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Abstract—A few lightweight convolutional neural network
(CNN) models have been recently designed for remote sensing
object detection (RSOD). However, most of them simply replace
vanilla convolutions with stacked separable convolutions, which
may not be efficient due to a lot of precision losses and may
not be able to detect oriented bounding boxes (OBB). Also, the
existing OBB detection methods are difficult to constrain the
shape of objects predicted by CNNs accurately. In this paper, we
propose an effective lightweight oriented object detector (LO-
Det). Specifically, a channel separation-aggregation (CSA) struc-
ture is designed to simplify the complexity of stacked separable
convolutions, and a dynamic receptive field (DRF) mechanism is
developed to maintain high accuracy by customizing the convolu-
tion kernel and its perception range dynamically when reducing
the network complexity. The CSA-DRF component optimizes
efficiency while maintaining high accuracy. Then, a diagonal
support constraint head (DSC-Head) component is designed to
detect OBBs and constrain their shapes more accurately and
stably. Extensive experiments on public datasets demonstrate that
the proposed LO-Det can run very fast even on embedded devices
with the competitive accuracy of detecting oriented objects.

Index Terms—Lightweight convolutional neural network, ob-
ject detection, oriented objects, remote sensing.

I. INTRODUCTION

Benefitted from the rapid improvement of graphics process-
ing performance and the easier availability of high-resolution
remote sensing (RS) images, RSOD methods based on con-
volutional neural networks (CNNs) have attracted more atten-
tions recently.

From universal detectors, such as Faster R-CNN [1], SSD
[2], and YOLO [3], etc., to dedicated detectors developed
for RS scenes, the design of CNN-based detectors is more
and more in line with the requirements of RS tasks and the
detection accuracy continues to increase. For example, Cheng
et al. [4] proposed a rotation-invariant CNN (RICNN) model
to deal with the problem of object rotation variations. Yang
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et al. [5] designed a rotation detector for small, cluttered
and oriented objects which fused multi-layer feature and
introduced attention mechanism for higher detection accuracy.
Fu et al. [6] developed a point-based estimator embedded
in the region-based detector to improve the performance of
detecting oriented objects in remote sensing images.

The existing improvements on CNNs for RSOD tasks can
be summarized into three categories: the multi-scale feature
enhancement, the visual attention mechanism, and the appli-
cation of different pipelines. In terms of multi-scale feature
enhancement [7], the feature pyramid [8] and the inception
structure [9] have always been research hotspots [10, 11]. In
terms of visual attention mechanism, various improvements
based on SENet [12] and CBAM [13] to develop channel and
spatial attentions have been continuing [5, 14, 15]. In terms of
detection pipelines, discussions from two-stage to one-stage
[16] and from anchor-based to anchor-free [17] have never
been stopped. These studies have promoted the improvement
of detection accuracy in the initial rising stage when CNN was
introduced into high-resolution RSOD. However, at present,
researches in this field have changed from incremental devel-
opment to stock improvement. The CNN models are becoming
larger and more complex, and the complexity of them is
becoming higher. But most of the existing researches in RSOD
tasks may ignore the speed loss caused by using extremely
deep backbone networks and the addition of various feature
enhancements and visual attention mechanisms. Regrettably,
the current development of graphics processing units (GPUs)
has not yet reached the stage where computing power can
be piled up regardless of cost, and not everyone can afford
expensive GPUs, such as RTX 3090 or even Tesla V100. To
deal with this problem, lightweight model design has been
recently considered in the literature.

For lightweight CNN design, MobileNet [18–20], Shuf-
fleNet [21, 22], GhostNet [23], etc., have provided many good
ideas although they are designed for image classification tasks.
These networks are also applied to replace the backbone for
object detection. But in addition to the backbone, a modern
CNN-based detector usually includes two additional compo-
nents, feature fusion module (neck) and prediction module
(head). The number of convolutional layers of these compo-
nents can even be comparable to that of the backbone, which
has a great impact on the performance. However, the structure
of stacked separable convolutions in these components used
by most lightweight detectors is not efficient. Besides, RSOD
tasks often have the demand to detect oriented bounding boxes
(OBBs) in addition to horizontal bounding boxes (HBBs).
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These all need to be considered when designing a detector
for RSOD tasks.

In summary, the lack of lightweight detectors developed
for RSOD tasks, the inefficient design of stacked separable
convolutions in detection neck component, and the inability
of ordinary detection head component for OBB detection
are all challenges in the current research. In this regard,
this work provides a practical method of lightweight CNN
design for RSOD tasks, which is rarely studied at present.
The contributions of this work are summarized as follows:

1) A lightweight detector LO-Det for RSOD tasks is pro-
posed for edge computing on embedded devices. This detector
has comparable detection accuracy with the main existing
detectors at a much faster inference speed and using much
fewer computing resources.

2) A CSA structure is designed to simplify the complexity of
stacked separable convolutions, and a DRF mechanism based
on CSA is developed to customize the convolution kernel and
its perception range dynamically for higher quality feature
extraction and fusion. The proposed CSA-DRF component
optimizes efficiency of the detector while maintaining high
detection accuracy.

3) A DSC-Head is proposed to enable LO-Det for detecting
OBB annotated objects. Furthermore, it makes the shape
regression of OBBs more accurately by diagonal support
constraint, and alleviates the boundary value problem of the
existing OBB detection methods by the designed M-Sigmoid
function.

The remainder of this paper is organized as follows. Section
II reviews the related works and analyzes the existing prob-
lems. In Section III, a detailed description of the proposed
LO-Det is presented. In Section IV, extensive experiments
are conducted and the results are discussed. Conclusions are
summarized in Section V.

II. RELATED WORKS AND ANALYSIS

A. Lightweight CNNs

With the development of CNNs, research on building
small and efficient network models for embedded devices
has become one of the important considerations in recent
years[24, 25]. Xception [26] uses the depth-wise convolu-
tion operation to improve Inceptionv3, and achieves better
accuracy and efficiency under the condition of equivalent
model parameters. SqueezeNet [27] compresses the number
of model parameters by designing the bottleneck module,
but the inference time is longer at the expense of network
parallelism. In addition to improving VGGNet with depthwise
convolution, MobileNet [18] also designes a new activation
function ReLU6 for lightweight networks, which can be more
robust under low-precision calculations. MobileNetv2 [19]
designs the inverted residual module with linear bottleneck
based on MobileNet [18], which significantly improves the
accuracy and speed of image classification. MobileNetv3 [20]
optimizes the network structure parameters of MobileNet
by neural architecture search (NAS) technology. ShuffleNet
[21] designs the pointwise group convolution and channel
shuffle modules for the computationally intensive problem of

dense pointwise convolution, which makes its speed faster
than MobileNet. ShuffleNetv2 [22] analyzes the impact of
memory access cost (MAC) on the inference speed of CNN
and improves the performance of ShuffleNet. GhostNet [23]
is a model with lower theoretical calculation complexity by
applying a series of linear operations with low cost to extend
feature maps.

In terms of object detection, the authors [18] design an SSD-
Lite detector by simply replacing the backbone of the SSD
detector with MobileNet. Light-Head R-CNN [28] lights the
head of the detector by using a sparse feature map before
RoI Pooling. ThunderNet [29] is a compressed RPN sub-
network for generating region proposals, and integrates local
and global features through a context enhancement module to
enhance feature expression. Lightdet [30] suggests a change
in backbone structure as well as neck component to preserve
more feature maps from shallow levels of the backbone.

In the field of RSOD, Ding et al. [31] have made preliminary
explorations and proposed a light and faster regional convolu-
tional neural network. Although its speed is still slower than
SSD [2] and YOLO [32] and only evaluated the performance
of detecting planes and cars, its detection accuracy is higher.
Wang et al. [33] have developed a Lightweight CNN for
ship detection in infrared images. The CNN model of this
work uses a simple 4-layer convolution + pooling structure to
makes the network lightweight, which is more suitable for the
single-category object detection tasks, such as ship detection.
As far as we know, most of the existing applications just
simply replace the backbone of SDD [2] or YOLO [32] with
lightweight networks, such as MobileNet [18].

B. Oriented Detection Head

Because objects in RS images usually have arbitrary-
orientation characteristics, and some datasets, e.g., DOTA [34]
as shown in Fig. 1, also provide labels of oriented bounding
box (OBB). The detection heads of many detectors have been
improved to match this task. The methods with improvements
of these detection head modules can be divided into two
categories, angle-based methods and vertex-based methods.

(a) Objects represented by HBBs (b) Objects represented by OBBs

Fig. 1. Objects represented by HBBs and OBBs.

R2CNN [35], RRPN [36], SCRDet [5], FFA [11] and other
detectors use angle-based OBB detection heads, which bring
an additional angle parameter. However, the periodicity prob-
lem of angle regression and the inability to predict arbitrary-
shaped quadrilaterals are the limitations of these methods.



Gliding Vertex [37], RSDet [38], etc., use vertex-based OBB
detection heads that can represent any quadrilaterals. These
methods usually have higher detection accuracy compared
with the angle-based method that can only represent the rotated
rectangular bounding boxes. Among these methods, although
Gliding Vertex [37] avoids the vertex sorting and achieves the
current best accuracy, too much freedom of vertex regression
and boundary value problem may also lead to unstable results.

C. Baseline, Problems, and Analysis

As far as we know, there are very few researches on
lightweight detectors specifically for RSOD tasks. Further-
more, most of these works are to directly replace the backbone
of the universal detectors with lightweight backbone like Mo-
bileNet [18] as a new lightweight detector. In order to analyze
the problems of such a detector more comprehensively, and
derive the motivation of the proposed solution accordingly,
YOLOv3 [3] model, which has a very competitive advantage
in detection speed and considerable accuracy, is improved
by the simple replacement scheme mentioned above as the
baseline for this work.

Specifically, MobileNetv2 [19] is adopted to replace the
backbone of YOLOv3. Also, separable convolutions are em-
ployed instead of the vanilla convolutions in the neck compo-
nent of YOLOv3. The structure of the baseline model is shown
in Fig. 2. Among them, the red part is MobileNetv2, and the
numbers in red blocks denote the number of feature maps
output by each module of MobileNetv2. The blue part is the
neck component composed of stacked separable convolutions.
The yellow part is the head component for detecting HBBs.
The green part indicates the post-process operation which
refers to the non-maximum suppression (NMS) algorithm
for filtering redundant bounding boxes, the conversion of
the predicted coordinates into the coordinates on the output
images, and the visual display.
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Fig. 2. Structure of the baseline model (YOLOv3+MobileNetv2).

This is the so-called lightweight improvement scheme of the
most existing lightweight detectors, that is, choosing a general
detector and replacing the original backbone with a lightweight
backbone. But is it really efficient?

1) The inefficiency of stacked separable convolutions
It can be observed from Fig. 2 that there are series of

stacked separable convolutions (SConvs) used to fuse contex-

tual features in the neck component. The detailed structure of
these operations is shown in Fig. 3. Among them, each SConv
consists of a 3×3 depth-wise convolution (DWConv) and a 1×1
vanilla convolution with nonlinear activation function used
to adjust the number of feature maps (channels). Through
these stacked SConv, the number of feature maps is frequently
changing by a factor of 2 or 1/2.
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Fig. 3. Structure of the SConv block.

Take two SConvs as a group (SConv block) and calculate
its floating-point operations (FLOPs) to represent the compu-
tational complexity. The dimensions of the input and output
feature maps are defined as W ×H × C, where W , H , and
C are the width, the height, and the number of the feature
maps, respectively. Suppose the kernel size k of DW-Conv
is 3, the number of convolutional groups is g, the theoretical
complexity of the model under ideal conditions is

FLOPs2SConv=
∑

2×WH× (k×k×Cin/g+1)×Cout
= (46 + 8C)×WHC

. (1)

From Eq. 1, the key variable that affects FLOPs is the
quadratic term of C. As shown in Fig. 2, because the number
of feature maps input to SConv Block is usually very large (the
smallest one also reaches 32+128=160, C � 5.75, 8C � 46),
the operation of generating the quadratic term of C, i.e., the
1×1 convolution, is one of the main factors affecting the
computational complexity. This impact is more obvious in
other branches with more feature maps. Besides, the authors
[22] suggested that the inference speed of the model may also
be related to memory access cost and equal channel width
minimizing this metric. The 1×1 convolutions in SConv Blocks
change the number of feature maps frequently, which may also
cause a bottleneck in model inference efficiency.

2) The imbalanced features
In CNN, the feature maps output by the shallow layer of

the backbone network usually has low-level semantic features
and high resolution, which is more helpful to detect small
objects that lack detailed semantic features but requiring
higher resolution for localization. While feature maps output
from deep layers of the backbone network usually has lower
resolution and contain rich abstract semantic features. A wise
approach is to integrate these contextual features output by the
CNN backbone to make their advantages complementary.

However, backbone networks, such as MobileNet [18] and
ShuffleNet [21], are all designed for image classification tasks.
Since the image classification task only needs the features
output by the last layer, these lightweight networks usually
have far fewer feature maps output from the shallow layers



for compressing the model. Therefore, directly replacing the
backbone of a lightweight detector with these backbone net-
works may lead to the feature imbalance problem at different
levels.

From the first branch of the neck in Fig. 2, it can be
seen that the number of shallow feature maps is 32, which
is much smaller than the number of deep feature maps. In the
feature fusion process, the low-level high-resolution features
are submerged in the high-level low-resolution features, and
this is very unfavorable for the detection of small objects. In
addition, other feature imbalance issues, such as the lack of
feature propagation paths from shallow layer to deep layer, and
the unsuitable size of receptive fields, are also bottlenecks that
restrict the improvement of the detection accuracy.

3) Unable to detect OBBs
General detectors are only suitable for detection tasks of

HBBs, but for RSOD tasks, both HBBs and OBBs may exist.
The baseline model cannot work when objects are represented
by OBBs. For angle-based OBB detection heads [11], anchor-
based detectors usually need to set more anchor boxes with
different rotation angles and different proportions in advance,
which seriously affects the inference speed. In addition, it can
only obtain rectangular bounding boxes. For the vertex-based
OBB detection head [37], the problem that vertex regression
is difficult to approach the boundary value, and the problem
of many degrees of freedom of the vertices, are needed to be
considered when designing an OBB detection head.

III. PROPOSED LO-DET METHOD

In response to the problems of existing methods, an effective
lightweight oriented object detector, LO-Det, is proposed.
The model structure of the proposed LO-Det is shown in
Fig. 4. It is mainly composed of three parts: backbone,
neck with CSA and DRF blocks, and DSC-Head. Among
them, the key ingredients of the proposed LO-Det are the
neck component and the head component. This is because
the neck and head components occupy 4.403 Giga floating-
point operations (GFLOPs) (about 65%) in the 6.753 GFLOPs
of the baseline model. They are respectively designed for
improving efficiency of the neck component in the existing
lightweight detectors, and detecting OBBs in some RSOD
tasks. Specifically, the neck component consists of CSA blocks
with higher efficiency than stacked separable convolution, and
DRF blocks for fusing context features of the network. The
head component of the proposed LO-Det is a DSC-Head
module improved from the gilding vertex method [37], which
helps to predict OBBs more stably and accurately. Besides,
the widely adopted MobileNetv2 [19] with good performance
is selected as the backbone. This backbone only consists of
separable convolutional layers and 1×1 vanilla convolutional
layers, without other additional operations. The simplicity and
high repeatability of the model’s constituent elements facilitate
further pruning, quantification, and CUDA optimization during
actual deployment. In the subsequent experimental part, the
performance of other state-of-the-art backbones is also com-
pared and evaluated.

A. CSA-DRF Neck

In view of the inefficiency of stacked separable convolutions
and feature imbalance problems analyzed above, a novel neck
component structure with CSA-DRF sub-modules is proposed.

1) Channel Separation-Aggregation (CSA) block
According to the above analysis, the 1×1 convolution oper-

ation in the neck component of a lightweight detector is the
main consumer of inference time. Too many 1×1 convolutions
and changing the input and output of a 1×1 convolution fre-
quently may reduce the computational efficiency. The intuitive
idea is to reduce the filters (channels) of 1×1 convolutional
layers and make the input and output the same. GhostNet [23]
observes that there are similarities and redundancy between
features. Based on this observation, the CSA structure is
designed as shown in Fig. 5. In CSA block, only half of the
features are subjected to SConv operation, and then superim-
posed with the other half. This reduces the computation of
1×1 convolution and keeps the number of input and output
feature maps consistent. However, because the features of
different branches are isolated from each other and there is
no information exchange, it causes performance degradation
[18]. Thus, the channel shuffle [21] operation is used to make
feature interactions across branches.

After these improvements, it can be found that the structure
of CSA block is similar to that of ShuffleNetv2 [22], although
based on different starting points. The difference between them
is that the CSA structure does not have a 1×1 convolution
before the 3×3 DW-Conv and the number of feature maps is
the same. There are two main reasons for doing so. First, based
on the aforementioned analysis that changing the number of
feature maps frequently leads to a decrease in efficiency,
the number of features is designed to be unchanged as in
CSA, so there is no need to use 1×1 convolution for feature
alignment before DW-Conv. While in ShuffleNetv2 [22], the
number of feature maps of the intermediate layer (DW-Conv)
is inconsistent with the input and output, so 1×1 convolution
is required for feature alignment. Secondly, each CSA block
connected in series has a channel shuffle module at the end
that can replace the 1×1 convolution at the forefront of the
next CSA block for features exchange.

Fig. 6 shows the principle and neuron connection relation-
ship of the proposed CSA structure to achieve lightweight.
Compared with the vanilla 3×3 convolution, SConv reduces
the computational complexity by decomposing the space and
channel operations by DW-Conv and 1×1 convolution. CSA
further decomposes the features on channel direction and
uses the cheaper operation, channel shuffle, for Cross-channel
feature exchange. In order to make a fair comparison with
SConv block, every two CSAs are connected as a group and
calculate it FLOPs. The FLOPs of two CSA blocks is

FLOPs2CSA = (22 + C)×WHC+ 2FLOPsshuffle. (2)

ShuffleNet [19] indicates that

FLOPsshuffle �FLOPs1×1conv= 2 (C + 1)×WHC, (3)

so

FLOPs2CSA � (26+ 5C)×WHC<FLOPs2SConv. (4)
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Therefore, the proposed CSA structure has lower computa-
tional complexity compared with the original stacked SConvs.

2) Dynamic Receptive Field (DRF) block
Although the CSA structure reduces the computational

complexity, too sparse connections in the neural network also
reduce the feature extraction performance (the approximation
ability of nonlinear models is reduced). It can be observed
from Fig. 6 that this problem is mainly due to the DW-Conv
operation performed on only half of the feature maps.

Therefore, the CSA structure is modified by using SConv in
both branches to improve the feature extraction performance.
Furthermore, considering to enhance feature interactions in the
spatial direction (for example, the feature interactions of 3×3
DW-Conv in Fig. 6 is only carried out in adjacent neurons)
and the problem that receptive fields of the model may not
be suitable for objects with any sizes, a dynamic receptive
fields (DRF) structure is proposed as shown in Fig. 7. In
DRF blocks, dilated convolution is used for a larger range
of feature interactions in the spatial dimension, of which the
dilated rate is designed to be learned through the network so
that receptive fields of the model are adjusted dynamically to
cover different objects. Also, the dilated rates can be set to
static values through statistical analysis of the samples’ sizes,
which saves some inference time. In order to further enhance
spatial feature interactions, using a larger convolutional kernel
is also an option, but it takes too much time. Inspired by
the dynamic characteristics of neural networks, conditional
convolution [39] is introduced to improve 3×3 DW-Conv, in
which a convolution tailored for the input is obtained using
the idea of dynamic weighting for getting more efficient
performance improvement than increasing the size of the
convolution kernel. In dilated DW-Conv, different dilated rates
are introduced to get wider feature interaction in the spatial
dimension. In the channel dimension, there are more feature
interactions and neuron connections than the CSA structure.

However, the DRF structure also brings higher computa-
tional complexity. Therefore, it is not recommended to replace
each CSA structure with a DRF structure, but only one of
the two-by-two CSA blocks by DRF structure. Besides, the
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time cost of channel shuffle cannot be ignored. From this
perspective, the new CSA-DRF sub-module is obtained by
fusing the CSA and DRF structures as shown in Fig. 8, and
the principle and neuron connection are shown in Fig. 9. In
the CSA-DRF sub-module, the first channel shuffle is removed
and addition operation is used instead. This is because both
branches have performed 1×1 convolution, and the feature
interaction between channels is more sufficient than that of
the CSA block. And if the concatenation operation is still used
without channel shuffling, the features of the two branches are
still independent of each other without interactions in the next
CSA block. Finally, in the new neck component, a CSA-DRF
sub-module is used to replace two original SConv blocks or
two CSA blocks.
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Fig. 8. Structure of CSA-DRF sub-module.

The complexity of the proposed CSA-DRF sub-module is

FLOPsCSA−DRF =
(
33+ 3C

2

)
×WHC+FLOPsshuffle,

(5)
which is smaller than FLOPs2SConv. This means that the
proposed CSA-DRF sub-module has lower computational
complexity and better efficiency than the SConv blocks in the
baseline model.

3) Feature balance mechanism
In the aforementioned analysis, it is pointed out that because

the most of lightweight backbone networks are designed
for image classification tasks, the output features from their
shallow layers and deep layers have obvious differences in
quantity. This problem leads to a small amount of high-
resolution low-level features being submerged in a large num-
ber of low-resolution high-level semantic features, which is
not beneficial to RSOD tasks that need to utilize these features
comprehensively.

Therefore, a feature balancing sub-module composed of 1×1
convolution and CSA blocks is designed and introduced into
the neck component. 1×1 convolution is used to adjust the
number of feature maps, and the CSA module performs feature
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Fig. 9. The principle and neuron connection relationship of the proposed
CSA-DRF structure.

fusion. Many studies [40] have demonstrated that the CNN
models with balanced depth (the number of convolutional
layers), width (the number of feature maps in each layer,
that is, C), and the size of feature maps (W and H) usually
achieve better performance. Therefore, this work also follows
this principle: when W and H are reduced by half, the number
of feature maps doubles. The complexity of feature balance
sub-module is

FLOPsFB=
(
13+ 2Cin+

C
2

)
×WHC +FLOPsshuffle,

(6)
where Cin is the number of feature maps input from the
shallow layers of network. Besides, down-sampling is also
added at the connection between the backbone and neck
components to further promote the propagation of features
from the shallow layers of the network to the deep layers of
the network.

In summary, the complexity of a branch (including feature
balance sub-module) of the proposed CSA-DRF component is

FLOPsnewneck = (48 + 6C + 2Cin)×WHC
+ 2FLOPsshuffle

< (50 + 10C + 2Cin)×WHC
. (7)

The complexity of a branch of the baseline neck component
is

FLOPsbaseneck= (94 + 16C+2Cin)×WHC . (8)

From above analysis, the complexity of the proposed CSA-
DRF component is lower than that of the baseline neck
component. In addition, it should be noted that the above case
is only an ideal value for preliminary estimation, and some
other situations have not been considered. For example, the
last branch does not have a feature balance sub-module, and
the complexity of some other operations, such as up-sampling,
has not been calculated.



B. DSC-Head
In some remote sensing scenarios, OBBs can better de-

scribe the boundaries and shapes of the objects than HBBs.
However, general detectors cannot detect OBBs, and there
is no lightweight detector for detecting OBBs in the field
of remote sensing. Since the gliding vertex method [37]
is easily extended based on HBBs and does not add too
much complexity, it is employed into the proposed lightweight
detection head component. But this method also has the two
problems that need to be dealt.

1) Control the shapes of OBBs
As shown in Fig. 10, because the gliding vertices have too

much freedom, it is difficult to control the shapes of OBBs
regressed by the neural network. For example, as shown in
Fig. 11 (a), consider two cases, one is that the position loss
of four vertices is equal, and the other is that the position loss
of three vertices is small and the position loss of the other
vertex is large. Although the final loss in the two cases may
be the same, the shapes of the OBBs obtained is completely
different. Since OBBs have more diverse shapes than HBBs,
this makes the predictions more uncertain and may affect the
detection accuracy.
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Fig. 10. The principle of the proposed DSC-Head.

In this regard, a detection head component with diagonal
support constraints is proposed, and the shapes of OBBs
are controlled by constraining the diagonal length ratio of
the quadrilateral. As shown in Fig. 10, suppose the vertices
of an HBB are v1, v2, v3, v4; the vertices of an OBB are
p1, p2, p3, p4; the center point of the HBB is (x, y); the width
of the HBB is w; the height of the HBB is h; the gliding
distances of p1, p2, p3, p4 are s1, s2, s3, s4, respectively; and
the diagonal length are s13 and s24. Therefore, the HBB’s
variables predicted by the end-to-end CNN detector are

tx=
x− xa
wa

, ty=
y − ya
ha

, tw= log
w

wa
, th= log

h

ha
. (9)

where (xa, ya), wa, and ha represent the center point, width
and height of the anchor box, respectively; tx, ty, tw, th are the
variables directly predicted by the neural network. The OBB’s
variables predicted by the end-to-end CNN detector are{

α1 = s1
w , α2 = s2

h , α3 = s3
w , α4 = s4

h

β1 = s13
w , β2 = s24

h

. (10)

In this way, OBB can be calculated according to the variables
obtained from the above prediction based on HBB. In fact,

because DSC-Head adds s13 and s24 constraints, α3 and α4

do not need to be predicted, that is, an OBB is determined by
predicting α1, α2, β1, β2.
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Fig. 11. Analysis of the problems in vertex-based methods. (a) The problem
of different shapes with the same value of loss. (b) The problem of the same
shape with different predicted values.

2) Boundary value
Because the neural network has a large regression range

for the variables α1, α2, β1, β2 that may lead to unstable
predictions, the Sigmoid function is used to limit the regression
range. But for a Sigmoid function, it is difficult to regress to
the boundary value of 0 or 1 (the bounding box is HBB in
this case) accurately. In this regard, the H-Sigmoid function

H−Sigmoid=min (max (0, x+ 3) , 6) /6, (11)

where hard boundary values are introduced.
However, it is also necessary to consider these two cases,

in which α1, α2, β1, β2 are all 0 or 1, as shown in Fig. 11 (b).
They both represent the same HBB but the predicted values are
different, which is ambiguous. Therefore, as shown in Fig. 12,
the half of H-sigmoid is replaced by a Sigmoid function with
soft boundary values to obtain a mixed Sigmoid (M-Sigmoid)
function,

M−Sigmoid=

{
min (max (0, x+ 3) , 6) /6, x ≤ 0

1/ (1 + e−x) , otherwise
. (12)

Thus,

αi =M−Sigmoid (tαi
) , βi =M−Sigmoid (tβi

) , (13)

where the OBB variables αi, βi ∈ [0, 1), tαi
, tβi

are pre-
dicted by the network. It should be explained that because
the original piecewise function M-Sigmoid is difficult to
derive in the neural network, such an approximation scheme:
(clamp(sigmoid(x),0.01,1)-0.01)/(1-0.01) is used in the pro-
gram. It solves the problem that the boundary value is difficult
to regress and alleviates the ambiguity of OBB representation.

3) Loss function
The loss function of DSC-Head consists of four parts:

confidence loss Lossconf , HBB loss LossHBB , OBB loss
LossOBB , and classification loss Losscls,

Loss = Lossconf + LossHBB + LossOBB + Losscls, (14)
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Fig. 12. The proposed M-Sigmoid function. It should be explained that
because the original piecewise function M-Sigmoid is difficult to derive in the
neural network, such an approximation scheme: (clamp(sigmoid(x),0.01,1)-
0.01)/(1-0.01) is used in the program.

LossOBB =

4∑
i=1

smooth−L1
(
αi − αgti

)
+

2∑
j=1

smooth−L1
(
βj − βgtj

) , (15)

where αgti and βgtj denote the ground truth values of αi and
βj . The loss of other parts is the same as the baseline.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, experiments on public remote sensing
datasets are conducted to verify the effectiveness of the pro-
posed LO-Det and further evaluate its detection performance.
First, the experimental conditions are explained. Secondly, the
ablation experiments are conducted and the performance of
each improvement is discussed. Third, the influence of some
important parameters on model performance is evaluated.
Finally, comparative experiments on large public datasets are
provided to compare and evaluate the performance of the
proposed LO-Det with the state-of-the-art methods.

A. Experimental Conditions

1) Experimental platforms
The proposed LO-Det is expected to run not only on expen-

sive GPUs, such as RTX3090, but also ordinary GPUs, such as
GTX 1660 that most people can afford, and even on embedded
devices. Therefore, in order to evaluate the performance of
the proposed LO-Det comprehensively and provide baselines
for this new direction, a variety of experimental platforms
are used, including: a) a computer with an Intel Core i7-
10700K CPU (3.80GHz), 64 GB of memory, and an NVIDIA
GeForce RTX 3090 GPU (24GB); b) a computer with an Intel
Core i7-8700 CPU (3.20GHz), 16 GB of memory, and an
NVIDIA GeForce GTX 1660 GPU (6GB); c) an NVIDIA
Jetson TX2 embedded device; d) an NVIDIA Jetson AGX
Xavier embedded device. The embedded devices are shown in
Fig. 13.

2) Datasets
DOTA [34] and DIOR [41], the largest and widely used

high-resolution aerial remote sensing datasets in RSOD tasks,
are used to verify and evaluate the proposed method. The
selected datasets cover more than 20 categories of objects,
and cover a variety of scenes. Such a wealth of experimental

NVIDIA Jetson TX2 NVIDIA Jetson 
AGX Xavier

NVIDIA Jetson TX2 NVIDIA Jetson 
AGX Xavier

Fig. 13. The experimental embedded devices.

datasets help to verify and evaluate the performance of the
proposed method more comprehensively.

a) DOTA dataset [34] is a large aerial image dataset con-
taining 2806 aerial images from 800 × 800 pixels to 4000 ×
4000 pixels, in which more than 188,000 objects are annotated.
These objects fall into 15 categories: Plane (PL), Baseball
diamond (BD), Bridge (BR), Ground field track (GFT), Small
vehicle (SV), Large vehicle (SV), Ship (SH), Tennis court
(TC), Basketball court (BC), Storage tank (ST), Soccer-ball
field (SBF), Roundabout (RA), Harbor (HA), Swimming pool
(SP), and Helicopter (HC). Due to the huge size, these images
are cropped into sub-images of 800×800 pixels with an overlap
of 150 pixels.

b) DIOR [41] is another large aerial image dataset with
23,463 images (800 × 800 pixels) containing 190,288 objects
belonging to 20 categories: Airplane (c1), Airport (c2), Base-
ball field (c3), Basketball court (c4), Bridge (c5), Chimney
(c6), Dam (c7), Expressway service area (c8), Expressway
toll station (c9), Golf course (c10), Ground track field (c11),
Harbor (c12), Overpass (c13), Ship (c14), Stadium (c15),
Storage tank (c16), Tennis court (c17), Train station (c18),
Vehicle (c19), and Windmill (c20).

3) Evaluation metrics
The mean Average Precision (mAP), the widely used metric

in OD tasks, is adopted for evaluating the detection accuracy.
According to the widely recognized PASCAL VOC standard,
the IoU threshold of mAP is 0.5. The inference time of
detecting an image and the detected frames per second (fps)
are used to evaluate the detection speed. The FLOPs is used
to evaluate the complexity of a CNN model. And the memory
space occupied by parameters of a model is used to evaluate
the model size.

4) Implementation details
To compare the proposed LO-Det with state-of-the-art meth-

ods fairly, training hyperparameters are set to be the same as
the methods compared. The initial learning rate is 1.5×10−4,
the final learning rate is 1 × 10−6, and the learning rate is
updated by cosine strategy. The maximum training epoch is
100. And the NMS threshold is 0.45. The initial weight of the



backbone is pre-trained on the ImageNet dataset.
5) Comparative methods
Due to the lack of benchmarking methods for comparative

experiments, some mainstream detectors are chosen for com-
parisons. For example, methods widely used in common object
detection tasks like Faster R-CNN [1], SSD [2], and RetinaNet
[42], and methods designed for RSOD tasks like R2CNN [35],
SCRDet [5], and CAD-Net [14] are chosen. It should be noted
that, since these detectors are of non-lightweight design with
high complexity and large models, the detection accuracy of
some of them is higher than the proposed LO-Det that has
much lower computational complexity.

B. Ablation Experiments and Discussions

1) Ablation experiments
Since the baseline method cannot detect OBBs, and the

benchmarks for detecting HBBs and OBBs cannot be directly
compared, the two groups of ablation experiments are con-
ducted separately. Among them, the experiments of HBBs are
performed on the DIOR dataset which is the existing largest
HBB datasets for RSOD tasks. The experiments of OBBs are
performed on the DOTA dataset, in which the objects are
annotated using OBBs. The new baseline on DOTA dataset
is the original baseline + gliding vertex [37] head (GV-Head).
The experiment separately tests and evaluates the performance
of each improved module, and the experimental results are
listed in Table I and Table II.

It can be observed from Table I that the proposed CSA-
DRF not only increases the mAP by 6.17 (+10.88%) on
the DIOR dataset, but also reduces the model complexity by
1.418 GFLOPs, which makes the inference speed significantly
improved on different devices. This means that the FLOPs of
the newly proposed neck and head components (4.035G) are
reduced by 8.36% compared to the FLOPs of the neck and
head components of the baseline (4.403G) when the mAP is
increased by 9.12%. Furthermore, the number of parameters
and the occupied memory space are smaller. On this basis,
although the introduction of the feature balance sub-module
has increased some computational complexity and parameters,
the mAP of object detection has also increased by 16.08%
to 65.85. Finally, compared with the baseline model, the
proposed LO-Det has faster detection speed, lower complexity,
and fewer parameters. In addition, the detection accuracy is
also improved in the proposed LO-Det.

The experimental results on the DOTA [34] dataset also
reflect the same results. Moreover, when the proposed DSC-
Head component is used to detect OBBs, compared with the
Gliding Vertex method [37], the mAP of 2.14 is further im-
proved without introducing additional complexity or reducing
the detection speed. The ablation experiments on the DOTA
dataset also demonstrate that the indicators of the proposed
LO-Det are better than that of the baseline + gliding vertex
model, i.e., it is faster and better on RSOD tasks.

More detailed results of the ablation experiments are given
in Table III and Table IV, which provide the APs of different
categories on DIOR dataset and DOTA dataset.

2) Evaluations of model parameters

It is mentioned in the analysis of the feature balance sub-
module that the width of the model and the size of the input
image will also affect the performance of the model. There is
usually a trade-off between accuracy and speed, which should
be set carefully according to task requirements in different
applications. The performance of the proposed LO-Det with
various model widths and input image sizes on the DIOR [41]
dataset is evaluated as follows.

The evaluation results of the model width are listed in
Table V. LO-Det evaluated in the above experiments is rep-
resented by LO-Det × 1.0 with 1024, 512, and 256 feature
maps in the three neck branches, respectively. Other different
widths are adjusted based on this. For example, a CSA-
DRF neck whose feature maps are half of the LO-Det ×
1.0 is represented by LO-Det × 0.5. Table V evaluates the
performances of these models. As the width of the CNN model
decreases, the detection accuracy decreases, but the speed
becomes faster and the model becomes smaller. This work
provides the model design ideas and general model structure,
and it can be customized according to the requirements to
make a trade-off between accuracy and speed in applications.

The evaluation results of the input image size are shown in
Table VI and Fig. 14. The effect of reducing the input image
size on model performance is similar to that of reducing the
width. As the input image size decreases, mAP decreases while
the speed becomes faster. However, reducing the size of input
images does not change the number of parameters and the
model size, and the reduction in mAP is also less.

Generally, in the case of fewer small objects or sufficient
memory space, it is a better choice to reduce the input image
size. In the case of limited speed and memory space, it is more
suitable to reduce the model width in exchange for extremely
fast speed and less memory consumption. In addition to
MobileNetv2 [19], the performance of LO-Det using other
lightweights, such as ShuffleNetv2 [22] and GhostNet [23],
is also evaluated in Table VII. From the experimental results
in Table VII, using MobileNetv2 [19] as the backbone makes
the proposed LO-Det perform better than using ShuffleNetv2
[22] or GhostNet [23] as the backbone on more evaluation
metrics, so MobileNetv2 [19] is chosen as the backbone of
LO-Det.

C. Comparative Experiments and Discussions

Due to lacks of benchmarking methods, the performance
of the proposed LO-Det is compared with the much larger
models with the state-of-the-art mAP. Even if this is unfair to
the proposed LO-Det, it is also helpful to discover the short-
comings of the existing lightweight object detectors and future
improvements. The comparative experiments are conducted
on the DIOR dataset and DOTA dataset for comprehensively
evaluation.

1) Comparative experiments on the DIOR dataset
The results of comparative experiments on the DIOR dataset

are listed in Table VIII, and the visual results are shown in
Fig. 15 intuitively. The proposed LO-Det has a mAP of 65.9,
which is higher than that of Faster R-CNN (R50) [1], SSD [2],
RetinaNet (R50) [42], CornerNet [43] and many mainstream



TABLE I
ABLATION EXPERIMENTS AND EVALUATIONS OF THE PROPOSED LO-DET ON THE DIOR DATASET

Modules Baseline CSA-DRF Feature
Balance

mAP
(%)

Speed 1
(fps)

Speed 2
(fps)

Speed 3
(fps)

Speed 4
(fps) FLOPs Parameters

(MB)
Model Size

(MB)

Selected
Module(s)

X 56.73 59.81 28.71 6.37 20.77 6.753G 8.55 33.20

X X 62.90 (+6.17) 64.77 (+4.96) 34.41 (+5.70) 10.31 (+3.94) 26.09 (+5.32) 5.335G (-1.418G) 6.21 (-2.34) 24.29 (-8.91)

X X X 65.85 (+9.12) 60.53 (+0.72) 30.46 (+1.75) 7.14 (+0.77) 22.75 (+1.98) 6.385G (-0.368G) 6.90 (-1.65) 26.95 (-6.25)

Note: Speed 1 is the speed on RTX 3090 GPU, speed 2 is the speed on RTX 1660 GPU, speed 3 is the speed on NVIDIA Jetson TX2, Speed 4 is the
speed on NVIDIA Jetson AGX Xavier.

TABLE II
ABLATION EXPERIMENTS AND EVALUATIONS OF THE PROPOSED LO-DET ON THE DOTA DATASET

Modules Baseline CSA-DRF Feature
Balance GV-Head DCS-Head mAP

(%)
Speed 1

(fps)
Speed 2

(fps)
Speed 3

(fps)
Speed 4

(fps) FLOPs Parameters
(MB)

Model Size
(MB)

Selected
Module(s)

X X 61.91 58.16 28.22 6.43 21.08 6.753G 8.55 33.20

X X X 62.86 (+0.95) 63.27 (+5.11) 33.97 (+5.75) 10.09 (+3.66) 25.81 (+4.73) 5.374G (-1.379G) 6.24 (-2.31) 24.29 (-8.91)

X X X X 64.03 (+2.12) 60.03 (+1.87) 30.14 (+1.92) 7.23 (+0.80) 23.20 (+1.98) 6.424G (-0.329G) 6.93 (-1.62) 26.95 (-6.25)

X X X X 66.17 (+4.26) 60.03 (+1.87) 30.13 (+1.91) 7.25 (+0.82) 23.20 (+1.98) 6.424G (-0.329G) 6.93 (-1.62) 26.95 (-6.25)

Note: Speed 1 is the speed on RTX 3090 GPU, speed 2 is the speed on RTX 1660 GPU, speed 3 is the speed on NVIDIA Jetson TX2, Speed 4 is the
speed on NVIDIA Jetson AGX Xavier.

TABLE III
MORE DETAILED MAP (%) RESULTS OF ABLATION EXPERIMENTS ON THE DIOR DATASET

Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP

Baseline 62.26 51.76 70.61 78.64 25.49 70.19 45.25 64.93 45.37 55.17 60.95 55.29 46.41 82.68 57.42 57.42 82.46 29.63 33.12 64.97 56.73

Baseline + CSA-DRF 66.84 65.10 72.57 82.86 30.41 71.79 54.62 74.49 53.37 63.54 64.91 60.00 49.83 86.10 61.68 58.11 84.55 48.31 37.26 72.45 62.94

LO-Det 72.63 65.04 76.72 84.66 33.46 73.71 56.83 75.86 57.51 66.29 68.01 60.91 51.50 88.63 68.04 64.31 86.26 47.57 42.44 76.70 65.85
The explanation of each category

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Airplane Airport Baseball
field

Basketball
court Bridge Chimney Dam Expressway

service area
Expressway
toll station

Golf
course

Ground
track
field

Harbor Overpass Ship Stadium Storage
tank

Tennis
court

Train
station Vehicle Windmill

Note: Bold font indicates the best results.

TABLE IV
MORE DETAILED MAP (%) RESULTS OF ABLATION EXPERIMENTS ON THE DOTA DATASET

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Baseline1 88.50 69.45 29.26 41.49 68.96 69.26 81.05 90.63 64.92 78.88 38.81 53.88 58.71 57.65 37.13 61.91

Baseline2 88.68 65.99 32.80 45.02 68.93 69.64 81.43 90.57 66.40 79.06 44.20 56.25 59.19 65.88 28.87 62.86

Baseline3 88.71 69.14 31.48 51.16 70.64 70.46 83.52 90.68 69.44 77.90 41.49 58.55 58.02 66.62 32.65 64.03

LO-Det 89.22 66.14 31.32 55.96 70.05 71.04 84.27 90.74 75.09 81.28 44.65 59.34 59.98 65.13 48.42 66.17

The explanation of each category

PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Plane Baseball
diamond Bridge Ground field

track
Small

vehicle
Large

vehicle Ship Tennis
court

Basketball
court

Storage
tank

Soccer-ball
field Roundabout Harbor Swimming

pool Helicopter

Note: Bold font indicates the best results. Since the baseline method cannot detect OBBs, Baseline + gliding vertex [37] is used as the new baseline.
Baseline1: Baseline + gliding vertex; Baseline2: Baseline + CSA-DRF + GV-Head; Baseline3: Baseline + CSA-DRF + Feature Balance + GV-Head.



TABLE V
EVALUATION OF THE PROPOSED LO-DET WITH DIFFERENT MODEL WIDTHS ON THE DIOR DATASET

Models mAP (%) Speed 1 (fps) Speed 2 (fps) Speed 3 (fps) Speed 4 (fps) FLOPs Parameters (MB) Model Size (MB)

LO-Det ×1.0 65.85 60.03 30.13 7.25 20.77 6.424G 6.93 26.95

LO-Det ×0.75 51.99 67.52 37.48 11.45 24.65 4.826G 5.28 20.54

LO-Det ×0.5 43.87 69.60 40.00 13.67 29.11 3.618G 3.97 15.53

LO-Det ×0.25 38.20 71.88 42.74 15.86 31.20 2.800G 3.00 11.83

Note: Speed 1 is the speed on RTX 3090 GPU, speed 2 is the speed on RTX 1660 GPU, speed 3 is the speed on NVIDIA Jetson TX2, Speed 4 is the
speed on NVIDIA Jetson AGX Xavier. LO-Det ×1.0 with 1024, 512, and 256 feature maps in three neck branches, respectively. Other different widths
(×0.75, ×0.5, ×0.25) are adjusted based on this.

TABLE VI
EVALUATION OF THE PROPOSED LO-DET WITH DIFFERENT INPUT IMAGE SIZES ON THE DIOR DATASET

Models mAP (%) Speed 1 (fps) Speed 2 (fps) Speed 3 (fps) Speed 4 (fps) FLOPs Parameters (MB) Model Size (MB)

LO-Det 608 65.85 60.03 30.13 7.25 20.77 6.424G 6.93 26.95

LO-Det 512 64.06 62.87 33.15 9.08 22.75 4.556G 6.93 26.95

LO-Det 416 58.73 64.52 35.63 11.36 25.57 3.007G 6.93 26.95

LO-Det 320 49.12 66.71 37.92 13.57 28.88 2.800G 6.93 26.95

Note: Speed 1 is the speed on RTX 3090 GPU, speed 2 is the speed on RTX 1660 GPU, speed 3 is the speed on NVIDIA Jetson TX2, Speed 4 is the
speed on NVIDIA Jetson AGX Xavier. LO-Det 608 indicates that the size of the input image (800×800 pixels) is down-sampled to 608×608 pixels (
default value).

TABLE VII
EVALUATION OF THE PROPOSED LO-DET WITH DIFFERENT BACKBONE NETWORKS ON THE DIOR DATASET

Models mAP Speed 1 (fps) Speed 2 (fps) Speed 3 (fps) Speed 4 (fps) FLOPs Parameters (MB) Model Size (MB)

LO-Det (MobileNetv2 ×1.0 [19]) 65.85 60.03 30.13 7.25 20.77 6.424G 6.93 26.95

LO-Det (ShuffleNetv2 ×1.5 [22]) 65.99 59.32 28.81 6.97 20.15 6.922G 9.39 36.25

LO-Det (GhostNetv2 ×1.0 [23]) 66.01 40.71 16.61 4.39 12.88 5.0822G 7.14 27.76

Note: MobileNetv2 ×1.0 with 1280, 96, and 32 feature maps input to the three neck branches, respectively, as shown in Fig. 2. ShuffleNetv2 ×1.5 with
1024, 352, 176 feature maps input to the three neck branches, respectively. And GhostNetv2 ×1.0 with 960, 112, and 40 feature maps input to the three
neck branches, respectively. The details of these lightweight backbones are explained in [19], [22], and [23].

methods and is only slightly lower than that of CSFF [44].
Furthermore, the proposed LO-Det has a very fast detection
speed and very small memory consumption. It can reach a
detection speed of 60.03 fps on an RTX 3090 GPU when the
input image size is 608×608 pixels, and only takes up 26.95
MB of memory consumption. This detection speed is 4-5 times
faster than that of Faster R-CNN (R50) [1], RetinaNet (R50)
[42], CornerNet [43], Mask R-CNN [45], and PANet [46].
It is also faster than that of SSD [2], and the storage space
required for this model is only one-fifth or less of the storage
space of other methods. In order to pursue higher detection
accuracy, LO-Det 800 ×1.5 is designed, in which the CSA-
DRF neck becomes 1.5 times wider and the size of input
images is 800×800 pixels. This model reaches the state-of-
the-art mAP of 68.5 at 58.27 fps and only need 43.41 MB for
storage.

In addition, the proposed LO-Det has low accuracy for
detecting large objects, such as airport, golf course, and train
station. This is due to that the lightweight network’s ability to
learn deep semantic features is not as good as the large CNN

model, resulting in low detection accuracy of large objects
with rich texture and detailed features.

2) Comparative experiments on the DOTA dataset

The results of comparative experiments are listed in Ta-
ble IX, and the visual results are shown in Fig. 16 intuitively.
The proposed LO-Det has a mAP of 66.17, which is higher
than that of YOLOv2 [47], SSD [2], FR-O [34], and R2CNN
[35]. Although the detection accuracy of the proposed LO-
Det is lower than that of extremely large CNN models, such
as CAD-Net [14], SCRDet [5], Gliding Vertex [37], etc., its
detection speed is 5 times faster than that of these large
models, and its model size is only one-tenth or less of these
large models. Moreover, the proposed LO-Det can run on
embedded devices, and its speed on embedded devices is even
faster than that of those large models running on servers with
expensive GPUs, such as RTX 3090. In order to pursue the
ultimate high accuracy, LO-Det 800 (Vanilla Conv) is also
designed according to the proposed idea, in which Darknet53
(a large and complex CNN model) is used as the backbone
network, to compare with the Gliding Vertex (Faster R-CNN



TABLE VIII
COMPARATIVE EXPERIMENTS OF MAP (%) AND SPEED (FPS) ON THE DIOR DATASET

Methods Year C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 mAP
(%)

Speed 1
(fps)

Model
Size
(MB)

Faster R-CNN
(R50) [1] 2016 54.1 71.4 63.3 81.0 42.6 72.5 57.5 68.7 62.1 73.1 76.5 42.8 56.0 71.8 57.0 53.5 81.2 53.0 43.1 80.9 63.1 19.91 161.20

SSD [2] 2016 59.5 72.7 72.4 75.7 29.7 65.8 56.6 63.5 53.1 65.3 68.6 49.4 48.1 59.2 61.0 46.6 76.3 55.1 27.4 65.7 58.6 54.18 169.68

Mask R-CNN
(R50) [45] 2017 53.8 72.3 63.2 81.0 38.7 72.6 55.9 71.6 67.0 73.0 75.8 44.2 56.5 71.9 58.6 53.6 81.1 54.0 43.1 81.1 63.5 16.33 130.86

RetinaNet
(R50) [42] 2017 53.7 77.3 69.0 81.3 44.1 72.3 62.5 76.2 66.0 77.7 74.2 50.7 59.6 71.2 69.3 44.8 81.3 54.2 44.4 83.4 65.7 18.26 145.03

CornerNet [43] 2018 58.8 84.2 72.0 80.8 46.4 75.3 64.3 81.6 76.3 79.5 79.5 26.1 60.6 37.6 70.7 45.2 84.0 57.1 43.0 75.9 64.9 10.78 768.17

PANet
(R50) [46] 2018 61.9 70.4 71.0 80.4 38.9 72.5 56.6 68.4 60.0 69.0 74.6 41.6 55.8 71.7 72.9 62.3 81.2 54.6 48.2 86.7 63.8 10.88 172.97

CSFF [44] 2020 57.2 79.6 70.1 87.4 46.1 76.6 62.7 82.6 73.2 78.2 81.6 50.7 59.5 73.3 63.4 58.5 85.9 61.9 42.9 86.9 68.0 15.21 168.71

LO-Det 608 2020 72.6 65.0 76.7 84.7 33.5 73.7 56.8 75.9 57.5 66.3 68.0 60.9 51.5 88.6 68.0 64.3 86.3 47.6 42.4 76.7 65.9 60.03 26.95

LO-Det 800
×1.5 2020 77.5 60.9 80.3 88.0 36.7 75.0 54.0 74.7 63.2 63.4 73.0 60.6 53.8 90.4 74.6 77.3 88.6 43.6 51.1 84.0 68.5 58.27 43.41

Explanation of each category

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

Airplane Airport Baseball
field

Basketball
court Bridge Chimney Dam Expressway

service area
Expressway
toll station

Golf
course

Ground
track
field

Harbor Overpass Ship Stadium Storage
tank

Tennis
court

Train
station Vehicle Windmill

Note: Bold font indicates the best results. Since the benchmarking methods and their codes are not designed for embedded devices, only the speed on
an RTX 3090 GPU (Speed 1) is evaluated. In addition, some methods are re-implemented by ourselves, the results may be slightly different from those
reported in the original papers. The size of images used by the compared methods is also 800×800 pixels.
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Fig. 14. Performance analysis of the proposed LO-Det with different input
sizes on the DIOR Dataset.

R101) [37], which is very large. The proposed LO-Det 800
(Vanilla Conv) reaches a mAP of 75.24 at 27.44 fps, the
performance of which is better than that of Gliding Vertex
(Faster R-CNN R101) [37].

In addition, comparing the proposed LO-Det with the large
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Fig. 15. Visualization Results of LO-Det on the DIOR Dataset.



TABLE IX
COMPARATIVE EXPERIMENTS OF MAP (%) AND SPEED (FPS) ON THE DOTA DATASET

Methods Year PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
(%)

Speed 1
(fps)

Model
Size
(MB)

YOLOv2 [47] 2016 39.57 20.29 36.58 23.42 8.85 2.09 4.82 44.34 38.35 34.65 16.02 37.62 47.23 25.50 7.45 21.39 47.52 192.46

SSD [2] 2016 39.83 9.09 0.64 13.18 0.26 0.39 1.11 16.24 27.57 9.23 27.16 9.09 3.03 1.05 1.01 10.59 53.20 170.00

FR-O [34] 2018 79.42 77.13 17.70 64.05 35.30 38.02 37.13 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13 - -

R2CNN [35] 2018 80.94 65.67 35.34 67.44 59.92 50.91 55.81 90.67 72.39 66.92 55.06 52.23 55.14 53.35 48.22 60.67 13.02 170.81

ROI Trans. [34] 2019 88.53 77.91 37.63 74.08 66.53 62.97 66.57 90.50 79.46 76.75 59.04 56.73 62.54 61.29 55.56 67.74 7.10 273.20

CAD-Net [14] 2019 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 72.72 - -

SCRDet [5] 2019 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61 7.40 338.90

Gliding Vertex [37] 2019 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02 13.10 460.90

FFA3 [11] 2020 88.80 74.40 48.90 57.90 63.60 75.90 79.60 90.80 80.30 82.90 54.30 60.00 66.90 66.80 42.50 68.90 - -

LO-Det 608 2020 89.22 66.14 31.32 55.96 70.05 71.04 84.27 90.74 75.09 81.28 44.65 59.34 59.98 65.13 48.42 66.17 60.01 26.95

LO-Det 800
(Vanilla Conv) 2020 89.91 84.92 47.04 69.53 75.80 76.37 88.48 90.87 86.25 86.58 62.39 68.15 73.18 71.59 57.61 75.24 27.44 397.91

The explanation of each category

PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Plane Baseball
diamond Bridge Ground field

track
Small

vehicle
Large

vehicle Ship Tennis
court

Basketball
court

Storage
tank

Soccer-ball
field Roundabout Harbor Swimming

pool Helicopter

Bold font indicates the best results. Since the benchmarking methods and their codes are not designed for embedded devices, only the speed on the single
RTX 3090 GPU (Speed 1) is evaluated. Additionally, some methods are re-implemented by ourselves, the results may be slightly different from those
reported in the original papers. And some methods’ codes are not open-source, we cannot test their detection speed, which is indicated by “-”.
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Fig. 16. Visualization Results of LO-Det on the DOTA Dataset.



models, the performance gap between them is mainly in the
detection of ground track field, soccer-ball field, harbor and
other large objects, which is consistent with the results on the
DIOR dataset.

V. CONCLUSIONS

In this paper, a novel lightweight detector LO-Det is pro-
posed for oriented object detection in remote sensing images.
It is the first lightweight detector designed for RSOD tasks.
In LO-Det, the CSA-DRF neck component is designed to
optimize detection efficiency and accuracy by the channel
separation-aggregation structure and dynamic receptive field
mechanism. The DSC-Head component is developed to detect
OBBs and constrain the shapes of OBBs more accurately
through the diagonal support constraint and the M-Sigmoid
function.

The experiments demonstrate the following: 1) Each com-
ponent proposed in LO-Det is valid, in which the CSA-DRF
reduces model complexity and improves detection accuracy,
the DSC-Head makes the shapes of OBBs more accurate
and alleviates the boundary value problem. 2) The detection
accuracy of LO-Det is not inferior to the mainstream methods
while LO-Det is much faster than them. 3) The proposed
LO-Det only needs a single GPU to train. It can not only
perform inferences on expensive GPUs like RTX 3090, but
also run fast on embedded devices. 4) The proposed LO-
Det has great potential for development, which can adapt to
different RSOD tasks in different scenarios and on different
platforms by adjusting the model structure and parameters
based on the explored rules.

Despite its demonstrated benefits, the detection accuracy of
LO-Det for large objects needs to be improved, and the sparse
detection will be studied for higher efficiency in the future. In
addition, more comprehensive optimization of the backbone,
the neck component, and many other operations may obtain
better detection performance.

The source code and models of this work will be avail-
able at https://github.com/Shank2358. Besides, a model zoo
containing LO-Det using other lightweight backbones will be
also available.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal
Networks,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.

[2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y.
Fu, and A. C. Berg, “SSD: Single Shot MultiBox Detector,”
in Proceedings of European Conference on Computer Vision,
Amsterdam, The Netherlands, Oct. 2016, pp. 21–37.

[3] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

[4] G. Cheng, P. Zhou, and J. Han, “Learning Rotation-Invariant
Convolutional Neural Networks for Object Detection in VHR
Optical Remote Sensing Images,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 54, no. 12, pp. 7405–7415,
2016.

[5] X. Yang, J. Yang, J. Yan, Y. Zhang, T. Zhang, Z. Guo, X. Sun,
and K. Fu, “SCRDet: Towards More Robust Detection for
Small, Cluttered and Rotated Objects,” in Proceedings of IEEE

International Conference on Computer Vision, Seoul, South
Korea, Oct. 2019, pp. 8232–8241.

[6] K. Fu, Z. Chang, Y. Zhang, and X. Sun, “Point-based Estimator
for Arbitrary-Oriented Object Detection in Aerial Images,”
IEEE Transactions on Geoscience and Remote Sensing, pp. 1–
18, 2020.

[7] Z. Huang, J. Wang, X. Fu, T. Yu, Y. Guo, and R. Wang, “DC-
SPP-YOLO: Dense connection and spatial pyramid pooling
based YOLO for object detection,” Information Sciences, vol.
522, pp. 241–258, 2020.

[8] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature Pyramid Networks for Object Detection,”
in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, Hawaii, USA, July 2017, pp.
936–944.

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the Inception Srchitecture for Computer Vision,”
in Proceedings of IEEE International Conference on Computer
Vision, Las Vegas, NV, USA, June 2016, pp. 2818–2826.

[10] P. Wang, X. Sun, W. Diao, and K. Fu, “FMSSD: Feature-Merged
Single-Shot Detection for Multiscale Objects in Large-Scale
Remote Sensing Imagery,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 58, no. 5, pp. 3377–3390, 2020.

[11] K. Fu, Z. Chang, Y. Zhang, G. Xu, K. Zhang, and X. Sun,
“Rotation-aware and Multi-Scale Convolutional Neural Network
for Object Detection in Remote Sensing Images,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 161, pp. 294–308,
2020.

[12] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Net-
works,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, Utah, USA, June 2018,
pp. 7132–7141.

[13] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolu-
tional Block Attention Module,” in Proceedings of the European
Conference on Computer Vision, Munich, Germany, Sept. 2018,
pp. 3–19.

[14] G. Zhang, S. Lu, and W. Zhang, “CAD-Net: A Context-Aware
Detection Network for Objects in Remote Sensing Imagery,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57,
no. 12, pp. 10 015–10 024, 2019.

[15] Z. Huang, W. Li, X. G. Xia, X. Wu, Z. Cai, and R. Tao, “A novel
nonlocal-aware pyramid and multiscale multitask refinement
detector for object detection in remote sensing images,” IEEE
Transactions on Geoscience and Remote Sensing, pp. 1–20,
2021.

[16] X. Yang, J. Yan, X. Yang, J. Tang, W. Liao, and T. He,
“SCRDet++: Detecting Small, Cluttered and Rotated Ob-
jects via Instance-Level Feature Denoising and Rotation Loss
Smoothing,” arXiv preprint arXiv:2004.13316, 2020.

[17] Y. Lin, P. Feng, and J. Guan, “IENet: Interacting Embranchment
One Stage Anchor Free Detector for Orientation Aerial Object
Detection.” arXiv preprint arXiv:1912.00969, 2019.

[18] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applica-
tions,” arXiv preprint arXiv:1704.04861, 2017.

[19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “MobileNetV2: Inverted Residuals and Linear Bottle-
necks,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, Utah, USA, 2018, pp.
4510–4520.

[20] A. Howard, R. Pang, H. Adam, Q. Le, M. Sandler, B. Chen,
W. Wang, L.-C. Chen, M. Tan, G. Chu, V. Vasudevan, and
Y. Zhu, “Searching for MobileNetV3,” in Proceedings of IEEE
International Conference on Computer Vision, Seoul, South
Korea, Oct. 2019, pp. 1314–1324.

[21] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile
Devices,” in Proceedings of IEEE Computer Vision and Pattern



Recognition, Salt Lake City, Utah, USA, June 2018, pp. 6848–
6856.

[22] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2:
Practical Guidelines for Efficient CNN Architecture Design,” in
Proceedings of the European Conference on Computer Vision,
Munich, Germany, Sept. 2018, pp. 122–138.

[23] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet:
More Features from Cheap Operations,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition,
Online, 2020, pp. 1580–1589.

[24] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A Real-Time
Object Detection System on Mobile Devices,” in Proceedings
of International Conference on Neural Information Processing
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