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Abstract—Feature discretization is one of the most relevant 

techniques for data preprocessing in remote sensing research area. 

Its main goal is to transform the continuous features of images 

into discrete ones to improve the efficiency of intelligent image 

processing algorithms, thus helping experts to more easily 

understand and use the acquired remote sensing data. In this 

paper, we focus on feature discretization for classification of 

high-resolution remote sensing images in coastal areas. In these 

images, 1) interactions among multiple bands exist, 2) noises 

interfere, and 3) maritime domain-specific prior knowledge is 

difficult to get. To address these challenges, we propose a hybrid 

metric method, based on information entropy and chi-square test, 

to calculate the stability of the discrete interval and the similarity 

of adjacent intervals. In addition, we use the degree of dependence 

among knowledge from the rough set theory as the evaluation 

criterion for discretization schemes, then scan each band in turn 

with the strategy of first splitting then merging, to obtain the 

optimal set of discrete features. Our method has been compared 

with the best state-of-the-art discretization algorithms on the 

GF-2 and Landsat 8 satellite dataset. Experiments show that the 

proposed method achieves better classification accuracy for 

high-resolution remote sensing images in coastal areas. It can not 

only effectively mine the correlation between features, but also 

filter the outliers in bands, thus producing as few discrete 

intervals as possible while ensuring data consistency. 

 
Index Terms—Feature discretization, Image processing, 

Coastal areas, Hybrid metric, Rough set theory, Classification 

accuracy. 

 

I. INTRODUCTION 

S an advanced technology, high-resolution remote sensing 

satellites have been widely used in the field of oceans, 

providing important data support for monitoring and detection 

of seas and coastal areas [1]. However, with the accumulation 

of more and more data, the uncertainty in remote sensing 

information system is becoming more and more significant. 
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Compared with the previous low and medium spatial resolution 

remote sensing data, high-resolution remote sensing data 

greatly increase the amount of surface information, which can 

reflect the details of ground objects more abundantly, but also 

greatly increase the data volume and data complexity. Although 

the current database system can efficiently implement data 

entry, query, deletion, modification, and statistical analysis, it is 

still very difficult for database users to find the relationships 

and rules among the data, and to effectively predict and analyze 

future data based on existing data. In order to extract potential 

and valuable information from a large number of 

high-resolution remote sensing data with disorder and strong 

interference, it is necessary to introduce the data mining 

technique to analyze and process high-resolution remote 

sensing images [2]. However, most of the data stored in the 

actual database are continuous numerical attributes, such as 

spectral features, spatial features, time series features, and 

polarization features of remote sensing images. Most existing 

data mining algorithms can only deal with discrete data, and the 

processing efficiency of continuous features is inefficient. 

Before using these methods to analyze and process remote 

sensing data, it is necessary to transform the continuous 

features into discrete ones to reduce the complexity of program 

and the overhead of time and space, and enhance the clustering 

ability and anti-noise ability of the system. Therefore, feature 

discretization has become an important fundamental building 

block in remote sensing data processing, which directly affects 

the accuracy of subsequent image classification [3]. 

Before feature discretization of a high-resolution remote 

sensing image, we need to extract features from the original 

image. As shown in Fig. 1, the position coordinates of the 

pixels as the basic units and the corresponding values in each 

band are obtained after the feature information of the original 

image is extracted [4]-[6]. These pixel values are a set of 

continuous values ranging from 0 to 1. To discretize image 

features is to represent continuous pixel values with as few 

discrete intervals as possible on the premise that the 

compatibility of information systems is not compromised. As a 

basic reduction technology, feature discretization has attracted 

increasing attention from researchers all over the world with the 

continuous development of data mining and knowledge 

engineering, and has been extensively studied [7]. However, 

existing algorithms are far from satisfactory. Moreover, most of 

the research works on discretization technology mainly come 

from other areas than remote sensing. There are very few 
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methods customized based on the characteristics of remote 

sensing data, therefore they are ineffective and inefficient for 

remote sensing applications. 

Discretization can be divided into supervised discretization 

and unsupervised discretization according to whether the data 

contains label or category information [8]. At present, there are 

few mature unsupervised discretization methods, and it is 

difficult to obtain qualified results without class information. 

EqualWidth and EquaFrequency are two commonly used 

unsupervised discretization methods [9]. They divide 

continuous features according to given interval length and 

interval frequency respectively. Although they are simple and 

convenient, they will lead to uneven distribution of data and 

loss of some important information. In addition, many 

researchers adopt the idea of clustering in the process of 

discretization to derive breakpoints through the necessary 

projection intervals of the clustering region on each continuous 

attribute axis [10]. K-means is the earliest simple and effective 

partition-based clustering algorithm [11]. Its basic idea is to 

randomly select k  objects as centroids of the initial intervals in 

the continuous feature space. The remaining objects are 

assigned to the nearest interval according to their Euclidean 

distances from the centroids, then the position of the centroids 

are updated. The above operation is repeated until each centroid 

no longer changes. Its main disadvantage is that the clustering 

ability is limited. Because the separation of data is based on the 

Voronoi graph, it cannot find non-convex clusters and is 

sensitive to isolated points, so that noises cannot be effectively 

filtered [12]. 

Supervised discretization has the advantage of making full 

use of class label and target attribute information because of the 

calculation based on class information. Therefore, it is easier to 

find the appropriate locations of breakpoints than unsupervised 

discretization. The most common supervised discretization 

method using information gain to divide intervals is based on 

the Minimum Description Length Principle (MDLP) [13]. 

After sorting the continuous feature values, the boundary 

between different target classes is set as candidate partition 

point, then the partition boundary which maximizes the 

information gain is found as the two-separation boundary in the 

candidate partition points. The potential partition points are 

determined iteratively until the principle of minimum 

description length principle is satisfied. Because of the 

information gain criterion, the algorithm can ensure the 

consistency of sample class in the interval to a large extent, and 

is suitable for the case of uniform distribution of target attribute 

values. However, the sampled data are often affected by noises 

and other impurities in remote sensing image processing. The 

distribution of target attribute values is still scattered after 

sorting, so, it is difficult to filter noises by setting the threshold 

of partition. CADD [14], CAIM [15] and CACC [16] are 

discretization methods using class-attribute correlation as 

performance evaluation indicators. The redundancy of 

class-attribute correlation obtained by calculating the ratio of 

class-attribute mutual information and class-attribute joint 

entropy is used as the measurement standard in CADD. CADD 

requires users to specify the number of intervals at initialization, 

while CAIM does not need to preset the number of intervals, 

and has made some improvements in the calculation of the 

criterion of class-attribute correlation. Since only considering 

the most diverse class attribute in the interval and ignoring the 

distribution of other class attributes, it will result in overfitting 

to generate too many intervals. CACC uses logarithmic 

function of interval number to replace interval number in 

class-attribute correlation redundancy standard, which speeds 

up the process of discretization and prevents overfitting, thus 

making up for the deficiency of CAIM [17]. Because CACC 

adopts the criterion of maximizing the degree of correlation 

between classes, it only optimizes the result of interval 

discretization only for a single attribute, lacks the description of 

the overall data information and does not consider the 

consistency of data before and after discretization, which will 

inevitably result in the loss of important information in the 

original data. ChiMerge [18], Chi2 [19] and Extended Chi2 [20] 

adopt the method of class-attribute information calculation 

based on interval similarity to apply Pearson statistics to 

discriminate and merge the adjacent intervals. Their advantage 

is that the adjacent intervals have distinct structures, but they 

are sensitive to parameters. 

In [21], a method of discretization based on information 

entropy is applied to rank label data, which improves the 

sensitivity of homogeneity of sample ranking in the set. 

However, adopting this standard, only one attribute can be 

partitioned separately in multi-feature data at a time, and the 

compatibility of the whole information system after 

discretization cannot be guaranteed. 

In [22], a discretization method is proposed to classify 

remote sensing image features. The method first defines the 

uncertainty of the decision system based on the equivalence 

class model of the rough set. Then, using information entropy 

criterion, selects the breakpoints by controlling the change of 

uncertainty under a given threshold. Since this method takes 

into account the intrinsic relationship among multiple attributes 

in the process of discretization, it achieves high classification 

accuracy on SPOT5 images. However, this method only 

considers the stability of the interval, and does not consider the 

similarity of adjacent intervals, so, it cannot effectively filter 

the noises, and will produce more intervals. 

A discretization method based on Cramer’s V-Test is 

presented in [23], which is applied to feature selection of 

remote sensing image classification. This method uses 

Cramer’s V-test as a discretization criterion to measure the 

dependence between the target class and the discretization 

variable in a given feature, and divides 2  by ( )In n  to 

accelerate the discretization process and reduce the enormous 
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Fig. 1.  Feature extraction from a high-resolution remote sensing image. 
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influence of n  in the discretization scheme, where n  is the 

number of intervals. Discrete features generated by this method 

on QuickBird and PHI hyperspectral images can improve the 

classification performance of J48-DT and NB classifiers. 

However, just like [21], the intrinsic correlation between 

multiple attributes is not considered, and it is difficult to ensure 

that the compatibility of the system is not destroyed after 

discretization.  

In addition, some common discretization algorithms have 

simple steps and low complexity, but only consider a single 

continuous feature at a time, and do not solve the problem of 

joint discretization of multiple continuous features under the 

premise of ensuring the compatibility of the whole information 

system, such as PKID [24], AEFD [25], 1R [26], D2 [27] and 

discretization method based on Hellinger [28], etc. 

Based on the state of the art, we can see that most of the 

discretization algorithms used in the analysis and processing of 

high-resolution remote sensing images in coastal areas 

encounter the following problems: 1) Since a coastal zone is the 

natural area with the most abundant phenomena and processes 

[29]-[31], correspondingly, the high-resolution remote sensing 

images collected in this area contain not only a large number of 

pixels but also complex categories, which brings many 

difficulties to compute the discretization of image features. 2) 

Influenced by the complexity and variability of the coastal 

areas, and in every link of high-resolution remote sensing 

image acquisition, such as periodic deviation of sensors, 

electromagnetic interference between load components, etc., a 

certain number of abnormal values and noises will inevitably 

occur in each band of the image [32], when these abnormal 

values or noises cannot be effectively filtered, the quality of 

interval division will be greatly reduced. 3) The prior 

knowledge of the sea is difficult to obtain or because of the age 

and the great changes in the marine environment, the existing 

prior knowledge is no longer applicable [33], which greatly 

reduces the accuracy of the algorithm and destroys the 

compatibility of the decision system after discretization. 

Although the above three main characteristics may 

separately exist in remote sensing in other regions [34]-[35], 

the remote sensing in coastal zone contains all of these three 

main characteristics. In addition to the influence of noise, the 

special geographical environment and frequent human 

activities cause the diversity of underlying surface, which 

makes the spectral signals collected in this area complicated. 

For example, in the recognition process of coastal water, due to 

the reflection of water surface and the transparency of water, 

the water signal received by the sensor includes spectral signals 

from the bottom, water body, water surface and atmosphere. 

Therefore, the signal of coastal water is a superimposed 

comprehensive signal containing the spectral signals of 

chlorophyll, suspended sediment, various pollutants, flow field, 

etc., which is more difficult to identify. In addition, due to the 

high risk of offshore operation, long time-consuming and high 

cost of investigation, it is very difficult to conduct field 

investigation of remote sensing in coastal zone, so that prior 

knowledge is hard to obtain, which increases the difficulty of 

remote sensing data analysis in coastal zone. 

In response to these problems, based on the feature 

preprocessing framework built in our previous work [36], we 

propose a feature discretization method (Hybrid metric of 

information entropy and chi-square test using rough set as 

evaluation criterion for discretization, termed as ECRSD) for 

classification of high-resolution remote sensing images in 

coastal areas. Firstly, we use the top-down splitting strategy to 

calculate the information gain generated by each breakpoint 

and select the breakpoint splitting interval with the largest value. 

Then, we use chi-square test to scan all the intervals to judge 

the similarity of adjacent intervals and merge adjacent intervals 

satisfying the conditions. Finally, we use the degree of 

dependence among knowledge from the rough set theory as the 

criterion for discretization schemes to evaluate the 

compatibility of the information system, and outputs the results 

if the conditions are satisfied, otherwise, the corresponding 

splitting threshold and chi-square significance level are 

changed, and each band is scanned again until the optimal set of 

discrete features is obtained. We simulate and analyze the 

high-resolution remote sensing image collected in the coastal 

area of the South China Sea, and compare with the current 

mainstream methods. Experiments show that the proposed 

method achieves better classification results on SVM and 

neural network classifier. It can not only effectively mine the 

correlation between features, but also filter the abnormal values 

in bands, and obtain fewer discrete intervals while guaranteeing 

data consistency. 

The rest of this paper is arranged as follows: Section II 

introduces the basic concepts and describes the problem models. 

Section III elaborates the proposed algorithm flow. The results 

of experiment are analyzed and discussed in Section IV. 

Section V summarizes this paper. 

II. BASIC CONCEPTS AND PROBLEM MODELS 

In this section, we formally define the problem of feature 

discretization of high-resolution remote sensing images. In 

addition, we analyze the possible distribution of pixels in 

intervals partitioned by feature discretization of high-resolution 

remote sensing images in coastal areas. Finally, we describe the 

idea of information entropy and Chi-Square test applied to the 

discretization of remote sensing images, and the evaluation 

model of rough set. 

A. Feature Discretization 

Turing Award winner Herbert Simon once pointed out that 

the discrete features are closer to the knowledge layer than the 

continuous features, and the data is easier to understand, use 

and explain for users and experts after discretization [37]. 

Dougherty et al. also confirmed in a research report that 

discretization makes machine learning more accurate and 

efficient, extending the boundaries of many learning algorithms 

[38]. Some classification methods can only deal with discrete 

features [39]. In industry, it is seldom to directly input 

continuous values as the features of LR (logistic regression 

model), but to convert continuous features into discrete features 

and then hand these discrete features to LR. Generally, in the 

LR model, continuous feature A  will correspond to a weight 

W . If A  is discretized, then A  will be extended to features 

1A , 2A , 3A , etc. Each feature corresponds to a weight. If the 

feature kA  does not appear in the training samples, then the 

training model has no weight for kA . Even if the feature kA  
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appears in the test samples, the feature kA  will not affect the 

model, which is equivalent to invalid. However, if continuous 

feature A  is used directly without discretization, then in the 

LR model, y W A  , A  is the feature and W  is the weight 

corresponding to A . For example, if A  represents age and 

[1, ...,100]A , even if a test case with a value of "300" on A  

appears in the test set (obviously this "300" is an outlier), the 

LR model will still substitute the outlier "300" into y W A   

to get a value, and this value will be very large. Therefore, 

outliers will have a very large impact on the final result, and 

discretization can eliminate this effect. Feature discretization 

also simplifies the LR model and reduces the risk of overfitting. 

When using continuous features, a feature corresponds to a 

weight, then, if the weight of this feature is large, the model will 

be very dependent on this feature, so that a small change in this 

feature may cause a big change in the final result. Such a model 

is very unreliable. When encountering a new sample, it is likely 

to get the wrong classification result because it is too sensitive 

to this feature, that is, the generalization ability is poor and 

overfitting is easy to occur. However, after feature 

discretization, a feature becomes multiple sub-features, and 

correspondingly, the number of weights also changes from one 

to multiple, so the influence of the previous continuous feature 

on the model is dispersed and weakened, thereby reducing the 

risk of overfitting. Therefore, feature discretization can 

improve the generalization ability of classifiers, thus improving 

the prediction accuracy of classification. 

After atmospheric correction, the spectral features of 

high-resolution remote sensing image can be obtained as 

continuous brightness DN (Digital Number) in the range of 0-1. 

The feature discretization of high-resolution remote sensing 

image simply means dividing the continuous DN values of the 

image into a limited number of sub-intervals according to a 

specific rule, and associating these sub-intervals with a set of 

discrete values. The basic flow of feature discretization of a 

high-resolution remote sensing image is shown in Fig. 2. 

Firstly, image features are sorted according to DN values. 

Secondly, the intervals are merged or split according to the 

breakpoint selection strategy and the corresponding evaluation 

criteria. Finally, the final discretization features are generated if 

the discretization results meet the termination conditions, 

otherwise, the intervals continue to be merged of split. 

Considering a classification problem of the remote sensing 

image including C  types of land cover, N  is the number of 

pixels to be processed and M  is the number of bands, so, the 

discretization of the remote sensing image is defined as 

follows. 

0 1 1 2 1{[ , ], ( , ], ..., ( , ]}
A AA k kD d d d d d d                   (1)                                                          

The discretization algorithm divides the continuous DN 

values on band A  into Ak  discrete and disjoint intervals. 

Among them, 0d  and 
Akd  are the minimum and maximum DN 

values, and all values are arranged in ascending order in AD . 

AD  is called a discretization scheme on band A . 

0 1 2 1{ , , , ..., }
AA kP d d d d   is the set of breakpoints on band A . 

1 2{ , , ..., , ..., }A MP P P P P  represents the complete set of all 

breakpoints in all M  bands. Therefore, the search space for 

feature discretization of a high-resolution remote sensing image 

is formed by all candidate breakpoints in each band, which are 

from all different DN values in each band of the training set. 

B. Distribution of Pixels in Discrete Interval 

Due to the huge amount of information contained in each 

band of the high-resolution remote sensing image, 

correspondingly, the pixels of each interval in the discretization 

process are not only numerous but also complex in categories. 

In particular, the existence of outliers or noises greatly affects 

the quality of discretization results. We analyze several 

possible distributions of internal pixels in discrete intervals 

from high-resolution remote sensing images in coastal areas. 

1) When using MDLP [13] or class-attribute correlation 

redundancy criterion CAIR [14] to split the intervals of the 

bands from top to bottom, there will be adjacent intervals with 

the same structure, as shown in Fig. 3. The column attribute PN 

of the information table is the ordinal number of the pixels, File 

X and File Y represent the two-dimensional coordinates X and 

Y of the pixels, the brightness values of the discretized pixels 

are recorded in B1, and the categories of the pixels are recorded 

in Class. Under a given segmentation threshold, both interval 1 

and interval 2 contain 5 pixels, of which four are type A and one 

is type B. Obviously, the internal structures of interval 1 and 

interval 2 are the same, and they are adjacent intervals, so they 

can be merged to reduce the number of discrete intervals 

generated. 

2) When using ChiMerge [18], Chi2 [19] and Extended Chi2 

[20] to merge discrete intervals from bottom to top, there will 

be discrete intervals with many types, as shown in Fig. 4. 

Although these methods can ensure that the internal structures 

of adjacent intervals are different from each other, with the 

progress of interval merging, there will be a large number of 

different types of pixels in the resulting discrete intervals due to 

the lack of judgment on the occurrence frequency of pixels in 

the interval. N represents noises or outliers. It can be seen that 

besides the two types of pixels A and B, discrete interval 1 and 

the discrete interval 2 also have noises or outliers, which makes 
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Fig. 2.  Feature discretization of a high-resolution remote sensing image. 
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the stabilities of the two intervals very poor. In addition, 

because of the influence of noises or outliers, when the 

significance level of these methods is set improperly, discrete 

interval 1 and discrete interval 2, which are similar in structure, 

cannot be merged. 

3) When a large number of noises and outliers exist in the 

image and the parameters of the algorithms are unreasonable, 

continuous noise blocks will appear after the band is 

discretized, as shown in Fig. 5. The five adjacent discrete 

intervals are composed of noises, because of the lack of 

sufficient consideration of the stability of the frequency of pixel 

classes within the interval or the similarity of adjacent interval 

structures in the process of selecting candidate breakpoints. As 

the discretization proceeds, continuous noise blocks are 

gradually formed, and the adjacent noise intervals cannot be 

merged and filtered due to the inability to identify the types of 

pixels in each noise block, thus increasing the number of 

discrete intervals. 

Obviously, the above three special cases show that some of 

the intervals that should be merged in the discretization process 

cannot be merged eventually, resulting in too many discrete 

intervals. It can be seen that in the process of feature 

discretization of high-resolution remote sensing images, not 

only the distribution of pixels within the interval but also the 

similarity of adjacent interval structures should be considered, 

so that the optimal discretization scheme can be obtained by 

adjusting the relevant parameters of the algorithm. 

C. Information Entropy Metric of Discrete Interval 

Information entropy is a famous mathematical theory put 

forward by Shannon in order to solve the problem of 

quantitative measurement of information in the field of 

communication [40]. Catlette, Fayyad and Irani respectively 

introduce information entropy into discretization algorithms of 

continuous features [27], [41]. According to Fayyad’s and 

Irani’s expositions, the formulas of information entropy and 

breakpoint information entropy are given respectively. 

2

1

( ) ( , ) log ( ( , ))
k

i i

i

E S P C S P C S


                  (2) 

1 2

1 2( , , ) ( ) ( )
S S

E A T S E S E S
S S

                                         (3)                                                                           

Information entropy is a good metric, which can reflect the 

stability of frequency of all categories within the discrete 

interval [21], thus ensuring the validity of the discrete interval 

partition. For this reason, when information entropy is applied 

to the feature discretization of high-resolution remote sensing 

images, S  represents the set of image pixels, K  is the number 

of land cover types, iC  is the number of instances where 

category is i  in S , A  and T  denote band A  and the 

breakpoint T  in it, 1S and 2S  represent the sets of pixels of two 

discrete intervals divided by breakpoint T  on band A , and 

| |S  represents the cardinality of S , that is, the number of 

pixels contained in S . 

D. Chi-square Metric of Discrete Interval 

Chi-square test is a widely used hypothesis test method. It 

judges the degree of consistency between theoretical deduced 

values and actual observed values by the deviation between the 

actual observed values of statistical samples and theoretical 

deduced values [42]. It uses the method of class-attribute 

information calculation based on interval similarity to 

discriminate and merge adjacent intervals [43], as shown in (4). 

2

2

1 1

( )m k
ij ij

i j ij

A E

E


 


                                                           (4)                                                                                            

Chi-square test formula uses Pearson statistics to determine 

whether the current breakpoint should be removed, that is, 

whether the two discrete intervals adjacent to the breakpoint 

should be merged. According to Pearson’s theorem in 

mathematical statistics, the asymptotic distribution of statistic 

is the 2  distribution with degree of freedom 1k  , and k  is 

the total number of categories of the system, m  is the number 

of variables to be tested for correlation. Obviously, when 

applied to the discretization problem of judging whether two 

discrete intervals should be merged, 2m  . When significance 

level   is given, the corresponding critical value   can be 

determined. To this end, chi-square test formula is applied to 

the determination of the similarity of adjacent discrete intervals 

in high-resolution remote sensing image features. Among them, 
2  represents the degree of deviation between observed values 

and theoretical values, ijA  is the number of pixels belonging to 

class j  in the i th discrete interval, and ijE  is the expected 

frequency of class j  in the i th discrete interval. 

E. Rough Set Evaluation Model 

Rough set theory is an important mathematical tool for 

dealing with inaccurate data [44]. In rough set theory, 

knowledge is regarded as the division of universe, that is, 

knowledge is considered to be granular, and the inaccuracy of 

knowledge is caused by the granularity of knowledge. Different 

from DS evidence theory [45], fuzzy set theory [46], etc., the 

membership function values of the objects in the rough set 

theory depend on the knowledge base, which can be obtained 
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Fig. 5.  Continuous noise blocks. 
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directly from the required data without any prior knowledge or 

additional information about the data. Therefore, it is more 

objective to use it to reflect the uncertainty of marine 

knowledge in the case that the prior knowledge of the ocean is 

not easy to acquire [47]. 

In rough sets, data table is called information system. 

Information system is a quaternion ( , , , )S U A V f , where U  

is a non-empty set of finite objects, A  is a non-empty set of 

finite attributes, ( )aV U V  is a set of attribute values, aV  is 

the range of attribute a , :f U A V   is a mapping function 

indicating that each attribute of each object maps to a value of 

the set of attribute values. If an attribute of the attribute set is 

considered as a decision attribute, then the information system 

S  defined above is called a decision table, where A C D  , 

including the condition attribute set C  and the decision 

attribute set D . 

Since the high-resolution remote sensing image contains 

multiple bands, i.e., multiple feature variables, if only one 

feature is discretized at a time, the results will largely destroy 

the compatibility of the original system, thus affecting the 

subsequent classification accuracy. So, in the analysis and 

processing of remote sensing images, based on the 

above-mentioned rough set theory, we establish a multi-feature 

model of high-resolution remote sensing images, then U  

represents the set of image pixels, attributes in condition 

attribute set C  represents the bands, D  contains only one 

decision attribute, which corresponds to the land cover class in 

the remote sensing image, and aV  represents the value range of 

band a  [3]. The model is represented by a matrix, as shown 

below. 

1 11 12 1 1

2 21 22 2 2

1 2

. . .

. . .

. . . . . .

. . . . . .

. . . . . .

. . .

m

m

n n n nm n

u c c c d

u c c c d

DT

u c c c d

 
 
 
 

  
 
 
 
  

                             (5)                                                            

Each row represents a pixel instance. 1 2{ ,  ,  ... }nU u u u  is 

a set of pixels, condition attribute column 1 2{ ,  c ,  ... c }mC c  

represents the brightness values of  the pixel in m  bands, and 

the last column is the decision attribute column, which 

identifies the class information of the sample. Each pixel is 

composed of pixel number, band attribute and category 

attribute. The range of brightness value is 0 1ijc  , where ijc  

is the brightness value of the i th sample in the j th band, id  is 

the category of the i th sample. The category is expressed by 

natural values, and the range of category values is determined 

by the number of categories defined in the system. For example, 

assuming that the number of categories defined is 6, the range 

of category values is {1,  2, 3, 4, 5, 6}D  . 

III. HYBRID METRIC METHOD OF FEATURE 

DISCRETIZATION 

The essence of feature discretization method is to determine 

the number of breakpoints and the location of breakpoints, then 

to split or merge intervals according to certain criteria for the 

continuous features. Its ultimate goal is to maximize the 

interdependence between categories and discrete intervals. In 

other words, it must minimize the loss of important information 

caused by discretization. Therefore, we should balance the 

simplicity and accuracy, and try to get as few discrete intervals 

as possible while ensuring data consistency. 

Here, we describe the flow of ECRSD algorithm applied to 

the classification of high-resolution remote sensing images in 

coastal areas. ECRSD calculates the stability of pixel categories 

in discrete intervals and the similarity of adjacent interval 

structures with the idea of hybrid metric of information entropy 

and chi-square test. The degree of dependence among 

knowledge from the rough set is used as the evaluation criterion 

of discretization scheme. The optimal discrete feature set is 

obtained by scanning each band in turn with the strategy of 

splitting and merging. 

A. Interval Entropy Table of Discrete Features 

In order to quickly find the discrete subinterval with the 

largest entropy value in the band, it is necessary to establish a 

table to record the entropy value of all the discrete feature 

intervals in the current band, that is, the discrete feature interval 

entropy table (DFIET). DFIET consists of three columns, the 

lower bound of the interval in the first column, the upper bound 

of the interval in the second column and the corresponding 

entropy value in the third column, as shown in Table I. 

Each row in the table corresponds to a discrete feature 

subinterval, which is arranged from small to large according to 

the value of entropy. Each time the separable discrete feature 

subinterval with the largest entropy value is searched from the 

last item in DFIET. The separable discrete feature subinterval 

refers to the interval that contains at least two breakpoints (that 

is, the lower bound of the interval is not equal to the upper 

bound the interval) and the entropy value is greater than the 

given threshold value. In this paper, the formulas for 

calculating the entropy values of intervals and the stability of 

the overall interval under given discretization scheme are 

introduced as follows. 

2

1

log
k

ir ir

r

i r r

p p
EV

p p  

                                                          (6)                                                                                          

( , )D r r

r D

IS C F p EV



                         (7)                                      

Among them, r  denotes the r th subinterval under the 

discretization scheme D  and k  denotes the number of land 

cover categories in the image. irp  represents the ratio of the 

number of pixels of category i  to the total number of instances 

in the r th interval. rp  represents the ratio of the number of 

pixels in the r th interval to the total number of instances. C  

and F  represent the category variable and the discrete feature 

interval variable respectively. 
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After the separable discrete feature subinterval with the 

largest entropy value is found, it is necessary to determine the 

location of the breakpoint in this subinterval, that is, to select 

the optimal segmentation breakpoint among all the candidate 

breakpoints in this subinterval. To this end, a formula is 

introduced to measure the mutual exclusion information 

between C  and F , as shown below. 

2

1

( , ) ( , )D r D

r D

IM C F EV IS C F


                   (8)                            

Where, 1D  and 2D  are the overall intervals before and 

after discretization respectively. From (8) and the description of 

the selection of breakpoints, it can be seen that the change of 

mutual exclusion information is actually caused by the position 

of breakpoints in the separable discrete feature subinterval. 

Therefore, we only need to consider the change of information 

in the separable discrete feature subinterval with the largest 

entropy value. We can narrow the calculation scope of mutual 

exclusion information to a separable discrete feature 

subinterval, as shown in (9). 

( , ) ( , )m m mIM C F EV IS C F                     (9)                                

The mutual exclusion information is computed for each 

candidate breakpoint in the separable discrete feature 

subinterval m  with the largest entropy value, and the largest 

( , )mIM C F  of candidate breakpoint is chosen as the 

segmentation breakpoint. In the beginning, DFIET only 

contains one row, that is, the entire continuous feature interval. 

As the algorithm runs, it starts to split. By adding a new row at 

the current split subinterval position and updating the boundary 

values and entropy values of the two discrete feature 

subintervals separately, DFIET can preserve all discrete feature 

subintervals. 

B. Interval Chi-square Table with Discrete Features 

Because it is necessary to use chi-square formula to evaluate 

the similarity between adjacent discrete feature subintervals, in 

order to quickly find the smallest chi-square value of discrete 

feature subintervals, it is also necessary to establish a table to 

record the chi-square values of all discrete feature subintervals 

in the current band, namely the discrete feature interval 

chi-square table (DFICT). DFICT consists of three columns, 

the lower bound of the interval in the first column, the upper 

bound of the interval in the second column and the 

corresponding chi-square value in the third column, as shown 

in Table II. 

Each row in the table corresponds to a discrete feature 

subinterval, which is arranged from small to large according to 

the value of boundary, so as to ensure that the adjacent rows are 

adjacent intervals. The third column of the current row records 

the chi-square value between the current row and the next row, 

and the third column of the last row is assigned invalid value 

because there is no discrete feature subinterval represented by 

the next row. Each time the combinable discrete feature 

subinterval with the smallest chi-square value is searched from 

DFICT (the smaller the chi-square value is, the higher the 

similarity between two adjacent subintervals). The combinable 

discrete feature subinterval refers to the interval where the 

chi-square value is valid (that is, not the last discrete feature 

subinterval in DFICT) and the chi-square value is less than the 

given threshold value. The threshold value is set by the 

chi-square critical probability corresponding to the degree of 

freedom, and the calculation of the degree of freedom is shown 

in (10). 

1v k                                                                                  (10)                                                                                                                

Among them, k  represents the number of land cover 

categories in the two adjacent intervals. Initially, the discrete 

feature subintervals in DFIET are mapped to DFICT. As the 

algorithm runs, it starts to merge. By deleting the location of the 

current merging subinterval and updating the upper bound and 

chi-square value of the adjacent discrete feature subinterval, 

DFICT can preserve all discrete feature subintervals. 

C. Measurement of System Compatibility 

We use the degree of dependence among knowledge from 

the rough set as the evaluation criterion of system compatibility 

after discretization [22]. In order to calculate the degree of 

dependence among knowledge, we need to introduce the 

concepts of indiscernible relationship, lower approximation set 

and upper approximation set. 

Given an information system ( , , , )S U R V f , where U  is 

a finite set of objects, i.e., the set of pixels in the image, R  is a 

set of attributes, including condition attribute set C  and 

decision attribute set D . For each attribute subset A R , the 

indiscernible relationship ( )IND A  is defined below. 

2( ) { , | , , ( ( ) ( ))}IND A x y x y U a A a x a y          (11)                

The equivalence class of A  in U , also known as knowledge 

A  defined on U , is given by (12). 

| ( ) { | ( ( ( ) ( )))}U IND A X X U x X y X a A a x a y           (12)      

For each subset X U  and the equivalence class of the 

attribute subset A  in U , the lower and upper approximation 

sets of X  are respectively defined as follows. 

( ) { | | ( ) }A X Y Y U IND A Y X                  (13)                        

( ) { | | ( ) }A X Y Y U IND A Y X                             (14)                                                      

TABLE II 

DFICT Structure 

Lower bound Upper bound Chi-square value 

L1    U1     CV1 
L2    U2     CV2 

. 

. 

. 

   . 

   . 
   . 

   . 

   . 
   . 

Ln    Un     --- 

 

TABLE I 

DFIET Structure 

Lower bound Upper bound Entropy value 

L1    U1     EV1 
L2    U2     EV2 

. 

. 

. 

   . 

   . 
   . 

   . 

   . 
   . 

Ln    Un     EVn 
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( ) ( )A X A X

                                                                     (15)                                                                                             

The equivalence class generated on U  by the set of 

condition attributes consisting of all bands in the image is 

recorded as knowledge C , and the equivalence class generated 

on U  by the set of decision attribute consisting of land cover 

categories is recorded as knowledge D . Generally, in D , the 

lower approximation set is included in the upper approximation 

set, and only related to the equivalence class of a land cover 

category, that is, the lower approximation set of D  has 

uniqueness. Therefore, when evaluating the system 

compatibility, the lower approximation set can more effectively 

reflect the change of equivalence class after discretization. (16) 

is the positive domain of decision attribute set D  under 

knowledge system |U C . The dependence of knowledge D  

on knowledge C  is given by (17). 

( ) ( )CPOS D C D                           (16)                                        

( ( ))
( )

( )

C

C

card POS D
D

card U
                        (17)                                    

Where ( )card  is the cardinality of the set, that is, the 

number of elements contained in the set. Obviously, 

0 ( ) 1C D  . When ( ) 1C D  , knowledge D  is highly 

dependent on knowledge C . When ( ) 1C D  , knowledge D  

is completely dependent on knowledge C , and the 

compatibility of information system is not destroyed. The size 

of ( )C D  reflects the degree to which system compatibility is 

destroyed after discretization. 

D. Flow of ECRSD Algorithm 

ECRSD algorithm calculates the stability of pixel categories 

in discrete intervals and the similarity of adjacent interval 

structures by using the hybrid metric of information entropy 

and chi-square test, as shown in Algorithm 1. Then, we take the 

degree of dependence among knowledge from the rough set as 

the evaluation criterion of discretization scheme, and scan each 

band in turn with the strategy of splitting and merging, so as to 

obtain the optimal discrete feature set. The basic process is 

shown in Algorithm 2. 

At the beginning of the program, a high-resolution remote 

sensing image is input, after the preprocessing of the image, the 

brightness values of all pixels in each band are obtained, and 

the decision information table of continuous feature space is 

generated. Discretization is performed in order from the first 

band to establish DFIET. Each time, the separable interval with 

the largest entropy value is found from DFIET for 

segmentation. If all the separable intervals are completed, 

DFIET is mapped to DFICT for interval merging. After all the 

bands are discretized, the compatibility of the decision 

information system is evaluated by the degree of dependence 

among knowledge from the rough set. If the termination 

conditions specified by users are not satisfied, the splitting and 

merging thresholds are reset and the relevant parameters are 

adjusted. Then, the continuous features are discretized again 

until the termination condition are finally met, and the discrete 

feature set of this high-resolution remote sensing image is 

output, and the program ends. 

IV. EXPERIMENTS AND ANALYSIS 

In this section, we briefly introduce the experimental data 

source, the experimental environment configuration and the 

data set used in the experiment. Then, we compare the optimal 

set of breakpoints obtained by ECRSD algorithm with the 

discretization results of the current mainstream methods, 

mainly from the aspects of the number of intervals and the 

consistency of data. Finally, we train the SVM and neural 

network classifiers separately from the discretization results of 

these methods, and verify the effectiveness of the proposed 

method by comparing the classification accuracy obtained by 

each method. 

A. Data Source 

The experimental data used in this paper are from two GF-2 

satellite images and one Landsat 8 satellite image collected in 

Algorithm 1 Hybrid Metric Method of Information Entropy and 

Chi-square Test 

begin 

for each band i do 

Initialize DFIET; 

while Splittable discrete feature interval with the largest entropy 

value in DFIET exists do 

Select interval of which entropy value is the largest; 

obp <- null; 

lmv <- min; 

for each candidate breakpoint j in this interval do 

Calculate the mutual information generated by candidate 

breakpoint j using Eq. (9);  

if lmv < mutual information j do  
lmv <- mutual information j;  

obp <- candidate breakpoint j ;  

end  

end  

Split this interval by obp; 

Update DFIET;  

end  

Map DFIET to DFICT in ascending order of boundary value;  

Initialize DFICT by using Eq. (4);  
Set the merge threshold according to Eq. (10);  

while Mergeable discrete feature interval with the smallest 

chi-square value in DFICT exists do  
Select interval of which chi-square value is the smallest;  

Merge this interval with its next adjacent interval;  

Update DFICT;  

end  

end 

end 

 
Algorithm 2 ECRSD Algorithm Basic Scheme 

Input: Remote sensing image features 

Output: Discretized features 

begin 

Initialize discretization thresholds and related parameters; 

while System compatibility does not satisfy the user’s termination 

condition do 

Adjust discretization parameters; 

for each band i do 

Get discrete intervals by the hybrid metric method;6: end for 

end 

Evaluate system compatibility using Eq. (17); 

end 

Return discretization scheme D; 

end 
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coastal areas of the South China Sea, as shown in Fig. 6. 

Among them, GF-2 satellite data contains four bands, and 

Landsat 8 satellite data contains seven bands. In the 

experiment, the objects in the first GF-2 image are divided into 

eight categories: construction, coniferous forest, broadleaf 

forest, fallow land, arable land, bare land, water and cloud. The 

objects on the second GF-2 image are divided into seven 

categories: coniferous forest, broadleaf forest, arable land, 

fallow land, bare land, construction and water. The objects on 

Landsat 8 image are divided into seven categories: coniferous 

forest, fallow land, bare land, construction, broadleaf forest, 

arable land and water. 

B. Configuration of Experimental Environment 

To verify the effectiveness of the proposed algorithm, the 

comparative experiments are carried out under the hardware 

conditions of Intel (R) Core (TM) i5-5200U CPU@2.20GHZ 

processor, 12G memory and 512G hard disk. The visualization, 

programming, simulation, testing and numerical processing of 

the experiments are implemented in MATLAB (R2016a 

version). The radiometric calibration, atmospheric correction, 

and the comparison of classification of discrete feature sets of 

the high-resolution remote sensing image generated by 

algorithms in the experiment are completed in ENVI5.3 

environment. 

We use Radial Basis Function as the kernel function of SVM. 

We set the parameter 
2

1 1
=

2 k



  of the RBF kernel, where 

k  is the number of categories, so,   of the first GF-2 image is 

1/8,   of the second GF-2 image is 1/7, and   of Landsat 8 

image is 1/7. In addition, we choose BP neural network with 

three hidden layers as another classifier. Each hidden layer has 

20 nodes, and Sigmoid function is selected as the activation 

function of the hidden layer. We set the number of input and 

output nodes of BP neural network model based on three 

different images in the experiment. The first GF-2 image 

contains four bands and is divided into eight categories. 

Therefore, the number of nodes in the input layer is 4 and the 

number of nodes in the output layer is 8. The second GF-2 

image contains four bands and is divided into seven categories. 

Therefore, the number of nodes in the input layer is 4 and the 

number of nodes in the output layer is 7. Similarly, Landsat 8 

image contains seven bands and is divided into seven categories. 

Therefore, the number of nodes in the input layer is 7 and the 

number of nodes in the output layer is 7. The activation 

function of the output node is Softmax function. 

C. Data preprocessing 

We randomly select and tag several regions covering the 

eight categories from the first GF-2 image. After integration, 

6862 samples are used as training samples to be discretized. 

Among them, 360 instances are construction, 198 instances are 

coniferous forest, 654 instances are broadleaf forest, 247 

instances are fallow land, 229 instances are arable land, 389 

instances are bare land, 3012 instances are water and 1773 

instances are cloud. We then sort all the pixels in each band 

according to the brightness value and delete the duplicate 

values. The initial breakpoints of four bands are respectively 

4551, 3882, 3668 and 2256, totaling 14357 breakpoints. In the 

second GF-2 image, there are 5855 samples used as training 

samples to be discretized. Among them, 729 instances are 

coniferous forest, 1552 instances are broadleaf forest, 968 

instances are arable land, 517 instances are fallow land, 626 

instances are bare land, 945 instances are construction and 518 

instances are water. The initial breakpoints of four bands are 

respectively 4336, 4108, 4090 and 1209, totaling 13743 

breakpoints. Similarly, in Landsat 8 image, there are 2621 

samples used as training samples to be discretized. Among 

them, 308 instances are coniferous forest, 245 instances are 

fallow land, 322 instances are bare land, 675 instances are 

construction, 296 instances are broadleaf forest, 262 instances 

are arable land and 513 instances are water. The initial 

breakpoints of seven bands are respectively 1204, 1276, 1424, 

1491, 1786, 1883 and 1755, totaling 10819 breakpoints. 

D. Quality Assessment of Discretization Scheme 

The quality of discrete feature set depends on the number of 

intervals and the inconsistency of data in the decision 

information table. Data inconsistency is given by (18). 

1 2

1

( ( , , ... ))
N

k k k k

CEC m

k

Inconsistencies T Max C C C


                 (18)                                                 

Where, N  is the number of equivalent classes on the set of 

condition attributes under the current discretization scheme, 

and m  is the number of categories in the decision information 

table of the high-resolution remote sensing image. k

CECT  

denotes the number of instances contained in the k th 

equivalent class. k

iC  denotes the number of instances whose 

category is i  in the k th equivalent class, while 

1 2( , , ... )k k k

mMax C C C  is the largest number of instances of all 

categories in the k th equivalent class. The proposed method is 

used to discretize decision information table of the 

high-resolution remote sensing image, and the results are 

compared with those of EDiRa [21], ChiMerge [48], 1R [49], 

NCAIC [17], FUDC [22], Cramer’s V-Test [23], and Chi 2 [50], 

these seven best state-of-the-art discretization methods. In the 

(a) GF-2 image: Shot on December 9, 2016 (b) GF-2 image: Shot on August 7, 2016

(c) Landsat8 image: Shot on February 10, 2018

Fig. 6.  Area used for research. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

experiment, we set the initial threshold value of information 

entropy to 1.0. In each cycle of the algorithm, the step size is 

decreased by 0.01, and the confidence level of chi square is set 

to three levels: 0.9, 0.95 and 0.99. In the discretization process 

of the first GF-2 image, when the final DFIET is reached, the 

threshold of information entropy is 0.92, and the confidence 

level of chi square is 0.99. The number of intervals in each band 

and data inconsistency obtained by the eight algorithms are 

shown in Table III and Table IV. 

It can be seen that the number of intervals in ECRSD 

algorithm is 526, only more than 1R algorithm, and no data 

errors occur. Although 1R algorithm achieves the fewest 

number of intervals, the data inconsistency is the highest with 

39 errors. EDiRa algorithm has the largest number of intervals, 

reaching 965, followed by NCAIC algorithm, which is 937. 

The data errors obtained by these two algorithms are 14 and 23. 

The number of intervals in FUDC algorithm is 136 less than 

NCAIC algorithm, but the data inconsistency can be controlled 

at a lower level with 4 errors, which is second only to our 

method. ChiMerge, Chi2 and Cramer’s V-Test algorithms have 

similar intervals, with data errors of 24, 27 and 20, respectively. 

In the discretization process of the second GF-2 image, when 

the final DFIET is reached, the threshold of information 

entropy is 0.85, and the confidence level of chi square is 0.9. 

The number of intervals in each band and data inconsistency 

obtained by the eight algorithms are shown in Table V and VI.  

It can be seen that the number of intervals in ECRSD 

algorithm is 5320, only more than 1R algorithm, and no data 

errors occur. Although 1R algorithm achieves the fewest 

number of intervals, the data inconsistency is the highest with 

281 errors. FUDC algorithm has the largest number of intervals, 

reaching 7838, followed by EDiRa algorithm, which is 7815. 

The data errors obtained by these two algorithms are 39 and 46. 

In the discretization process of Landsat 8 image, when the final 

DFIET is reached, the threshold of information entropy is 0.93, 

and the confidence level of chi square is 0.95. The number of 

TABLE IV 

Comparison of the Number of Data Errors in the First GF-2 Image 

Method Number of intervals Inconsistency 

ECRSD 526 0 

EDiRa 965 14 

ChiMerge 593 24 

1R 303 39 

NCAIC 937 23 

FUDC 801 4 

CV-Test 597 20 

Chi2 599 27 

 

TABLE III 

Comparison of the Number of Discrete Intervals in Each Band of the First 

GF-2 Image 

Method Band 1 Band 2 Band 3 Band 4 

ECRSD 255 134 74 63 

EDiRa 199 286 157 323 

ChiMerge 287 152 91 63 

1R 142 74 60 27 

NCAIC 384 274 159 120 

FUDC 340 221 129 111 

CV-Test 288 153 92 64 

Chi2 288 153 92 66 

1R = one rule; Chi2 = second generation ChiMerge; ChiMerge = chi 

square-based discretization; CV-Test = Cramer’s V-test discretization; 
ECRSD = entropy and chi-square test using rough set as evaluation criterion 

for discretization; EDiRa = entropy-based discretization for ranking; FUDC = 

feature discretization method accommodating uncertainty in classification 
systems; NCAIC = novel class-attribute interdependency discretization 

algorithm. 
 

TABLE V 

Comparison of the Number of Discrete Intervals in Each Band of the 

Second GF-2 Image 

Method Band 1 Band 2 Band 3 Band 4 

ECRSD 1686 1717 1631 286 

EDiRa 2519 2505 2411 380 

ChiMerge 1730 1738 1663 310 

1R 449 450 414 69 

NCAIC 2493 2440 2337 380 

FUDC 2527 2516 2415 380 

CV-Test 1729 1737 1662 310 

Chi2 1711 1715 1650 307 

 
TABLE VI 

Comparison of the Number of Data Errors in the Second GF-2 Image 

Method Number of intervals Inconsistency 

ECRSD 5320 0 

EDiRa 7815 46 

ChiMerge 5441 85 

1R 1382 281 

NCAIC 7650 76 

FUDC 7838 39 

CV-Test 5438 61 

 TABLE VII 

Comparison of the Number of Discrete Intervals in Each Band of Landsat 8 

Image 

Method Band

1 

Band

2 

Band

3 

Band

4 

Band

5 

Band

6 

Band

7 

ECRSD 39 42 44 44 53 55 51 

EDiRa 63 62 66 71 84 83 81 

ChiMerge 49 51 56 67 99 88 63 
1R 32 33 35 35 42 42 41 

NCAIC 66 66 71 73 89 86 83 

FUDC 69 70 75 77 95 92 88 
CV-Test 49 45 55 60 93 81 57 

Chi2 49 49 55 62 96 86 57 

 TABLE VIII 

Comparison of the Number of Data Errors in Landsat 8 Image 

Method Number of intervals Inconsistency 

ECRSD 328 0 

EDiRa 510 4 

ChiMerge 473 5 

1R 260 17 

NCAIC 534 5 

FUDC 566 4 

CV-Test 440 5 

Chi2 454 5 
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intervals in each band and data inconsistency obtained by the 

eight algorithms are shown in Table VII and VIII. 

It can be seen that the number of intervals in ECRSD 

algorithm is 328, only more than 1R algorithm, and no data 

errors occur. Although 1R algorithm achieves the fewest 

number of intervals, the data inconsistency is the highest with 

17 errors. FUDC algorithm has the largest number of intervals, 

reaching 566, followed by NCAIC algorithm, which is 534. 

The data errors obtained by these two algorithms are 4 and 5. 

ChiMerge, Chi2 and Cramer’s V-Test algorithms have similar 

intervals, and the data errors are all 5.The quality assessment of 

discretization scheme is usually calculated by the following 

formula. 

1 2

o d s e

dfs

o s

N N N N
Q

N N
 

 
                                        (19)                                                                     

Where, 
dfsQ  denotes the quality of discretization scheme, 

oN  is the number of initial breakpoints, dN  is the number of 

discrete intervals, sN  is the number of all instances, eN  is the 

number of data errors, 1  and 2  are weight coefficients. As 

shown in (19), the ideal discretization result is actually to find 

the best balance between the minimum number of breakpoints 

and the minimum number of data errors. The larger the value of 

dfsQ , the higher the quality of the discretization scheme. We set 

1  and 2  to 0.1 and 0.9, respectively, to obtain 
dfsQ  of all 

algorithms, as shown in Table IX, X and XI. 

We can see that our discretization scheme has the highest 

quality. Our method introduces the idea of hybrid metric of 

information entropy and chi-square test. We consider both 

internal stability and external similarity of intervals, adopt the 

discretization strategy of first splitting then merging, and 

evaluate the compatibility of discrete feature set. Therefore, the 

minimum number of intervals is obtained while ensuring the 

minimum data errors. In addition, DFIET and DFICT are 

established respectively to improve the efficiency of data 

retrieval thus greatly reducing the run time. Although EDiRa 

algorithm uses information entropy to measure the stability of 

the interval, it needs to consider the overall similarity between 

the label rankings in the training set while adopting the 

top-down splitting strategy. Therefore, when the number of 

samples increases, the time overhead will increase significantly. 

Moreover, since it only discretizes one band at a time, the result 

will destroy the compatibility of the system to a certain extent. 

So, we can see that while obtaining the maximum number of 

intervals, it has more data errors than FUDC algorithm which 

also use information entropy to split the intervals. Different 

from EDiRa, FUDC algorithm utilizes rough set to evaluate the 

uncertainty of decision system. Therefore, the number of data 

errors generated by FUDC is much less than that of EDiRa. 

NCAIC uses class-attribute correlation as the criterion of 

interval division, and takes into account the upper 

approximation of each class and the distribution information of 

data. However, considering only the upper approximation 

cannot completely characterize the whole equivalent class. 

Discrete discriminant still has a certain probability to incline to 

the class attribute containing the most samples in the interval, 

resulting in excessive number of intervals. So, we can see that 

the discrete feature set obtained by NCAIC has mediocre 

performance in the number of intervals and the number of data 

errors. ChiMerge algorithm uses class-attribute information 

calculation method based on interval similarity to discriminate 

and merge adjacent intervals. Due to the bottom-up merging 

strategy, the time overhead is relatively low. Although 

ChiMerge takes into account the mutual exclusion in the 

process of merging adjacent intervals, it cannot guarantee the 

stability of classes within the interval. In order to make the 

stability of classes within the interval as good as possible, it 

must be at the cost of increasing the number of intervals. Based 

on ChiMerge, Cramer’s V-Test algorithm divides 2  by 

( )In n  to reduce the enormous influence of n  in the 

discretization scheme, where n  is the number of intervals. 

Although it can accelerate the process of discretization in some 

cases, as with ChiMerge, because only the mutual exclusion of 

adjacent intervals is considered, the number of intervals is 

larger. Chi2 algorithm has improved on the criterion of the 

importance of breakpoints, but it lacks the corresponding 

theoretical basis, the above problems still exist. It can also be 

TABLE IX 

Comparison of the Quality of Discretization Schemes in the First GF-2 

Image 

Method Number of 

interval 
decreases 

Number of 

correct 
instances 

Quality of 

discretization 
scheme 

ECRSD 13831 6862 0.9963 

EDiRa 13392 6848 0.9914 

ChiMerge 13764 6838 0.9927 

1R 14054 6823 0.9928 

NCAIC 13420 6839 0.9905 

FUDC 13556 6858 0.9939 

CV-Test 13760 6842 0.9932 

Chi2 13758 6835 0.9923 

 TABLE X 

Comparison of the Quality of Discretization Schemes in the Second GF-2 

Image 

Method Number of 

interval 
decreases 

Number of 

correct 
instances 

Quality of 

discretization 
scheme 

ECRSD 8423 5855 0.9613 

EDiRa 5928 5809 0.9361 

ChiMerge 8302 5770 0.9473 

1R 12361 5574 0.9468 

NCAIC 6093 5779 0.9327 

FUDC 5905 5816 0.9370 

CV-Test 8305 5794 0.9511 

Chi2 8360 5768 0.9475 

 TABLE XI 

Comparison of the Quality of Discretization Schemes in Landsat 8 Image 

Method Number of 

interval 

decreases 

Number of 

correct 

instances 

Quality of 

discretization 

scheme 

ECRSD 10491 2621 0.9970 

EDiRa 10309 2617 0.9939 

ChiMerge 10346 2616 0.9939 

1R 10559 2604 0.9918 

NCAIC 10285 2616 0.9933 

FUDC 10253 2617 0.9934 

CV-Test 10379 2616 0.9942 

Chi2 10365 2616 0.9941 
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seen from the actual results that the performances of ChiMerge, 

Cramer’s V-Test and Chi2 are not much different. The number 

of intervals in 1R algorithm is given by the user, but the 

division criterion of the interval is too simple and lacks 

flexibility. Although it can obtain a small number of discrete 

feature intervals in a large-scale data set, it cannot guarantee the 

mutual exclusion of adjacent intervals and the stability of 

classes within the interval, which causes great damage to the 

compatibility of the system. Therefore, we can see that it gets 

the largest number of data errors. Based on the above analysis, 

the overall performance of ECRSD is the best in the eight 

algorithms. 

E. Evaluation of Classification Accuracy 

The classification accuracy of the remote sensing image is 

often evaluated using pixel-level calculation [51]. The 

pixel-level calculation method is to randomly select samples on 

the classification effect map, and evaluate the classification 

result by statistical comparison with actual measurement result. 

The confusion matrix is often used to represent the 

classification accuracy at the pixel level [52]. The definition of 

confusion matrix is as follows. 

11 12 1

21 22 2

1 2

. . .

. . .

. . . .

. . . .
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                                (20)                                                              

Where, n  is the total number of categories in the remote 

sensing image, and ijcm  represents the number of pixels 

belonging to category i  in the test set that are assigned to 

category j . Obviously, the larger the values of the elements on 

the diagonal of the confusion matrix, the higher the 

classification accuracy. Conversely, the lower the classification 

accuracy. Therefore, we can get the overall average prediction 

accuracy through the confusion matrix, as shown in (21). 

1

1 1

n

ii

i

Accuracy n n

ij

i j
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cm
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 




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                                                           (21)                                                                                           

It is actually the ratio of the number of correctly categorized 

samples to the total number of samples. The overall average 

prediction accuracy is simple to calculate and has a clear 

statistical significance. Besides, Kappa coefficient is also 

widely used in the classification accuracy evaluation of the 

remote sensing image [53]. It quantifies the overall 

effectiveness of the classifier on the basis of confusion matrix. 

The formula for calculating Kappa coefficient is as follows. 

1 1

2
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( )

( )

n n

ii i i

i i
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i i
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                                     (22)                                                                 

Where, T  is the total number of pixels used for accuracy 

evaluation, and n  is the number of categories. iicm  is the 

number of pixels in the i th row and the i th column of the 

confusion matrix, that is, the number of correctly categorized 

samples. icm   and icm  are the number of pixels in the i th 

TABLE XII 

Comparison of Classification Accuracy on SVM in the First GF-2 Image 

Method Average accuracy Kappa coefficient 

ECRSD 95.7836% 0.9413 

EDiRa 88.3506% 0.8378 
ChiMerge 87.1846% 0.8216 

1R 84.2581% 0.7809 

NCAIC 87.4761% 0.8257 
FUDC 91.7027% 0.8845 

CV-Test 87.7676% 0.8297 

Chi2 87.1730% 0.8215 
Original data 87.4178% 0.8249 

Original data are image features without discretization. 
TABLE XIII 

Comparison of Classification Accuracy on Neural Network in the First 

GF-2 Image 

Method Average accuracy Kappa coefficient 

ECRSD 94.3261% 0.9210 

EDiRa 86.8932% 0.8176 
ChiMerge 85.7272% 0.8013 

1R 84.2872% 0.7813 

NCAIC 86.0187% 0.8054 
FUDC 90.2453% 0.8642 

CV-Test 86.3102% 0.8094 

Chi2 85.7155% 0.8012 
Original data 86.8349% 0.8168 

 TABLE XIV 

Comparison of Classification Accuracy on SVM in the Second GF-2 Image 

Method Average accuracy Kappa coefficient 

ECRSD 89.7865% 0.8773 
EDiRa 84.9018% 0.8186 

ChiMerge 81.4176% 0.7767 

1R 71.8190% 0.6613 
NCAIC 81.4860% 0.7775 

FUDC 86.3706% 0.8362 

CV-Test 83.1939% 0.7980 
Chi2 81.4176% 0.7767 

Original data 85.3459% 0.8239 

 TABLE XV 

Comparison of Classification Accuracy on Neural Network in the Second 

GF-2 Image 

Method Average accuracy Kappa coefficient 

ECRSD 90.0598% 0.8805 
EDiRa 85.1751% 0.8218 

ChiMerge 81.6909% 0.7800 

1R 71.1358% 0.6531 
NCAIC 81.7592% 0.7808 

FUDC 86.6439% 0.8395 

CV-Test 83.4671% 0.8013 
Chi2 81.6909% 0.7800 

Original data 85.6191% 0.8272 

 TABLE XVI 

Comparison of Classification Accuracy on SVM in Landsat 8 Image 

Method Average accuracy Kappa coefficient 

ECRSD 93.4376% 0.9214 
EDiRa 92.2167% 0.9067 

ChiMerge 90.3090% 0.8839 

1R 86.8752% 0.8427 
NCAIC 91.6063% 0.8994 

FUDC 92.7509% 0.9131 

CV-Test 89.9275% 0.8793 
Chi2 90.1564% 0.8820 

Original data 91.0721% 0.8930 
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row and the i th column, respectively. Compared with 

confusion matrix, Kappa coefficients take into account not only 

the correctly categorized pixels on the diagonal, but also the 

errors of omission and commission outside the diagonal. 

Therefore, the results calculated by the two methods of 

evaluation, confusion matrix and Kappa coefficient, are usually 

not equal. 

At present, the application of SVM [54] and neural network 

technology [55] in remote sensing image processing is 

becoming more and more mature and extensive. They have 

become an efficient and reliable method for remote sensing 

image classification. Table XII to XVII show the overall 

evaluation indicators produced by the analysis of the results of 

the eight algorithms and the original continuous data on SVM 

and neural network classifiers for the three images, 

respectively.  

It can be seen that the classification accuracy of ECRSD is 

the best among the eight algorithms. On the other hand, we can 

also see that data inconsistency has a greater impact on 

classification accuracy. The smaller the number of data errors, 

the higher the classification accuracy on the classifiers. ECRSD 

and FUDC have fewer data errors than other algorithms, and 

correspondingly, their classification accuracy is higher than 

other algorithms. The number of data errors in 1R algorithm is 

the largest, accordingly, it achieves the lowest accuracy on both 

SVM and neural network classifiers. Fig. 7 is a classification 

effect map of the first GF-2 image obtained by ECRSD. It can 

be seen that the texture of the feature information in the figure 

is clear, the boundaries of different types of features are more 

distinct, and there are almost no noise speckles. The eight 

categories of construction, coniferous forest, broadleaf forest, 

fallow land, arable land, bare land, water and cloud can be 

effectively identified. Fig. 8 is a classification effect map of the 

second GF-2 image obtained by ECRSD. The texture of the 

feature information in the figure is clear, and the boundaries of 

different types of features are more obvious. The islands on the 

sea surface can be effectively identified, and even the 

hard-to-recognize boundaries between construction and bare 

land can be separated. Fig. 9 is a classification effect map of 

Landsat 8 image obtained by ECRSD. The texture of the feature 

information in the figure is clear, and the boundaries of 

different types of features are more obvious. Construction and 

bare land, coniferous forest and broadleaf forest, fallow land 

and arable land, which are easy to be confused, can be 

identified effectively. Therefore, our method can achieve 

excellent results in the classification accuracy of 

high-resolution remote sensing image in coastal areas. 

V. CONCLUSION 

This paper presents a feature discretization method for 

classification of high-resolution remote sensing images in 

coastal areas based on the idea of hybrid metric of information 

TABLE XVII 

Comparison of Classification Accuracy on Neural Network in Landsat 8 

Image 

Method Average accuracy Kappa coefficient 

ECRSD 94.2770% 0.9314 

EDiRa 92.5982% 0.9113 

ChiMerge 90.6906% 0.8884 
1R 87.2568% 0.8473 

NCAIC 91.9878% 0.9040 

FUDC 93.2850% 0.9195 
CV-Test 90.3090% 0.8839 

Chi2 90.5380% 0.8866 

Original data 91.4536% 0.8976 

 

 
Fig. 7.  Classification effect map of the first GF-2 image obtained by 

ECRSD. 

 
Fig. 8.  Classification effect map of the second GF-2 image obtained by 

ECRSD. 

 
Fig. 9.  Classification effect map of Landsat 8 image obtained by ECRSD. 
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entropy and chi-square test. We scan each band in turn with the 

strategy of first splitting then merging by evaluating the 

stability of the pixel classes within the interval and the 

similarity of adjacent intervals. Then, we use the degree of 

dependence among knowledge from the rough set theory as the 

criterion to evaluate the compatibility of the information 

system, so as to obtain the optimal discretization scheme. 

Compared to the statistical methods of multi-channel DN 

values, ECRSD does not need to rely on the assumption that 

each class follows a normal distribution in the feature space, 

and can obtain the knowledge base directly from the data 

without any prior knowledge or additional information. 

Moreover, ECRSD can effectively mine the correlation 

between features, and filter outliers. It has the advantages of 

strong anti-noise ability and easily generating correct 

classification rules. So, it is suitable for the discretization of 

most multi-dimensional data. The simulation results verify the 

effectiveness of the proposed method. Compared with other 

best state-of-the-art discretization algorithms, it can get fewer 

discrete feature intervals and data errors, and achieve better 

classification results on SVM and neural network classifiers. It 

not only provides a new idea for data preprocessing of marine 

high-resolution remote sensing images, but also brings some 

guidance to the analysis and design of discretization method for 

high-resolution remote sensing images. Our next step is to test 

and improve the proposed method in other high-dimensional 

feature data sets to expand its scope of use, and compare its 

performance on other classifiers to further optimize the 

algorithm model. 

ACKNOWLEDGMENTS 

The authors would like to thank all the anonymous reviewers 

for their invaluable suggestions. The authors would also like to 

thank Prof. Hongchao Fan from NTNU Norway for his 

constructive comments. 

REFERENCES 

 

[1]      David A. Kroodsma et al., “Tracking the global footprint of fisheries,” 

Science, vol. 359, no. 6378, pp. 904-908, Feb. 2018. 
[2]      Hao Wang et al., “Big data and industrial internet of things for the 

maritime industry in northwestern norway,” in IEEE Region 10 Conf. 

(TENCON 2015), Macao, China, 2015, pp. 1-5. 
[3]      Li Xie et al., “Novel classification method for remote sensing images 

based on information entropy discretization algorithm and vector space 

model,” Comput. Geosci., vol. 89, pp. 252-259, Apr. 2016. 
[4]      Jose M. Pena and Roland Nilsson, “On the complexity of discrete feature 

selection for optimal classification,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 32, no. 8, pp. 1517-1522, Aug. 2010. 
[5]      Adriana Romero et al., “Unsupervised deep feature extraction for remote 

sensing image classification,” IEEE Trans. Geosci. Remote Sens., vol. 54, 

no. 3, pp. 1349-1362, Mar. 2016. 
[6]      Xiang Li et al., “Building-a-nets: robust building extraction from 

high-resolution remote sensing images with adversarial networks,” IEEE 

J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 10, pp. 
3680-3687, Oct. 2018. 

[7]      Sergio Ramírez-Gallego et al., “Data discretization: taxonomy and big 
data challenge,” Wil. Int. Rev. Data Min. Knowl. Disc., vol. 6, no. 1, pp. 

5-21, Jan. 2016. 

[8]      Salvador García et al., “A survey of discretization techniques: taxonomy 
and empirical analysis in supervised learning,” IEEE Trans. Knowl. 

Data Eng., vol. 25, no. 4, pp. 734-750, Apr. 2013. 

[9]      Andrew K. C. Wong and David K. Y. Chiu, “Synthesizing statistical 

knowledge from incomplete mixed-mode data,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. PAMI-9, no. 6, pp. 796-805, Nov. 1987. 

[10] Xiao Fei Li, “The research on discretization algorithm based on dynamic 

hierarchical clustering,” in 4th Int. Conf. Com. Inf. Sci., Chongqing, 
China, 2012, pp. 349-352. 

[11] Hu Min, “A global discretization and attribute reduction algorithm based 

on k-means clustering and rough sets theory,” in Sec. Int. Symp. Knowl. 
Ac. Mod., Wuhan, China, 2009, pp. 92-95. 

[12] Mahito Sugiyama and Akihiro Yamamoto, “A fast and flexible 

clustering algorithm using binary discretization,” in IEEE 11th Int. Conf. 
Data Min., Vancouver, BC, Canada, 2011, pp. 1212-1217. 

[13] Khurram Shehzad, “EDISC: a class-tailored discretization technique for 

rule-based classification,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 8, 
pp. 1435-1447, Aug. 2012. 

[14] John Y. Ching et al., “Class-dependent discretization for inductive 

learning from continuous and mixed-mode data,” IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 17, no. 7, pp. 641-651, Jul. 1995. 

[15] L.A. Kurgan and K.J. Cios, “CAIM discretization algorithm,” IEEE 

Trans. Knowl. Data Eng., vol. 16, no. 2, pp. 145-153, Feb. 2004. 
[16] Cheng-Jung Tsai et al., “A discretization algorithm based on 

Class-Attribute Contingency Coefficient,” Inf. Sci., vol. 178, no. 3, pp. 

714-731, Feb. 2008. 
[17] Deqin Yan et al., “A new approach for discretizing continuous attributes 

in learning systems,” Neurocomputing, vol. 133, no. 10, pp. 507-511, 

Jun. 2014. 
[18] Randy Kerber et al., “ChiMerge: discretization of numeric attributes,” in 

Proc. 10th nat. conf. Artif. int., San Jose, California, USA, 1992, pp. 
123-128. 

[19] Huan Liu and Rudy Setiono, “Feature selection via discretization,” IEEE 

Trans. Knowl. Data Eng., vol. 9, no. 4, pp. 642-645, Jul. 1997. 
[20] Chaoton Su and Jyhhwa Hsu, “An extended Chi2 algorithm for 

discretization of real value attributes,” IEEE Trans. Knowl. Data Eng., 

vol. 17, no. 3, pp. 437-441, Mar. 2005. 
[21] Cláudio Rebelo de Sá et al., “Entropy-based discretization methods for 

ranking data,” Inf. Sci., vol. 329, no. C, pp. 921-936, Feb. 2016. 

[22] Guifeng Zhang et al., “A remote sensing feature discretization method 
accommodating uncertainty in classification systems,” in Proc. 8th Int. 

Symp. Spat. Acc. Ass. Nat. Res. Env. Sci., Shanghai, P. R. China, 2008, 

pp. 195-202. 
[23] Bo Wu et al., “Feature selection via Cramer's V-test discretization for 

remote-sensing image classification,” IEEE Trans. Geosci. Remote Sens., 

vol. 52, no. 5, May. 2014. 
[24] Ying Yang and Geoffrey I. Webb, “Discretization for naive-Bayes 

learning: managing discretization bias and variance,” Mach. Learn., vol. 

74, no. 1, pp. 39-74, Jan. 2009. 
[25] Shengyi Jiang and Wen Yu, “A local density approach for unsupervised 

feature discretization,” in Proc. 5th Int. Conf. Adv. Data Min. Appl. 

(ADMA '09), Beijing, China, 2009, pp. 512-519. 
[26] Robert C. Holte, “Very simple classification rules perform well on most 

commonly used datasets,” Mach. Learn, vol. 11, no. 1, pp. 63-90, Apr. 

1993. 
[27] J. Catlett, “On changing continuous attributes into ordered discrete 

attributes,” in Proc. Eur. work. sess. Learn. Mach. Learn. (EWSL-91), 

Porto, Portugal, 1991, pp. 164-178. 
[28] Chang-Hwan Lee, “A Hellinger-based discretization method for numeric 

attributes in classification learning,” Knowledge-Based Syst., vol. 20, no. 

4, pp. 419-425, May. 2007. 
[29] Di Wu et al., “Study on the assessment method of typhoon regional 

disaster based on the change of cholorophyll-a concentration in 

seawater,” in OCEANS, Aberdeen, UK, 2017, pp. 1-7. 
[30] Autun Purser et al., “Ocean floor observation and bathymetry system 

(OFOBS): a new towed camera/sonar system for deep-sea habitat 

surveys,” IEEE J. Ocean. Eng., vol. 44, no. 1, Jan. 2019. 
[31] Akira Nagano et al., “Ocean-atmosphere observations in philippine sea 

by moored buoy,” in OCEANS, Kobe, Japan, 2018, pp. 1-6. 

[32] Gou S et al., “Coastal zone classification with fully polarimetric sar 
imagery,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 11, pp. 

1616-1620, 2016. 

[33] Di Wu et al., “Strategy for assessment of disaster risk using typhoon 
hazards modeling based on chlorophyll-a content of seawater,” 

EURASIP J. Wirel. Commun. Netw., vol. 2018, no. 1, pp. 293, Dec. 

2018. 
[34] Liu Y et al., “Roadnet: learning to comprehensively analyze road 

networks in complex urban scenes from high-resolution remotely sensed 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

15 

images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 4, pp. 

2043-2056, 2019. 
[35] Sanches I D et al., “Campo verde database: seeking to improve 

agricultural remote sensing of tropical areas,” IEEE Geosci. Remote Sens. 

Lett., vol. 15, no. 3, pp. 369-373, 2018. 
[36] Qiong Chen et al., “A feature preprocessing framework of remote 

sensing image for marine targets recognition,” in OCEANS, Kobe, Japan, 

2018, pp. 1-5. 
[37] Simon H.A., The Sciences of the Artificial, 2nd ed., Cambridge, MA: 

MIT Press, 1981. 

[38] Dougherty J et al., “Supervised and unsupervised discretization of 
continuous features,” in Proc. 12th Int. Conf. Mach. Learn., Tahoe City, 

California, 1995, pp. 194-202. 

[39] Hsu C et al., “Why discretization works for naive bayesian classifiers,” in 
Proc. 17th Int. Conf. Mach. Learn. (ICML 2000), Stanford University, 

USA, 2000, pp. 399-406. 

[40] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. 
Tech. J., vol. 27, no. 3, pp. 379-423, Jul. 1948. 

[41] Usama M. Fayyad and Keki B. Irani, “On the handling of 

continuous-valued attributes in decision tree generation,” Mach. Learn., 
vol. 8, no. 1, pp. 87-102, Jan. 1992. 

[42] Rong Wang et al., “Chi-square and SPRT combined fault detection for 

multisensor navigation,” IEEE Trans. Aeros. Elec. Syst., vol. 52, no. 3, 
pp. 1352-1365, Jun. 2016. 

[43] K. Lavangnananda and S. Chattanachot, “Study of discretization 

methods in classification,” in 9th Int. Conf. Knowl. Smart Tech. (KST), 
Chonburi, Thailand, 2017, pp. 50-55. 

[44] Yuanyuan Ma et al., “Selection of rich model steganalysis features based 
on decision rough set α-positive region reduction,” IEEE Trans. Circ. 

Syst. Video Tech., vol. 29, no. 2, pp. 336-350, Feb. 2019. 

[45] Yanhua Sun et al., “Full diversity reception based on Dempster-Shafer 
theory for network coding with multiple-antennas relay,” China 

Commun., vol. 12, no. 10, pp. 76-90, Oct. 2015. 

[46] G. A. Vijayalakshmi Pai, “Fuzzy decision theory based metaheuristic 
portfolio optimization and active rebalancing using interval type-2 fuzzy 

sets,” IEEE Trans. Fuzzy Syst., vol. 25, no. 2, pp. 377-391, Apr. 2017. 

[47] Swarnajyoti Patra et al., “Hyperspectral band selection based on rough 
set,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, pp. 5495-5503, 

Oct. 2015. 

[48] S. Rosati et al., “ChiMerge discretization method: impact on a computer 
aided diagnosis system for prostate cancer in MRI,” in IEEE Int. Symp. 

Med. Meas. Appl. Proc. (MeMeA), Turin, Italy, 2015, pp. 297-302. 

[49] Zulfiqar Ali and Waseem Shahzad, “Comparative study of discretization 
methods on the performance of associative classifiers,” in Int. Conf. 

Front. Inf. Tech. (FIT), Islamabad, Pakistan, 2016, pp. 87-92. 

[50] Wenyu Qu et al., “A novel Chi2 algorithm for discretization of 
continuous attributes,” in Proc. 10th Asia-Pacific web conf. Progr. 

WWW res. dev. (APWeb'08), Shenyang, China, 2008, pp. 560-571. 

[51] Ammar Mahmood et al., “Deep image representations for coral image 
classification,” IEEE J. Ocean. Eng., vol. 44, no. 1, pp. 121-131, Jan. 

2019. 

[52] Miho Ohsaki et al., “Confusion-matrix-based kernel logistic regression 
for imbalanced data classification,” IEEE Trans. Knowl. Data Eng., vol. 

29, no. 9, pp. 1806-1819, Sept. 2017. 

[53] Jingge Xiao et al., “Land cover classification using features generated 
from annual time-series landsat data,” IEEE Geosci. Remote Sens. Lett., 

vol. 15, no. 5, pp. 739-743, May. 2018. 

[54] Yiqing Guo et al., “Effective sequential classifier training for 
SVM-based multitemporal remote sensing image classification,” IEEE 

Trans. Image Proc., vol. 27, no. 6, pp. 3036-3048, Jun. 2018. 

[55] Carlos Bentes et al., “Ship classification in TerraSAR-X images with 
convolutional neural networks,” IEEE J. Ocean. Eng., vol. 43, no. 1, pp. 

258-266, Jan. 2018. 

 
 

 

 
 

 

 
 

 

 
 

Qiong Chen received his B.Eng. degree at 

Beijing University of Posts and 

Telecommunications, P.R. China, 2007 

and M.Eng. degree at Politecnico di Torino, 

Italy, 2012. Now he is a Ph.D. student at 

College of Information Science and 

Technology, Hainan University, P.R. 

China. His research interests include 

remote sensing image processing, 

evolutionary computing, granular computing, fuzzy 

decision-making, rough sets, big data analytics and 

multi-source data fusion. 

 

 

 

 

 

Mengxing Huang received the Ph.D. 

degree from Northwestern Polytechnical 

University,Xi’an,China, in 2007. He then 

joined staff with the Research Institute of 

Information Technology, Tsinghua 

University as a Postdoctoral Researcher. In 

2009, he joined Hainan University. He is 

currently a Professor and a Ph.D. 

Supervisor of computer science and 

technology, and the Dean of School of Information and 

Communication Engineering. He is also the Executive 

Vice-Presedent of Hainan Province Institute of Smart City, and 

the Leader of the Service Science and Technology Team with 

Hainan University. He has authored or coauthored more than 

60 academic papers as the first or corresponding author. He has 

reported 12 patents of invention, owns 3 software copyright, 

and published has 2 monographs and 2 translations. He has 

been awarded Second Class and Third Class Prizes of The 

Hainan Provincial Scientific and Technological Progress. His 

current research interests include signal processing for sensor 

system, big data, and intelligent information processing. 

 

 

 

 

 

Hao Wang is an Associate Professor in the 

Department of Computer Science in 

Norwegian University of Science and 

Technology, Norway. He has a Ph.D. degree 

(2006) and a B.Eng. degree (2000), both in 

computer science and engineering, from 

South China University of Technology, 

China. His research interests include big 

data analytics, industrial internet of things, high performance 

computing, and safety-critical systems. He served as a TPC 

co-chair for IEEE DataCom 2015, IEEE CIT 2017, ES 2017, 

and IEEE CPSCom 2020, and a senior TPC member for CIKM 

2019.  He is the Chair for Sub-TC on Healthcare of IEEE 

Industrial Electronics Society Technical Committee on 

Industrial Informatics. 


