reference and sensed images. In addition, these
results demonstrated that the accuracy of selected feature sets
had a direct effect on the registration results. Specifically,
when there are large outliers, the maximal RANSAC-selected

feature sets may not correspond to high precision (as shown
in Fig. 3(f), 2.045 pixels). From Fig. 3, we can also see that
the combination of intensity similarity and spatial consistency
obtained better results. Although the values of RMSE and
similarity metric were not exactly one-to-one correspondence,
the Appendix shows that a relatively higher similarity metric
value corresponds to a higher precision and so, the result
is closer to the minimum RMSE. Based on above analyses,
the four metrics can yield good performance for the simulated
images.
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Fig. 5. Single feature pair for simulated image 1 by IS_RIM.

TABLE II

COMPARISON OF THE FINAL RSMES BASED ON SIFT, ISIFTD, AND ISIFT (MI, NMI, RMI, AND RIRMI) FOR THE SIMULATED IMAGE PAIRS

The same experiments were also implemented on simulated
images 2 and 3. The same conclusions as simulated image
1 could be also drawn. In this case, only the results for
simulated image 1 are included here to avoid duplication.
Fig. 4 shows the iterative profiles of changes in SV and
RMSE produced by ISIFT using 4 different similarity metrics,
MI, NMI, RMI, and RIRMI. Specifically, Fig. 5 shows an
example of how a single feature point pair was matched
during the entire iterative process. As we can see, the matched
feature pair initially mismatched prior to iteration and then
was corrected in the first iteration. In subsequent iterations,
the locations of the corresponding feature points in the sensed
image had slight differences. Nevertheless, they had no visual
effect. Fig. 5 shows the iteration process with significant
rectification in subsequent iterations. If a matched feature
pair is shown in the entire process, it indicates that the
keypoint is stable and significant. However, most importantly,
ISIFT indeed corrected mismatched feature pair after the 1st
iteration.

Fig. 6 provides visual inspection of feature point pairs pair-
wise linking, checkboard mosaicked images, and red–green
fusion images for the final iteration results. As shown in Fig. 6,
IS_RIM could rectify well and obtain more accurate matching
feature pairs than the other three similarity metrics. This
confirms the results in Fig. 4. The checkboard mosaicked
images are also included to display the registration results of
the reference image with the rectified sensed image, whereas
the red–green fusion images can be used to see whether the
upper and lower layers are ghosted by the overall visual
effect.

Table II tabulates the final RMSE results of ISIFT,
ISIFTD, and SIFT, referred to as RMSE_RI, RMSE_R,
RMSE_N, RMSE_M, RMSE_D, and RMSE_S, where
RMSE_RI, RMSE_R, RMSE_N, and RMSE_M were better
than RMSE_D and RMSE_S. The results also demonstrated
that the final RMSE were closely related to the use of a
similarity metric.

Combining the quantitative analysis and visual analysis
shows that IS_RIM performed better than the other three meth-
ods (IS_RM, IS_NM, and IS_M) in the sense of its significant
difference in gray values, texture, geometric distortion, and its
robustness to similarity variations. Specifically, the other three
methods (IS_RM, IS_NM and IS_M) had different position
shifts, while IS_RIM had relatively small position shifts.

B. Real Image Experiments

In analogy with the simulated images, real image experi-
ments were also conducted for the six methods. Like Fig. 3,
Fig. 7(a)–(d) shows the SV calculated for each candidate
feature set for real image 1 by MI, NMI, RMI, and RIRMI,
respectively, prior to iteration. Fig. 7(e) shows the total number
of features in each candidate feature set for real image 1,
while Fig. 7(f) plots RMSEs in each candidate feature set for
real image 1 before iteration where RMSEs were calculated
by each candidate feature set. Intuitively, Fig. 7(a) shows
that j∗MI = 41 with its calculated RMSE corresponding
to 2.466 pixels. Fig. 7(b) shows that j∗NMI = 36 with its
calculated RMSE corresponding to 2.177 pixels. Fig. 7(c)
shows that j∗RMI = 11 with its calculated RMSE corresponding
to 1.925 pixels. Fig. 7(d) shows that j∗RIRMI = 1 with
its calculated RMSE corresponding to 1.608 pixels. On the
other hand, j∗RANSAC = 26 with its RMSE corresponding
to 2.419 pixels is shown in Fig. 7(f). Compared to using
the maximal number of features as a selection criterion,
using maximal SV obtained a better feature set corresponding
to a lower RMSE. Also demonstrated, using the maximum
consistency feature set could not reflect the real geometric
relationship between images. Similarly, the same experiments
were also performed on real image 2 and image 3 before
iteration. Due to the same observations and conclusions, their
results are not included here.

Fig. 8 shows the iteration plots of the SVs and their cor-
responding RMSEs produced by MI, NMI, RMI, and RIRMI
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Fig. 6. Matching keypoint images, red–green fusion images, and checkboard mosaicked images based on ISIFT (RIRMI, RMI, NMI, and MI) and SIFT in
the final iteration for simulated image 1.

for real images 1–3. Table III tabulates the final RMSEs of
ISIFT using RIRMI, RMI, NMI, MI, ISIFTD, and SIFT. For
the sake of visual display, Fig. 9 only shows visual inspection
of feature point pairs pairwise linking, checkboard mosaicked
images, and red–green fusion images of real image 1 for the
final iteration. It should be noted that the iterative profiles

of changes in SV and RMSE produced by ISIFT based on
four similarity metrics plotted in Fig. 8 can be further used
to analyze the iteration-by-iteration performance. As demon-
strated previously, the registration results were improved as
the similarity metric value was increased. Although the results
from individual cases may vary on some occasions, the
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Fig. 7. SV plots for real image 1. (a) MI plots (index is 41 and SVMI = 2.4 × 10−4 ). (b) NMI plots (index is 36 and SVRMI = 0.1225). (c) RMI
plots (index is 11 and SVRMI = 0.6063). (d) RIRMI plots (index is 1 and SVRIRMI = 0.3027). (e) Number of features in each feature set (index is 26 and
NInner = 14). (f) RMSE plots (RMSE1 = 1.608, RMSE11 = 1.925, RMSE26 = 2.419, RMSE36 = 2.177, and RMSE41 = 2.466).

TABLE III

COMPARISON OF THE FINAL RSMES BASED ON SIFT, ISIFTD, AND ISIFT (MI, NMI, RMI, AND RIRMI) FOR REAL IMAGE PAIRS

general tendency remained the same. That is, Fig. 8(a) and
(b) shows that the registration accuracies in terms of RMSE
were decreased as SVs were increased for real image 1.
However, for Fig. 8(c) and (d), a smaller RMSE did not
necessarily correspond to a larger similarity in a few individual
cases. This phenomenon can be explained by the fact that the
limitation of using a similarity metric as a criterion, which
does not exactly correspond to the registration error. However,
the iterative profiles plotted in Fig. 8 demonstrated that the
larger the SV was, the smaller the registration error was. The
results for three real images also indicated that the maximum
SV did not necessarily correspond to a maximum consistency
point set.

As seen from the fused sensed images in Fig. 9, ISIFT
could also rectify the sensed images and it did for the
simulated images. In this case, although the fusion results
looked good, the ghosting of overlapped regions reflected the
quality of the registration results. Besides, the dislocations

of the fused image using the traditional SIFT could be also
seen visibly. As shown in Fig. 9, the ghosting of the fusion
images, which were obtained by IS_RIM and IS_NM, was
slightly reduced compared to those obtained by IS_RM and
IS_M. In Table III, the results could explain this phenomenon
from a quantitative perspective and be also used to verify
the performance of these metrics. For real image 1, the
same candidate feature set is used as the initial condition
for the six algorithms. Compared to the final RMSEs of
ISIFT, ISIFTD, and SIFT, RMSE_RI, RMSE_R, RMSE_N,
and RMSE_M were smaller than RMSE_D and RMSE_S.
Comparing Tables III to II, the RMSEs of real images were
relatively larger than RMSEs of the simulated images. This is
because real images have greater complex geometric distortion
than the simulated images do. Based on the above quantitative
analysis and visual inspection, the proposed ISIFT indeed
performed better than SIFT without rectification feedback
loops.
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Fig. 8. Iterative plots for real images 1–3. (a) SVs for real image 1. (b) RMSE plots for real image 1. (c) SVs for real image 2. (d) RMSE plots for real
image 2. (e) SVs for real image 3. (f) RMSE plots for real image 3.

C. Comparative Analysis on Registration Performance

To perform a comparative study and analysis, two data
sets generated in Section IV-B, �A and �B were used for
experiments. In addition, to further verify the robustness of
test algorithms under different rotations, �C generated in
Section IV-B was also used for experiments.

1) Statistical Analysis on RMSE Among State-of-the-Art
Algorithms: The previous experiments validated the effective-
ness of ISIFT. In this section, we performed experiments to
evaluate the comparative analysis of ISIFT to four state-of-the-
art methods, RANSAC [28], LLT [31], [55], LPM [32], [56],
and PSSC [34], [57]. For fairness of comparison, SIFT was

used for the four methods to extract feature points combined
with SAD to obtain matching feature pairs. Since there was
a wide range of RMSE, the plots in Fig. 10(a) and (b) only
showed the RMSE less than 4 pixels, while all other results
were grouped into one category ≥ 4 pixels.

The statistical RMSE histograms plotted in
Fig. 10(a) and (b) show their comparative results of the
five algorithms (IS_RIM, RANSAC, LLT, LPM, and PSSC)
where the registration errors shown in Fig. 10(a) using �A

data sets with affine deformations shown in Fig. 10(a) had
smaller RMSE than that using �B with projective deformation
shown in Fig. 10(b). As can be seen from Fig. 10, the number
of images resulting from IS_RIM-registered error RMSE less
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Fig. 9. Matching keypoint images, red–green fusion images, and checkboard mosaicked images based on ISIFT (RIRMI, RMI, NMI, and MI) and SIFT in
the final iteration for real image 1.

than 0.5 pixels was greatly larger than that produced by the
other four methods. Moreover, the RMSEs of IS-RIM were
almost smaller than 3 pixels. For example, using �A with
affine deformations, all the five algorithms could achieve

subpixel precision in most of the cases. However, IS_RIM
could achieve the best results less than 0.5 pixels followed by
the second best PSSC in Fig. 10(a). Comparing the RMSEs
in Fig. 10(b) to RMSEs in Fig. 10(a), using �B data sets
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Fig. 10. Comparison of the final RMSEs using IS_RIM, RANSAC, LLT,
LPM, and PSSC with different transformation. (a) Set-A data sets with affine
deformation. (b) Set-B data sets with perspective deformation.

produced much greater RMSE that of using �A. However,
in comparison with other four algorithms IS-RIM performed
significantly better than other four test algorithms since most
images with RMSE produced by IS-RIM were less than
2.5 pixels, while four test algorithms had RSME centered
around 2.5–3 pixels as shown in Fig. 10.

There are three reasons for that. First, there was a projective
transformation between the image pairs in �B. To regis-
ter image pairs with a projective deformation, a feature-
based algorithm may result in performance degradation in
extracting stable features. Second, the spatial resolution of
the images in �B is relatively larger than that in �A. The
precise spatial locations of feature points of high-resolution
images may have shifted by a few pixels in images with
high spatial resolution but may not be detectable in images
with low spatial resolution. Third, the size of the images in
�B was smaller than that used in �A which might result in
fewer features. This is because a small width and complex
geometric transformation may yield large registration errors.
However, even in this case, IS_RIM could still achieve bet-
ter and stable registration results. These comparative experi-
ments further demonstrated the effectiveness and superiority of
IS_RIM to other four test methods for registering both satellite
and aerial remote sensing images with affine or projective
transformations.

Fig. 11. Comparison of the final RMSEs based on IS_RIM, RANSAC, LLT,
LPM, and PSSC for Set-C data sets with different rotation. (a) 20◦ rotation.
(b) 40◦ rotation. (c) 60◦ rotation. (d) 80◦ rotation.

2) Analysis on Changes in Different Rotations:
Fig. 11(a)–(d) plots the final RMSEs produced by the five
test algorithms using �C with different rotations. Because
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the final registration results of all images had a wide range
of RMSE, the results with an RMSE greater than 10 pixels
were grouped into one category of 10 pixels. Fig. 11(a)–(c)
shows the RMSE of IS-RIM resulting from 20◦, 40◦, and 60◦
where its registration errors were less than 2 pixels in most
cases. When the rotation was 80◦, the registration error was
increased to 3 or 5 pixels as shown in Fig.11(d). Obviously,
the registration errors of the image pairs 2, 5, and 10 were
relatively larger than other image pairs. The reason was that
these three image pairs were selected from �B and its higher
spatial resolution and smaller image size led to fewer precisely
located feature points. Thus, these images incurred larger
registration errors than the other seven image pairs. Overall,
the registration error generally increased as the rotation change
increased. However, compared with the other four algorithms,
IS_RIM produced much smaller registration errors for all
rotational deformations. These results further demonstrated the
better performance and robustness of IS_RIM for different
rotations.

VI. CONCLUSION

This article develops a close-feedback iterative SIFT regis-
tration system, called ISIFT. Unlike the traditional SIFT-based
registration methods which are considered as feed forward
open systems, ISIFT includes a rectification feedback loop to
rectify and update the sensed image to improve the registration
performance. The rectification loop allows ISIFT to select
better registration parameters based on the maximal SV and
spatial consistency to rectify the current sensed image and
the resulting rectified image is then fed back to replace the
current sensed image for the next round of SIFT implemen-
tation in an iterative manner. As expected, ISIFT performs
better positional accuracy than other registration algorithm,
including the RANSAC [28], LLT [31], LPM [32], [33], and
PSSC [34]. The proposed close-feedback registration system is
not necessarily limited to SIFT as a feature extraction method
and can be also extended to other feature-based algorithms
and similarity metrics to replace SIFT and MI-based similarity
metrics, respectively.

Several contributions are summarized as follows. First, the
proposed ISIFT using rectification feedback loops is a close-
feedback registration system which has never been explored
in the literature over the past years. Second, any SIFT-based
system can be used as an initial condition to initialize ISIFT.
With this interpretation, ISIFT can be regarded as a gen-
eralization of traditional SIFT-based methods without using
feedback. Third, in addition to introducing an iterative process
into SIFT, an automatic stopping rule is also custom-designed
to terminate the iterative process carried out by ISIFT. Fourth,
a joint spatial-consistency and intensity-similarity feature point
selection method is further developed to select consistent
feature points. Finally, extensive experiments are performed
to conduct a comparative study and analysis among six meth-
ods, ISIFT using four different similarity metrics (MI, NMI,
RMI, and RIRMI) and spatial consistency, SIFT with direct
feedback loops (ISIFTD), and SIFT without feedbacks. The
experimental results demonstrate that ISIFT indeed performed
better than ISIFTD and SIFT without feedbacks.

Due to the use of an iterative process, the running time
is relatively longer compared to other feature-based or area-
based methods. However, due to its nature constraints, SIFT
is only suitable for images with a certain scale change and
illumination differences. Under some extreme situations, when
there are no more than three or more pairs of correctly
matched feature pairs among the initial SIFT feature pairs,
other modified versions of SIFT or other feature extraction
methods should be used to replace SIFT to extract local
features. In this case, our proposed iterative strategy is still
applicable. In addition, the location accuracy of local features
also affects the accuracy of SIFT. Our proposed ISIFT provides
improvements over SIFT. For future work, the local feature
point locations will be modified to reduce the inherent error
and improve the local matching accuracy.

APPENDIX

There are many similarity metrics that can be used for
ISIFT to calculate the similarity between the reference image
and rectified sensed image. In what follows, we describe four
similarity metrics which can be used for this purpose where
the four metrics are MI, NMI, RMI, and RIRMI.

A. Mutual Information

A classical similarity metric is the MI [58] given by

I (X, Y) = H (X)+ H (Y)− H (X, Y) (7)

where X is the reference image and Y is the sensed image.
I (X, Y) is the MI between X and Y, H (X) and H (Y) denote
the marginal entropy values of X and Y, respectively. The joint
entropy H (X, Y) measures the amount of information in the
overlapping region, and it is given by

H (X, Y) =
∑
x,y

−PX,Y (x, y) log2 PX,Y (x, y) (8)

H (X) =
∑

x

−PX (x) log2 PX (x) (9)

H (Y) =
∑

y

−PY (y) log2 PY (y) (10)

where the joint probability distribution is PX,Y (x, y) =
P(Xs = x, Ys = y) for x ∈ �X , y ∈ �Y and (Xs, Ys) is the
corresponding pixel pair in the overlapping region. PX (x) and
PY (x) are the marginal probability distributions of intensity.

B. Normalized MI

Another well-established registration similarity metric nor-
malized MI [59] is given by

NMI = H (X)+ H (Y)

H (X, Y)
(11)

which will more accurately reflect the change of parameters
and make the registration function smoother. NMI can reduce
the sensitivity of MI to overlapped parts of two images and
improve robustness.
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C. Region MI

By incorporating spatial information in the traditional MI,
the RMI [60] measures statistical correlation between two
regions. Different from MI, the RMI considers not only the
original intensity information but also the intensity information
with spatial dependency. The RMI can be represented by

RMI = Hg(CA)+ Hg(CB)− Hg(C) (12)

C = 1

N
P0PT

0 (13)

P0 = P − 1

N

N∑
i=1

pi (14)

where P = [p1, p2, . . . , pN ], N = (m − 2r)(n − 2r) is the
number of pixels to be counted in a region, the size of the
overlapping region is m × n, r is the radius of local window,
and pi is the pixel’s neighborhood vector for the i th pixel. The
size of P is d×N with d = 2 × r × r . The marginal entropies
are Hg(CA) and Hg(CB), where CA is the (d/2) × (d/2)
matrix in the upper left of C and CB is the (d/2) × (d/2)
matrix in the lower left of C .

D. Rotation-Invariant Region MI

In order to obtain a more robust similarity metric,
the RIRMI uses a rotation-invariant local ternary pattern to
calculate robust intensity–spatial information correlation sta-
tistic. The detailed description was given in [38]. The RIRMI
can be represented by

RIRMI(X, Y) = log2

(
det(CA) det(CB)

det(C)

)1/2

(15)

where C CA, and CB are defined in the same way as defined
in the RMI.

E. Comparison Between MI, NMI, RMI, and RIRMI

MI has been widely used in remote sensing [39]. Despite
its outstanding performance, the MI-based methods provide a
local maximum rather than a global maximum of the entire
search space for the correct transformation [61]. As a result, a
region of the search space should be predefined where the
MI-based registration is implemented, which inevitably
reduces its robustness. Thus, there are some limitations.
According to the equation of MI, the probability is obtained
by histogram statistic which is calculated by original intensity.
It is likely that the overlapping region of MI calculation
has the same histogram but with the different scene. The
reason is that MI only considers original intensity statistic
characteristic but ignores spatial information, which may lead
to mismatch. In addition, due to the complexity of remote
sensing image, similarity metric function (such as MI) may
have many local extremums, which cannot correspond exactly
to registration accuracy. The SV is not exactly consistent
with the registration accuracy. Specifically, comparing the
two SVs, large similarity does not exactly correspond to the
more accurate registration results. Thus, the robustness and
accuracy of similarity metric are important for measuring the
registration accuracy. Although the similarity metric value can-
not correspond to registration accuracy one-to-one, the more

Fig. 12. Image pairs of different bands for the same region. (a) 78th band
spectral image. (b) 55th band spectral image.

robust the metric is, the more accurate registration results can
be measured. As can be seen from the example in this section,
although the SV cannot completely correspond to the evaluated
geometric difference, robust similarity metrics may have a
tendency that the higher the registration accuracy is, the higher
the SV will be, and the registration parameter corresponding
to the largest similarity measure will be close to the optimal
parameter.

In this section, four similarity metrics (MI, NMI, RMI, and
RIRMI) are used to select consistent feature point sets and
determine alignment parameters in each iteration. Following
the basic theory in the previous section, the simulated com-
parison and analysis are given in this section based on given
geometric parameters.

As shown in Fig. 12, there are image pairs (size: 201×201
pixels) which are acquired from different band images of
the same region. For the image pairs with nonlinear inten-
sity differences and deformation differences, the geometric
parameters are set artificially. Then, consistent feature point
sets are selected based on different similarity measures for
comparison.

Because the similarity metric is used to measure the similar-
ity of the corresponding overlapping region, the overlapping
region has translation or rotation. In order to simulate the cor-
respondence of SV and geometric difference, translation and
translation–rotation simulation plots are drawn by translating
or rotating the sensed image. In detail, the plot of SV versus
translation is drawn as follows: a template rectangular window
with a size of 100 × 50 is selected from the 78th band image;
then, a rectangular window of the 55th band image slides
horizontally from the center (101, 101) to the left and right
with step 1 pixel, respectively. This process can simulate the
translation mismatching among −25 to 25 pixels. Then MI,
NMI, RMI, and RIRMI of the rectangular pairs in the reference
image and sensed image are calculated and similarity plots are
shown in Fig. 13. The plot of SV versus translation–rotation is
drawn as follows: in order to simulate the rotation difference,
the sensed image (55th band images) is rotated from −18◦
to 18◦. In the overlapping region, the similarity measures MI,
NMI, RMI, and RIRMI are calculated for the corresponding
rectangular window with a size of 50× 50. Although rotation
also causes translation, the corresponding of rotation and SV
are shown here. The similarity plots are shown in Fig. 14.

A robust similarity measure is one with a smooth, convex
landscape with respect to mismatch, specifically, one that
does not have too many local extrema approaching a global
optimum. As can be seen in Figs. 13 and 14, NMI, RMI, and
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Fig. 13. Comparison among similarity plots of MI, RMI, RMI, and RIRMI for translation transform. (a) Subimage of the 78th band image. (b) Subimage
of the 55th band image.

Fig. 14. Comparison among similarity plots of MI, RMI, RMI, and RIRMI for rotation transform with translation. (a) Subimage of the 78th band image.
(b) Subimage of the 55th band image. (c) Similarity curves of MI, NMI, RMI, and RIRMI.

RIRMI have the correct change tendency, that is, maximum
similarity metric value corresponds to the approximate correct
position. Compared with RMI and NMI, RIRMI is not easy
to be trapped in local extreme points. Thus, its value can still
ensure that the maximum value can be obtained when the two
translated or rotated images are matched. However, it is not
true for MI. This implies that the RIRMI is more robust than
RMI, NMI, and MI to the image pairs with nonlinear intensity
differences and geometric distortions [38].
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