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Abstract—In this work, we investigate the use of backscattered
mm-wave radio signals for the joint tracking and recognition of
identities of humans as they move within indoor environments.
We build a system that effectively works with multiple persons
concurrently sharing and freely moving within the same indoor
space. This leads to a complicated setting, which requires one
to deal with the randomness and complexity of the resulting
(composite) backscattered signal. The proposed system combines
several processing steps: at first, the signal is filtered to remove
artifacts, reflections and random noise that do not originate
from humans. Hence, a density-based classification algorithm is
executed to separate the Doppler signatures of different users.
The final blocks are trajectory tracking and user identifica-
tion, respectively based on Kalman filters and deep neural
networks. Our results demonstrate that the integration of the
last-mentioned processing stages is critical towards achieving
robustness and accuracy in multi-user settings. Our technique
is tested both on a single-target public dataset, for which it
outperforms state-of-the-art methods, and on our own mea-
surements, obtained with a 77 GHz radar on multiple subjects
simultaneously moving in two different indoor environments. The
system works in an online fashion, permitting the continuous
identification of multiple subjects with accuracies up to 98%,
e.g., with four subjects sharing the same physical space, and
with a small accuracy reduction when tested with unseen data
from a challenging real-life scenario that was not part of the
model learning phase.

Index Terms—multi-person identification, convolutional neu-
ral networks, density-based clustering, mm-wave radar, micro-
Doppler, indoor monitoring, human tracking.

I. INTRODUCTION

RADAR devices for indoor spaces have recently gathered
considerable attention. They work by emitting radio

waves and analyzing the signal that is reflected by the en-
vironment and collected at their receiving antennas. In con-
trast with camera surveillance systems, they are insensitive
to poor light conditions and are more privacy preserving,
as no video of the scene is collected [1]. Radars are also
energy efficient compared to other technologies such as LI-
DARs [2]. In this work, we propose a multi-person online
identification framework that is based on the analysis of the
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(reflected) signal received by a millimeter-wave (mm-wave)
low power frequency-modulated continuous-wave (FMCW)
radar. Our work stems from the observation that reflected
signals collected as a subject walks in near proximity of the
radar are person-specific, as radio reflections depend on the
body shape and, in time, on the movement. As such, they
can be used to recognize the identity of humans moving in
proximity of the radar device. Our system achieves accuracies
as high as 98% with four persons moving within a relatively
small indoor place. Such performance is achieved in an online
fashion (continuous tracking and identification), allowing one
to recognize user identities as these share the same physical
space, without relying on any visual representation of the
scene. We stress that previous work [1], [3], [4] has coped
with a single-person identification problem and the multi-user
case has only been addressed in an offline fashion through the
superposition of multiple single-person signals. In contrast,
we build a system that effectively works when multiple
persons concurrently share and freely move within the same
indoor space, directly working on the composite reflected
signal that they generate. To distinguish different persons from
their way of walking (gait), we analyze their micro-Doppler
signature (µD), i.e., the small scale Doppler effect caused
by the human motion. In the interest of developing a low-
complexity system, we first extract µD features performing
range-Doppler (RD) processing (i.e., distance and velocity)
of the signal gathered from a single receiving antenna. After
that, we address the limitations of RD processing by tackling
the so called range-Doppler-azimuth (RDA) space, through the
integration of the angle-of-arrival (AoA) of the received radio
reflections, estimated using multiple receiving antennas. The
AoA information allows resolving targets which are at the
same distance from the radar device, and that move with the
same velocity; these targets would hardly be separable in the
simpler RD space.

The simultaneous identification of multiple targets requires
to track and separate the subjects (namely, their contributions
to the composite backscattered signal) in order to extract their
µD (temporal) traces. Our technique operates in either the
RD or RDA spaces, integrating tracking and identification
through the following steps: 1) detection: random noise is
removed and a density-based clustering algorithm (on either
RD or RDA maps) is applied for target detection, 2) tracking:
a dedicated Kalman filtering (KF) algorithm is utilized to
track the detected target points in the RD (RDA) space,
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and 3) identification: a deep convolutional neural network
(DCNN) is exploited to carry out the final identification. We
stress that the joint estimation of user movement (the tracking
step 2) and computation of identification features (step 3) is
key to correctly disentangle the RD/RDA signals from multiple
subjects. As we experimentally verify in Section V, tracking
errors and consequent wrong identifications critically depend
on this joint processing.

When processing radar data for identification purposes, the
analytical models of the propagation and backscattering phe-
nomena often fail to handle the high randomness of mm-wave
reflections and hardware non-idealities. To cope with this,
we exploit a deep learning architecture (i.e., the DCNN), as
it enables a data-driven system training. This technique has
become dominant for this type of processing tasks [1], [5].

Differently from previous research efforts, the proposed
framework is evaluated by measuring its online accuracy in
the simultaneous identification of multiple targets, taking into
account the additional disturbances, blockages and spurious
reflections that are due to the presence of other people, and
using experiments designed to reproduce a worst-case scenario
for target tracking. To this end, we have emulated a real-life
setting, letting subjects walk freely within the scene, at a
distance that ranges from 0 to 18 meters. In addition, we test
the generality of the proposed approach in a room for which
no training data was recorded, i.e., this environment is unseen
from the perspective of model learning.

The main contributions of the paper are summarized next.
1) We propose a system for the simultaneous indoor iden-

tification of multiple targets from µD signatures of gait
using only RD information, reaching an average online
accuracy of 95% when three subjects walk concurrently
within the same physical environment. The approach that
we devise for this scenario (RD signal space) works
up to long distances (18 m) in indoor environments.
To the best of our knowledge, no other study in the
literature proposes a working system for the considered
multi-target online identification task.

2) We introduce a novel DCNN for µD processing and
quantify its performance improvement with respect to
other models presented in the literature by evaluating it
on a publicly available dataset (IDRad [1]) obtaining an
accuracy of 90.69%.

3) We design a new approach for tracking that is robust to
trajectory tracking errors thanks to the feedback on the
subject identity provided by the DCNN classifier. Our
design entails the integration of tracking and identifica-
tion blocks, which leads to a significant improvement in
terms of online identification accuracy.

4) We show how the proposed processing pipeline can also
be applied to RDA data, solving some limitations of the
RD signals. This allows one to achieve higher target
detection capabilities at the cost of a higher compu-
tational complexity and of a reduced detection range.
With RDA information, we reach an online accuracy of
up to 98% for four subjects. The RDA-based system is
also evaluated in an unseen environment, with furniture
and static objects, achieving an accuracy of 96% on two

subjects. To the best of our knowledge, it is the first time
that this evaluation is conducted for the mm-wave radar
multi-target tracking and identification problem.

The rest of the paper is organized as follows. In Section II,
the existing literature is reviewed, underlining the novel as-
pects underpinning our approach. In Section III, the FMCW
radar signal model and the computation of RD, RDA maps and
µD signatures is detailed. The new framework is thoroughly
presented in Section IV. In Section V, experimental results are
presented, while concluding remarks are given in Section VI.

II. RELATED WORK

Human identification from radar sensors is a research theme
that is rapidly gaining momentum. Some papers target the
classification of the subject identity from the µD signature
of gait using radio signals [1], [3], [6]–[10]. Other studies
focus on human activity recognition from the backscattered
radio signal for security or smart-home applications [5], [11],
[12]. Respiration rate and heartbeat can also be tracked, as
they cause a detectable movement of the subject’s chest [13],
[14]. As the focus of this paper is on gait recognition and
person identification, in the following we briefly review the
most important contributions on this topic.

In [6], the authors employ for the first time a classifier
based on the deep CNN AlexNet [15] to identify a person
from her/his µD signature of gait, reaching an accuracy of
about 97% with four subjects. Differently from our setup,
their experiments take place in an outdoor environment, where
correlated noisy reflections from static objects are typically
weak: walls in indoor environments are significantly close to
the target of interest in most scenarios, and they cause the
noise level to increase making the extraction of the useful
signal features much harder.

Chen et al. [9] utilize a multi-static radar with three nodes
and a pre-trained deep CNN for image recognition, in order
to detect whether a person carries a weapon or to identify
a person between two subjects. The authors of [7] address
identification using the µD signature of six different move-
ments including walking and running. Running turned out to
be the most discriminative action, providing an identification
accuracy of 95.21% with 15 subjects. In [8], instead, a
treadmill placed at different distances from the radar device is
used, and a ResNet50 [16] neural network is trained to classify
22 subjects.

The above studies focused on simplified experimental sce-
narios, where the person was required to walk on a straight
line, in a radial direction from the radar device. This approach
can be useful to simplify the classification task, by making
gait features more evident, but it is not realistic and lacks the
generality that would be required by a practical application. In
our current work, we focus on a more realistic setup, letting
the subjects walk in an unconstrained, free manner within the
monitored physical space.

Vandersmissen et al. [1] train a CNN classifier on a dataset
featuring five subjects who randomly walk in two different
rooms, in an attempt to implement a more robust learning
phase. However, each subject needs to be alone in the room
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in order for the system to work, as no method to separate
the different target contributions in the backscattered signal is
provided. This heavily limits the applicability of the proposed
algorithm to real situations, where multiple targets are likely to
share and concurrently move in the physical space. The same
authors also propose two improvements over their algorithm,
to improve its accuracy, but the single-target limitation is still
present [3], [10].

A first attempt at performing multi-subject identification
can be found in [4], where 3-dimensional radar point clouds
obtained by RDA processing are used in place of µD sig-
natures, in combination with a recurrent neural network with
long short-term memory (LSTM) cells for a-posteriori iden-
tification. The overall accuracy obtained for 12 subjects is
around 89%, and evidence that the system is able to distinguish
between two subjects is provided. However, no evaluation of
the accuracy is conducted when more than 2 subjects share the
same environment, and no evaluation is conducted to assess
the generality of the classifier by testing it in a different indoor
environment (e.g., a new room) after the training. The sparsity
of radar point-cloud data can become a source of inaccuracy
when a high number of subjects has to be tracked, due to
failures in the clustering procedure. To date, no method exists
to deal with the superposition of the signal clusters caused by
the proximity of the subjects, thus limiting the working range
of identification systems to a radius of 3− 5 meters.

In this work, we improve over previous studies by first
showing the feasibility of identifying multiple persons only
using RD information, with a lightweight processing workflow
and limited hardware requirements. Further, we extend the
proposed system to deal with RDA data, in case a higher
detection performance is required, e.g., to handle more targets,
or in case precise tracking of the subjects in the x − y
space is sought. We also show how the complex task of
reliably separating the different user’s reflections (especially
in RD images) can be successfully tackled by feeding back the
identification output into the user’s trajectory tracking module,
combining these two processing stages. Improvements and
drawbacks of our approach are duly quantified and discussed.

III. MM-WAVE RADAR SIGNAL MODEL

A FMCW radar allows the joint estimation of the distance
and the radial velocity of the target with respect to the radar
device. This is achieved by transmitting sequences of chirps,
i.e., sinusoidal waves with frequency that varies in time, and
measuring the frequency shift of the backscattered signal at
the receiver.

In this paper, we use a linear FMCW (LFMCW) radar for
which the frequency of the transmitted chirp signal (TX) is
linearly increased from a base value fo to a maximum f1 in T
seconds. Defining the bandwidth of the chirp as B = f1 − fo,
bandwidth B and transmission duration T are related through
ζ = B/T , and the transmitted signal can be expressed as

s(t) = exp

{
j2π

(
fo +

1

2
ζt

)
t

}
, 0 ≤ t ≤ T. (1)

The chirps are transmitted every Trep seconds in sequences
of P chirps each, so that the total duration of a transmitted

sequence is PTrep. At the receiver, a mixer combines the
received signal (RX) with the transmitted one, generating
the intermediate frequency (IF) signal, i.e., a sinusoid whose
instantaneous frequency is the difference between the frequen-
cies of the TX and RX signals. Each chirp is sampled with
sampling period Ts (referred to as fast time sampling) obtain-
ing N points, while P samples, one per chirp from adjacent
chirps, are taken with period Trep (slow time sampling).

The use of multiple-input multiple-output (MIMO) radar
devices allows the additional estimation of the AoA of the
reflections, by computing the phase shifts between the receiver
antenna elements due to their different positions (i.e., their
different distances from the target). This is referred to as
spatial sampling, and enables the localization of the targets
in the physical space using polar and cartesian coordinates. In
the present work we employ a linear receiver antenna array,
i.e., the RX antennas are aligned along a single dimension and
spaced apart by a distance δ.

A. Range, Doppler and azimuth information

The transmitted signal hits the target at some spatial point,
generating a backscattered signal that can be detected at
the receiver. This reflected signal is equal to the transmitted
waveform with a delay τ that depends on the distance between
the target and the radar, their relative radial velocity, and on
the additional distance due to the different positions of the
receiving antenna elements. Considering the most general case
where Q targets are present in the radar illumination range
and L antennas are available at the linear receiver array, and
indicating with c the speed of light, letting Rq , vq and θq
respectively be the range, velocity and azimuth angle with
respect to the device of target q, the delay measured at antenna
element ` for the signal reflection coming from target q can
be computed as

τ`q =
2(Rq + vqt) + `δ sin θq

c
. (2)

After mixing and sampling, the IF signal is expressed as [17]

y(n, p, `) =

Q−1∑
q=0

αq exp {j2πφq(n, p, `)}+ w(n, p, `), (3)

where αq is a coefficient that accounts for the attenuation
effects due to the antenna gains, path loss and radar cross
section (RCS) of the target and w is a Gaussian noise term.
The phase φq(n, p, `) depends on the target, the fast time,
slow time and spatial sampling indices. By neglecting the
terms giving a small contribution, its approximate expression
can be written by introducing the quantities fdq = 2fovq/c
and fbq = 2ζRq/c, which respectively represent the Doppler
frequency and the beat frequency of the signal reflected from
target q,

φq(n, p, `) ≈ 2foRq

c
+fdq

pTrep+
fo`δ sin θq

c
+
(
fdq

+ fbq
)
nTs.

(4)
Samples of y can be arranged into a 3-dimensional tensor
called radar data cube, that contains all the information
provided by the radar device for a given time frame. The
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Fig. 1: Visual representation of the RD, RDA maps and µD signature after a thresholding operation is applied. In the RD map
3 targets are present, while in RDA and µD 4 targets are considered.

frequency shifts of interest, which reveal the target range,
velocity and angular position, can be extracted after applying a
discrete Fourier transform (DFT) along the fast time, slow time
and spatial dimension (beamforming). In the resulting signal,
the position of the peak along the fast time dimension reveals
the frequency of the IF signal fdq

+ fbq ≈ fbq , the peak along
slow time gives the Doppler frequency fdq . From the peak of
the DFT along the spatial dimension we get the phase shift
due to the angular displacement of the target, ϕaq

. The desired
quantities are then estimated as follows (we indicate with the
symbol ∆ the corresponding resolution)

R̂q =
fbqc

2ζ
, ∆R̂q =

c

2B
, (5)

v̂q =
fdqc

2fo
, ∆v̂q =

c

2foPTrep
, (6)

θ̂q = sin−1
(
ϕaq

c

2πδfo

)
, ∆θ̂q =

c

2δL cos(θ̂q)
. (7)

In the following, the radar cube after applying the DFT in the
three dimensions will be referred to as range-Doppler-azimuth
map (RDA). An example of the RDA map for four subjects
is shown in Fig. 1b.

In the case of a single receiving antenna, spatial sampling is
not possible, and we can only estimate the range and velocity
of the targets with the same approach used above, with the
difference that Eq. (2) and Eq. (4) do not depend on the
antenna element `. The result of the 2-dimensional DFT is
called range-Doppler map (RD), see the example in Fig. 1a.

B. µ-Doppler map

Human targets present different moving parts, therefore
their overall motion is more complex than just translation.
The small-scale vibrations or rotations of their body parts
introduce a Doppler shift that is time dependent and that can
be represented as a frequency modulation on the reflected
signal, which carries unique features depending on the specific
target considered. A model for this phenomenon is presented
in [18], [19], where it is shown that the sensitivity to µD
effects is higher when using small wavelenghts: mm-wave

radios are therefore more suited for applications where fine
grained information is needed.

The extraction of the µD signature from the received signal
can be performed by computing a short-time Fourier transform
(STFT) on the slow-time sampled waveform to estimate the
power spectral density (PSD) along the Doppler dimension, as
done in [8]. An alternative is to compute the RD (or RDA) map
first, and subsequently integrate along the range and angular
(or range only) dimensions [1], as shown in Fig. 1c. This
second option is computationally more expensive, but it is
preferred here because the RD (respectively RDA) map can
be used to locate the targets and separate their contributions
in a 2D (resp. 3D) space, while this separation would be very
hard from the µD spectrogram, as it lacks the range (resp.
range and angle) information.

IV. PROPOSED ALGORITHM

In this section, we offer a general overview of the proposed
algorithm. The blocks that are presented here are used for
both RD and RDA processing, with minor differences in the
implementation details of each algorithm, due to the different
properties of the two maps.

A. Overview of the signal processing pipeline

The extraction of the gait features from the µD spectrogram
can be very difficult, and the results are heavily affected by
environment and hardware non-idealities. In addition, in the
case of multiple targets, the µD is a composite temporal signal
resulting from the superimposed contributions of all moving
entities. The separation of such contributions is very hard,
whereas it is easier in the RD or RDA spaces as the reflections
from different users are further spaced out by the distance of
the users from the radar (RD) or by their distance and angle
of arrival (RDA), resulting in point clouds as shown in Fig. 1.
For this reason, our dynamic processing framework works on
either the RD or RDA spaces, through the following steps (see
Fig. 2).

1) Detection. At first, a pre-processing step is applied to
the raw data at the output of the radar mixer, to remove



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

Radar Data

Preprocessing

Density-based

Clustering

Kalman Filter

Data Association

Labeling

Classifier

Detection Tracking Identification

Obs.

Slow time

Fast time

Chn.

Identity

Fig. 2: Signal processing workflow.

static reflections and noise (see Section IV-C). Hence, a
clustering scheme from the family of “density-based spa-
tial clustering for applications with noise” (DBSCAN)
algorithms is executed to separate the RD/RDA contri-
butions from distinct subjects from the composite signal
(see Section IV-D).

2) Tracking. A Kalman filter operating on subsequent
RD or RDA frames is applied to obtain a reliable
estimation of the true subject’s state (i.e., its location, see
Section IV-E). The association of the RD/RDA clusters
detected in the current time-frame with the right user
trajectories is performed using the Hungarian algorithm
(see Section IV-F).

3) Identification. Feature extraction and user identification
are performed with a DCNN model based on inception
blocks (IBs) that takes as input portions of the µD
spectrogram of each subject (obtained from the RD/RDA
data of the subject, after the use of DBSCAN and tra-
jectory tracking). In case tracking fails and the RD/RDA
clusters of some subjects cannot be separated, the DCNN
output is used to re-establish the correct labeling of the
targets, by feeding back the identity information to the
trajectory tracking block (see Section IV-J for details).

Multi-person identification from backscattered mm-wave
signals presents several challenges. First, an effective and
reliable separation of the different targets is difficult to achieve
due to the high level of randomness in mm-wave indoor propa-
gation environments. Second, a robust classification based on
µD signatures requires high generalization capabilities from
the DCNN identity classifier. Indeed, we seek to differen-
tiate subjects from their way of moving rather than from
properties that may be less person-specific, such as their
average walking speed. A distinctive and key feature of the
proposed approach is the dynamic integration of trajectory
tracking and identification, which allows correcting trajectory
tracking errors based on the output of the identification block.
As a result, our system is suited to online processing, is
robust to the superposition of user clusters in the RD/RDA
spaces, to variable walking speeds, to fake targets due to
reflecting objects/surfaces, to classification instability and to
targets appearing on (disappearing from) the scene.

B. Notation
The system operates at discrete time increments, t =

1, 2, . . . T , where time steps have a fixed duration of ∆t

seconds, corresponding to the radar frame period. In the
remainder, the sequential evolution of the algorithms is in-
terchangeably expressed in terms of time steps and radar
frames. The RD/RDA clusters detected in the current time
step t are marked with indices d = 0, 1, . . . , Dt − 1 and are
Dt in total. Similarly, the Kt trajectories that are currently
maintained by the trajectory tracking block are indexed using
variable k = 0, 1, . . . ,Kt−1. With U , we indicate the number
of classes (identities) on which the system is trained, i.e.,
the identities that will be recognized as known, represented
through index u = 0, 1, . . . , U . Boldface, capital letters refer
to matrices, e.g., X , with elements Xij , whereas boldface
lowercase letters refer to vectors, e.g., x. Symbol ⊗ denotes
the Kronecker product between matrices, X−1 denotes the
inverse of matrix X , and xT denotes the transpose of vector
x. N (µ, σ2) indicates a Gaussian random variable with mean
µ and variance σ2.

C. Pre-processing

The pre-processing involves two different phases, namely
removal of static reflections and denoising.

1) Removal of Static Reflections: This is the first block in
the processing pipeline: it receives as input the raw radar data,
i.e., the radar cube containing the 3-dimensional signal (see
Eq. (3)) that the radar outputs at every time step. As discussed
in Section III-A, DFT is applied to this signal to obtain
the RD or RDA map. In the RD case, only one channel is
collected (one receiving antenna), the DFT is applied along the
range dimension first and then along the Doppler dimension,
resulting in a matrix containing range and Doppler information
on the targets. In the RDA processing case, an additional
DFT along the angular dimension is computed. Before the
DFT, a Hanning window is applied along each dimension.
The RD and RDA maps are further processed to remove
reflections from static targets. As fixed objects are mapped into
a vertical line in correspondence of the 0 m/s velocity value,
we remove their contributions by cutting the Doppler channels
related to negligible velocities from both the RD and RDA
maps. This processing step is of key importance, as the static
clutter would dominate the RDA maps if not removed, causing
the reflections from the subjects to be merged with static
contributions with consequent severe difficulties in the tracking
process. As an additional benefit, the algorithm becomes less
dependent on the environment characteristics.
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2) Denoising: Denoising is applied in two phases. In the
first phase, a received power threshold is applied along the
range dimension, keeping only the signal values that lie above
it. The threshold is decreased linearly in the logarithmic
domain as the range increases, going from −97 dBm at
minimum range to −107 dBm at maximum range. This is
motivated by the fact that targets further away from the radar
device would be penalized by using a fixed threshold due to
the smaller power they receive. In case of RDA processing,
a further thresholding is applied along the angular dimension,
discarding the angular bins where the received power level
is weaker than 15 dB with respect to the peak value. This
is implemented to mitigate the effects of the side lobes
generated by the beamforming procedure. The resulting data
points represent the locations in the 2-dimensional (RD) or 3-
dimensional (RDA) maps, where a sufficiently high reflected
power is received. These points represent candidate reflections
from the targets.

D. Target clustering in RD/RDA spaces – DBSCAN

Density-based clustering, as opposed to distance-based clus-
tering, groups input samples depending on their density. One
of the most widely used algorithms belonging to this cate-
gory is DBSCAN [20], which has been previously applied
to clusterize radar point clouds in [4], [21]. The algorithm
operates a sequential scanning of all the data points, expanding
a cluster until a certain density condition is no longer satisfied.
It requires one to specify two input parameters, ε and mpts,
respectively representing a radius around each point and the
minimum number of other points inside of it to satisfy the den-
sity condition. In this work, we use ε = 0.04 and mpts = 40.
Each point of the radar map, after denoising, is mapped onto
a vector of coordinates pi = [ri, vi]

T (range and velocity)
for RD processing and pi = [ri, vi, θi]

T (range, velocity and
angle) for RDA processing, with an associated received power
PRX(pi). To simplify the selection of the distance threshold
parameter, ε, the range, angle and velocity coordinates of the
points pi are normalized in the interval [0, 1] before the actual
clustering step. DBSCAN is applied on the normalized set of
points: some, having low density, are classified as noise and
discarded, while a partition of the remaining ones is outputted
at each time step t. We denote by C0, C1, . . . , CDt−1 the
resulting clusters, one for each of the Dt detections. After
the clustering operation, the point clouds are re-mapped onto
the original range of values. For each cluster, we select its
centroid as a noisy observation of the true coordinates (range
and velocity for RD, range, velocity and angle for RDA) of the
person. Centroids zd, d = 0, 1, . . . , Dt − 1, are computed by
weighting each cluster point by the corresponding normalized
reflected power value, namely,

zd =

∑
pi∈Cd

piPRX(pi)∑
pj∈Cd

PRX(pj)
. (8)

In this way, the centroid tends towards those points with a
higher power, assigning them more importance in representing
the actual target position. Note that, DBSCAN clustering
performs the detection of the clusters by solely operating on

the present time step, i.e., points in previous time steps are
not considered. While this is desirable, as it leads to a low
complexity clustering algorithm, it presents some drawbacks.
In fact, not all the clusters that are detected in any specific
time step may represent actual subjects, but noisy reflections
and ghost targets often appear (at random) in the RD/RDA
space. When their power is comparable with that of the
actual target reflections, DBSCAN may enroll them among
the detected clusters. To compensate for this, we use a further
tracking procedure, described in the following Section IV-E,
that analyzes the movement of the clusters in the RD/RDA
space across subsequent frames. This allows detecting and
removing spurious clusters, as these are likely to appear (and
disappear soon after) at random times, whereas the clusters
generated by actual targets tend to be persistent across frames.

E. Trajectory tracking – Kalman filter

Trajectory tracking is carried out by applying a discrete
Kalman filter (KF) on the past positions of the targets, which
are represented by the cluster centroids z0, . . . ,zDt−1. Note
that the number of maintained trajectories at the beginning of
time step t, Kt−1, may differ from the number of clusters
Dt detected by DBSCAN, due to errors in the clustering
procedure or to subjects entering or leaving the monitored
environment. These facts need to be carefully handled through
dedicated strategies, which are detailed in Section IV-F. Next,
the KF tracking procedure is presented for a single trajectory,
but this same procedure is applied in parallel to each trajectory.
Also, for improved clarity, the RD and RDA processing cases
are treated separately.

1) RD system model: The KF model relates the actual
distance (from the radar device) and velocity of the target,
xt = [rt, vt]

T , i.e., the hidden system state, to the centroid
values zt, i.e., the (noisy) observations. The model of motion
is defined by two matrices, F and H . F is the transition
matrix, relating the system state in the current time step xt to
xt−1, while H is the observation matrix, which relates zt to
xt. Referring to ut and rt as the process noise and observation
noise, respectively, a dynamic model of the system is obtained
as follows

xt = Fxt−1 + ut, (9)

zt = Hxt + rt, (10)

Assuming a constant velocity model, the transition and obser-
vation matrices are

F =

[
1 ∆t
0 1

]
, (11)

H = I2, (12)

where I2 is a 2 × 2 identity matrix. We assume the process
noise ut to be caused by a random acceleration at that follows
a Gaussian distribution with 0 mean and variance σ2

a, i.e.,
at ∼ N (0, σ2

a), leading to

ut = gat, (13)

g =

[
1
2∆t2

∆t

]
. (14)
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The process noise covariance matrix is computed as

Q = E
[
utu

T
t

]
= σ2

agg
T , (15)

while the observation noise covariance matrix is

R = E
[
rtr

T
t

]
=

[
σ2
r 0

0 σ2
v

]
. (16)

Suitable values for σa, σr and σv are difficult to compute
analytically. In this work, we determined them empirically
from experimental observations, obtaining σa = 0.6 m/s2,
σr = 0.1 m and σv = 0.5 m/s.

A new KF model is initialized for each detected cluster in
the first frame received by the radar. In successive frames,
the trajectories are maintained through the KF predict-update
steps, computing the estimates of the state x̂t and state covari-
ance matrix P̂t, from which the estimated posterior distribution
of the state is derived as p̂(xt|z1, . . . ,zt) = N (x̂t, P̂t) [22].

2) RDA system model: In the RDA case, tracking is only
performed using the observations on range and azimuth, as the
introduction of radial velocity in the model would cause the
system to become too non-linear to obtain reliable estimates
using KF. In detail, the observation vector zt contains the
range and the angular position of the target, zt = [rt, θt]

T .
The system state is defined as xt = [x, vx, y, vy]

T , where x
and y are the target cartesian coordinates, and vx and vy the
velocities along the two axes. The resulting non-linear model
is

xt = Fxt−1 + ut, (17)

zt = h (xt) + rt, (18)

with h (xt) =
[√

x2 + y2, arctan (y/x)
]T

. To handle the
non-linearity in Eq. (18), upon receiving a new obser-
vation zt, we compute a transformed observation vector
z′t = [rt cos θt, rt sin θt]

T . Using z′, the model becomes lin-
ear as in Eq. (9), Eq. (10), with matrices

F = I2 ⊗
[

1 ∆t
0 1

]
, (19)

H =

[
1 0 0 0
0 0 1 0

]
. (20)

The covariance matrices of the process and observation noises
are

Q = I2 ⊗ σ2
agg

T , (21)

R =

[
σ2
x 0

0 σ2
y

]
. (22)

Again, a direct computation of the noise variances is difficult
to obtain, so we used the empirical values for human subjects
proposed in [21]: σa = 8 m/s2, σx = σy = 0.5 m/s2. The
linear equations of the predictions and update steps are the
same as in the linear KF from the case of RD processing,
thanks to the use of the transformation (polar coordinates).

The constant velocity model we used has provided good
approximations of the movement of a human walking target:
with movements speeds in the order of 1 m/s and a frame rate
of 15 fps, the KF was able to track the targets reliably.

F. Matching trajectories to clusters – Hungarian algorithm

To match trajectories to clusters, we use an approach based
on the nearest neighbor standard filter (NNSF). At each frame,
we must associate the Dt new cluster detections with the Kt−1
previous trajectories, which is a combinatorial problem. The
procedure consists in two steps, first we compute a Kt−1 ×Dt

cost matrix J that relates trajectories at time step (t − 1)
with cluster detections at time step t. Each element of J ,
Jij , encodes the cost of associating trajectory i with cluster
detection j. Given the slightly different properties of RD and
RDA data, we found that the best choice for the cost function
differs in the two cases, as described below.

1) RD cost matrix: in the RD case, from each target state
xi we define a box Bi to contain the subject reflections,
centered on the state and with fixed dimensions hB and wB .
We assume that, given the high frame rate with respect to
the velocity of the subjects, over two subsequent frames the
box with reflections from a given target should significantly
overlap with her/his box at the previous time step. Let Bi

and Bj respectively represent the box of the cluster that was
associated with trajectory i at the previous time step (t−1) and
the one associated with a new target detection j at the current
time step t, centered on zj . The cost of the association between
trajectory i and the newly detected cluster j is computed via
the negative intersection over union (IOU) score, defined as

JRD
ij = −IOU(Bi, Bj) = −Area(Bi ∩Bj)

Area(Bi ∪Bj)
. (23)

The idea underpinning this, is that the more the two boxes
overlap, the more likely they will be representing two clusters
containing the reflected signal components from the same
target user as she/he moves from (t− 1) to t.

2) RDA cost matrix: in the RDA case, the cost matrix
elements are defined as the squared Mahalanobis distance
between the predicted observation from the trajectory state
and the real observation (detection):

JRDA
ij =

(
zj
t −Hxi

t

)T
S−1t

(
zj
t −Hxi

t

)
, (24)

where zj
t −Hxi

t is the innovation process and St its co-
variance matrix computed as HP i

tH
T + R, and are both

obtained as part of the KF update step.
The choice of two different score functions for RD and

RDA processing is motivated by the different properties of
the radar maps in the two cases. In the RDA space, trajectory
tracking uses range and angle information, which leads to
compact clusters around the centroids. Conversely, the velocity
information that is used in the RD space leads to sparse
clusters along this dimension, and the IOU score allows one
to control the box shape, i.e., its form factor through hB and
wB , in order to weigh less a superposition along the velocity
axis than that along the range axis. This significantly mitigates
the tracking errors due to cluster sparsity in the RD space.

Given the cost matrix, the Hungarian algorithm [23] is used
to efficiently obtain the associations yielding the lowest total
cost, with complexity O((Kt−1Dt)

3). The algorithm uses the
cost matrix as input and pairs each trajectory with only one
cluster detection.
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G. Trajectory management
During trajectory tracking we must deal with (i) undetected

trajectories and new cluster detections (that is the case of a
non-square matrix J ), (ii) trajectory instability due to missed
detections, and (iii) presence of ghost targets generated by
reflections from metal objects. To deal with these problems,
we conceived the following trajectory management measures.

1) Unmatched trajectories (RD and RDA): All past tra-
jectories that are not associated with any current cluster
detection are marked as undetected and are maintained for
max_age = 10 frames before being deleted. During these
frames, their state is updated using Eq. (9). Cluster detections
that are not associated with any existing trajectory are called
unmatched, and are initialized as new trajectories if they are
detected for min_det = 15 consecutive frames.

This mechanism makes the system robust to subjects that
randomly appear on and disappear from the environment,
and whose tracks are created or deleted as needed with an
affordable delay. We stress that a subject reflection could go
undetected, subsequently deleted and reinitialized for any rea-
son, e.g., due to blockage at the beginning of the measurement
sequence, and more generally, blockage at any point of the
monitored sequence, or due to targets moving in and out of
the scene. These temporary effects will not affect the correct
tracking of the proposed system, whose trajectories will be
continuously refined and reinitialized as soon as a reliable
measurement is obtained.

2) Ameliorating trajectory instability (RDA): Trajectory
instability and merging trajectories due to missed detections
are a problem in the RDA case, where clutter is more
significant. For this reason, we introduced a gating region
around each trajectory, i.e., a detection is never associated
with the trajectory if the cost (squared Mahalanobis distance)
of the association at time step t is higher than a threshold
value denoted by γ. This operation discards all the possible
associations between a trajectory and clusters that lie outside
of an ellipsoidal region whose shape and size are determined
by the innovation covariance St and the threshold γ, which
is typically chosen according to a desired level of confidence
from an inverse χ2 distribution with 2 degrees of freedom [24].
In this work, we use a 90% confidence, which leads to
γ = 4.605.

3) Dealing with merging trajectories (RDA): Merging tra-
jectories are detected by checking the Euclidean distance
between their estimated states. If the distance between two
trajectories gets lower than a minimum distance dmin = 0.5 m,
the trajectory with the highest variance in the last 5 state
estimations is deleted in order to favor stability.

4) Removal of “ghost” targets (RDA): As a last trajectory
management measure, we eliminate all trajectories whose
estimated state lies outside of the room boundaries. This has
a significant positive effect in removing ghost targets due to
multipath reflections on metal objects and wide flat surfaces.
These unwanted reflections often closely resemble the direct
ones from the real subjects, but appear at different angular
positions, and at a longer distance due to the longer path
followed by the signal. The method used in this work for the
removal of ghost targets uses some prior information about

the dimensions of the room. In practice, a coarse knowledge
is sufficient and the room dimensions along the x and y
reference axes are enough. This data could be obtained from a
planimetry, as we did, or via some pre-processing performed
on the radar signal. The latter approach is left as a future
research work.

H. Computation of µD time series

The µD signature of each target is computed by selecting
those points belonging to the cluster that is currently associated
with her/his trajectory. This allows obtaining a separate signa-
ture for each subject. Such signature is inputted into a DCNN
based classifier to perform identification, see Section IV-I. For
the computation of the µD vector in a given time step, the
received power over the range (RD) or range and angle (RDA)
dimensions is accumulated, producing vectors with dimension
equal to the number of considered Doppler bins, nchn. Hence,
these vectors are stacked over time and passed to the DCNN
classifier as a spectrogram image. This image is the input X
for the following identification block, see Section IV-I.

I. Identification – DCNN

The proposed classifier architecture is a DCNN. This kind
of neural network is suited for classification and feature
extraction when the input data exhibits spatial structure, like
in image processing applications. The main components of the
DCNN are convolutional layers, where the input is convolved
with a filter (or kernel) of learned weights in order to recognize
certain patterns, organized into so called feature maps, that
become more and more complex and abstract with the depth
of the layer. DCNNs have been broadly utilized in the last
few years for feature extraction in spectrogram data, e.g., in
speech recognition and audio processing applications [25].

The proposed DCNN is based on inception and residual
networks structures, two architectures that are commonly used
in state-of-the-art image classification tasks. IBs are a DCNN
structure developed for complex feature extraction at different
scales, using at every layer of the DCNN different kernel sizes,
in a parallel fashion, and concatenating the resulting feature
maps [26]. In our case, 1× 1, 3× 3 and 5× 5 kernel filters
are used at each layer, to extract small and wide scale charac-
teristics of the µD signature. An efficient implementation of
the single inception block is shown in Fig. 4: the top branch
uses 1× 1 convolutions, extracting small scale features, the
two following branches from the top use 3× 3 and 5× 5
convolutions, which are preceded by 1× 1 convolutions to
reduce their complexity, i.e., the number of feature maps, and
prevent the number of parameters from becoming too large.
The bottom branch performs a 3× 3 max pooling operation,
still extracting small scale features, but from a downsampled
representation of the input.

Residual networks instead rely on skip connections between
the input and the output of convolutional blocks [16], in
order to make the network learn the residual representation
of the data with respect to the input. This has been shown to
allow deeper networks to be trained faster and with significant
performance gains. In our case, skip connections are placed
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Fig. 4: Structure of the Inception Block.

between the input and the output of each IB, summing the
respective tensors. A 1× 1 convolution is applied to each skip
connection to adjust the number of feature maps, so that it
matches that at the output.

The input signal X is a sequence of Wc = 30 frames of
µD vectors, corresponding to WcTseq = 2 seconds of mea-
surement time for each subject. The number of Doppler bins
that were selected is nchn = 200 (see Section V for a detailed
description of the evaluation setup), so the input image has
dimension 200× 30. The input X is passed through the three
blocks composing the DCNN, namely, an encoder, a decoder
and a fully connected (FC) network. The encoder network, E , is
composed of four stacked IBs with a number of output feature
maps respectively equal to 16, 32, 64 and 16; the blocks
are separated by 2× 2 max pooling layers, which perform
dimensionality reduction.

The flattened output of the encoder, c, is a latent represen-
tation of the input with lower dimensionality, i.e., a code, and
is fed to both the decoder and the FC network. In detail,

1) the decoder network D learns to reconstruct the input
image. D is a CNN with four layers, 3× 3 filters in each
layer, and a number of feature maps respectively equal
to 32, 32, 16 and 1. A 2× 2 upsampling step is carried
out before each convolution. The reconstructed copy
of the input is called X̂ . This branch of the classifier
does not directly contribute to the classification result,
but it is used during the training phase to guide the
network towards extracting meaningful features, acting

as a regularizer. To the best of our knowledge, the use
of a decoder network for this class of problems is an
original contribution of our design. We found its use to
be effective, leading to accuracy improvements in the
order of 2− 3% in the test set.

2) The FC network F outputs a U -dimensional vec-
tor containing the probabilities that the input belongs
to each class using a one-of-U encoding, i.e., ŷ =
[ŷ1, . . . , ŷU ]T , with ŷu ∈ [0, 1] and

∑
u ŷu = 1. The

network is composed of one hidden layer with 128 neu-
rons. ELU activation functions [27] connect the input
to the hidden layer neurons, while a SoftMax layer is
used to compute the U output probabilities.

The following equations formalize the input-output relations
for the encoder, decoder and FC blocks

c = E(X), X̂ = D(c), ŷ = F(c). (25)

The loss function of the full architecture is a weighted sum of
the loss function of the decoder, which measures the difference
between the original input image X and the reconstructed
one X̂ , and the loss of the FC branch (classification). For the
former, we choose the average per-pixel binary cross-entropy
loss, while the categorical cross-entropy loss between the
predicted and the true labels y is used for the latter. We
call nX = nchnWc the number of elements in the µD input
image, U the number of classes (the known user identities)
and αrec is a weighting factor. The p-th pixels of the input
and reconstructed images, with values in [0, 1], are denoted
respectively by Xp and X̂p and the total weighted loss function
is

L(X̂,X,y) = − (1− αrec)

U∑
u=1

yu log(ŷu)︸ ︷︷ ︸
Classification branch term

−

− αrec

nX

nX∑
p=1

Xp log(X̂p) + (1−Xp) log(1− X̂p)︸ ︷︷ ︸
Reconstruction branch term

. (26)

Fig. 3 shows the complete structure of the classifier. As a
regularization measure, after each layer of the encoder and the
FC branch we apply batch normalization [28]. All the hidden
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nodes in the network use the ELU activation function [27].
The complete neural network has 560, 819 tunable parameters
(network size).

J. Labeling and trajectory correction procedure

Previous approaches to human identification from
mm-waves obtain trajectories rely on the sole KF output,
for the entire movement and, in a following step, perform
the classification on the pre-computed trajectories using,
e.g., a neural network of some kind [4]. Now, consider the
trajectories of two users 1 and 2 that, at a certain point in
time, intersect in the considered RD/RDA space. At this
point, the two users cannot be distinguished, as their clusters
largely overlap, and the trajectories are tracked again by the
KF from the moment in which their clusters set apart. The
target association procedure, however, beyond this point, may
wrongly associate trajectories with detections, i.e., assigning
trajectory 1 to user 2 and vice-versa. This problem can be
hardly corrected with previous algorithms, whereas it is
solved with the interactive procedure that we designed, and
that we detail in this section. With our technique, identities
are obtained in an online manner. Moreover, although the
association of trajectories to clusters (see Section IV-F) may
be erroneous, due to the overlap of the user clusters, as soon
as the trajectories set apart again, the association is corrected
using the output of the DCNN classifier. Note that this is not
possible by solely exploiting the KF, as its memory amounts
to a single time step, which is insufficient to solve this issue.
Next, the procedure is formally described.

Applying the classifier to the µD signatures from the Kt

current trajectories, returns Kt U -dimensional vectors, which
contain the probabilities that each trajectory belongs to one
of the U (known) user classes. Hence, we build a Kt × U
matrix, Γt, by stacking these vectors. The matrix contains
in position (i, j) the probability that trajectory i belongs to
subject j ∈ {1, . . . , U}. Following a reasoning similar to
that in Section IV-F, we can interpret the matrix Γt as a
score matrix for the associations between trajectories and
classes. Therefore, the optimal assignment of the labels in the
current time step is obtained by applying again the Hungarian
algorithm on −Γt, which represents the association costs. This
approach makes it possible to jointly label all the trajectories.
From the properties of the Hungarian algorithm, it descends
that the same class is never assigned to more than one subject.
A subject is classified as unknown in case no label is assigned
to her/him by the algorithm (which happens if Kt > U ) or
when the score outputted by the DCNN is lower than 0.1 (a
threshold that we set to avoid low probability associations).

To enhance the stability in the identification process, the
current labels that are outputted at time t by the DCNN are
used with the past ones as follows.
• for each trajectory, we store the past labels that are

outputted by the DCNN in a list;
• at t = 0, subjects are identified using the instantaneous

labels, as no past information is available;
• at time step t > 0, each trajectory i is classified consid-

ering the most recent Wh labels that are outputted by the

Measurement parameters

Antenna el. spacing δ 1.948 mm
Number of receiving antennas L 16
Start frequency fo 76 GHz
Chirp bandwidth B 2 GHz
Chirp duration T 180 µs
Chirp repetition time Trep 250 µs
No. samples per chirp N 512
No. chirps per seq. P 256
Frame rate 1/∆t 15 fps
ADC sampling frequency Fs 2.857 MHz
Range resolution ∆R 7.5 cm
Velocity resolution ∆v 3.040 cm/s

TABLE 1: Summary of the radar working parameters used in
the evaluation session.

DCNN classifier up to and including time t, i.e., at time
steps (t−Wh + 1), . . . , (t− 1), t. If all these Wh labels
match, we assign their common value to the trajectory;
this will be the final identity label that is outputted at
time t. If instead different values appear in this list, we
keep the final label that was previously assigned, at time
(t− 1), to trajectory i. Note that, in case the Wh values
in the list for any trajectory i differ, the procedure will
maintain the previous label until the DCNN will output
a sequence of Wh matching labels.

We remark that the value of Wh encodes the level of temporal
stability that is required to accept a change in the identity that
is outputted by the algorithm, for any trajectory. In fact, this
procedure introduces additional stability in the identification,
as misclassifications that only last a few time steps are avoided.
A cost is however paid in terms of correction speed when
a tracking error occurs, e.g., when trajectories are swapped
between users. As such, a desirable tradeoff has to be identified
between the stability in the identification results (large Wh)
and the delay in compensating for tracking errors (small Wh).

V. EXPERIMENTAL RESULTS

A. Measurement setup and parameters

The proposed framework is evaluated using an INRAS
RadarLog device working at 77 GHz center frequency. The
front-end features 2 transmitting antennas and 16 receiving
antennas organized as a linear array. The device working pa-
rameters are set up as in Tab. 1. Operating in LFMCW mode,
we respectively utilize one transmitting and L = 16 receiving
antennas. To obtain ground truth values for the multi-target
measurements we used a camera which was time-synchronized
with the radar device: the resulting video was used to identify
and track the users within the indoor space.

To thoroughly evaluate the proposed system, several mea-
surement campaigns were conducted, using two measurement
rooms with very different dimensions, shapes and propagation
environments.

Measurement room A is a 4.3× 20 meters corridor, where
the radar was positioned on the short edge as depicted in Fig. 5.
The presence of several large windows and some radiators
that become sources of unwanted reflections and ghost targets
makes our evaluation room very challenging. Room A was
the main environment considered in this work, where the
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Fig. 5: Measurement room A.

majority of tests was carried out, along with the collection
of the training data for the classifier.

Room B is a 8 × 4 meters research laboratory, with furni-
ture and devices left in place in order to mimic a real-life
indoor scenario. In addition, other people not involved in
the measurements were also present in the room, outside
the tracking area, further increasing the difficulty of tracking
and identification tasks. Room B was utilized to validate our
approach and investigate the generalization capabilities of the
classifier, which was only trained on data from room A.

We collected radar data for the training and validation of
our algorithm for the following experiments.

1) Training the classifier on single subjects (room A).
We collected RDA data from 4 different subjects (S1,
S2, S3 and S4) with ages ranging from 24 to 31 years
and different body shapes and weights. Each subject was
asked to walk alone, freely and without any restrictions
within the measurement room for around 22 minutes,
to collect 20 sequences of 500 frames, for a total of
10 thousand frames per subject. The sequences were
acquired in two different days to reduce the effects of
clothing or physical conditions.

2) Evaluating the performance of RD multi-person
identification (room A). We acquired 4 test sequences
of 1, 250 RD-only frames, 2 of them with 2 targets (S1
and S2) and the other 2 with 3 targets (S1, S2 and S3).
All subjects were asked to walk freely, without space
constraints and varying their walking speed.

3) Evaluating the performance of RDA multi-person
identification (room A). We acquired 6 test sequences
of 500 RDA frames with 4 targets. To make the test more
challenging, we had the targets walking in a square-like
fashion, with the first two subjects and the second two
being at the same distance from the radar device, and
with a small distance of about 1 meter between the two
pairs, as shown in Fig. 5. All targets are constrained to
walk at (approximately) the same speed. This setup has
been intentionally selected, as it represents a worst-case
for the RDA-based system. In fact, in this case subjects
can not be distinguished by their different velocities or
their range, and the detection/tracking has to mainly
rely on the angular information, which is less accurate

than the range or the velocity1. Moreover, the classifier
is forced to make the identity decision based on the
features of the µD spectrogram that encode the way
of walking of the subjects, as their speed is the same.
We stress that this type of analysis is new: often,
µD classifiers based on neural networks include the
non-informative average walking speed as a discrimi-
native feature, leading to poor accuracy when subjects
have similar velocities, e.g., [1].

4) Validating the performance in a different measure-
ment room (room B). We collected RDA data with
two subjects in a different environment in order to asses
whether the system, in particular the DCNN classifier,
generalizes to an unseen domain. No data from room
B is used during the training of the classifier. The
2 sequences obtained in room B contain 500 frames
each, and the walking patterns of the subjects were
constrained similarly to point 3). The room boundary
values, see Section IV-G, were modified complying with
the new room dimensions to effectively deal with ghost
targets. Note that only two subjects were involved in the
experiments for Room B as the walking space available
was reduced with respect to Room A. However, the
density of users per square meter was higher for Room
B, which again corresponds to a more challenging setup.

With the considered parameters, raw radar frames have a
shape of N × L× P = 512× 16× 256 points along the fast-
time, antenna element, and slow time dimensions respectively.
We used 64 points for the DFT along the angle dimension
and 256 points for DFT along Doppler dimension. For the
range dimension, we used 1, 024 points for the DFT, extracting
ranges from 0 to 10 m for RDA data (253 bins) and from 0
to 18 m in case of RD maps (497 bins). The contributions
due to static objects were removed by cutting the 8 central
Doppler channels, corresponding to velocities in the range
[−0.138, 0.138] m/s, and the first and last 24 channels corre-
sponding to velocities outside the interval [−3.160, 3.160] m/s
were also removed as they did not contain any useful infor-
mation. The resulting radar maps after DFT processing have
dimension 253× 64× 200 points for RDA and 497 × 200
points for RD, which corresponds to a 34-fold increase in the

1The angular resolution degrades as the angle of arrival of the reflections
approaches ±π/2, see Eq. (7).
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data frame size for RDA with respect to RD. We performed µD
extraction by summing over the range and angular dimensions,
obtaining spectrograms with 200 Doppler bins and variable
time length depending on the sequence (500 or 1, 250 frames).

When using range-Doppler DFT processing, a common
assumption is that the target covers a smaller distance than
the length of a range bin during a single frame period, i.e.,
vPTrep < ∆R, with v being the velocity of the subject.
If this assumption is not satisfied, the echo from the target
spreads across multiple range bins (range migration) [29],
[30]. However, this effect is not harmful in our case, where the
typical extension of human subjects along the range dimension
goes from 0.5 m up to 1.5 m, which correspond to 6-20 range
bins. Indeed, the average walking speed of human subjects in
indoor environments is around 1.5 m/s [31], which lead to a
ranging accuracy reduction of at most 1−2 range bins, which
is deemed negligible with respect to the target size.

B. Training phase

We implemented the classifier network using TensorFlow
2.0 and the Keras API. Training was performed on a NVIDIA
RTX 2080 GPU with 8 GB of RAM.

The 20 µD sequences per target obtained from the mea-
surements in room A were split into windows of 30 frames
along the time dimension, with an overlap of 25 frames. The
resulting images were divided into training and validation sets,
90% and 10% of the images respectively, and testing was
carried out on the multi-target sequences. Data augmentation
was applied to enlarge the training set: for each training image
we generated 4 additional images by

1) adding Gaussian noise with zero mean and variance
0.05,

2) setting to zero pixels in the image with a probability of
0.3 (random corruption),

3) setting to zero 8 adjacent columns (time frames) start-
ing from an index selected uniformly at random (time
masking),

4) setting to zero 20 adjacent Doppler bins starting from an
index selected uniformly at random (frequency masking).

These images were used as input X of the encoder, setting
the reconstruction target X̂ at the output of the decoder to
be the original image, to force the encoder-decoder pair to
learn key structural properties of the input (the same strategy
is exploited to train denoising auto-encoders (DAE) [32]). The
model was trained on the training set until convergence of the
loss L(X̂,X,y) in Eq. (26) on the validation set, using the
Stochastic Gradient Descent (SGD) optimizer with Nesterov
momentum 0.95 and αrec = 0.6. The learning rate was adap-
tively lowered by a factor of 0.5 when the validation loss was
not improving for more than 5 consecutive epochs, from an
initial value η = 5 · 10−3. We applied L2 regularization with
coefficient λ = 3 · 10−3 on the network weights and dropout
with probability pdrop = 0.5 for the fully connected layers, to
reduce overfitting on the training data.

In terms of inference time, the proposed DCNN takes on
average 24 ms to perform the classification of a 2 seconds long
µD input. The µD signatures of all the tracked targets are fed

Classifier Accuracy (IDRad) %

DCNN [1] 78.46
RCN [10] 75.65
SIN + LSTM [3] 89.56
DCNN with IBs (our approach) 90.69

TABLE 2: Comparison between the proposed classifier and
available benchmarks from the literature on the IDRad test
set.

to the network in a single batch so that only one forward pass
is performed in a time step.

C. DCNN evaluation on the IDRad dataset (single-target)

As a first evaluation phase, we trained and validated the
proposed DCNN on IDRad2, a publicly available dataset of
77 GHz radar µD signatures [1]. The dataset contains RD
frames from 5 different subjects walking one at a time in
the environment and hence, multi-target identification is not
possible using this dataset. Training and validation/test data
are collected in two different rooms.

Using the IDRad dataset, we have assessed the performance
of our framework for the single person identification problem
and have compared it with available benchmarks [1], [3], [10].
For a fair comparison against previous work, we adapted the
DCNN to accept as input µD sequences with length of 45
frames instead of 30. We found that our classifier generalizes
well, with an overall average accuracy of 90.69%, with slight
variations across different targets, but always above 88%. The
comparison between the performance of our approach and the
schemes in the literature is presented in Tab. 2. Our classifier
is the most accurate, significantly outperforming the previous
DCNN approach [1], the one based on reservoir computing
networks (RCN) [10], and performs slightly better than [3],
where a structured inference network (SIN) and long-short
term memory recurrent neural networks (LSTM) are used. We
believe this improvement is achieved due to the use of IBs,
which allow for feature extraction at different scales, without
significantly increasing the network complexity, which would
easily lead to overfitting.

D. Performance metrics

To train and test the proposed processing pipeline in a
multi-target setting, we have collected our own RD and RDA
data across several measurement campaigns (see Section V-A).
The performance of the final classifier are evaluated in terms
of (i) accuracy, i.e., the ratio between the number of frames
in which the target is correctly identified and the number of
frames in which it is detected and assigned a label different
from unknown (see Section IV-J); (ii) the undetected ratio
(rund), i.e., the ratio between the number of frames in which a
target is undetected3 and the total number of frames collected;
(iii) the unknown ratio (runk), the ratio between the number

2https://www.imec-int.com/en/IDRad
3A target is said to be undetected if the number of consecutive missed

detections is sufficient to eliminate its trajectory from those that are being
tracked by the algorithm. As such, the target is no longer identified.
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Range-Doppler Range-Doppler-Azimuth

2 Subjects 3 Subjects 4 Subjects
S1 S2 Avg. S1 S2 S3 Avg. S1 S2 S3 S4 Avg.

Accuracy % 98.24 97.69 97.96 95.75 98.65 91.38 95.26 99.52 98.26 100.0 95.56 98.27
rund % 0 0 0 6.65 27.31 0 11.32 6.51 6.17 18.64 6.08 9.35
runk % 4.54 2.53 3.54 0.75 2.79 9.51 4.34 0 0 0 0 0

TABLE 3: RD and RDA average performance over the test sequences from room A (Wh = 9).

of frames in which the target is labeled as unknown and the
total number of frames collected. This last metric is a measure
of the uncertainty of the identification framework in providing
a classification for the targets.

E. Results for the RD signal (multi-target)

In Tab. 3, we report the results per subject using the metrics
of Section V-D, averaged over the test sequences. In the
evaluation, we discard the initial phase where the trajectories
need to accumulate 30 frames of µD data in order to provide
the first image to the DCNN classifier.

With RD maps, the two targets case achieves the highest
accuracy, with an average of 97.96%. With three targets,
rund increases for some subjects, as one may expect: having
more targets in the same area leads to a higher probability
of superposition of their clusters. In this case, the reflection
coming from target 2 is undetectable due to the fact that 27%
of the frames for this user overlap with those of other users
in the RD space (as they have a similar range and speed). An
interesting point, however, is that the identification accuracy
and runk are not significantly impacted with respect to the two
targets case, meaning that the identification framework can
recover from missed detections, still providing high accuracy
when targets become detectable again.

A detailed analysis of the errors revealed that the main
problem with RD processing is the superposition of clusters
in the RD space: this occurs when subjects have similar
range and speed, likely being detected as a single cluster.
This is an intrinsic limitation of the RD space, and is not
influenced by any of the system parameters. However, thanks
to the proposed processing method, that allows re-establishing
trajectories once clusters separate, and to correct errors using
the identification outcomes (see Section IV-J), the system
still provides correct results for a very high percentage of
time. Other techniques from the literature treat tracking and
identification separately, and are therefore unable to deal with
multi-target RD identification because of their inability of
recovering from erroneous tracking.

As a last result, in Fig. 6 we show the impact of changing
the box dimension along the Doppler axis, wB , averaging
the accuracy obtained on two targets. As expected, there is
a trade-off between capturing most of the target’s Doppler
information (large wB) and avoiding unnecessary overlap
between boxes (small wB), which may lead to classification
errors. The chosen value for the results of Tab. 3 is 2.5 m/s,
as it provided the highest accuracy. The dimension of the box
along the range dimension, hB , is instead kept fixed at 2 m.
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Box width wB [m/s]
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Fig. 6: Accuracy of RD identification by varying the box width
wB along the Doppler dimension for two subjects, S1 and S2.

F. Results for the RDA signal (multi-target)

Tab. 3 shows the results of RDA processing averaged over
the 6 test sequences: our system achieves an accuracy of
98.27% over 4 targets. We recall that the initial phase in which
the DCNN has to collect the first 30 µD vectors is neglected
in the computation, and only frames after this initial transient
period are considered, as for the RD analysis.

The relatively high people density (0.1 person/m2) with
respect to that in the RD analysis causes blockage to become
more frequent, i.e., some subjects block the signal path to other
targets during some frames, which explains the non-negligible
average rund of 9.35%. Conversely, runk is always zero for
all subjects and all sequences, meaning that once a target is
detected, the network has always enough data and confidence
to produce a classification result. Remarkably, although rund is
greater than zero for all subjects, the identification accuracy is
still very high (see in particular S3), which confirms once again
the framework’s ability to recover from missed detections. This
is possible thanks to the correction algorithm of Section IV-J.

G. Impact of training parameters

The proposed DCNN architecture, in terms of number of
inception blocks, number of FC layers and presence of skip
connections, was obtained using a greedy search procedure on
the hyperparameters, i.e., we repeated the model training by
changing one parameter at a time and selecting the value that
led to the minimum loss. This procedure is suboptimal with
respect to an exhaustive search or to Bayesian methods, but
was preferred because of its lower computational cost. In the
following, we focus on the most interesting and influential
parameters, namely the value of αrec and the use of data
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Fig. 7: Accuracy on the RDA test data depending on the
reconstruction weight αrec (room A).

Training set % used 25% 50% 75% 100% No augm.

Acc. % (RDA 4 trg.) 84.08 88.97 95.45 98.27 89.97
Training time [min.] 8 15 23 30 9

TABLE 4: Impact of training set size and data augmentation
on accuracy (RDA with four targets) and training time.

augmentation, analyzing their impact on the final test accuracy.
The reconstruction weight αrec ∈ [0, 1] tunes the relative im-
portance of the classification and the reconstruction branches
in the training loss. Using the reconstruction branch has shown
to yield a slight improvement in the generalization capabilities
of the DCNN, similarly to what is commonly achieved using
regularization. Specifically, in Fig. 7 we plot the accuracy
values obtained varying αrec from 0, i.e., the reconstruction
branch is disabled, to 0.9. The best result is obtained for
αrec = 0.6. Remarkably, these improvements are only possible
when using the encoder-decoder structure in combination with
the data augmentation strategy described in Section V-B.
Indeed, with no data augmentation (e.g., noise addition and
random signal deletion/corruption) the reconstruction at the
output of the auto-encoder becomes much easier and the
feature extraction is less effective in capturing the true signal
manifold. As a result, no major benefit is observed.

In Tab. 4, we show the effect of only using a portion of the
total training data available on the time required to complete
the training, and on the accuracy on the RDA test data.
While the training time increases almost linearly when using
25%, 50%, 75% or 100% of the full training set (22 minutes
per subject), the accuracy shows the smallest improvement
when going from 75% to 100%. This is a saturation effect
on the model’s performance that is customary with neural
network training. In the last column of Tab. 4, we show
the results of training the model on the whole available
dataset without exploiting data augmentation. The accuracy
decreases significantly, motivating the use of the augmentation
techniques described in Section V-B.

H. Integrated vs separate tracking and identification

As described in Section IV-J, the proposed system jointly
performs tracking and identification. To quantify the improve-
ment of this design with respect to separately obtaining trajec-
tories and identities, we quantify the difference in the average
accuracy when applying the two approaches (joint vs separate
processing) on all the considered subjects and RD/RDA test

RD 2 subj. RD 3 subj. RDA 4 subj.
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Fig. 8: Accuracy comparison between joint (our approach) and
separate (previous work) tracking (tr.) and identification (id.).

Seq. 1 Seq. 2 Average

Acc. % 100.00 92.00 96.00
rund % 20.40 16.80 18.60
runk % 0 0 0

TABLE 5: Accuracy results obtained in room B on two
subjects using RDA processing, after training the classifier on
data from room A only.

sequences. Fig. 8 confirms that our integrated approach is
of key importance to enable precise RD identification, with
improvements of 36.32% and 25.42% on the 3 and 2 subjects
cases, respectively. For RDA processing, the improvement is
smaller (8.91%), due to the higher detection capabilities of the
system in the RDA space, which makes cluster superposition
and subsequent tracking errors less frequent. The improve-
ment is however non-negligible and the proposed combined
architecture is still very effective.

I. Dimensioning the classification window Wh

As anticipated in Section IV-J, the classification window
parameter Wh plays an important role in the trade-off between
online classification accuracy and speed in recovering from
errors. In Fig. 9, we show the effect of varying Wh from 1
to 20 frames for the RDA signal. All the 6 sequences are
considered, and we observe a monotonic increasing behavior
of the accuracy. Although this may not always be the case: if
the initial guess of the classifier is wrong, even in the absence
of tracking errors, a large value for the window would lead
to a wrong classification for many frames. For this reason, a
good selection approach would be to pick the lowest possible
Wh that guarantees a given, application dependent, accuracy
target. For the results in Tab. 3, we picked Wh = 9 frames,
leading to a delay of 0.6 s, as this is the lowest value of Wh for
which the accuracy is above 95% for all the sequences. Still,
all values up to Wh = 15 frames would be good choices, as
the delay is below 1 s for all of them. The same value of Wh

has led to the best results also in the RD case.
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Fig. 9: Accuracy of the identification in RDA processing
with respect to the length (i.e., number of frames) of the
classification window Wh (in room A). The red solid curve
represents the average over all sequences, with uncertainty in
terms of one standard deviation (shaded area).

J. Validation in a different indoor environment

To analyze the generalization capabilities of the proposed
system, we evaluated its performance in a different environ-
ment, room B, described in Section V-A, considering RDA
processing. Here, we investigate whether a pretrained DCNN
can generalize well to new rooms, as the training procedure
would be too long and costly to be repeated for each new
environment. The detection and tracking parameters for ghost
target removal and the KF matrices can be environment
independent (e.g., the KF parameters), can be easily obtained
from side information (room dimensions), or can be estimated
by taking some preliminary measurements on the empty room
(denoising threshold). Specifically, the new range dependent
denoising threshold goes from −75 dBm at minimum range
to −95 dBm, which is expected given the smaller room size
and the considerable presence of static objects. The threshold
on the azimuth dimension is instead left unchanged.

In Tab. 5, we show the results of testing, in room B,
the classifier trained in room A. The average accuracy for
2 subjects over the 2 considered sequences is 96%, which
is lower than the one obtained in room A with 4 subjects,
but is deemed satisfactory given the difficult propagation
conditions of the new environment. Indeed, we stress that
room B contains furniture and several static objects which
cause severe multi-path effect and clutter, in addition to the
presence of other people who were working and who were
not involved in the experiment. These harsh conditions are
reflected in the high percentage of time in which a subject
is undetectable, which is rund = 18.60%, i.e., almost doubled
with respect to room A (see Tab. 3). We conclude that the
classifier is able to generalize to unseen environments even
in realistic conditions: more reliable detection schemes would
be further enhancing the model robustness and we leave their
study as a future work.

VI. CONCLUSIONS

In this work, we have presented a system for indoor
multi-person identification from mm-wave radar µ-Doppler
signatures. The proposed approach has been designed to work
with range-Doppler (RD) and range-Doppler-azimuth (RDA)
data, requiring only small modifications to deal with these
two signals, and being able to trade working range and
computational speed (RD) for detection and tracking accuracy
(RDA). The processing steps are: removal of static reflections
and random noise, a target detection phase using density-based
clustering (DBSCAN), a tracking procedure using Kalman
filtering and a final classification step exploiting deep convolu-
tional neural networks (DCNNs). In our novel design, we have
integrated the identification information with the trajectory
tracking block. This has the twofold advantage of allowing
for much higher identification accuracies when working with
both RD and RDA signals in multi-target scenarios, i.e.,
where multiple subjects share and move within the same
physical space. The proposed framework has been tested on
real measurements involving single as well as multiple targets
moving concurrently in an indoor space (a lacking aspect in the
literature), obtaining an identification accuracy of 95.26% for
RD, with 3 targets, and of 98.27% with RDA, with 4 targets.
The framework has a maximum working range of 18 m for RD
and of 8-10 m for RDA. A further evaluation was conducted to
assess the generality of the proposed approach, by capturing
additional test data in a different room, that was not used
by the system at training time. Despite the new environment
being more challenging, e.g., with furniture and other human
presence, we obtained an accuracy of 96% with two subjects.

Future research avenues include: characterizing the indoor
space by (automatically) mapping static objects and ghost
reflections, which is expected to lead to higher accuracies, us-
ing multiple time-synchronized radar devices and 2D antenna
arrays (elevation angle).
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