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Abstract

We present Lift and Relax for Waveform Inversion (LRWI), an approach that mitigates the local minima
issue in seismic full waveform inversion (FWI) via a combination of two convexification techniques. The
first technique (Lift) extends the set of variables in the optimization problem to products of those variables,
arranged as a moment matrix. This algebraic idea is a celebrated way to replace a hard polynomial
optimization problem by a semidefinite programming approximation. Concretely, both the model and the
wavefield are lifted from vectors to rank-2 matrices. The second technique (Relax) invites to consider the
wave equation, not as a hard constraint, but as a soft constraint to be satisfied only approximately – a
technique known as wavefield reconstruction inversion (WRI). WRI weakens wave-equation constraints by
introducing wave-equation misfits as a weighted penalty term in the objective function. The relaxed penalty
formulation enables balancing the data and wave-equation misfits by tuning a penalty parameter. Together,
“Lift” and “Relax” help reformulate the inverse problem as a set of constraints on a rank-2 moment matrix in
a higher dimensional space. Such a lifting strategy permits a good data and wave-equation fit throughout the
inversion process, while leaving the numerical rank of the rank-2 moment matrix to be minimized down to
one. Numerical examples indicate that compared to FWI and WRI, LRWI can conduct successful inversions
using an initial model that would be considered too poor, and data with a starting frequency that would
be considered too high, for either method in isolation. Specifically, LRWI increases the acceptable starting
frequency from 1.0 Hz and 0.5 Hz to 2.0 Hz and 2.5 for the Marmousi model and the Overthrust model,
respectively, in the cases of a linear gradient starting model.
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Introduction

Seismic imaging is the primary means for Earth scientists and geophysicists to explore and study Earth’s
deep interior, where direct observations are infeasible. Its applications range from studies of Earth’s core,
thousands of kilometers below the surface, to detailed images of shallow crustal structures for locating
petroleum deposits. During the last thirty years, with the advancements in high-performance computing and
the development of wide-aperture and dense data acquisition, seismic imaging techniques have been upgraded
from simple and low-resolution ray-based methods to complicated and high-resolution wave-equation-based
methods. Especially, during the last two decades, full waveform inversion (FWI) [Tarantola and Valette,
1982, Pratt, 1999, Virieux and Operto, 2009] has become one of the most important approaches because of
its potential capability in creating high-resolution subsurface images through the usage of all kinds of waves
in the data.

Conventional FWI seeks a subsurface velocity model that can minimize the difference between its predicted
data and the observed data in a least-squares sense. A well-known problem associated with conventional
FWI is that it suffers from local minima in the objective function caused by the so-called “cycle-skipping”
issues. More specifically, if the initial model does not generate predicted data within half a wavelength of the
observed data, iterative optimization approaches may stagnate at physically meaningless solutions with a
high probability. In order to conduct a successful inversion, conventional FWI needs a good initial model that
is kinematically accurate at the longest data wavelengths and data containing enough low frequencies and
long offsets [Virieux and Operto, 2009, Vigh et al., 2009, Warner et al., 2013]. Research aimed at mitigating
the “cycle-skipping” issue mainly focuses on different misfit functions [Cara and Lévêque, 1987, van Leeuwen
and Mulder, 2010, Wu et al., 2013, Engquist and Froese, 2014, Warner and Guasch, 2016, Yang et al., 2018],
expanding the search space [van Leeuwen and Herrmann, 2015, Huang et al., 2017, Fang et al., 2018b,a], and
the integration with the advanced approach of migration velocity analysis [Symes, 2008, Li et al., 2014].

We propose a two-pronged Lift and Relax waveform inversion (LRWI) approach to mitigating the local
minima problem in this paper. The proposed approach consists of two relaxation strategies that expand the
search space. The “Relax” strategy is based on the so-called approach wavefield reconstruction inversion
(WRI) [van Leeuwen and Herrmann, 2015, Fang et al., 2018b]. WRI first introduces wavefields as additional
unknown variables, and then weakens the partial differential equation (PDE) constraints used in conventional
FWI by treating the PDE misfit as a weighted penalty term in the objective function. Through tuning
the penalty parameter, the resulting approach does not enforce the PDE constraints at each iteration and
arguably yields a less non-linear problem in the model parameter. The “Lift” strategy follows the early
work in Cosse et al. [2015] that borrows ideas from recent developments in the semidefinite relaxation for
polynomial equations to mitigate non-convexity [Lasserre, 2001, Laurent, 2009]. We lift both unknown
wavefields and model parameters from 1D vectors to rank-2 matrices, and reformulate the WRI problem as a
set of constraints on a rank-2 moment matrix in a higher dimensional space. Such a lifting strategy permits
a good data and wave-equation fit throughout the inversion process, while leaving the numerical rank of
the moment matrix to be the quantity to minimize – so that this matrix aims to be a rank one matrix at
convergence eventually.

Compared to conventional FWI, the proposed LRWI approach has three major advantages. First, the
computation of the gradients does not require adjoint or reverse-time wavefields. Secondly, the “Relax” and
“Lift” strategies enable us to fit both data misfit and PDE misfit even with poor models. Thirdly, the rank-2
formulation provides us with the potential to utilize information from the two components in the rank-2
model matrix simultaneously. The last two properties, in conjunction with the expanded search space, may
result in an optimization formulation that is less prone to local minima. We present numerical examples on
both Marmousi and Overthrust models to illustrate the feasibility and advantages of the proposed approach.

The paper is organized as follows. First, we review the basic conception and formulation of conventional FWI.
Next, we derive the formulation for the proposed rank-2 LRWI. Then, we derive all the necessary components
for the efficient optimization strategy in detail. Finally, we present numerical examples on Marmousi and
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Overthrust models to illustrate the feasibility and advantages of LRWI and conclude the paper with a detailed
discussion.

Methodology

Given a seismic data set d ∈ Rns×nr×nf with ns sources, nr receivers, and nf frequencies, FWI aims to
reconstruct the discretized ng-dimensional squared slowness model m from d by solving the following
PDE-constrained optimization problem:

min
m,u

ff(m,u) = 1
2

ns,nf∑
i,j

‖Pui,j − di,j‖2
2,

subject to (∆ + ω2
jm)ui,j = qi,j ,

(1)

where the operator P projects the wavefield ui,j corresponding to the ith source qi,j with frequency ωj onto the
receiver locations. The operator ∆ represents the Laplacian operator, and the equation (∆ + ω2

jm)ui,j = qi,j
is known as the Helmholtz equation.

The optimization problem in Equation 1 requires a solution in Rng × Cnu with nu = ns × nf × ng, which is
infeasible for most practical applications because we cannot afford to store all the unknown variables. To
reduce the dimensionality of the search space, the conventional adjoint-state method [Virieux and Operto,
2009] eliminates the PDE constraint (∆+ω2

jm)ui,j = qi,j through solving the PDE straightforwardly, yielding
the following reduced problem:

min
m

fr(m) = 1
2

ns,nf∑
i,j

‖PAj(m)−1qi,j − di,j‖2
2,

with Aj(m) = ∆ + ω2
jm,

(2)

whose search space is Rng . Although the dimensionality of the search space reduces from nu + ng to ng, the
trade-off lies in the fact that the inversion of the Helmholtz matrix introduces a very strong nonlinearity into
the problem, yielding an objective function fr(m) with many local minima.

WRI with a rank-r relaxation

In this work, we aim to mitigate the local minima issue of conventional FWI by proposing a Lift and Relax
formulation in the rank-r case. To simplify the notation, we will omit the dependence of the variables on the
source and frequency indexes i and j from now on.

We first follow van Leeuwen and Herrmann [2015] and relax the PDE constraint in Equation 1 by considering
the PDE misfit as a weighted penalty term as follows:

min
m,u

fp(m,u) = 1
2‖Pu− d‖2

2 + λ

2 ‖(∆ + ω2m)u− q‖2
2. (3)

The penalty parameter λ enables us to balance the PDE and data misfits and provides the freedom to design
a search path in the enlarged space that can potentially bypass the local minima in the objective function of
conventional FWI.

Following the PDE relaxation, we introduce an additional rank-r relaxation to expand the search space into a
higher dimension space, which is motivated from the following matrix expression of the unknown parameters
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m and u:

X =

X11 X12 X13
X21 X22 X23
X31 X32 X33

 = [1,m>,u>]>[1,m>,u>]. (4)

Clearly, the matrix X is a rank-1 positive semindefinite matrix. Based on Equation 4, we can lift the original
WRI problem from optimizing over vectors m and u to optimizing over the matrix X. In the course of
doing so, the direct correspondence to m and u in Equation 4 is not directly imposed, but the objective in
Equation 3 is rewritten with the blocks of X serving as proxies for m, u, and the product mu>. This yields
the following equivalent optimization problem:

min
X

fpx(X) = 1
2‖PX31 − d‖2

2 + λ

2 ‖∆X31 + ω2diag(X32)− q‖2
2,

subject to X11 = 1,
X � 0,

rank(X) = 1.

(5)

The “Lift” relaxation then consists in dropping the rank-1 constraint.

The new objective function fpx(X) is a quadratic function with respect to the matrix X, which is much
simpler than the original FWI and WRI objective functions. Since X ∈ C(nu+ng+1)2 , we are not able to
optimize over X directly for large-scale realistic applications. Nonetheless, as stated by Cosse et al. [2015], it
is possible for us to obtain a computationally feasible formulation with a reasonable storage requirement by
introducing a rank-r factorization RR> for the matrix X:

min
R

fpr(R) = 1
2‖P(R3R>1 )− d‖2

2 + λ

2 ‖∆(R3R>1 ) + ω2diag(R3R>2 )− q‖2
2,

subject to R1R>1 = 1,
(6)

where R = (R>1 ,R>2 ,R>3 )> with R1 = [α1, ..., αr] ∈ R1×r, R2 = [m̃1, ..., m̃r] ∈ Rng×r, andR3 = [ũ1, .., ũr] ∈
Cnu×r. This block representation of R leads to a representation of X as a sum of rank-1 matrices,

X ≈ RR> =
r∑
l=1

 α2
l , αlm̃>l αlũ>l

αlm̃l m̃lm̃>l m̃lũ>l
αlũl ũlm̃>l ũlũ>l

 . (7)

When r = 1, the optimization problem in Equation 6 will reduce to the original WRI problem in Equation 3.
A larger r yields a stronger relaxation but introduces more computational cost and storage requirements.

rank-2 relaxation

In this work, we present a rank-2 formulation for the optimization problem in Equation 6 to balance the
relaxation and computational costs. When selecting r = 2, we have

m = α1m̃1 + α2m̃2,

u = α1ũ1 + α2ũ2,

m� u = m̃1 � ũ1 + m̃2 � ũ2,

1 = α2
1 + α2

2,

(8)

where the operator � represents the pointwise multiplication or the Hadamard product. The rank-2 expression
in Equation 8 yields the following optimization problem:

min
m̃,ũ,α

fp2(m̃, ũ, α) = 1
2‖

2∑
l=1

Pαlũl − d‖2
2 + λ

2 ‖
2∑
l=1

αl∆ũl + ω2
2∑
l=1

m̃l � ũl − q‖2
2. (9)
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It is easy to verify that this optimization problem has infinite solutions. Indeed, for any fixed pair of (m̃?,
α?), the optimal ũ? for the objective function fp2(m̃?, ũ, α?) should satisfy the following equation:

Sũ? =
[

α1P, α2P
λ

1
2 (α1∆ + ω2m̃1) λ

1
2 (α2∆ + ω2m̃2)

] [
ũ?1
ũ?2

]
=
[

d
λ

1
2 q

]
. (10)

Since the matrix S is an underdetermined (ng+nr)×2ng matrix with ng > nr, the linear Equation 10 has infinite
solutions for ũ?. As a result, there are infinite global minima (m̃?, ũ?, α?)s satisfying fp2(m̃?, ũ?, α?) = 0.

To mitigate the nonuniqueness issue of optimizing Equation 9, we need additional information to regularize
the problem. We notice that the original lifted problem in Equation 5 has the constraint of rank(X) = 1,
which is not involved in the rank-2 formulation. Therefore, to derive our regularization, we reimpose this
information. We do not straightforwardly require rank(R) = 1, otherwise it will downgrade the problem to
the rank-1 case, which is the original WRI problem. Instead, we use another necessary condition for a rank-1
matrix to introduce a weaker regularization. If the matrix R is a rank-1 matrix, then its three components
R1 = [α1, α2], R2 = [m̃1, m̃2] and R3 = [ũ1, ũ2] should satisfy the following requirements:

α1m̃2 = α2m̃1,

α1ũ2 = α2ũ1,

m̃1 � ũ2 = m̃2 � ũ1.

(11)

We can use these properties to regularize the problem. In this work, since we are more interested in m̃ and ũ
than α, we use the third property to introduce an additional regularization to the optimization problem in
Equation 9 as follows:

min
m̃,ũ,α

fp2(m̃, ũ, α) =1
2‖

2∑
l=1

Pαlũl − d‖2
2

+ λ

2 ‖
2∑
l=1

αl∆ũl + ω2
2∑
l=1

m̃l � ũl − q‖2
2

+ γ

2 ‖m̃1 � ũ2 − m̃2 � ũ1‖2
2,

subject to α2
1 + α2

2 = 1,

(12)

where the penalty parameter γ controls the strength of the rank-1 regularization.

Finally, we can simplify the constrained optimization problem in Equation 9 to an unconstrained problem by
eliminating the constraint α2

1 + α2
2 = 1 with a simple polar coordinates transform:

α1 = sin θ and α2 = cos θ, (13)

yielding the following unconstrained optimization problem:

min
m̃,ũ,θ

fp2(m̃, ũ, θ) =1
2‖P(sin θũ1 + cos θũ2)− d‖2

2

+λ

2 ‖∆(sin θũ1 + cos θũ2) + ω2
2∑
l=1

m̃l � ũl − q‖2
2

+γ

2 ‖m̃1 � ũ2 − m̃2 � ũ1‖2
2.

(14)
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Variable projection and optimization scheme

The optimization problem in Equation 14 still faces the challenge of a large storage requirement. In order to
reduce the storage requirement, we use the variable projection method [Golub and Pereyra, 2003] to project
out the wavefields ũ, which is the main source of the storage cost. For any pair of (m̃?, θ?), the objective
function fp2(m̃?, ũ, θ?) is quadratic with respect to ũ, whose minimizer has an analytical solution:

ũ? = (S̃>S̃)−1S̃>
 d
λ

1
2 q
0

 , (15)

with

S̃ =

 sin θP cos θP
λ

1
2 Ã(m̃1) λ

1
2 Ã(m̃2)

γ
1
2 diag(m̃2) −γ 1

2 diag(m̃1)

 ,
with Ã(m̃1) = sin θ∆ + ω2m̃1, and Ã(m̃2) = cos θ∆ + ω2m̃2.

(16)

Replacing the variable ũ in Equation 14 by the optimal solution ũ?(m̃, θ), we obtain a reduced objective
function fp2

(m̃, θ) = fp2(m̃, ũ?(m̃, θ), θ). We can use the chain rule to compute the derivatives of∇m̃fp2
(m̃, θ)

and ∇θfp2
(m̃, θ) as follows:

∇m̃fp2
(m̃, θ) = ∇m̃fp2(m̃, ũ?(m̃, θ), θ)

= ∇m̃fp2(m̃, ũ, α)|ũ=ũ? +∇ũfp2(m̃, ũ, α)|ũ=ũ?∇m̃ũ,
∇θfp2

(m̃, θ) = ∇θfp2(m̃, ũ?(m̃, θ), θ)
= ∇θfp2(m̃, ũ, α)|ũ=ũ? +∇ũfp2(m̃, ũ, α)|ũ=ũ?∇θũ.

(17)

The most important property of the variable projection method lies in the fact that ũ? minimizes the objective
function fp2(m̃, ũ, α) for fixed (m̃, θ), satisfying the condition ∇ũfp2(m̃, ũ, α)|ũ=ũ? = 0. Therefore, we can
drop out the complicated terms ∇ũfp2(m̃, ũ, α)|ũ=ũ?∇m̃ũ and ∇ũfp2(m̃, ũ, α)|ũ=ũ?∇θũ in the expressions
of ∇m̃fp2

(m̃, θ) and ∇θfp2
(m̃, θ), and simplify them as follows:

∇m̃fp2
(m̃, θ) = ∇m̃fp2(m̃, ũ, α)|ũ=ũ? ,

∇θfp2
(m̃, θ) = ∇θfp2(m̃, ũ, α)|ũ=ũ? .

(18)

Following Equation 18, the expressions for ∇m̃fp2
(m̃, θ) and ∇θfp2

(m̃, θ) can be derived as follows:

∇m̃fp2
(m̃, θ) =

[
∇m̃1fp2

(m̃, θ)
∇m̃2fp2

(m̃, θ)

]
=
[
λ(ω2diag(ũ?1))>p + γ(diag(ũ?2))>s
λ(ω2diag(ũ?2))>p− γ(diag(ũ?1))>s

]
,

∇θfp2
(m̃, θ) = cos θ[(Pũ?1)>r + λ(∆ũ?1)>p]

− sin θ[(Pũ?2)>r + λ(∆ũ?2)>p],

(19)

where

p = ∆(sin θũ?1 + cos θũ?2) + ω2
2∑
l=1

m̃l � ũ?l − q,

s = m̃1 � ũ?2 − m̃2 � ũ?1,
r = P(sin θũ?1 + cos θũ?2)− d.

(20)
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Once obtained ũ?, Equations 19 and 20 imply that the computation of the gradients ∇m̃fp2
(m̃, θ) and

∇θfp2
(m̃, θ) only involves simple and cheap matrix-vector multiplications and does not involve any additional

computationally intensive matrix inverses. Compared to the conventional adjoint-state method that requires
to invert an additional adjoint Helmholtz matrix to obtain the gradient, the proposed method reduces
computational cost for computing the gradient.

With the derivatives in Equation 19, we can use optimization algorithms like gradient descent and limited-
memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) method [Nocedal and Wright, 2006] that only needs
the gradient information to solve the optimization problem. During the optimization, since m̃ and θ are very
different in scale and have very different sensitivities to the objective function, we propose to update them
alternately. During each iteration, we first conduct an l-BFGS update on m̃, then we use a gradient descent
step to update θ. Algorithm 1 illustrates the pseudo code of the two-stage l-BFGS method.

Algorithm 1 Rank-2 LRWI
1. Initialization with m̃(0)

1 , m̃(0)
2 and θ(0)

2. for k = 1→ nit
3. Compute ũ?(k) by Equation 15
4. Compute f (k)

p2
(m̃(k), θ(k)) and ∇m̃f

(k)
p2

(m̃(k), θ(k)) by Equations 19
5. l-BFGS step in m̃(k) to get m̃(k+1)

6. Compute ∇θf
(k)
p2

(m̃(k+1), θ(k)) by Equations 19
7. Gradient descent step in θ(k) to get θ(k+1)

8. end
9. Obtain θ? and m̃? = (m̃?

1, m̃?
2)

10. Output m? = sin θ?m̃?
1 + cos θ?m̃?

2

Selection of λ and γ

The selection of λ and γ plays an important role in the proposed LRWI, because λ and γ affect the condition
number of the matrix S̃ in Equation 15 and the search path. An appropriate selection can produce a search
path that bypasses the local minima of conventional FWI and also speeds up the optimization procedure. In
this work, we propose a two-stage unit-free strategy to select λ and γ.

We first determine the selection of λ. van Leeuwen and Herrmann [2015] and Fang et al. [2018a] studied the
selection of λ for WRI and proposed a natural scaling for λ, i.e. λ > µ1(A−>P>PA−1) can be considered
large, while λ < µ1(A−>P>PA−1) can be considered small, where the matrix A denotes the Helmholtz
matrix parameterized by the current model m and µ1(A−>P>PA−1) denotes the largest eigenvalue of
the matrix A−>P>PA−1. Specifically, when λ < 10−2µ1(A−>P>PA−1), the simulated wavefields tend
to fit the observed data while leaving a big misfit for the PDE; when λ > 102µ1(A−>P>PA−1), the
opposite holds. In practice, considering the large computational cost of calculating µ1, van Leeuwen and
Herrmann [2015] suggest using µ1 parameterized with the initial model m(0) to select the penalty parameter
λ. Following van Leeuwen and Herrmann [2015] and Fang et al. [2018a], we select λ according to the value
µ1(A(m(0))−>P>PA(m(0))−1), where m(0) = sin θ(0)m̃(0) + cos θ(0)m̃(0).

With λ in hand, the selection of γ will determine the condition number of the matrix S̃. Since both blocks[
sin θP cos θP

λ
1
2 Ã(m̃1) λ

1
2 Ã(m̃2)

]
and

[
γ

1
2 diag(m̃2) −γ 1

2 diag(m̃1)
]
are underdetermined, either a very large γ or a

very small γ will lead to a bad conditioned matrix S̃. Indeed the matrix S̃>S̃ in Equation 15 has the following
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expression:

S̃>S̃ =
[
T1,1 T1,2
T2,1 T2,2

]
, with

T1,1 = α2
1P>P + λÃ(m̃1)>Ã(m̃1) + γdiag(m̃2 � m̃2),

T1,2 = α1α2P>P + λÃ(m̃1)>Ã(m̃2)− γdiag(m̃1 � m̃2),
T2,1 = α1α2P>P + λÃ(m̃2)>Ã(m̃1)− γdiag(m̃1 � m̃2),
T2,2 = α2

2P>P + λÃ(m̃2)>Ã(m̃2) + γdiag(m̃1 � m̃1).

(21)

Equation 21 motivates us to derive the scaling of γ by comparing γm̃i � m̃j with the diagonal part of
the matrices T(λ) = {Ti,j = λÃ(m̃i)>Ã(m̃j) + αiαjP>P}1≤i,j≤2. A natural scaling for γ would be the
fraction between the `2-norm of the vector diag(Ti,j) and the `2-norm of the vector m̃i�m̃j , i.e., ‖diag(Ti,j)‖2

‖m̃i�m̃j‖2
.

Therefore, γ is large if γ > µ2(T(λ)) = max{‖diag(Ti,j)‖2
‖m̃i�m̃j‖2

}1≤i,j≤2. γ is small for the opposite case.

In general, at the beginning of the optimization, we can select a small λ and a small γ to relax both the PDE
constraint and the rank-1 constraint. As the optimization proceeds, we can increase λ and γ to strengthen
both constraints so that the solution can converge to the optimal solution of conventional FWI.

Computational cost analysis

The major computational cost of the proposed LRWI is to invert the 2ng × 2ng matrix S̃>S̃ in Equation 15
to obtain ũ?. If we use a direct solver to invert S̃>S̃, the computational cost will be O(8n3

g). With ũ?
in hand, the computation of the gradients does not include additional matrix inverses. At each iteration,
we alternately update m̃ and θ. Therefore, the total computational cost for LRWI is O(16n3

gnf) for each
iteration. Compared to conventional FWI, whose computational cost is O(2n3

gnf) for each iteration, LRWI is
eight times expensive. Considering the increased computational cost, instead of using LRWI for the whole
inversion, we suggest using LRWI to create a better initial model for FWI.

Numerical examples

To investigate the feasibility of the proposed LRWI approach, we conduct numerical examples on two
well-known models i.e. the Marmousi model [Versteeg, 1994] and the Overthrust model [Aminzadeh et al.,
1996]. In both examples, we will study the performances of the proposed LRWI for different selections of λ
and γ, and investigate the performance with respect to the starting frequency.

Marmousi model

We first conduct an example on the Marmousi-2 model mt shown in Figure 1a. We use a Ricker wavelet
centered at 15Hz to simulate 49 sources at the depth of z = 0.04km with a sampling interval of 0.5km.
The data are recorded by 247 receivers at the same depth with a sampling interval of 0.04km. As is
commonly practiced, we perform the frequency continuation [Bunks et al., 1995] using three frequency bands
of {2.0, 2.5, 3.0}Hz, {5.0, 6.0, 7.0}Hz, and {7.0, 8.0, 9.0}Hz. We discretize the model with 0.04km grids. We
compare the performances of conventional FWI, conventional WRI, and the proposed LRWI. For conventional
FWI and WRI, we use the l-BFGS method to solve the optimization problem, while we use Algorithm 1 to
solve the LRWI. Due to the computational cost, we use LRWI to conduct an inversion on the lowest frequency
band and then use the obtained model as the initial model for conventional FWI. All three approaches use 45
iterations for each frequency band.
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To initialize the inversion, we conduct FWI and WRI with the 1D monotonously increasing velocity model
m(0) shown in Figure 1b. For LRWI we select θ(0) = π

4 and m̃(0) = (sin θ(0)m(0), cos θ(0)m(0)). We conduct
conventional WRI with four different selections of the penalty parameter λ, i.e. λ = β1µ1(A>P>PA−1) with
β1 = 1e-8, 1e-4, 1e0, and 1e4. For the proposed LRWI, we use the same selection for λ and select six different
γ’s for each λ. We select γ = β2µ2(T(λ)), with β2 = 1e-16, 1e-12, 1e-8, 1e-4, 1e0, and1e4. The selections of β1
and β2 can not be extremely small, otherwise the matrix S̃(β1, β2)>S̃(β1, β2) would be close to singular or
badly scaled.
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(a) True model mt
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Figure 1: (a) The true velocity model; (b) The initial velocity model.

Before the inversion, we first study the condition number of the matrix S̃>S̃ with respect to the selection
of β1 and β2. We use the initial model m(0) to form the Helmholtz matrix A(m(0)) and compute the
condition number of the matrix A(m(0))>A(m(0)) as a reference (c.f. the blue line in Figure 2). Then
we use the initial model m̃(0) and different selections of β1 and β2 to form the matrix S̃(β1, β2)>S̃(β1, β2).
The ranges for β1 and β2 are [1e-3, 1e3] and [1e-8, 1e4], respectively. The condition number of the matrix
S̃(β1, β2)>S̃(β1, β2) with respect to different selections of β1 and β2 are plotted in Figure 2. We can observe
that when 1e-6 ≤ β2 ≤ 1e0, the condition number of S̃(β1, β2)>S̃(β1, β2) is close to that of A(m(0))>A(m(0)).
When β2 ≤ 1e-6, the condition number increases 10 times as β2 decreases 100 times. When β2 ≥ 1e0, the
condition number increases 10 times as β2 increases 100 times. Compared to β2, β1 possesses a less influence
to the condition number of S̃(β1, β2)>S̃(β1, β2). The variation of the condition number of S̃(β1, β2)>S̃(β1, β2)
with respect to β1 is less than that of β2.

Figure 3 shows the relative model error ‖mt−mf‖2
‖mt‖2

between the true model mt and the final inverted model
mf obtained by conventional WRI and LRWI with different selections of β1 and β2. According to Figure 3,
the selection of β1 = 1e-4 produces the best result for conventional WRI, and the selection of β1 = 1e-8 and
β2 = 1e-12 produces the best result for the LRWI. Figure 4 shows the final inverted models mf of conventional
FWI, WRI with the best selection of β1, and LRWI with the best selection of β1 and β2. Figures 4a to 4c
show the results of the three approaches using the data of the first frequency band. Clearly, under the current
experimental settings, both FWI and WRI already converge to local minima at the first frequency band,
despite the fact that WRI can outperform FWI in some other settings. On the other hand, LRWI provides
a much better model for the following inversion, which yields a significantly better final result shown in
Figure 4f compared to those obtained by FWI and WRI (c.f. Figures 4d and 4e).

Figure 3 does not include the result of LRWI with β2 = 1e-16 due to the fact that the matrix S̃(β1, β2)>S̃(β1, β2)
is close to singular or badly scaled with such a small selection of β2. Therefore, we should avoid selecting
too small β2 when using LRWI. Figure 3 shows that with the selection of β1 ≤ 1e0 and β2 = 1e-12 or
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Figure 2: Condition number of the matrix S̃>S̃ versus the values of β1 and β2.
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Figure 3: Relative model error comparison for WRI with different selections of β1 and LRWI with different
selections of β1 and β2.

β1 = 1e-4 and β2 = 1e-8, LRWI can reconstruct an inverted model with a relative model error of 10%, which
is significantly smaller than those of conventional WRI and LRWI with other selections of β1 and β2. This
result implies that when the initial model is poor, LRWI can bypass the local minima of conventional FWI
and WRI by properly relaxing the wave-equation constraint and the rank-1 constraint.

To further compare the inverted results of the three approaches, we use the three inverted models shown
in Figures 4a - 4c to compute the predicted data dpred at the frequency of 3 Hz for the source located at
x = 9 km. We compute the absolute data differences |dobs − dpred| between the observed data dobs and the
predicted data dpred and depict them in Figure 5. The absolute data difference of FWI and WRI is more
than 6 times larger than that of LRWI. This result coincides with the fact that FWI and WRI converge to
local minima, while LRWI bypasses the local minima.

Robustness with respect to the starting frequency To investigate the robustness of the three methods with
respect to the starting frequency, we conduct an additional experiment, in which we vary the starting
frequency from 0.5 Hz to 3.0 Hz. We use the same initial model shown in Figure 1b. Figure 10 illustrates
the relative model errors versus the starting frequency for all the three methods. According to the previous
example, when the relative model error reaches around 18%, the inversion converges to a local minimum.
The highest starting frequencies for conventional FWI, WRI, and LRWI to obtain an inverted model with an
acceptable relative model error (≤ 14%) are 1 Hz, 1 Hz, and 2 Hz, respectively. This comparison implies that
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(b) Result of WRI after the first
frequency band
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(c) Result of LRWI after the first
frequency band
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(d) Final result of FWI
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(e) Final result of WRI
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(f) Final result of LRWI

Figure 4: (a) - (c) Results of FWI, WRI, and LRWI after the first frequency band. (d) - (f) Final results of
FWI, WRI, and LRWI.
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Figure 5: Comparison of the absolute data difference |dobs − dpred| for the source located at x = 9 km and
frequency of 3 Hz. The three lines denote the absolute data differences corresponding to the inverted results
of FWI (black), WRI (blue), and LRWI (red) using the data of the the first frequency band.

under the aforementioned experimental settings, LRWI can conduct a successful inversion with a starting
frequency twice large as that of conventional FWI and WRI.

Overthrust model

We conduct an experiment with the Overthrust model to investigate the generality of the proposed LRWI
with respect to different velocity structures. Figure 7a shows the 5km× 20km Overthrust model. We place
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Figure 6: Relative model error comparison for FWI(∗), WRI(◦), and LRWI(×) using data with different
starting frequencies.

99 sources and 100 receivers at the depth of 0.1km with horizontal sampling intervals of 0.2km and 0.2km,
respectively. As used in the example of the Marmousi model, we conduct the inversion with the frequency
continuation strategy using three frequency bands of {2.0, 2.5, 3.0}Hz, {5.0, 6.0, 7.0}Hz, and {7.0, 8.0, 9.0}Hz.
We discretize the model with 0.05km grids. We use the same optimization strategy as that used in the
Marmousi example for the inversion of conventional FWI, conventional WRI, and LRWI.

We conduct FWI and WRI with the initial model shown in Figure 7b. Similar to the previous example,
we select θ(0) = π

4 and m̃(0) = (sin θ(0)m(0), cos θ(0)m(0)) to initialize LRWI. We conduct conventional WRI
with four different selections of the penalty parameter λ, i.e. λ = β1µ1(A>P>PA−1) with β1 = 1e-8, 1e-
4, 1e0, and 1e4, and select the one that produces the result with the minimal relative model error as the
output of WRI. For LRWI, we use the same selection for λ and select five different γ’s for each λ. We select
γ = β2µ2(T(λ)), with β2 = 1e-16, 1e-12, 1e-6, 1e0, and 1e6. The combination of β1 and β2 that produces the
result with the minimal relative model error is selected as the output of LRWI.
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Figure 7: (a) The true velocity model; (b) The initial velocity model.

Figure 8 shows the comparison of the final relative model errors for results obtained by conventional WRI
using different β1 and LRWI using different β1 and β2. We did not include the result of LRWI with β2 = 1e-16,

12



since the matrix S̃(β1, β2)>S̃(β1, β2) is close to singular or badly scaled. According to Figure 8, the selection
of β1 = 1e-4 produces the best result for WRI, and the selection of β1 = 1e-8 and β2 = 1e-12 produces the
best result for LRWI. Figure 9 shows the results of FWI, WRI with the best selection of β1, and LRWI with
the best selection of β1 and β2. Figures 9a to 9c show the results of the three approaches using the data
of the first frequency band, and Figures 9d to 9f show the final results of the three approaches. Clearly, at
the first frequency band, FWI and WRI already converge to the local minima, while LRWI provides a much
better model for the following inversion, which yields a final result (c.f. Figure 9f) that has the minimal
relative model error and matches the true model significantly better than those obtained by FWI and WRI
(c.f. Figures 9d and 9e).
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Figure 8: Final model error comparison for WRI with different selections of β1 and rank-2 WRI with different
selections of β1 and β2.
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frequency band
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Figure 9: (a) - (c) Results of FWI, WRI, and LRWI after the first frequency band. (d) - (f) Final results of
FWI, WRI, and LRWI.
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Figure 8 shows that LRWI obtains inverted models with relative model errors less than 10% with the selection
of (β1, β2) = (1e-4, 1e-12) and (1e-8, 1e-12), while the relative model errors for results of WRI are larger than
20%. This comparison illustrates that LRWI with an appropriate relaxation on the rank-1 constraint and the
PDE constraint can mitigate the local minima of FWI and WRI.

Robustness with respect to the starting frequency We also conduct an example to investigate the robustness
of the three methods with respect to the starting frequency for the Overthrust model. In this example,
we vary the starting frequency from 0.5 Hz to 3.0 Hz. We use the same initial model shown in Figure 7b.
Figure 10 illustrates the relative model errors versus the starting frequency for all the three methods. The
highest starting frequencies for FWI, WRI, and LRWI to obtain an inverted result with an acceptable relative
model error (≤ 10%) are 0.5 Hz, 0.5 Hz, and 2.5 Hz, respectively. This comparison implies that under the
aforementioned experimental settings, LRWI can conduct a successful inversion with a starting frequency
fifth large as that of conventional FWI and WRI.
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Figure 10: Relative model error comparison for FWI(∗), WRI(◦), and LRWI(×) using data with different
starting frequencies.

Discussions

This paper introduces the basics of a “Lift” and “Relax” approach for the waveform inversion with PDE
constraints. We have presented promising initial results in mitigating problems of local minima, while some
aspects of the proposed approach warrant further investigations.

The selection of the penalty parameters λ and γ are essential to the success of the proposed LRWI as shown
in both numerical examples. While our analysis and results imply that selecting λ to be a small fraction of
the largest eigenvalue of A>P>PA−1 and selecting γ to be a small fraction of the largest fraction between
the `2-norms of the vectors diag(Ti,j(λ)) and m̃i � m̃j at initial iterations yields plausible results, a more
solid justification of this observation would be desirable for more robust approaches.

While we can use LRWI to conduct inversion with low-frequency data and produce a good initial model
for conventional FWI with a small computational cost, the application of the LRWI to high-frequency data
can further help us bypass more potential local minima in the objective function of conventional FWI. To
address high-frequency data, a fast solver for Equation 15 would be worthwhile. One possible solution is to
use efficient direct or iterative solvers designed for the Helmholtz equation as a preconditioner for the linear
system in Equation 15.

Finally, the rank of the lifted matrices could be potentially worth exploring. In this work, we lift the unknown
variables from vectors to rank-2 matrices due to the consideration of storage and computational cost. Indeed,
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if the storage and computational cost are not bottlenecks, we can lift the unknown variables to matrices with
higher ranks and study the effect of the rank on the final inversion results.

Conclusions

We have presented a “Lift” and “Relax” approach for waveform inversion problems with PDE constraints. The
proposed method is based on a PDE relaxation and a rank-2 variable relaxation. The reformulation results
in an unconstrained optimization problem with respect to a rank-2 matrix that contains both lifted model
parameters and wavefields. To avoid storing and updating the rank-2 wavefields during the optimization, we
use the variable projection method to explicitly eliminate the rank-2 wavefields by solving an overdetermined
linear system. We show that the proposed approach is able to explore a much larger search space with an
acceptable additional computational cost compared to conventional FWI and WRI.

The main algorithmic difference with conventional FWI and WRI is the rank-2 variable lifting and the resulting
overdetermined system required to solve. Instead of solving PDEs, we formulate an overdetermined system of
equations that consists of the discretized rank-2 PDE, the measurements, and the rank-1 regularizations. We
study the properties of this overdetermined system with respect to the selection of the penalty parameters
λ and γ. We show that the condition number of the overdetermined system can reach a similar value as
that of the original PDE by tuning the two parameters. Therefore, it is plausible that we can solve the
overdetermined system as efficiently using a similar approach as is applied to the original PDE.

The numerical examples show that the proposed LRWI is able to conduct successful inversion with higher-
frequency data and poorer initial models compared with conventional FWI and WRI. The numerical examples
further show that through tuning the penalty parameters λ and γ, the proposed approach can find a search
path in the enlarged space that bypasses the potential local minima in the objective function of conventional
FWI and WRI.
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