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Abstract—Hyperspectral imaging measures the amount of
electromagnetic energy across the instantaneous field of view at a
very high resolution in hundreds or thousands of spectral chan-
nels. This enables objects to be detected and the identification of
materials that have subtle differences between them. However,
the increase in spectral resolution often means that there is a
decrease in the number of photons received in each channel,
which means that the noise linked to the image formation process
is greater. This degradation limits the quality of the extracted
information and its potential applications. Thus, denoising is a
fundamental problem in hyperspectral image (HSI) processing.
As images of natural scenes with highly correlated spectral
channels, HSIs are characterized by a high level of self-similarity
and can be well approximated by low-rank representations. These
characteristics underlie the state-of-the-art methods used in HSI
denoising. However, where there are rarely occurring pixel types,
the denoising performance of these methods is not optimal, and
the subsequent detection of these pixels may be compromised.
To address these hurdles, in this paper, we introduce RhyDe
(Robust hyperspectral Denoising), a powerful HSI denoiser,
which implements explicit low-rank representation, promotes
self-similarity, and, by using a form of collaborative sparsity,
preserves rare pixels. The denoising and detection effectiveness
of the proposed robust HSI denoiser is illustrated using semi-
real and real data. A MATLAB demo of this work is available at
https://github.com/LinaZhuang for the sake of reproducibility.

Index Terms—HSI denoising, collaborative sparsity, outlier
detection, self-similarity, low-rank representation.

I. INTRODUCTION

Hyperspectral imaging consists of the measurement of elec-
tromagnetic energy across an instantaneous field of view in
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hundreds or thousands of spectral channels with a higher spec-
tral resolution than multispectral/RGB cameras. Whereas the
human eye perceives the visible wavelengths of light (namely,
red, green, and blue), spectrometers cover a wider range of
wavelengths (beyond the visible) and divide the spectrum
into many more bands with a fine wavelength resolution. The
characteristics of high spectral resolution imagery enable the
precise identification of materials via spectroscopic analysis.
However, the amount of noise in the measurements often
precludes the widespread use of hyperspectral images (HSIs)
in applications that require precise material identification (e.g.,
in precision farming).

As a result of recent developments, self-similarity and low-
rank-based image denoising can be considered state-of-the-
art in HSI denoising [1–3]. As natural images, HSIs are self-
similar. This means that they contain many similar patches at
different locations or scales [4–6]. This characteristic has been
recently exploited by patch-based image restoration methods:
BM4D [7], VBM4D [8], and MSPCA-BM3D [9] use col-
laborative filtering in groups of 3-D patches extracted from
volumetric data, videos, and multispectral data, respectively.
DHOSVD [10] applies a hard threshold filter to coefficients of
higher order SVD of similar patches. Similar ideas have been
pursued in HSI denoising: 3-D nonlocal sparse denoising [11–
14] uses similar 3-D blocks for sparse coding; ‘PCA+BM4D’
[15] attempts to decompose the observed HSI into signal and
noise using PCA and applies BM4D filtering to low-energy
components corresponding to noise; and FastHyDe [1] exploits
the self-similarity of the HSI representation coefficients in
suitable subspaces.

Besides exploiting the high spatial correlation of HSIs by
using patch-based regularization, the high spectral correlation
has been investigated mainly by means of low-rank repre-
sentation and total variation minimization. The high spectral
correlation results in a low-rank structure for the HSI, which
allows extremely compact and sparse representations within
suitable frames. We refer readers to these works: the noise
adjusted iterative low-rank matrix approximation (NAILRMA)
[2], the structured tensor TV-based regularization [16, 17],
or the adaptive spectrum-weighted sparse Bayesian dictionary
learning method (ABPFA) [18]. The very high spectral resolu-
tion of hyperspectral imagery leads to the acquisition of piece-
wise smooth spectral vectors, which can be characterized by
minimizing the total variation of spectral vectors [16, 17]. For
example, SSTV [19] removes hyperspectral mixed noise by
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utilizing the total 1-D variation along the spectral dimension
and the total 2-D variation along the spatial dimension.

The existence of a large number of bands usually leads to
the high computational complexity for most HSI denoisers.
In fact, this computational burden can be greatly alleviated
by taking advantage of the high correlation between spectral
channels. For instance, instead of denoising the original HSI,
FastHyDe [1] and GLF [20] formulate the denoising with
respect to the representation coefficients of the HSI subspace
by exploiting the fact that hyperspectral vectors exist, to a very
good approximation, in subspaces that have a small number
of dimensions compared with the number of bands [21]. This
subspace may be accurately inferred from observations of HSIs
corrupted by additive Gaussian noise [22]. This is the strategy
followed by FastHyDe [1], GLF [20], and NG-meet [3],which,
to the best of our knowledge, can be considered the state-of
the-art methods for attacking Gaussian noise in HSIs; they are
also faster than their competitors.

However, the presence of ’rare pixels’ may degrade the de-
noising performance and preclude the future detection of those
pixels. The term ’rare pixels’ refer to pixels corresponding to
surface materials that occur only rarely in the imagery and thus
have spectra that differ significantly from those of the majority
of the pixels (often called the background). Due to the low
probability of their occurrence, rare pixels may contribute little
to the dictionaries/basis learned directly from observed images.
The spectra of rare pixels may be corrupted by denoising since
rare spectra are not well approximated by low-rank and sparse
representations. Rare pixels, however, may contain important
information that can be used in subsequent applications - for
example, in detection processes.

The detection of rare pixels, often termed the anomaly
detection problem [23], has been the object of considerable
research efforts, some of which has been devoted to the devel-
opment of accurate models for the background. Representative
models for the background include Gaussian density [24, 25],
mixtures of Gaussian density [26], and (sparse) linear mixing
models [27–30]. Sparsity is exploited in the linear mixing
models based on the assumption that each pixel in the back-
ground can be well represented sparsely using a background
dictionary, whereas anomalies can not be. In this case, how
to find a dictionary that completely represents the background
materials but excludes anomalies is of crucial importance. In
anomaly detection based on low-rank and sparse representation
(LRASR) [31], this background dictionary is selected from
the original image pixels. All of the pixels are separated into
different clusters using K-means and pixels that are closer to
the mean value of each cluster (in the sense of the Euclidean
distance) are selected as background pixels. In collaborative
representation based detection (CRD) [27], the background
dictionary is adaptive to pixels and is composed of pixels that
are spatial neighbors. The main objective in anomaly detection
is to classify a pixel as either background or anomaly if it does
not fit the background model. Given the usual complexity of
the land cover in remote sensing imagery, this classification
problem is often quite challenging.

Recently, besides the development of background models,
the structure of anomalous pixels has also been investigated.

Anomalies are often spatially sparse, a situation which is
expressed as group sparse regularization in LRASR [31]. Or-
thogonal subspace projection (OSP)-based approaches [32, 33]
improve the detection of signals by projecting data onto a
subspace that is orthogonal to the one spanned by the back-
ground signatures. By doing this, the background components
are suppressed. OSP is usually regarded as a preprocessing
step used before the application of other detectors [23, 25].

The aim of the present study was to endow our previously
developed FastHyDe denoiser [1] with the ability to preserve
rare pixels, which might be important targets in subsequent
applications. The proposed method takes full advantage of the
structural sparsity linked to the usual highly sparse distribution
of rare pixels in the HSI spatial domain. In addition, we also
introduce an anomaly detection method, which is a spin-off
from the denoiser algorithm and is competitive with the state-
of-the-art anomaly detection methods.

We give the proposed denoising and anomaly detec-
tion framework the name Robust hyperspectral Denoising
(RhyDe). This work is an extension of the material published
in [34]. The new material includes the following. a) RhyDe is
introduced and described in more detail. The prior knowledge
used in RhyDe, including the low rank and self-similarity of
HSIs and the structural sparsity of rare pixels, is introduced in
detail. b) An exhaustive array of experiments and comparisons
is carried out. The impact of the denoising step on anomaly
detection tasks is tested using two simulated HSIs and two
real HSIs.

The paper is organized as follows. Section 2 formally
introduces RhyDe along with a denoising approach for the
preservation of rare pixels and a derived anomaly detector.
Sections 3 and 4 present the experimental results, including
comparisons with those obtained using state-of-the-art meth-
ods. Section 5 concludes the paper.

II. PROBLEM FORMULATION

A. Observation Model
It is assumed that the dataset contains a small number of

spectral/spatial outliers in unknown positions. These outliers
are usually rare pixels with a low probability of occurrence.
In a similar way to robust PCA [35] and to the formulations
in [1, 2], we adopt the observation model:

Y = X + S + N, (1)

which assumes that the observation data matrix Y ∈ Rnb×n,
with nb rows (spectral bands) and n columns (spatial pixels)
is the sum of matrix X ∈ Rnb×n, representing the signal
component, S ∈ Rnb×n, representing the rare pixels, and N ∈
Rnb×n, which represents the noise and modeling errors.

Given Y, our objective is the estimation of X and S, by
exploiting the inherent structure of X and S. The high spectral
correlation of HSIs allows a low-rank approximation of matrix
X. Furthermore, the underlying image X is self-similar since
the imaged objects consist of natural scenes on the Earth’s
surface. The matrix S is assumed to be column-wise sparse
due to the fact that rare pixels are sparsely distributed in the
spatial domain. Below, we discuss the structure of X and S
in detail.
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Fig. 1. Subspace representation of spectral vectors in Washington DC Mall image of size 1280× 307× 191.

B. Structure of Signal Component X and Outlier Component
S

1) Subspace representation of X: Given the very high
spectral correlation, we assume that the columns (spectral
vectors) of matrix X live in a low-dimensional subspace
that may be estimated from the observed data Y to a good
approximation [1, 21]. Am example is given in Fig. 1 to
illustrate the effectiveness of the subspace representation of
X. The spectral vectors of the Washington DC Mall image
are projected onto a subspace with dimension 10 estimated
by the HySime method [22]. We can see from Fig. 1-(d-
f) that the projected spectra of the classes grass, building,
and water are close to their original spectra. The spectral
vectors are well represented in a subspace of dimension 10
due to the fact that 99.99% of the signal power remains in
the subspace (see Fig. 1-(b)). The orthogonal subspace is
an extremely compact representation of the image since the
signal is highly concentrated in the first few eigendirections
(corresponding to the high SNRs shown in Fig. 1-(c)), and
the eigendirections corresponding to near-zero singular values
mainly contain noise (corresponding to the very low SNRs
shown in Fig. 1-(c)).

Based on the subspace representation, we write

X = EZ, (2)

with E = [e1, e2, . . . , ep] ∈ Rnb×p (p � nb) being an
orthogonal basis for the signal subspace and Z ∈ Rp×n
containing the representation coefficients for X with respect to
E. We will use the term eigen-images for the images associated
with the rows of Z.

The signal subspace E can be estimated from the observa-
tion Y by simply carrying out singular value decomposition

(SVD) of Y in cases where the noise is independent and
identically distributed (i.i.d.) because the noise increases sin-
gular values in the direction of each eigenvector uniformly and
does not change the order of these singular values (and thus
does not change the estimation of the subspace). The signal
subspace is approximately spanned by p singular vectors of
Y corresponding to the top p singular values:

E = U(:, 1 : p), (3)

where U ∈ Rnb×nb is an orthogonal matrix and {U,Σ,V} =
SVD(Y) with the singular values ordered by non-increasing
magnitude. The dimension of subspace, p, can be estimated by
some subspace identification methods, such as HySime [22]
and HFC [36].

Generally, there are several ways to promote low-rankness
of the image: a) we can directly impose a rank regularization
on the image matrix, that is rank(X); b) We can minimize
the nuclear norm of X, which is a relaxed rank constraint;
and c) the rank constraint can be equivalently transformed
since the matrix can be factorized into two smaller-sized
matrices, i.e., X = EZ. In HSI denoising problem, we
use the third way, which brings some benefits: The rank of
image matrix is explicitly determined by the sizes of two
smaller-sized matrices, instead of being implicitly affected by
parameters of regularizations in a) and b). Users can set the
rank of matrix X directly by changing the size of matrix
E, which is corresponding to the dimension of subspace, p.
Furthermore, as given in (3), matrix E can be leaned from
noisy observations with very good approximation. Instead of
estimating X ∈ Rnb×n, we only need to estimate Z ∈ Rp×n
(p � nb), meaning the size of unknown variables has been
reduced greatly. Therefore, an implementation of explicit low-
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rank representation of the HSI improves the conditioning of
the denoising problem.

2) Self-similarity of Z: HSIs are self-similar, meaning that
when we observe an image from small patches perspective,
similar patches can be found at different locations and scales
in the spatial domain (see Fig. 2-(a,b)). These non-local
similar patches are grouped together, and these groups have
a much higher sparsity than an individual local patch. The
high sparsity allows us to remove noise efficiently by using
sparse representations of the grouped patches. This is the main
idea behind the non-local patch-based image denoisers (such
as BM3D [6] and WNNM [37]). Also, the exploitation of
self-similarity underlies the state-of-the-art methods that are
applied to inverse problems in imaging [38, 39].

Fig. 2. Self-similarity property of a sub-scene of Pavia University image and
its subspace coefficients

Not only is the original HSI self-similar, but also its
corresponding eigen-images are self-similar (see Fig. 2-(c)).
Each eigen-image, which is associated with each row of Z,
is a linear combination of the bands of the hyperspectral
image; i.e., zi = eTi X, (i = 1, . . . , p). In all the bands,
electromagnetic energy is acquired from exactly the same
objects, which have the same spatial structure; thus all the
eigen-images contain the same spatial structure. The high
spatial correlation of eigen-images enables us to exploit the
self-similarity of Z as a type of regularization in this work.

3) Column-wise sparsity of S: As ‘rare pixels’ means pixels
that contain materials that occur rarely in the image, these ma-
terials are sparsely distributed in the spatial domain (see Fig.
3-(a)). When utilizing low-rank and sparse representations of
HSIs, the spectral vectors of rare pixels may not be represented
well in the frames/basis as these are learned from observations,
and rare pixels, with their low probability, contribute little to
the image signal and thus have little effect on the estimation
of the frames or basis. Although their probability may be low,
rare pixels may contain important information that can be used
in subsequent applications - for example, in target detection.

To preserve the rare-pixel information in the subspace
representation framework, we modeled the rare pixels (which
are not represented well in the subspace) as an additive term S
in (1). As the distribution of rare pixels in the spatial domain is
usually highly sparse, matrix S should be column-wise sparse
(see Fig. 3-(b)) and can be characterized by a mixed norm.

As stated above, three characteristics of HSIs are exploited
in this paper.

(a) Spatial sparse rare pixels in HSI (b) Column-wise sparsity
Mixed norm penalty:
‖ST ‖2,1 =

∑n
i=1 ‖si‖2

(si denotes i-th column of S)

Fig. 3. Column-wise sparsity of matrix S representing rare pixels

a) The spectral vectors of HSIs can be well represented in
low dimensional subspaces

b) Images of the subspace representation coefficients, called
eigen-images in this paper, are self-similar and thus suit-
able for denoising using non-local patch-based methods.

c) Rare pixels (anomalies) are often spatially sparse.
We first simplified the denoising problem by assuming

that the noise was additive Gaussian and i.i.d. Although the
noise in real HSIs rarely conforms to this assumption, this
simplification leads to a better understanding of how signal and
noise are changed moving from the original high-dimensional
space to the projected low-dimensional subspace. Later, we
consider additive Gaussian non-i.i.d. noise, which corresponds
more closely to the situation encountered in reality.

C. Denoiser for dealing with Gaussian i.i.d. Noise

1) Ojective function: Based on the above rationale and the
assumption of Gaussian i.i.d. noise, we propose to estimate
the matrix Z and the sparse matrix S , which represents the
outliers, by solving the optimization

{Ẑ, Ŝ} ∈ arg min
Z,S

1

2
||EZ + S−Y||2F +λ1φ(Z) +λ2||ST ||2,1,

(4)
where ||X||2F = trace(XXT ) is the Frobenius norm of X.
The first term on the right-hand side represents the data
fidelity. The second term is a regularization expressing prior
information tailored to self-similar images [1, 4, 6, 40]. Note
that here we do not give an explicit definition of the function
φ(·), because we use plug-and-play prior [41] for Z. The
central idea in plug-and-play is to use directly an off-the-
shelf denoiser (such as BM3D [6] and WNNM [37]) con-
ceived to enforce self-similarity, instead of investing efforts in
tailoring regularizers promoting self-similar images and then
computing its proximity operators. Therefore the definition
of φ(·) depends on the denoisers plugged into the algorithm
(see Section II-C3 for further details). The third term is a
regularization of the sparse matrix S. The mixed `2,1 norm of
ST , given by ‖ST ‖2,1 =

∑n
i=1 ‖si‖2 (si denotes i-th column

of S), promotes column-wise sparsity of S (see, e.g., [42]).
Finally, λ1, λ2 ≥ 0 are regularization parameters that set the
relative weights of the respective regularizers. Assuming that
φ is a convex function, then the optimization (4) is a convex
problem.
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The above reasoning has connections with that of ro-
bust PCA [35]. There are, however, considerable differences:
regarding X, we explicitly require it to be low-rank and
promote self-similarity through suitable patch-based regular-
ization, whereas robust PCA promotes the low-rankness of
the image through nuclear norm regularization and does not
use spatial regularization. Regarding S, we promote colummn-
wise sparsity through `2,1 regularization, whereas robust PCA
promotes sparsity of any element of S through `1 regulariza-
tion.

Let A = [ZT , ST ]T be a (p+nb)×n matrix that combines
the (p×n) eigen-images Z and the (nb×n) outlier matrix S.
The optimization problem (4) can be rewritten as

Â ∈ arg min
A

1

2
‖Y − [E, Inb

]A‖2F + λ1φ([Ip,0(p×nb)]A)

+ λ2‖([0(nb×p), Inb
]A)T ‖2,1, (5)

where Ia denotes an identity matrix of size a and 0(a×b) is
the zero matrix of size a× b.

2) Solver: We solve the optimization problem (5) using
CSALSA algorithm [43], which is an instance of ADMM
[44] that was developed to solve convex optimizations with an
arbitrary number of terms. CSALSA starts by converting the
original optimization into a constrained one by using variable
splitting:

min
A,V1,V2,V3

1

2
‖Y −V1‖2F + λ1φ(V2) + λ2‖VT

3 ‖2,1 (6)

s.t. V1 = [E, Inb
]A

V2 = [Ip,0(p×nb)]A

V3 = [0(nb×p), Inb
]A.

The augmented Lagrangian function of the above optimization
is

L(A,V1,V2,V3,D1,D2,D3) =
1
2‖Y −V1‖2F + λ1φ(V2) + λ2‖VT

3 ‖2,1
+µ1

2 ‖V1 − [E, Inb
]A−D1‖2F

+µ2

2 ‖V2 − [Ip,0(p×nb)]A−D2‖2F
+µ3

2 ‖V3 − [0(nb×p), Inb
]A−D3‖2F ,

(7)

where µ1, µ2, µ3 > 0 are the CSALSA penalty parameters.
The application of CSALSA to (7) leads to Algorithm 11.

The optimizations of lines 3 and 4 are quadratic problems,
whose solutions are given by

Ak+1 =
(
µ1[E, Inb

]H [E, Inb
] + µ2[Ip,0p×nb

]H

[Ip,0p×nb
] + µ3[0(nb×p), Inb

]H [0(nb×p), Inb
]
)−1(

µ1[E, Inb
]H(V1 −D1) + µ2[Ip,0p×nb

]H

(V2 −D2) + µ3[0(nb×p), Inb
]H(V3 −D3)

)
,

(8)
(for line 3) and

V1,k+1 = (1 + µ1)−1
[
Y + µ1([E, Inb

]Ak+1 + D1,k)
]
. (9)

(for line 4).
Lines 5 and 6 of Algorithm 1 are optimizations that
are proximity operators (POs) of φ applied to V′2,k =

1MATLAB codes of our proposed RhyDe method is available in https:
//github.com/LinaZhuang/RobustHyDenoiser-RhyDe-

Algorithm 1 Robust hyperspectral Denoising (RhyDe)
1: Set k = 0, choose µ1, µ2, µ3 > 0, V1,0, V2,0, D1,0, D2,0.

2: repeat
3: Ak+1 = arg minA

µ1

2 ‖V1,k − [E, Inb
]A − D1,k‖2F +

µ2

2 ‖V2,k − [Ip,0(p×nb)]A − D2,k‖2F + µ3

2 ‖V3,k −
[0(nb×p), Inb

]A−D3,k‖2F
4: V1,k+1 = arg minV1

1
2‖Y − V1‖2F + µ1

2 ‖V1 −
[E, Inb

]Ak+1 −D1,k‖2F
5: V2,k+1 = arg minV2,k+1

λ1φ(V2) + µ2

2 ‖V2 −
[Ip,0(p×nb)]Ak+1 −D2,k‖2F

6: V3,k+1 = arg minV3,k+1
λ2‖VT

3 ‖2,1 + µ3

2 ‖V3 −
[0(nb×p), Inb

]Ak+1 −D3,k‖2F
7: D1,k+1 = D1,k − (V1,k+1 − [E, Inb

]Ak+1)

8: D2,k+1 = D2,k − (V2,k+1 − [Ip,0(p×nb)]Ak+1)

9: D3,k+1 = D3,k − (V3,k+1 − [0(nb×p), Inb
]Ak+1)

10: k → k + 1
11: until stopping criterion is satisfied.

[Ip,0(p×nb)]Ak+1 + D2,k, and of the `2,1 norm applied to
V′3,k = [0(nb×p), Inb

]Ak+1 + D3,k, respectively. That is

V2,k+1 = Ψλ1φ/µ2
(V′2,k), (10)

where

Ψλφ(U) = arg min
X

1

2
‖X−U‖2F + λφ(X), (11)

and
V3,k+1 = Ψλ2‖·‖2,1/µ3

(V′3,k), (12)

where, given U = [u1, . . . ,uu],

Ψλ‖·‖2,1(U) = arg min
X

1

2
‖X−U‖2F + λ‖XT ‖2,1 (13)

=[soft-vector(ui, λ/µ3), i = 1, . . . , n], (14)

and soft-vector(x, τ) is the vector-soft-threshold [45]

x 7→ max(‖x‖ − τ,0)

max(‖x‖ − τ,0) + τ
x.

Actually, V′3,k and V′2,k can be regarded, respectively, as an
estimate of a noisy outlier image, which only contains infor-
mation about outliers, and an estimate of noisy eigen-images,
respectively, in the k-th iteration. Functions Ψλ1φ/µ2

(V′2,k)
and Ψλ2‖·‖2,1/µ3

(V′3,k) play the role of denoisers of the
respective noisy images.

As the subspace spanned by the columns of E is orthogonal,
eigen-images, Z, lying on the subspace tend to be decorrelated.
Taking advantage of the decorrelation of eigen-images, we
decouple the function φ(·) with respective to the eigen-images,
that is

φ(Z) =

p∑
i=1

φi(Z
i), (15)

https://github.com/LinaZhuang/RobustHyDenoiser-RhyDe-
https://github.com/LinaZhuang/RobustHyDenoiser-RhyDe-
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where Zi denotes ith row of matrix Z. The solution of (10)
can be decoupled w.r.t. rows of matrix V′2,k and can be written
as

V2,k+1 = Ψλ1φ/µ2
(V′2,k) =

 Ψλ1φ1/µ2

(
(V′2,k)1

)
...

Ψλ1φp/µ2

(
(V′2,k)p

)
 (16)

where

Ψλφi(u) = arg min
x

1

2
‖x− u‖2F + λφ(x) (17)

is the so-called denoising operator.
3) plug-and-play prior, φ(·): As (17) is a denoising prob-

lem of a single-band image, we can directly apply an available
denoiser to the image:

Ψλφi(u)← denoiser(u), (18)

where denoiser(·) is a plugged state-of-the-art denoiser, such
as BM3D [6] and WNNM [37]. The replacement of (17) by
(18) is called the plug-and-play step [41].

Here, we use the plug-and-play approach in solving the
subproblem w.r.t. Z. Since those denoisers are not proximity
operators, we do not have a convergence guarantee for the
implemented variant of CSALSA. The convergence of the
plug-and-play iterative procedures is currently an active area
of research [41]. In our case, we have systematically observed
the convergence of RhyDe and the augmented Lagrangian
parameters set to µi = 1, for i = 1, 2, 3.

After estimating Ẑ and Ŝ, the denoised image is obtained
as follows:

X̂ = EẐ + Ŝ. (19)

D. Denoiser for dealing with Gaussian non-i.i.d. Noise

The spectral covariance of noise, denoted as Cλ ∈ Rnb×nb ,
is defined as

Cλ = E[nin
T
i ], (20)

where ni is a generic column of the noise matrix N and E(·)
is an expectation operator. In the case of the Gaussian i.i.d.
noise assumed in Section II-C, we have Cλ = σ2I, where σ2

is the variance of the Gaussian distribution.
In real HSIs, however, the intensity of the noise in each band

varies. For example, [46] illustrates the SNRs for the visible
and near-infrared (VNIR) and short-wave infrared (SWIR)
channels of the China’s GaoFen-5 satellite, as obtained in the
laboratory using a solar simulator. The values of the SNR
change as a function of the channel wavelength (see Fig. 9
in [46]). Therefore, real noise in HSIs tends to be non-i.i.d.;
that is, it is pixelwise independent but bandwise dependent.
We assume that Cλ is positive definite and therefore non-
singular. We can convert the non-i.i.d. scenario into an i.i.d.
one by using data-whitening:

Ỹ :=
√

C−1λ Y, (21)

where
√

Cλ and C−1λ denote the square root of Cλ and the
inverse of Cλ, respectively.

The noise in the whitened image is standard Gaussian and
i.i.d. since we have

Ỹ =
√

C−1λ X +
√

C−1λ N, (22)

and spectral covariance of noise in the converted image is

C̃λ = E[
√

C−1λ ni(
√

C−1λ ni)
T ] =

√
C−1λ E[nin

T
i ]
√

C−1λ

T

=
√

C−1λ Cλ

√
C−1λ

T

= I. (23)

As a pre-processing step, (21) converts the noise to be standard
Gaussian and i.i.d.. Therefore, the converted image Ỹ can be
denoised as discussed in Section II-C. Finally, a clean image
is recovered as

X̂ =
√

Cλ
̂̃
X, (24)

where ̂̃X is the estimated clean version of image Ỹ.

E. Anomaly Detection

We propose an anomaly detector derived from the estimate
of the outlier matrix Ŝ in (4). The proposed detector can be
expressed as

ri = ‖ŝi‖2, i = 1, . . . , n, (25)

where ŝi is the i-th column of outlier matrix Ŝ. If ri is larger
than a given threshold, then the i-th pixel is classified as an
anomalous pixel.

A low-rank representation of the background and the struc-
tured sparsity of the anomaly are also exploited in LRASR
[31], which is distinct from our RhyDe in terms of the com-
position of the dictionary, the implementation of the low-rank
regularization, and the noise reduction. RhyDe assumes that
the spectral vectors of the background live in an orthogonal
subspace, implements explicit low-rank representation, and
promotes self-similarity of the representation coefficients in
order to remove noise. LRASR adopts a background dictionary
composed of selected image pixels and enforces the low rank
and sparsity by applying, respectively, the nuclear norm and `1
norm regularizations to the representation coefficients without
taking any further steps to remove the noise.

III. EXPERIMENTS WITH SEMI-REAL IMAGES

A. Simulation of Noisy Images and Comparisons

(a) Simulation of noisy images: Two semi-real hyperspectral
datasets were simulated by adding Gaussian noise and anoma-
lous pixels to the Pavia University image2 and Washington DC
Mall image3 as follows.
• To simulate clean images, 28 very-low SNR bands of the

Pavia University data were removed and the 70 bands
with relatively high SNRs from the Washington DC Mall
data were used.

• The remaining spectral vectors were then projected onto
the signal subspace (with dimension 5) that was learned

2Available in http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral
Remote Sensing Scenes.

3Available in https://engineering.purdue.edu/∼biehl/MultiSpec/
hyperspectral.html

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
 https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Fig. 4. (a) Clean Pavia University scene, and (b) Groundtruth of outliers
(0.02%).

Fig. 5. (a) Clean Washington DC Mall scene, and (b) Groundtruth of outliers
(0.02%).

by singular value decomposition (SVD). Most of the
noise was removed by this projection. Fig. 4-(a) and Fig.
5-(a) show false-color images produced using three bands
taken from the clean image.

• In order to simulate outliers, we randomly selected 0.02%
of the pixels and then replaced them (Fig.4-(b) and
Fig. 5-(b)) with the spectral signatures of the minerals
sillimanite HS186.3B and ammonio-jarosite (taken from
the USGS spectral library4) in the case of the Pavia
University image and the Washington DC Mall image,
respectively. By doing this, two clean images containing
outliers were generated.

• Finally, Gaussian-independent noise together with band-
dependent variance was added to simulate noisy im-
ages in the form ni ∼ N (0,D2) where D ∈
Rnb×nb is a diagonal matrix with diagonal elements
sampled from a uniform distribution U(0, u) and u ∈
{0.12, 0.09, 0.065, 0.04} for cases 1-4, respectively, in
Table I.

(b) Comparisons: We made comparisons with other state-
of-the-art method of multiband and hyperspectral denoising,

4Available in https://pubs.er.usgs.gov/publication/ds1035

namely NAILRMA [2], LRTV [47], FastHyDe5 [1], and
GLF6 [20]. NAILRMA is a patch-wise low-rank matrix ap-
proximation designed for addressing independent Gaussian
noise with band-dependent variance. LRTV is a pixel-wise
total variation- (TV)-regularized low-rank matrix-factorization
method that models observations as the sum of a spectrally
low-rank and spatially smooth clean image, sparse noise (using
the `1 norm), and Gaussian noise. FastHyDe assumes clean
spectral vectors that live in a low-dimensional subspace, and
corresponding subspace coefficient components that are self-
similar and uncorrelated: these can be denoised component-
by-component by non-local patch-based single-band denois-
ers. Similar to FastHyDe, GLF represents HSI in a low-
dimensional subspace, but denoises the subspace coefficients
by tensor factorization.

Since the simulated noise is band-variant and FastHyDe,
GLF, and RhyDe assume i.i.d noise, the observed data are
whitened (as discussed in Section II-D) before these denoisers
are applied.

To make a quantitative assessment, the peak signal-to-noise
(PSNR) index and the structural similarity (SSIM) index [1]
of each band are calculated. The corresponding mean PSNR
(MPSNR) and mean SSIM (MSSIM) are given in Table I
for comparison. As MPSNR and MSSIM do not reflect the
reconstruction errors in the third (spectral) dimension, we
added two image quality metrics: 3D-PSNR and mean spectral
angle mapper (MSAM). Their definitions are given as follows:

3D-PSNR = 10 log10

x2max

‖X− X̂‖2F
, (26)

where xmax is the maximum possible entry value of matrix
X.

MSAM =
1

n

n∑
i=1

cos−1
xTi x̂i
‖xi‖‖x̂i‖

, (27)

where xi and x̂i are a clean spectral vector of ith pixel and
its estimated vector, respectively.

To compare anomaly detectors for comparison, we used
two groups: classical detectors (global RX [24], local RX
[24], OSP global RX [25], and OSP local RX [25]) and a
group of recently developed ones (CRD [27], BSJSBD [28],
and LRASR) [31]) that are based on structured sparsity and
are either state-of-the-art or competitive with the state-of-art
methods.

B. Denoising Performance

We now discuss the parameter settings for the various
algorithms. The subspace dimension used as the input to
LRTV, FastHyDe, GLF, and RhyDe was set to 5, which
was the true value. Since the noise in simulated images is
band-dependent, we applied data whitening before denoising;
thus, the parameter noise covariance matrix, Cλ was set
to the identity matrix I for FastHyDe, GLF, and RhyDe.
The RhyDe parameters, λ1 and λ2, are assigned adaptive to

5Matlab codes of FastHyDe method is available in https://github.com/
LinaZhuang/FastHyDe FastHyIn

6Matlab codes of GLF method is available in https://github.com/
LinaZhuang/HSI-denoiser-GLF

https://pubs.er.usgs.gov/publication/ds1035
https://github.com/LinaZhuang/FastHyDe_FastHyIn
https://github.com/LinaZhuang/FastHyDe_FastHyIn
https://github.com/LinaZhuang/HSI-denoiser-GLF
https://github.com/LinaZhuang/HSI-denoiser-GLF
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TABLE I
QUANTITATIVE ASSESSMENT OF DIFFERENT DENOISING ALGORITHMS APPLIED TO SEMI-REAL DATASETS.

Noisy Image NAILRMA LRTV FastHyDe GLF RhyDe
[2] [47] [1] [20] (proposed)

Pavia University datasets

case 1

MPSNR (dB) 26.31 41.54 40.13 49.15 49.78 49.25
3D PSNR (dB) 24.49 43.74 35.35 50.77 51.42 50.94

MSSIM 0.5214 0.9824 0.9624 0.9960 0.9965 0.9961
MSAM 25.91 2.41 7.50 1.04 0.94 1.03
Time (s) - 290 622 14 129 129

case 2

MPSNR (dB) 28.08 42.40 40.88 48.36 49.27 48.52
3D PSNR (dB) 27.10 44.63 37.67 49.87 50.78 50.08

MSSIM 0.6045 0.9853 0.9679 0.9952 0.9961 0.9954
MSAM 20.16 2.18 5.77 1.14 1.01 1.13
Time (s) - 291 627 14 127 130

case 3

MPSNR (dB) 30.71 43.93 42.08 50.09 50.68 50.26
3D PSNR (dB) 29.83 46.18 40.03 51.98 52.52 52.24

MSSIM 0.7103 0.9901 0.9745 0.9968 0.9972 0.9969
MSAM 15.28 1.82 4.41 0.93 0.84 0.92
Time (s) - 291 616 14 123 130

case 4

MPSNR (dB) 34.47 48.74 44.37 54.07 54.53 54.44
3D PSNR (dB) 33.20 50.88 44.46 55.87 56.31 56.49

MSSIM 0.8123 0.9956 0.9876 0.9986 0.9988 0.9987
MSAM 10.72 1.17 2.46 0.59 0.55 0.59
Time (s) - 283 634 14 130 127

Washington DC Mall datasets

case 1

MPSNR (dB) 32.53 45.40 40.43 52.32 53.11 52.32
3D PSNR (dB) 30.02 46.97 38.26 52.85 53.82 52.87

MSSIM 0.7637 0.9889 0.9743 0.9963 0.9975 0.9963
MSAM 9.40 1.08 3.20 0.53 0.47 0.53
Time (s) - 27 24 2 18 17

case 2

MPSNR (dB) 32.90 46.43 42.98 51.40 52.27 51.42
3D PSNR (dB) 31.57 47.64 42.44 51.93 52.55 51.94

MSSIM 0.7930 0.9904 0.9825 0.9967 0.9976 0.9967
MSAM 7.91 1.01 1.97 0.59 0.54 0.59
Time (s) - 24 25 2 17 17

case 3

MPSNR (dB) 36.17 49.67 47.43 54.89 55.54 54.97
3D PSNR (dB) 34.64 51.47 49.15 56.75 57.42 56.81

MSSIM 0.8573 0.9950 0.9923 0.9987 0.9990 0.9987
MSAM 5.57 0.66 0.83 0.35 0.32 0.35
Time (s) - 28 25 2 18 17

case 4

MPSNR (dB) 39.86 52.04 50.74 56.44 57.15 56.53
3D PSNR (dB) 38.69 53.07 51.76 56.27 56.97 56.33

MSSIM 0.9268 0.9968 0.9961 0.9988 0.9991 0.9988
MSAM 3.51 0.55 0.61 0.37 0.33 0.36
Time (s) - 29 26 2 18 17

estimate of noise, Cλ (see Section III-C for further details).
The parameters for NAILRMA and LRTV were hand-tuned
to ensure optimal performance.

The denoising performance of different algorithms in terms
of MPSNR, 3D-PSNR, MSSIM, MSAM, and computation
time (in seconds) is reported in Table I. The results indicate
that the strategy used in FastHyDe, GLF, and RhyDe, i.e.,
exploiting self-similarity among non-local patches, works bet-
ter than that used in the patch-wise NAILRMA and pixel-wise
LRTV. Fig. 6 and Fig. 7 show PSNR and SSIM values for each
band of the denoised Pavia University images and Washington
DC Mall images, respectively. The quality of the reconstructed
bands may also be inferred from Fig. 8 and Fig. 9. It can be
seen that all of the denoising methods are capable of reducing
the noise in the imagery.

We used the denoised images for subsequent anomaly
detection. Fig. 10 shows the effect of the denoising on this
detection. The performance of an outlier detector is usually
evaluated by using a receiver operating characteristic (ROC)
curve, which plots the detection rate against the false alarm
rate. Fig. 10 illustrates the ROC curves for the application
of Global RX to clean images, noisy images, and denoised
images. Global RX was chosen for this evaluation since it is a
representative outlier detector that requires no input parameters
and provides a fair environment for making comparisons. It
can be seen that, in some of the denoised images, anomalous
targets were detected with higher false alarm rates than in
the original image even though the denoised images have
much higher MPSNR and MSSIM values than the original
noisy images. This happens because MPSNR and MSSIM are
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Fig. 6. PSNR (a-d) and SSIM (e-h) of each band of denoised Pavia University images in Cases 1-4.
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Fig. 7. PSNR (a-d) and SSIM (e-h) of each band of denoised Washington DC Mall images in Cases 1-4.

global image-quality criteria and may not be able to express
the degradation of a very small number of pixels. The very
high false alarm rates for some denoised images (Fig. 10)
imply that information about rare pixels is corrupted after
denoising. This is confirmed by the results shown in Fig. 11,
where the denoised spectral signatures of anomalous pixels
and background pixels can be seen. It can be seen that the
spectral vectors of background pixels (the odd-numbered rows)
were recovered well by all the denoising methods, whereas the
spectral vectors of the anomalous pixels (the even-numbered
rows) were degraded by all of the methods except RhyDe.

In presence of rare pixels are present, the denoising step may

compromise the futuresubsequent detection of those pixels.
The reason for this is that the low-rank representation of the
image (used in NAILRMA, LRTV, FastHyDe, and GLF) will
lead toleads to the a risk of losing the information ofassociated
with rare pixels. In contrast with this scenario, RhyDe is able
to preserve anomalous pixels (see the even-numbered rows
in Fig. 11) since it represents rare pixels as a column-wise
sparse matrix. Note that both LRTV and RhyDe include an
outlier matrix, S, in their observation models. LRTV assumes
that the structure of S is randomly sparse and promoted by `1
norm, whereas RhyDe assumes that S is column-wise sparse
and promoted by the `2,1 norm. Given that the outlier matrix
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(a) Clean (b) Noisy (c) NAILRMA (d) LRTV (e) FastHyDe (f) GLF (g) RhyDe

Fig. 8. Clean and denoised band 24 of simulated Pavia University scene (MPSNR = 30.71 dB) in Case 3.

(a) Clean (b) Noisy (c) NAILRMA (d) LRTV (e) FastHyDe (f) GLF (g) RhyDe

Fig. 9. Clean and denoised band 26 of simulated Washington DC Mall scene (MPSNR = 36.17 dB) in Case 3.
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Fig. 11. Denoised spectral signatures of background pixels (in the odd-rows) and anomalous pixels (in the even-rows) in simulated Pavia University scene in
Cases 1-4. Note that the noise in the anomalous pixel is not removed completely by RhyDe since our main objective w.r.t. anomalies is to keep them rather
than to denoise them and our output result is Ẑ+ Ŝ.

represents pixels of rare materials, the assumption of a column-
wise structure used in RhyDe is more appropriate in this
scenario.

C. Parameter Analysis of RhyDe
The RhyDe method was proposed for denoising HSIs by

solving the optimization problem in (4), which includes the
use of two parameters, λ1 and λ2. The λ1 is the parameter of
regularization φ(Z) tailored to self-similar eigen-images. More
specifically, the value of λ1 is related to the variances of the
Gaussian noise in the eigen-images Z, which occur when plug-
and-play denoisers [41] are used to solve the subproblem (11).
Since the variance of the Gaussian noise in each band of the
original image can be estimated (for example, by HySime [22])
and the subspace projection is a linear transform, the variance

of the Gaussian noise in the projected eigen-images can be
estimated easily. For example, given the spectral covariance of
the noise in the original image, Cλ (estimated by HySime), the
noise variance in the ith eigen-image is obtained by computing
eTi Cλei (where ei is the ith eigenvector). Therefore, we can
automatically set the value of parameter λ1, which is adaptive
to the estimate of the noise.

Parameter λ2 controls the column-wise sparsity of matrix
S. If the HSI is noise-free, then the matrix S is supposed to
be a column-wise sparse matrix, where only a few non-sparse
columns contain outlier components. If the HSI is corrupted
by Gaussian noise, then the matrix S, which includes both
outlier components and the Gaussian noise (distributed densely
in S), is non-sparse. In order to exclude Gaussian noise and
include only outlier components in matrix S, the regularization
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Fig. 12. The impact of the regularization parameter, λ2 =
√

chi2inv(1− pvalue, nb), on the denoising performance of Pavia University images (a-d) and
Washington DC Mall images (e-h) in terms of MPSNR (in dB) and MSSIM.

‖S‖2,1 is added to the objective function. The regularization
parameter, λ2, should be adaptive to column-wise Gaussian
noise intensity. In all of the experiments, we whitened the im-
ages and then simply set λ2 =

√
chi2inv(1− pvalue, nb), where

chi2inv(·) computes the inverse of the chi-square cumulative
distribution function with degrees of freedom specified by nb
for the corresponding probability, 1 − pvalue. The reason for
this setting was that the distribution of the sum of the squares
of nb independent standard Gaussian noise is a chi-square
distribution. For all experiments carried out in this study, we
empirically set pvalue = 10−2, which meant that the probability
of observing a test statistic at least as extreme in this chi-square
distribution was 1 − pvalue = 99%. Fig. 12 shows the impact
of pvalue on the denoising performance for all of the simulated
images in terms of MPSNR and MSSIM. Note that the values
marked in y-axis indicate that the proposed RhyDe is robust
to the value of pvalue.

D. Numerical Convergence of the RhyDe

(a)                                                                       (b)

Fig. 13. Relative change of A = [ZT , ST ]T versus the iteration number of
RhyDe denoising Pavia University data in (a) and Washington DC Mall data
in (b).

The plugged denoiser, BM3D, does not include an explicit
convex regularizer; thus, the proposed RhyDe is a nonconvex
optimization problem, and it is hard to prove its convergence.
The BM3D was chosen as the plugged denoiser in our denois-
ing framework as it is a state-of-the-art single-band denoiser
that is user-friendly (requiring only one parameter, the variance
of Gaussian noise), and very fast. There is still room for im-
proving the proposed RhyDe (in terms of the image quality) by
using better-plugged single-band denoisers. However, taking
into account the trade-off between the denoising accuracy and
speed, we used BM3D to speed up the iterative framework of
RhyDe. An empirical analysis for the convergence of RhyDe
plugged with BM3D is given in Fig. 13, in which the curves
showing the relative changes in A during iteration converge
after eight iterations. The convergence of RhyDe plugged with
BM3D can be numerically guaranteed.

E. Anomaly Detection Performance

A spin-off of the RhyDe denoiser, an anomaly detector is
proposed in (25), and classifies pixels outside signal subspace
as anomalies. Therefore, its detection ability depends on
the relative power of rare pixels that lie orthogonal to the
signal subspace, denoted as γ = ‖(I−EET )(Y−N)‖F

‖(I−EET )N‖F
, where

the columns of Ỹ and Ñ are noisy rare pixels and noise,
respectively. The parameter γ can provide an insight into
the difficulty of detection. This can be observed from our
experiments, where we simulated images containing anoma-
lous pixels with different values of γ. To save space, we
only report the minimum false alarm rates when the detectors
reach 100% detection rates in Fig. 14. The detection of the
outliers becomes more difficult as γ decreases. Compared with
classical detectors and sparse-representation based detectors,
RhyDe almost uniformly yields the best detection results.
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Fig. 14. False alarm rate as a function of the relative power of the rare pixels
that lie on the orthogonal complement of the signal subspace, denoted as γ,
for MPSNR = 30.71 dB.

IV. EXPERIMENTS WITH REAL IMAGES

The performance of the denoising and anomaly detection
using the proposed RhyDe was evaluated using two real HSIs:
a SpecTIR image and a sub-scence of the Pavia Centre data.
These data contained unknown targets that were spectrally
distinct from the image backgrounds. Denoising and anomaly
detection were carried out using the same methods as those
described in Section III.

A. SpecTIR Data

Fig. 15. (a) Hyperspectral image: specTIR data and (b) ground-truth map of
anomalous targets.
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Fig. 16. ROCs of Global RX detector applying to original and denoised
images of specTIR data.
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Fig. 17. ROCs of different anomaly detectors in specTIR data

The first real hyperspectral image was acquired by a data
collection campaign called the SpecTIR hyperspectral airborne
Rochester experiment (SHARE) [48] on July 29, 2010 using a
ProSpecTIR-VS2 sensor. We extracted a subset of these data
to use as a test image. This image is shown in Fig. 15-(a)and
consists of 126 bands in the range 390 nm to 2450 nm with a
spatial resolution of approximately 1 m. There is a high level
of noise in a number of the bands. Fig. 18 shows three of the
bands, namely bands 42, 61, and 80. As presented in Fig. 15-
(a), road and vegetation are the main background materials.
Several red and blue fabrics with sizes of 9, 4, and 0.25 m2

were considered to be anomalous targets: ground-truth map
for these is shown as Fig. 15-(b). These data have also been
widely used in other studies to evaluate the performance of
anomaly detectors [49, 50].

We applied denoising to the SpecTIR data under the as-
sumption of non-i.i.d. noise; however, none of the denoisers
worked as well as expected. We supposed that the original
hyperspectral data were mainly affected by Poission noise.
We applied the Anscombe transform [51], Y ← 2

√
Y + 3

8 ,
which can convert Poisson noise into approximately additive
noise. Data that included band-variant noise were whitened
before the denoisers were applied [1]. The signal subspace
dimension was empirically set to 3 for LRTV, FastHyDe, GLF,
and RhyDe. The parameters for NAILRMA and LRTV were
hand-tuned to achieve optimal performance.

We compared the visual quality of the denoising results
owing to the lack of ground-truth for the noise-free imagery.
As shown by Fig. 18, LRTV, FastHyDe, GLF, and RhyDe are
able to mitigate the effect of the noise in bands 42, 61, and 80,
whereas visible noise still remains after applying NAILRMA.

In the case where rare pixels were present, tests were made
of whether the denoising would cause the information con-
tained in these pixels to be lost. Fig. 19 shows the denoising
results for a background pixel and an anomalous pixel. RhyDe
is able to preserve the anomalous pixel, which is an advantage
over its low-rank-based competitors. We also applied the
classical anomaly detector, Global RX, to the original and
denoised images. The detection results, as measured by the
ROC, are shown in Fig. 16. It can be seen that the detectability
of the anomalies is degraded by the low-rank-based denoisers
NAILRMA, LRTV, GLF, and FastHyDe but is improved by
RhyDe.
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Fig. 18. Observed Bands 42, 61, and 80 of specTIR data and their denoising results.
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Fig. 19. Denoised spectral signatures of a background pixel (in the first row) and an anomalous pixel (in the second row) in specTIR data.

The detector derived from RhyDe was compared with
different detectors in terms of ROC. As shown in Fig. 17,
RhyDe performs the best, which implies that relatively com-
plex background land cover can be well represented by a low-
rank subspace and that anomalous pixels are preserved in the
denoising results obtained using RhyDe.

B. Pavia Centre Sub-scene

The second test image had a of size 89 × 102 × 102 (Fig.
20-(a)). It was a sub-scene of the Pavia Centre data acquired
by the ROSIS sensor during a flight campaign over Pavia,
northern Italy. The imagery has 102 spectral bands and a
spatial resolution of 1.3 m. This sub-scene contained three
simple object types: water, a bridge, and vehicles. Suppose that

Fig. 20. (a) Pavia Centre sub-scene and (b) Ground-truth map of vehicles.

the vehicles are anomalous targets to be detected. A ground-
truth map for the vehicles is shown in Fig. 20-(b). We applied
denoisers to the imagery under the assumption of non-i.i.d.



15

Fig. 21. Observed Band 6 of Pavia Centre sub-scene and its denoising results.
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Fig. 22. Denoised spectral signatures of a background (water) pixel (in the first row) and an anomalous (vehicle) pixel (in the second row) in Pavia Centre
data.
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Fig. 24. ROCs of different anomaly detectors in Pavia Centre sub-scene.

noise. The signal subspace dimension was empirically set to
2 for LRTV, FastHyDe, GLF, and RhyDe. The parameters for
NAILRMA and LRTV were hand-tuned to achieve optimal
performance.

To demonstrate the denoising performance, because of the
lack of ground truth for the noise-free data, the visual quality
of the reconstructed bands and reconstructed spectra were
used. As shown in Fig. 21, the denoisers LRTV, FastHyDe,
GLF, and RhyDe clearly produced a great reduction in the
amount of noise in band 6. The quality of the reconstructed
spectra can be inferred from Fig. 22: here, the first row shows
the results for a background pixel (water) and the second row
the results for an anomalous pixel (vehicle). It can be seen
from Fig. 22-(a) that NAILRMA does not remove the noise
completely. In addition, only NAILRMA and RhyDe are able
to preserve the anomalous spectra in Fig. 22-(f, j).

In order to further investigate the impact of the denoising
step on the detection of rare pixels, we applied the Global RX
detector to the original and denoised images: the detection
performance in terms of the ROC is shown in Fig. 23.
Only RhyDe does not degrade the detection performance. The
anomalous targets (vehicles) in the images denoised by LRTV,
FastHyDe, GLF, and NAILRMA are detected with higher false
alarm rates than when using the original noisy image, which
implies that the spectral signatures of the vehicles are damaged
during denoising.

Regarding the anomaly detection, the results given in Fig. 24
show that Global RX performed best with the data used. This
is because the image background (namely, water and bridges)
in the Pavia Centre sub-scene is simple and can be represented
well by the Gaussian density model used in Global RX. Note
that RhyDe and CRD also manage to detect all of the targets
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with a relatively low false alarm rate.

V. CONCLUSION

We have proposed RhyDe, a new low-rank-based denoising
method, with the aim of preserving rare pixels. As an extension
of FastHyDe, the proposed method exploits the low-rankness
and self-similarity of clean HSIs and the column-wise spar-
sity of the outlier matrix. A comparison with state-of-the-art
denoising algorithms was conducted, and it was concluded
that RhyDe yields a better performance with additive noise
in terms of the preservation of rare pixels. The characteristic
of preservation of rare pixels put RhyDe in a privileged
position to be used as a pre-procssing step to improve the
quality of HSIs, especially, in situations that rare pixels might
be important targets in the subsequent applications, such as
anomaly detection and land-cover change detection. Compared
with the other state-of-the-art anomaly detectors, the proposed
detector has a comparable detection performance.
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José M. Bioucas-Dias (S’87–M’95–SM’15–F’17)
received the EE, MSc, PhD, and Habilitation degrees
in electrical and computer engineering from Instituto
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