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Aaron Pearlman , Member, IEEE, Matthew Montanaro, Boryana Efremova, Joel McCorkel,
Brian Wenny, Member, IEEE , Allen Lunsford, and Dennis Reuter

Abstract— The Thermal Infrared Sensor-2 (TIRS-2) that will
be onboard Landsat 9 has undergone a prelaunch testing cam-
paign to characterize its radiometric, spectral, and spatial per-
formances and demonstrate compliance to its requirements. This
work reviews the key elements of the instrument-level radiometric
testing using an SI-traceable source to derive its uncertainties.
Those arising from on-orbit calibration using the TIRS-2 onboard
blackbody are also discussed. We use a Monte Carlo approach
to propagate the uncertainties through a nonlinear calibration
equation and address both random and systematic uncertainty
terms. Achieving the required performance demonstrates the
instrument’s potential for enhancing our understanding of the
Earth’s environment.

Index Terms— Calibration, Landsat 9, prelaunch testing, spec-
tral response, Thermal Infrared Sensor 2 (TIRS-2), uncertainty.

I. TIRS-2 INSTRUMENT AND

REQUIREMENT OVERVIEW

THE Thermal Infrared Sensor-2 (TIRS-2), expected to
launch on Landsat 9 in 2021, will continue the Landsat

Program’s legacy of providing a moderate-resolution thermal
imagery over almost four decades. Scientists use the thermal
imagery provided by the Landsat satellites for a wide variety
of environmental applications such as cloud detection and
masking [1], [2], evapotranspiration studies [3], [4], water use
assessments [5], urban heat flux mapping [6], [7], burned area
mapping [8], and vectorborne illness potential identification
[9], [10]. Many of these applications are enabled through the
land-surface-temperature retrievals from the thermal imagery.
TIRS-2, which is a functional copy of TIRS, its predecessor on
Landsat 8 [11], has two bands at 10.8 and 12.0 μm, enabling
more accurate retrievals than the previous Landsat thermal
sensors, where only a single channel was available [12].
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TABLE I

TIRS/TIRS-2 PARAMETERS

A comprehensive survey of the applications enabled by
land-surface-temperature retrievals can be found in [13].

TIRS-2 will produce a radiometrically SI-traceable, geolo-
cated thermal imagery of the Earth with the same para-
meters as Landsat 8 TIRS: 16-day repeat, 100-m spatial
sampling (resampled to 30 m in the final product), 185-km
swath width, and 70 frames/s operation. The instrument is
a pushbroom sensor with a 15◦ cross-track field of view
with the same basic architecture as TIRS but with some
improvements such as increased electrical redundancy and
improved stray-light suppression [14]. It has a f/1.6 four-
lens telescope that focuses onto three quantum-well infrared
photodetector (QWIP) arrays usually termed sensor chip
assemblies (SCAs) [15], an onboard blackbody for calibration,
and a scene-select mirror for switching among the Earth
view, blackbody, and space views (Fig. 1). The onboard
calibrator (OBC), the same design as TIRS, is modeled after
the blackbodies used as part of other heritage systems: the
Visible Infrared Radiometer Suite (VIIRS) and the Moderate
Resolution Imaging Spectroradiometer (MODIS) [16].

The three QWIP arrays are 512 rows × 640 columns
each. A filter for each channel covers ∼70 rows of each SCA
with an opaque section in between for dark count monitoring
(Fig. 1). In its operational mode, only two rows are read
out from each channel and dark region. A combination of
these detectors from the two rows that meet the performance
requirements forms an effective field of view that spans the
185-km swath width and is transmitted to the ground. Those
two rows are chosen based on the component- and instrument-
level radiometric and spectral characterization tests (discussed
in the next section). The primary and redundant rows are
combined in the ground processing system to produce the
standard Landsat scene image product. Any underperforming
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Fig. 1. TIRS-2 schematic with SSM, telescope lenses, and SCA. (Bottom)
SCA layout with three QWIP arrays and approximate filter positions for the
10.8- and 12.0-μm channels and dark regions. (Note that the OBC is not
included in the figure.)

individual detector from the primary row can be replaced with
the corresponding detector in the redundant row to produce a
“perfect” row of data for the image product. The two rows may
be changed in flight should it become necessary, although the
rows have been stable throughout the Landsat 8 mission and
a similar performance is expected from Landsat 9.

This work addresses the absolute radiometric uncertainty
requirement, interpreted as uncertainty. Table II shows the
accuracy and noise requirements for TIRS-2 (and TIRS)
and the TIRS on-orbit performance, which is discussed
further in [19]. The pairs of numbers either represent the
brightness-temperature scene ranges, defined as 260–330 K
(nominal range), or 240–260 and 330–360 K (extended
range), or correspond to the 10.8-μm channel and 12.0-μm
channels, respectively. Note that a 2% radiometric uncertainty
in the nominal range corresponds to about 1.2 and 1.9 K
in brightness-temperature uncertainty in the two channels,
respectively. A 4% radiometric uncertainty in the extended
range corresponds to about 3.2 and 3.6 K brightness-
temperature uncertainty. The TIRS-2 performance is expected
to be comparable with the TIRS performance but with an
improved stray-light suppression. Previous studies on TIRS
have shown that stray light can impact the radiometric
uncertainties beyond the requirement level, but the software-
correction methodologies have been implemented in the
ground processing system to reduce these uncertainties sig-
nificantly to meet the requirement [14], [18], [20], [21]. Con-
sidering stray-light artifacts as part of the TIRS-2 uncertainty
budget would show the uncertainties meeting the requirement.
We take a different approach to the requirement in this article,
however, and primarily consider the radiometric impacts from
the uniform scenes where stray light has no impact. We will
leave a detailed discussion on all scatter impacts, both far-field

stray-light and near-field stray-light (ghosting) artifacts, for a
separate work. This approach is consistent with a more literal
interpretation of the requirement, which states its application
for the “extended, spatially uniform, unpolarized targets.”
Before discussing the uncertainty budget, we first present an
overview of the relevant prelaunch testing methodologies and
results, followed by the uncertainty methodology.

II. PRELAUNCH CALIBRATION AND CHARACTERIZATION

A. Prelaunch Testing Overview

The prelaunch testing—with characterization at various
integration phases—follows the best practices established by
the remote sensing community [22]. The integration phases
include component-level, subassembly-level, instrument-level,
and spacecraft-level testings to address the radiometric
requirements (including the ones introduced earlier), as well
as the spatial, spectral, and geometric requirements [19],
[23]. Fig. 2 shows some of the key measurements in all
testing phases. Many tests are repeated at different phases to
ensure the validity of their results. For instance, the relative
spectral response (RSR) is derived independently through
the component-level filter transmittance and detector relative
response measurements, as well as through the instrument-
level measurements to ensure their consistency [24]. Spectral
characterization was also performed at the subassembly level
in order to refine the test setup and the sampling strategy in
advance to the instrument-level characterization (Fig. 2) [25].
The instrument-level spectral measurements provided lower
uncertainties in establishing the channel average spectral
responses, so they are expected to be used in operations
rather than those derived by component-level measurements.
Thus, the uncertainties of the instrument-level RSR will
be discussed thoroughly here (and those derived by the
component-level measurements, considered as a validation,
are discussed in [24]).

The radiometry (calibration) measurements were done
only at instrument level, since this is the only configuration
where the reference blackbody source could be installed
and the final instrument electronics were integrated. This
full-aperture reference blackbody source called the flood
source used for instrument-level testing is the basis for the
TIRS-2 radiometric calibration. Its SI traceability was first
established for TIRS testing in 2012 and recharacterized for
use for the TIRS-2 program in 2018 at the Space Dynamics
Laboratory (SDL) [26]. This was done through comparison
with a standard blackbody source called the long-wave
infrared calibration source (LWIRCS) by an SDL transfer
radiometer [27]. The LWIRCS spectral radiance scale is tied
to both the NIST-calibrated temperature sensors and the cavity
model as well as through the NIST transfer radiometer (TXR)
[28]. The effective emissivity of 0.9920 was determined with
an uncertainty of 0.0023, which corresponds to the uncertainty
in the spectral radiance scale including the TXR transfer
uncertainty. The emissivity results showed no significant
changes between the 2012 and 2018 measurements. This
TIRS-2 response to the flood-source illumination is compared
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TABLE II

UNCERTAINTY BUDGET (%)

Fig. 2. Overview of prelaunch testing including key measurements at the component-, subassembly-, instrument-, and spacecraft-level testings. The calibration
uncertainty is derived from the instrument-level measurements of the RSR and radiometry tests. (Bottom left) SI-traceable flood source and onboard calibrator
establish the prelaunch calibration and on-orbit calibration capability. (Right) Blackbody-monochromator setup is used to measure the RSR at both subassembly-
and instrument-level test phases.

with the TIRS-2 onboard blackbody illumination to establish
an on-orbit calibration capability (Fig. 2).

The instrument-level testing occurred at the Goddard Space
Flight Center in two phases with the vibration/acoustic testing
performed in-between. Together, these phases verified the
stability of the hardware and repeatability of its calibration
and RSR results in a simulated on-orbit environment inside
a thermal vacuum chamber. The spatial response, stray light,
focus, and bright-target recovery tests were also included in
this phase. The focus test is done to verify that the image is
focused on the detector arrays; the bright target recovery test
is done to verify that the detector arrays do not suffer from
the image memory artifacts. The scatter and spatial responses
characterize the potential image artifacts due to spatial scene
nonuniformities. As mentioned, the analysis here will address

the radiometric uncertainties arising from the uniform scenes
only, where the results from the radiometry and RSR tests are
most relevant. The stray-light tests including far-field stray-
light and near-field ghosting artifacts are outside the scope of
this article [29].

B. Instrument-Level Calibration

During thermal vacuum radiometry (calibration) testing,
the flood source illuminates the TIRS-2 aperture at varying
blackbody temperature values in the range of 200–360 K to
capture the full dynamic range and characterize any nonlinear
response. During a calibration sequence, the scene select
mirror (SSM) switches among the space view, OBC, and
flood source (nadir) view. During each 1-min view of this
sequence, two operational detector rows from each band
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Fig. 3. (a) Integration time sweep showing the bottom, transition, and top regions. The raw counts are converted to match the slope of the top region.
(b) Curve shows conversion over the entire range of digital counts.

(10.8 and 12.0 μm, and dark) are read out at 70 Hz to generate
4200 samples per detector. Additional diagnostic modes are
available, where almost every detector of each array is read
out. In this way, calibration data are obtained for the flood
source and OBC for all potential operational detectors. We will
discuss one potential approach to on-orbit calibration using the
OBC, but the final approach will be determined on-orbit. The
space view during testing consists of a cold (∼100 K) target
inside the thermal vacuum chamber.

The calibration process described here is similar to that of
TIRS discussed in [30]. There are three basic steps in the
calibration: linearization, TIRS-2 flood-source-signal retrieval,
and the calculation of the flood-source effective spectral
radiance. The linearization process is required, because the
electronic gain is not constant through its range of digital
counts. It has two distinct gains with a transition region
between them that are revealed if the integration time is swept
while illuminated by a stable radiance (Fig. 3). The signals
are linearized so that all digital count values have the same
electronic gain.

Both the flood-source view and space view digital counts
are linearized and then subtracted to remove the background
radiance signal and isolate the flood-source signal �C for all
detectors at different flood-source temperatures. The black-
body temperature is converted into effective spectral radiance
using the Planck function and the RSR—also measured in
thermal vacuum testing [24]. A slightly nonlinear model—due
to some uncorrected nonlinearity in the linearization process
and potential nonlinearity in the photon absorption process
itself—is generally used to fit the effective spectral radiance to
�C . Note that this generates coefficients (or a lookup table)
for each detector, but all detectors in a given band use the
same RSR. For the purpose of this article, we will model the
TIRS-2 calibration with a quadratic dependence on radiance,
where L is the effective spectral radiance of the blackbody,
� is its emissivity, Lbk is a background term representing the

difference in background between the blackbody and the space
view

�L + Lbk = q�C2 + m�C + b (1a)

�L = q�C2 + m�C. (1b)

The background term present in (1a) can justify an
offset term in the calibration equation. We neglect this
term, however, since the background is small [derived
as 0.0039 ± 0.0128 W/m2/sr/μm and 0.0593 ± 0.0135
W/m2/sr/μm across all detector columns for the 10.8- and
12.0-μm channels, respectively, using (1a)], and could deviate
on-orbit from the thermal vacuum test conditions, to obtain
(1b)—our primary calibration equation used in this work.

C. Instrument-Level Relative Spectral Response

The calibration equation uses the channel average RSR
to calculate effective spectral radiance. The measurement
setup for RSR consists of the setup depicted in Fig. 2 and
the custom calibration ground support equipment (GSE)
inside the thermal vacuum chamber. The calibration GSE has
capabilities to test the radiometric (by the integrated flood
source), geometric, and spectral performances of a sensor
under the thermal vacuum conditions. There is a special
mode designed for spectral measurements, where a beam
from the monochromator-based setup outside the thermal
vacuum chamber can propagate through the calibration GSE
and onto the designated TIRS-2 detectors. The blackbody-
monochromator setup consists of a 1000◦C blackbody source
filling the entrance slit of a monochromator (with 50-lines/mm
grating with a blaze wavelength of 12 μm, and a reciprocal
dispersion of 78.3 nm/mm). The monochromator output is
collimated and directed into the chamber through a ZnSe
window and to the TIRS-2 aperture by the calibration GSE
optics. The monochromator wavelength is swept through a
range of wavelengths covering the desired channel, and at
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Fig. 4. Average RSR over all SCAs obtained from instrument-level testing
for each channel. The shading represents the standard deviation across all
locations.

each spectral interval, detector samples are acquired with the
monochromator shutter open and close. The latter signal is
subtracted from the former to remove the background and
obtain the TIRS-2 signal (dnTIRS). A similar wavelength sweep
is conducted subsequently with the monochromator output
beam directed to a reference detector (liquid nitrogen-cooled
HgCdTe detector) with a calibrated relative responsivity (Rref ).
To separate the blackbody signal from the large ambient back-
ground, the blackbody signal is chopped to enable the lock-in
amplification of the optical signal. The RSR is derived as

SRTIRS(λ, pix) = dnTIRS(λ, pix)
τref path

τTIRS path

Rref

Vref
(2a)

RSRTIRS(λ, pix) = SRTIRS(λ, pix)

maxλ(SRTIRS(λ, pix))
. (2b)

The dnTIRS with a correction for different optical path
transmittances to the reference detector (τref path) and to the
TIRS-2 aperture (τTIRS path) is combined with a reference-
detector term, Rref , divided by Vref , the reference-detector
signal, to generate the spectral response (SRTIRS). Equa-
tion (2b) normalizes the spectral response to arrive at the RSR
for each designated region on the detector arrays. The final
RSR per channel is derived by averaging over all measured
regions to obtain the mean RSR for each channel (Fig. 4).

Further details of the measurements are described in [24]
and [25], and an uncertainty budget is included in [25],
which we will review in a later section. Once the RSRs
were measured, they were used to derive the effective spectral
radiance used in the calibration equation.

III. UNCERTAINTY BUDGET METHODOLOGY

This work addresses the TIRS-2 absolute radiometric uncer-
tainty and the SI traceability derived from the measure-
ments described previously. Such uncertainty evaluations have
been conducted for the heritage and operational sensors such
as VIIRS, MODIS, Geostationary Operational Environmen-
tal Satellite (GOES) Imager, and GOES-R series Advanced

Baseline Imager (ABI). These sensors generally follow the
best practices for establishing SI traceability and uncertainty
analysis [31] and have undergone extensive prelaunch testing
to characterize their behavior in the operational conditions
[32]–[35]. The uncertainty budgets account for the major
uncertainty contributors in their calibration equations. Similar
parameters were explored (with some added/omitted) based on
their unique design attributes and addressed in the calibration.
We also follow such best practices by assessing all major
uncertainty contributors and include them in the calibration
equation. The quality of the fit using the TIRS-2 calibration
equation (1b) gives us confidence in this model that forms
the basis of the uncertainty budget. The parameters defined
in the equation include the fit coefficients, measured signal,
and effective spectral radiance of the blackbody given by its
temperature sensors, emissivity values, and RSR. These para-
meters along with additional terms to account for systematic
differences from repeated measurements form a comprehen-
sive uncertainty budget.

The parameter uncertainties are propagated through
the measurement (calibration) equation (1b) to derive the
uncertainty contribution to the radiometric uncertainty
expressed with a coverage factor k = 1. There are several
approaches to propagating uncertainties through a calibration
equation: analytically, computationally by perturbation, and
computationally by a Monte Carlo approach [36], [37].
The analytical approach refers to using the propagation of
the uncertainty formula. The perturbation method refers to
perturbing the mean measured value by its uncertainty and
propagating through the measurement equation to find the
resulting radiometric uncertainty. Both these methods give
equivalent results and are used for the VIIRS and MODIS
uncertainty analyses, respectively [33], [38].

The drawback of these methods is that they may be less
accurate when the measurement equation is nonlinear. Thus,
we instead computed the uncertainty contributions by a Monte
Carlo computational approach, which does not have such a
limitation and is consistent with the established standards
for uncertainty analysis [37]. Here, we choose a probability
distribution, a Gaussian distribution typically, and generate
random numbers with the mean measured value and standard
deviation corresponding to its k = 1 uncertainty and
propagate them through the calibration equation to establish
an output distribution of the radiance values. The standard
deviation of the resulting radiance values is the radiometric
uncertainty. Note that the RSR measurement equations are
linear [see (2)], so propagating their uncertainties followed the
perturbation approach through the RSR calculation and then
converting into effective spectral radiance assuming blackbody
illumination. Note that the Monte Carlo approach avoids any
inaccuracy due to nonlinearities and gives a convenient way
of addressing correlations between the parameters by simply
replacing the Gaussian-distributed random numbers with the
bivariate-Gaussian-distributed numbers as is done for the
highly correlated fitting coefficients [39]. For comparison,
the VIIRS analysis in [33] handled correlations by calculating
the covariance terms in the uncertainty propagation formula
or estimating their upper bounds.
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Once the radiometric uncertainties were determined for all
parameters, the combined uncertainty uc is calculated as the
root sum squared of the uncertainty components

u2
c(y) =

N∑
n=1

u2
i . (3)

The uncertainties cannot be combined strictly according to this
approach, however, due to some terms involving the uncor-
rected biases. This leads to some complications in combining
the uncertainties. To the best of our knowledge, there have
been no other attempts to address the uncorrected bias in
the previous prelaunch uncertainty analyses for the satellite
sensors. Such biases should be corrected if possible, but this
is not realizable for some parameters; thus, such uncorrected
biases are often neglected until postlaunch. By including the
uncorrected biases, the results can include these terms but
remain independent of the correction methodology applied
postlaunch. We follow the method described in [40] referred
to as the sum uncertainty method (SUMU) to express and
combine the uncertainties by adding biases to obtain the
combined bias (δc), taking the root sum squared of random
uncertainties including the bias uncertainties to obtain the
combined random uncertainty uc, and forming a confidence
interval corresponding to the total combined k = 1 uncertainty

U+ = kuc − δc

U− = kuc + δc (4)

y

{
U+
−U−

. (5)

Most of the uncertainty terms are derived based on the
thermal vacuum test data at the nominal (expected on-orbit)
conditions. The exceptions are in evaluating calibration repro-
ducibility, where data are taken at instrument temperatures
outside the nominal on-orbit conditions to obtain the worst
case values. The uncertainties will be expressed for both
the nominal and extended brightness-temperature ranges as
defined in the requirements.

IV. UNCERTAINTY RESULTS AND DISCUSSION

The uncertainty budget is roughly organized into prelaunch
and on-orbit uncertainties. The prelaunch uncertainties are
associated with the flood-source-based calibration and RSR
measurements. Most of the on-orbit uncertainties are tied to
the calibration using the OBC (although some flood-source-
related terms are included in the combined on-orbit uncertainty
as will be discussed). The on-orbit uncertainty total refers to
an implementation of the OBC calibration without attempting
to make corrections to match the flood-source-based prelaunch
calibration.

The flood-source-calibration radiance scale uncertainty was
previously discussed in Section II. An additional flood-source-
related uncertainty is its temperature uncertainty given by the
standard deviation of the mean of its two temperature sensor
values in the 200–360 K range. A Monte Carlo method was
used to propagate the temperature uncertainty through the
calibration equation: The effective spectral radiance values are

calculated using Gaussian-distributed temperature values and
fitted with the corresponding �C to obtain a set of calibration
curves (radiance versus �C). The uncertainty is calculated
by taking the average standard deviation of the radiance at
each �C and dividing by the radiance. A wide range of radi-
ance values are included to cover the brightness-temperature
ranges for comparison with the requirements. The maximum
of the nominal and extended ranges is compared with the
requirements for operational detectors in all array columns.
The average uncertainty (over all detectors) is 0.067% in
the nominal range and 0.082% in the extended temperature
regions for the 10.8-μm channel and 0.059% and 0.072% in
the respective ranges for the 12.0-μm channel.

The calibration using the flood source is also affected by the
TIRS-2 count noise, which is approximately the noise (NEDL)
divided by the square root of the number of samples. This
turns out to be negligible, since the instrument noise is low
[10.8-μm channel: 0.005–0.010 W/m2/sr/μm, 12.0 −μm
channel: 0.006–0.010 W/m2/sr/μm—similar to TIRS
performance (Table II)] and a large number of samples are
taken (4200 in each flood source and space view). This yields
0.0046% in the nominal range and 0.0054% in the extended
temperature regions for the 10.8-μm channel and 0.0071% and
0.0084% in the respective regions for the 12.0-μm channel.

The fitting uncertainty was originally calculated with the
perturbation method. The results showed, however, that this
method overestimated the uncertainty due to the nonlinear
calibration equation. To generate a more accurate fitting
uncertainty, we switched to a Monte Carlo methodology
while also accounting for the fitting coefficient correlations
(calculated using the detectors across all columns). The
quadratic fit with confidence intervals for each coefficient
corresponding to a k = 1 coverage factor is calculated. The
random fitting coefficients are generated with a bivariate
Gaussian distribution based on these confidence intervals and
correlation coefficients. These coefficients are used to generate
the calibration curves (radiance as a function of �C). This
process is illustrated in Fig. 5. The standard deviation of these
radiance curves gives the uncertainty. This process is repeated
for all operational row detectors and shown in Fig. 6(a). The
maximum uncertainty in the nominal and extended brightness-
temperature regions is then averaged over the detectors to
obtain the final uncertainty values. For the 10.8 μm,
the uncertainty is 0.37% (nominal) and 0.41% (extended),
and for the 12.0-μm channel, 0.22% (nominal) and 0.27%
(extended).

The uncertainty of the linearization process is captured
by evaluating its reproducibility. We derive a linearization
based on two different sets of calibration data taken at the
nominal and nonnominal conditions. The difference between
their impacts on radiance gives this additional uncertainty.
We found the difference between them to be 0.30% at the
nominal and 0.70% at the extended temperature ranges for
the 10.8-μm channel, and 0.04% at the nominal and 0.10%
at the extended temperature ranges for the 12.0-μm channel.
The latter channel is affected less, because the higher count
levels in this channel lie on the top section of the linearization
curve, where the impact is negligible.
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Fig. 5. Illustration of the Monte Carlo process with correlations. (a) Example of a quadratic radiance versus linearized background subtracted counts fit
for one detector is shown. (b) Range of fits generated with random values of fitting coefficients with a correlation coefficient of 0.85 and with their k = 1
uncertainties. The inset shows the histogram of the coefficients used to illustrate their bivariate Gaussian distribution.

Fig. 6. Results of the Monte Carlo-derived fit uncertainties for (a) flood-source-based calibration and (b) onboard calibration in the nominal and extended
brightness-temperature ranges for each channel. The correlation coefficients of the fitting coefficients (r) are responsible for either increasing or reducing the
uncertainties. Note that the uncertainty for all SCAs is included (refer to Fig. 1 for the SCA layout).

The calibration reproducibility in the nominal conditions
was also characterized through the repeated measurements
at the selected flood-source temperatures. The fit to the
11 flood-source temperature points was used to generate the
original quadratic fit. This fit was then applied to the signal
at the repeated measurements at the temperatures of 260,
270, 290, and 300 K. The radiometric difference between the
original and repeated points shows a clear positive mean bias
of 0.22% and 0.24% over all detectors and temperatures with
an uncertainty of 0.24% and 0.10% for the 10.8- and 12.0-μm
bands, respectively, (Fig. 7). The uncertainty of the bias is
simply the standard deviation, because we are evaluating each
detector individually (the standard deviation of the mean does
not tell us how well we know the bias). Note that this term
was not evaluated at the extended temperatures, since these
points were not repeated for this test.

To review the RSR uncertainty as derived in [25],
we observe all the terms in (2a) and (2b), which includes

the reference-detector signal uncertainty and TIRS-2 noise.
We also included the monochromator wavelength calibration
uncertainty, which was determined to be 1 nm by measuring
two reference absorption lines of an NIST standard reference
material 1921B [41] closest to the TIRS-2 spectral channels,
and therefore considered negligible. (Note that a third spec-
tral line at 9.352 μm showed a 15-nm bias, but this was
neglected, since its wavelength was far outside the TIRS-
2 bands.) Another source of wavelength uncertainty, however,
is a consequence of the dispersion across the monochrometer
slit. The RSR is calculated using the TIRS-2 pixels near the
maximum signal, which does not exactly correspond to the
monochromator wavelength setting. Since this setting corre-
sponds to the center of the slit image, a wavelength correction
is applied equal to the distance between the location with the
maximum signal and the center of the slit in wavelength. The
uncertainty of this correction is 1.5 pixel rows or 15 nm in
wavelength. We incorporated the uncertainty contributions of
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Fig. 7. Reproducibility of the radiometric flood-source-based calibration expressed, as a percent difference is shown for all detector columns in an operational
row for (a) 10.8- and (b) 12.0-μm channels.

Fig. 8. Spectral uniformity for cold (240 K), nominal (300 K), and high (360 K) brightness-temperature blackbody targets for (a) 10.8- and (b) 12.0-μm
channels shown for an operational detector in each column across all SCAs.

the reflectance/transmittance spectra of the optical components
or reference-detector response by using 10% of their maximum
change within the channels (since these uncertainties were not
provided by the vendors). The TIRS-2 noise term is calculated
as the standard deviation of the mean for a typical pixel
over its samples calculated per wavelength. Incorporating the
RSR nonuniformity across all locations gives the uncertainty
introduced by using an average RSR per band to represent all
detectors as is planned operationally (Fig. 8). This effect and
the wavelength uncertainty dominate the spectral uncertainty.
The radiometric uncertainties from the combined spectral
uncertainty are 0.05% (nominal) and 0.06% (extended) for the
10.8-μm channel and 0.10% (nominal) and 0.15% (extended)
for the 12.0-μm channel.

The onboard calibration uncertainties are derived with a
similar approach as the flood-source-based calibration uncer-
tainties. The main difference is that we establish the traceabil-
ity of the OBC calibration by relating the on-orbit OBC-based
calibration to the flood-source-based calibration. Using the
same calibration equation, we derive the coefficients and their

uncertainties independently of the OBC-based calibration. The
blackbody operates in a more limited range of temperatures
270–320 K than the flood source. The fitting uncertainties
derived through Monte Carlo analysis are 0.27% (nominal)
and 0.36% (extended) for the 10.8-μm channel and 0.19%
(nominal) and 0.35% (extended) for the 12.0-μm channel. The
low uncertainties for the latter channel are due to the strong
anticorrelation between the quadratic and linear coefficients
(correlation coefficient = −0.99) compared with the strong
positive correlation in the former channel (correlation coeffi-
cient = 0.78), as shown in Fig. 6(b).

The flood-source-based and OBC-based calibration curves
are compared for all detectors (Fig. 9). By taking the maximum
differences in the nominal and extended ranges, we derived
the biases of 0.42% and 0.49% in the nominal and extended
regions, respectively, for the 10.8-μm channel and 0.32% and
0.40% in the nominal and extended regions, respectively, for
the 12.0-μm channel. Note that the biases over the range
of blackbody temperature values for the 12.0-μm channel
have more variability than that for the 10.8-μm channel.
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Fig. 9. Radiometric difference between the flood-source- and onboard-based calibrations across all detector columns across all SCAs for an operational row
for (a) 10.8-and (b) 12.0-μm channels.

The sharp discontinuities are associated with a change in
SCA (Fig. 1), since the detectors on different arrays have
larger response differences than the high-frequency differences
normally observed between the columns within an SCA. These
small response differences generate fits with slightly differ-
ent uncertainties. The uncertainties of the biases are 0.20%
(nominal) and 0.22% (extended) for the 10.8-μm channel
and 0.31% (nominal) and 0.32% (extended) for the 12.0-μm
channel. Note that during the operations, these biases can
potentially be corrected, and we briefly discuss one approach
to making this correction, but leave them uncorrected in
the uncertainty budget to show a conservative estimate. For
instance, consider the background term in (1a) for both the
flood-source and OBC views. The radiance difference can be
used as a correction term representing the background dif-
ference between these two views. This difference varies with
the OBC/flood-source temperature and the detector column.
Optimally, this background difference would correspond to
the same blackbody temperature difference for each channel,
but we found that using different background temperature
differences for each channel optimized the correction. This
could be due to different view factors or emissivity values
from the background source in each channel, which can
lead to an apparent temperature difference. If we derive
these differences for all detectors and channels, the OBC
calibration equation can be corrected to obtain the flood-
source-based calibration. This correction may be sensitive
to the actual on-orbit thermal conditions, so further on-orbit
analysis would be recommended before implementing such a
correction.

The OBC has four temperature sensors that are averaged to
determine its temperature and then converted into effective
spectral radiance. The radiometric uncertainty due to the
temperature uncertainty is calculated using the same approach
as the flood source. The uncertainties are 0.21% (nominal)
and 0.36% (extended) for the 10.8-μm channel and 0.19% and
0.35% for the 12.0-μm channel. To characterize any potential

impacts to a small change in the OBC view angle, a special
test was conducted viewing the OBC at its nominal view angle
and through an angle of ±0.5◦ its nominal angle. We found
that this effect introduces a negligible uncertainty of 0.02%,
indicating a highly Lambertian source in this range of view
angles.

Like the flood-source-based calibration reproducibility term,
the OBC calibration was characterized through repeated
measurements. Since all temperature values were repeated,
we compared the calibration curves generated with two inde-
pendent sets of acquisitions. These fits were then compared
through their radiometric differences. The results show a slight
positive bias through most of the brightness-temperature range:
mean bias of 0.071% and 0.075% over all detectors and
temperatures with an uncertainty of 0.34% and 0.54% for the
10.8 and 12.0-μm bands, respectively.

All uncertainty terms without bias are combined according
to (3). The bias terms are added separately, and the final
k = 1 confidence intervals are formed using (4) and (5)
and are shown in Table II. For the uncorrected bias terms,
there is both a bias listed as well as the bias uncertainty.
The biases cause an asymmetric uncertainty interval under the
requirements for the nominal and extended regions for both
channels. The combined prelaunch uncertainties include terms
associated with the flood-source and spectral measurements.
The on-orbit calibration includes OBC measurement terms as
well as several terms included in the prelaunch uncertainty:
linearization, RSR, and TIRS-2 noise. The uncertainty terms
contributing to the prelaunch and on-orbit totals are depicted
on the figure next to the table. The on-orbit total uncertainty
can be considered worst case, since in the operations, there
will likely be a method for correcting the bias between the
onboard and prelaunch calibrations, which is not included here
but will be a subject of future investigation using the on-orbit
data. Thus, these combined uncertainties can be thought of as
giving the likely range of uncertainties during the operations.
For the worst case (on-orbit uncertainty), the largest edge
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of the interval is 1.3% (nominal) and 1.7% (extended)—well
under the required 2% and 4% values for the on-orbit values.
Note that even if we had considered nonuniform scenes in the
uncertainty budget, which would include both far-field and
near-field stray-light (ghosting) artifacts, these values would
increase to 1.9% (nominal) and 2.2% (extended). This includes
the contributions from the far-field stray light of 0.57% and
0.83% for the nominal and extended temperature ranges,
respectively. This assumes a simple correction using an out-
of-field temperature of 293 K. More sophisticated corrections,
such as those used for TIRS, could also be employed to reduce
these uncertainties further [18]. The uncertainty contributions
from ghosting are 0.50% (nominal) and 0.88% (extended).
As mentioned, the stray-light artifacts will be discussed in
more detail in a separate work.

Although this uncertainty analysis is meant to be
comprehensive, it neglects several parameters. For instance,
the electronics and detector temperature dependence on the
calibration have not been discussed here, although it has been
characterized in the case when TIRS-2 is operated in the non-
nominal conditions. The onboard calibration methodology may
be changed to include corrections to match the flood-source-
based calibration more closely. The blackbody degradation
over the lifetime of the mission is neglected here, since it
cannot be accurately estimated; the TIRS OBC (with the same
design as TIRS-2) radiance has experienced an on-orbit degra-
dation of 0.2% and 0.1% per year for the 10.8- and 12.0-μm
channels, respectively, but this could be due to the reduction in
the detector sensitivities or blackbody degradation [17]. This
article also does not consider more complex calibration models
in order to simplify the analysis and interpretation of the
results.

V. CONCLUSION

Through extensive prelaunch testing, TIRS-2 has been
characterized and calibrated and has demonstrated the
performance necessary to meet its radiometric uncertainty
requirements. TIRS-2 has established SI traceability through
its prelaunch testing and has demonstrated an accurate onboard
calibration capability. The prelaunch TIRS-2 radiometric
uncertainty is less than 0.80% for the 10.8-μm channels and
0.58% for the 12.0-μm channels over the source temperatures
of 260–330 K corresponding to a brightness-temperature
uncertainty of about 0.5 and 0.4 K for the two channels.
The uncertainty analysis method implemented provides a
general framework for addressing the calibration nonlinearity,
correlated parameters, and uncorrected biases—commonly
encountered in the prelaunch calibration of the remote
sensing systems. The expected performance of TIRS-2 is
established to give the Landsat data users the confidence
to continue using the Landsat thermal imagery for many
important environmental applications after its launch and will
also serve as a baseline for the future on-orbit validation
work. It is expected to meet its users’ needs for a variety of
environmental applications to continue the Landsat’s legacy
of providing a high-quality thermal imagery.

ACKNOWLEDGMENT

The authors would like to thank the TIRS-2 Goddard Space
Flight Center team for testing support, especially J. Love for
software support. They would also like to thank B. Markham
and R. Levy of the Landsat Cal/Val team for the helpful
discussions and the Space Dynamics Laboratory including
Alan Thurgood for blackbody characterization.

REFERENCES

[1] S. Foga et al., “Cloud detection algorithm comparison and validation
for operational landsat data products,” Remote Sens. Environ., vol. 194,
pp. 379–390, Jun. 2017.

[2] M. J. Wilson and L. Oreopoulos, “Enhancing a simple MODIS cloud
mask algorithm for the landsat data continuity mission,” IEEE Trans.
Geosci. Remote Sens., vol. 51, no. 2, pp. 723–731, Feb. 2013.

[3] M. C. Anderson, R. G. Allen, A. Morse, and W. P. Kustas, “Use of
landsat thermal imagery in monitoring evapotranspiration and managing
water resources,” Remote Sens. Environ., vol. 122, pp. 50–65, Jul. 2012.

[4] R. G. Allen et al., “Automated calibration of the METRIC-Landsat
evapotranspiration process,” JAWRA J. Amer. Water Resour. Assoc.,
vol. 49, no. 3, pp. 563–576, May 2013.

[5] C. Santos, I. J. Lorite, R. G. Allen, and M. Tasumi, “Aerodynamic
parameterization of the satellite-based energy balance (METRIC) model
for ET estimation in rainfed olive orchards of Andalusia, Spain,” Water
Resour. Manage., vol. 26, no. 11, pp. 3267–3283, Jun. 2012.

[6] X.-L. Chen, H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, “Remote sensing
image-based analysis of the relationship between urban heat island
and land use/cover changes,” Remote Sens. Environ., vol. 104, no. 2,
pp. 133–146, Sep. 2006.

[7] M. El-Hattab, A. S. M., and L. G. E., “Monitoring and assessment
of urban heat islands over the southern region of Cairo Governorate,
Egypt,” Egyptian J. Remote Sens. Space Sci., vol. 21, no. 3, pp. 311–323,
Dec. 2018.

[8] C. Quintano, A. Fernandez-Manso, and D. A. Roberts, “Burn severity
mapping from Landsat MESMA fraction images and land surface
temperature,” Remote Sens. Environ., vol. 190, pp. 83–95, Mar. 2017.

[9] I. Ogashawara, L. Li, and M. J. Moreno-Madriñán, “Spatial-temporal
assessment of environmental factors related to dengue outbreaks in São
Paulo, Brazil,” GeoHealth, vol. 3, no. 8, pp. 202–217, Aug. 2019.

[10] D. P. Roy et al., “Landsat-8: Science and product vision for terrestrial
global change research,” Remote Sens. Environ., vol. 145, pp. 154–172,
Apr. 2014.

[11] D. Reuter et al., “The thermal infrared sensor (TIRS) on Landsat 8:
Design overview and pre-launch characterization,” Remote Sens., vol. 7,
no. 1, pp. 1135–1153, Jan. 2015. [Online]. Available: http://www.mdpi.
com/2072-4292/7/1/1135

[12] X. Yu, X. Guo, and Z. Wu, “Land surface temperature retrieval from
Landsat 8 TIRS—Comparison between radiative transfer equation-
based method, split window algorithm and single channel method,”
Remote Sens., vol. 6, no. 10, pp. 9829–9852, 2014. [Online]. Available:
http://www.mdpi.com/2072-4292/6/10/9829

[13] J. A. Sobrino, F. D. Frate, M. Drusch, J. C. Jimenez-Munoz, P. Manunta,
and A. Regan, “Review of thermal infrared applications and require-
ments for future high-resolution sensors,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 5, pp. 2963–2972, May 2016.

[14] M. Montanaro, A. Gerace, A. Lunsford, and D. Reuter, “Stray light
artifacts in imagery from the Landsat 8 thermal infrared sensor,” Remote
Sens., vol. 6, no. 11, pp. 10435–10456, Oct. 2014. [Online]. Available:
http://www.mdpi.com/2072-4292/6/11/10435

[15] M. Jhabvala, D. Reuter, K. Choi, C. Jhabvala, and M. Sundaram,
“QWIP-based thermal infrared sensor for the Landsat data conti-
nuity mission,” Infr. Phys. Technol., vol. 52, no. 6, pp. 424–429,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1350449509000619

[16] X. Xiong, B. N. Wenny, A. Wu, and W. L. Barnes, “MODIS onboard
blackbody function and performance,” IEEE Trans. Geosci. Remote
Sens., vol. 47, no. 12, pp. 4210–4222, Dec. 2009.

[17] M. Montanaro, R. Levy, and B. Markham, “On-orbit radiometric perfor-
mance of the Landsat 8 thermal infrared sensor,” Remote Sens., vol. 6,
no. 12, pp. 11753–11769, Nov. 2014.



PEARLMAN et al.: PRELAUNCH RADIOMETRIC CALIBRATION AND UNCERTAINTY ANALYSIS 2725

[18] A. Gerace and M. Montanaro, “Derivation and validation of the
stray light correction algorithm for the thermal infrared sensor
onboard Landsat 8,” Remote Sens. Environ., vol. 191, pp. 246–257,
Mar. 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0034425717300421

[19] J. McCorkel et al., “Landsat 9 thermal infrared sensor 2 characterization
plan overview,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. IGARSS,
Jul. 2018, pp. 8845–8848.

[20] J. Barsi, J. Schott, S. Hook, N. Raqueno, B. Markham, and
R. Radocinski, “Landsat-8 thermal infrared sensor (TIRS) vicarious
radiometric calibration,” Remote Sens., vol. 6, no. 11, pp. 11607–11626,
Nov. 2014.

[21] M. Montanaro, A. Gerace, and S. Rohrbach, “Toward an operational
stray light correction for the Landsat 8 thermal infrared sensor,” Appl.
Opt., vol. 54, no. 13, p. 3963, 2015.

[22] R. U. Datla, J. P. Rice, K. R. Lykke, B. C. Johnson, J. J. Butler, and
X. Xiong, “Best practice guidelines for pre-launch characterization and
calibration of instruments for passive optical remote sensing,” J. Res.
Nat. Inst. Standards Technol., vol. 116, no. 2, p. 621, Mar. 2011.

[23] J. H Hair et al., “Landsat 9 thermal infrared sensor 2 architecture
and design,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. IGARSS,
Jul. 2018, pp. 8841–8844.

[24] B. Efremova et al., “Landsat 9 thermal infrared sensor 2 subsystem-level
spectral test results,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.
IGARSS, Jul. 2018, pp. 8849–8852.

[25] A. J. Pearlman, B. Efremova, A. Lunsford, J. McCorkel, A. Simon,
and D. Reuter, “Landsat 9 thermal infrared sensor 2 spectral response
test: Updates and perspective,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. IGARSS, Jul. 2019, pp. 8534–8537.

[26] S. D. Laboratory, “Tirs flood source 2018 calibration report,” Space Dyn.
Lab., Logan, UT, USA, Tech. Rep. SDL/18-877, May 2018.

[27] H. Latvakoski, M. Watson, and S. Topham, “Testing of highly accurate
blackbodies,” in Infrared Remote Sensing and Instrumentation XIX,
M. Strojnik and G. Paez, Eds. Bellingham, WA, USA: SPIE, Sep. 2011.

[28] J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer
radiometer,” Metrologia, vol. 35, no. 4, pp. 505–509, Aug. 1998.

[29] M. Montanaro et al., “Landsat 9 thermal infrared sensor 2 preliminary
stray light assessment,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.
IGARSS, Jul. 2018, pp. 8853–8856.

[30] M. Montanaro, A. Lunsford, Z. Tesfaye, B. Wenny, and D. Reuter,
“Radiometric calibration methodology of the Landsat 8 thermal infrared
sensor,” Remote Sens., vol. 6, no. 9, pp. 8803–8821, Sep. 2014.

[31] R. Datla, X. Shao, C. Cao, and X. Wu, “Comparison of the calibration
algorithms and Si traceability of MODIS, VIIRS, GOES, and GOES-R
ABI sensors,” Remote Sens., vol. 8, no. 2, p. 126, Feb. 2016.

[32] X. Xiong and W. Barnes, “An overview of MODIS radiometric calibra-
tion and characterization,” Adv. Atmos. Sci., vol. 23, no. 1, pp. 69–79,
Jan. 2006.

[33] J. McIntire, D. Moyer, H. Oudrari, and X. Xiong, “Pre-launch radiomet-
ric characterization of JPSS-1 VIIRS thermal emissive bands,” Remote
Sens., vol. 8, no. 1, p. 47, Jan. 2016.

[34] E. C. Wack, M. P. Weinreb, and J. D. Lawrence, “Prelaunch infrared
calibration of the GOES I-M imager and sounder,” in Earth Observing
Systems V, W. L. Barnes, Ed. Bellingham, WA, USA: SPIE, Nov. 2000.

[35] A. J. Pearlman, F. Padula, C. Cao, and X. Wu, “The GOES-r advanced
baseline imager: Detector spectral response effects on thermal emissive
band calibration,” in Sensors, Systems, and Next-Generation Satellites
XIX, R. Meynart, S. P. Neeck, and H. Shimoda, Eds. Bellingham, WA,
USA: SPIE, Oct. 2015.

[36] BIPM. (Sep. 2008). GUM 1995 With Minor Corrections: Evaluation
of Measurement Data—Guide to the Expression of Uncertainty in
Measurement. [Online]. Available: https://www.bipm.org/utils/common/
documents/jcgm/JCGM_100_2008_E.pdf

[37] BIPM. (2008). Evaluation of Measurement Data Supplement 1 to the
‘Guide to the Expression of Uncertainty in Measurement’ Propagation of
Distributions Using a Monte Carlo Method. [Online]. Available: https://
www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf

[38] K.-F. Chiang, X. Xiong, A. Wu, and W. L. Barnes, “MODIS thermal
emissive bands calibration uncertainty analysis,” in Earth Observing
Systems IX, W. L. Barnes and J. J. Butler, Eds. Bellingham, WA, USA:
SPIE, Oct. 2004.

[39] P. Z. Peebles, Probability, Random Variables, and Random Signal
Principles, 4th ed., S. W. Director, Ed. New York, NY, USA: McGraw-
Hill, 2001.

[40] S. Phillips, K. Eberhardt, and B. Parry, “Guidelines for expressing the
uncertainty of measurement results containing uncorrected bias,” J. Res.
Nat. Inst. Standards Technol., vol. 102, no. 5, p. 577, Sep. 1997.

[41] D. Gupta, L. Wang, L. M. Hanssen, J. J. Hsia, and R. V. Datla, Standard
Reference Materials: Polystyrene Films for Calibrating the Wavelength
Scale of Infrared Spectrophotometers SRM 1921. Washington, DC, USA:
NIST, U.S. Government Printing Office, 1995.

Aaron Pearlman (Member, IEEE) received the B.S.
degree in electrical engineering from Tufts Univer-
sity, Medford, MA, USA, in 2001, and the M.S.
and Ph.D. degrees in electrical engineering from
the University of Rochester, Rochester, NY, USA,
in 2003 and 2006, respectively.

He became an IC Post-Doctoral Research Fellow
with the National Institute of Standards and Technol-
ogy, Gaithersburg, MD, USA, to conduct research on
single photon generating and detecting technologies
for quantum information applications. He has pro-

vided prelaunch testing support and technical oversight and coordination for
a validation field campaign for the National Oceanic and Atmospheric Admin-
istration’s (NOAA’s) new generation of satellite sensors. In 2017, he joined the
NASA Goddard Space Flight Center’s Calibration Team to support prelaunch
testing for the Landsat Program’s Thermal Infrared Sensor-2. He is the Chief
Scientist of GeoThinkTank LLC, Washington, DC, USA. His work focuses
on characterizing remote sensing systems before launch and developing novel
methods for validating their postlaunch performance.

Matthew Montanaro received the B.S. degree
in physics and the Ph.D. degree in imaging sci-
ence from the Rochester Institute of Technology
(RIT), Rochester, NY, USA, in 2005 and 2009,
respectively.

He is a Senior Research Scientist involved in the
calibration of the thermal infrared imaging instru-
ments for the NASA Goddard Space Flight Center
and the U.S. Geological Survey. He is also spe-
cialized in the calibration of the Thermal Infrared
Sensor (TIRS) onboard Landsat 8, both preflight and

on-orbit. He serves as the Deputy Calibration Lead for the upcoming Landsat
9/TIRS-2 instrument and serves on the Landsat Calibration & Validation team.
In addition, he has supported and advised a number of Imaging Science
graduate and undergraduate students through RIT.

Boryana Efremova received the Ph.D. degree in astronomy and astrophysics
and the M.S. degree in physics from Sofia University, Sofia, Bulgaria, in 2009.

She has been working in the field of remote sensing instrument calibration
since 2011, supporting the prelaunch and/or on-orbit calibration, instrument
monitoring, and validation of sensors such as Visible Infrared Imaging
Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft, the Advanced
Baseline Imager (ABI) onboard the geostationary GOES-16 and GOES-
17 satellites, and the prelaunch calibration and testing of the Landsat 9
Thermal Infrared Sensor 2 (TIRS-2).

Joel McCorkel received the B.S. degree in optical
engineering and the Ph.D. degree in optical sciences
from the University of Arizona, Tucson, AZ, USA,
in 2005 and 2009, respectively.

He is a Physical Research Scientist with
Biospheric Sciences Laboratory, NASA Goddard
Space Flight Center, Greenbelt, MD, USA, where
his work involves the development and character-
ization of the next-generation environmental mon-
itoring and Earth observing sensors. He serves as
the GOES-R Flight Project Scientist, the Landsat 9

TIRS-2 Deputy Instrument Scientist leading the prelaunch instrument charac-
terization, and the Principle Investigator of the Goddard Laser for Absolute
Measurement of Radiance (GLAMR) calibration facility.



2726 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 4, APRIL 2021

Brian Wenny (Member, IEEE) received the B.S.
degree in physics from Ursinus College, Col-
legeville, PA, USA, in 1991, and the M.S. and Ph.D.
degrees in atmospheric science from North Carolina
State University, Raleigh, NC, USA, in 1996 and
2000, respectively.

He worked with the Moderate-Resolution Imaging
Spectroradiometer Characterization Support Team
(MCST), prelaunch calibration for the Landsat 8
Thermal Infrared Sensor (TIRS) and Landsat 9
TIRS-2 instruments, and the Stratospheric Aerosol

and Gas Experiment III (SAGE III). He is a Chief Research Scientist with
Science Systems and Applications, Inc. (SSAI), Lanham, MD, USA, working
primarily on the RadCalNet project.

Allen Lunsford, photograph and biography not available at the time of
publication.

Dennis Reuter, photograph and biography not available at the time of
publication.


