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Abstract—This article introduces a compressive sensing
(CS)-based approach for increasing bistatic synthetic aperture
radar (SAR) imaging quality in the context of a multiaperture
acquisition. The analyzed data were recorded over an opportunis-
tic bistatic setup including a stationary ground-based-receiver
opportunistic C-band bistatic SAR differential interferometry
(COBIS) and Sentinel-1 C-band transmitter. Since the terrain
observation by progressive scans (TOPS) mode is operated,
the receiver can record synchronization pulses and echoed signals
from the scene during many apertures. Hence, it is possible to
improve the azimuth resolution by exploiting the multiaperture
data. The recorded data are not contiguous and a naive inte-
gration of the chopped azimuth phase history would generate
undesired grating lobes. The proposed processing scheme exploits
the natural sparsity characterizing the illuminated scene. For
azimuth profiles recovery greedy, convex, and nonconvex CS
solvers are analyzed. The sparsifying basis/dictionary is con-
structed using the synthetically generated azimuth chirp derived
considering Sentinel-1 orbital parameters and COBIS position.
The chirped-based CS performance is further put in contrast
with a Fourier-based CS method and an autoregressive model
for signal reconstruction in terms of scene extent limitations
and phase restoration efficiency. Furthermore, the analysis of
different receiver-looking scenarios conducted to the insertion
in the processing chain of a direct and an inverse Keystone
transform for range cell migration (RCM) correction to cope with
squinted geometries. We provide an extensive set of simulated and
real-world results that prove the proposed workflow is efficient
both in improving the azimuth resolution and in mitigating the
sidelobes.

Index Terms— Bistatic, compressive sensing (CS), multiaper-
ture, opportunistic acquisition.
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I. INTRODUCTION

ISTATIC Synthetic Aperture Radar (Bi-SAR) [1], [2]

imaging provide a list of advantages as compared to
monostatic acquisition setups. Complementary information
encapsulated in the bistatic data is often exploited in applica-
tions such as automatic target recognition, scene classification,
and SAR interferometric measurements. Lately, the partic-
ular case of space-borne transmitter-ground-based stationary
receiver emerged [3]-[5], [6]. A significant drawback is that
most of the bistatic systems have a degraded cross-range
resolution as compared to the monostatic systems. Even so,
multiaperture data availability leads to the improvement of
bistatic imaging [6], [7].

Many opportunistic bistatic SAR systems were developed.
Different synchronization aspects were evaluated depending
on the employed SAR image focusing procedure and
the transmitter scanning mode. In [8], the stationary
C-band receiver a SAR bistatic receiver for interferometric
applications (SABRINA) used ERS2 and ENVIronment
SATellite (ENVISAT) as transmitters operating in stripmap
mode. The phase synchronization together with Doppler
Centroid estimation was achieved using a Tx-Rx direct path
signal recorded using a dedicated channel. Several bistatic
experiments using the German satellite TerraSAR-X as a
transmitter of opportunity were conducted. The HITCHHIKER
receiver [4] in sliding-spotlight mode, the stationary platform
in [9] in staring-spotlight mode, and also the airborne/space-
borne system phased array multifunctional imaging radar
(PAMIR) [10], trigger the acquisition using the reference
channel signal. As in [4], the time-frequency synchronization
of opportunistic C-band bistatic SAR  differential
interferometry (COBIS) [5] platform is achieved by exploiting
the frequency reference and the timestamps provided by a
global positioning system (GPS) disciplined local oscillator
(LO). COBIS is also a multichannel ground-based receiver
that uses Sentinel-1 as a transmitter of opportunity operating
in terrain observation by progressive scans (TOPS) mode [11].
It comprises a direct path channel and three imaging channels
with up to 200 MHz instantaneous bandwidth. It provides
the data in the experiments presented in this article. The
received data alignment is performed by linking the ground-
based platform receiving timestamps with the transmission
timestamps provided in the Sentinel-1 A/B ancillary data.
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Fig. 1. Simplified acquisition geometry-bistatic SAR. The multiple subswaths
(SW1, SW2, SW3) intervals are sketched on the transmitter (Sentinel-1) path
using consecutive RGB double arrow segments. Also, the Tx-Rx relative
distances of a point P in the illuminated area are displayed.

In this way, each received pulse is linked to the transmission
and hence the satellite position is determined. To eliminate the
unknown phase difference between the satellite’s LO and the
ground receiver’s LO the range compression processing uses
the synchronization channel signal. Since terrain observation
with progressive scans SAR (TOPSAR) mode [11] is operated
over the area where the receiver is disposed, multiple bursts
(see Fig. 2) may be employed for SAR processing [12].

In the last decade, compressive sensing (CS) techniques
[13], [14] have been extensively used in signal process-
ing applications and recently integrated in classifications
problems, [15]. Specifically, in the context of remote sensing,
many improvements have been achieved by posing problems
in the framework of CS. For transposing the SAR image
generation in terms of CS theory most of the approaches use
the acquisition model to derive the dictionary considering raw
SAR data as representing the Fourier k-space measurements
of the spatial reflectivity field [16], [17]. Often, to treat the
2-D data in such a large-scale problem, azimuth and range
reconstructions are decoupled [18]. Even so, in many cases,
arange cell migration correction (RCMC) should be taken into
consideration. Commonly, RCMC is performed in the range-
Doppler domain as is the case of Range Doppler Algorithm for
SAR focusing [19], thanks to its property of ensuring the target
azimuth position invariance. In Chirp Scaling Algorithm [20],
[21], the range walk compensation is achieved in the time
domain by multiplying the raw data (before range compres-
sion) with a phase compensation term. However, the Keystone
transform (KT) [22] performed in the w — # (range frequency-
azimuth time) domain may accomplish the correction of the
linear migration by range-dependent azimuth interpolation.
KT has been successfully employed in both SAR [23], inverse
SAR, or moving target indication applications [24]. More
advanced versions of KT, Generalized KT [25] and segmented
KT [26] were developed for addressing high order polynomial
approximation of the nonlinear RCM problem.

In this article, we propose a processing framework for
opportunistic bistatic SAR imaging where the resolution
enhancement is achieved from multiaperture processing. The
sparse data from multiple apertures are available as a result
of the TOPSAR scanning mode. As displayed in Fig. 2(b),
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Fig. 2. (a) Example of direct path PRI. (b) Normalized magnitude on

synchronization channel. The black arrows indicate the severely low SNR
acquisition windows.

the multiaperture data may come from both Tx sidelobes
and side-sections in the main lobe when the Tx antenna is
oriented to the other two subswaths (the first and the last
bursts in the aperture interval 3). Furthermore, as displayed
in Fig. 2(a), the extended aperture involves time subintervals
having different pulse repetition intervals (PRI). Thus, the pro-
posed processing accounts for this particularity by resampling
the raw data on cross-range direction to a uniform azimuth
sampling frequency of 2 kHz.

The contribution of the sidelobes should be carefully intro-
duced in the SAR image formation proportionally to SNR.
We choose to employ a CS framework to solve this problem.
First, the range compressed bistatic signal obtained using a
receiver dedicated synchronization channel is characterized
by an extremely low azimuth bandwidth rate, conducting
to a Fourier oriented workflow. However, for large azimuth
integration intervals, the narrow-band assumption cannot be
employed anymore. That is why we have introduced a reramp-
ing processing step to restore the semimonostatic phase.
Furthermore, a chirp-based dictionary replaces the Fourier
basis in the CS frame. Moreover, our framework takes into
account the particularities for RCM of such an opportunistic
acquisition. As derived in Section II, the range dependent cell
walk is handled by the KT. We perform the validation on
two special cases of space-borne transmitter stationary ground-
based receiver acquisition scenarios. The first considers the
case in which the receiver and the transmitter line-of-sight
(LOS) vectors projections onto a planar approximation of
the Geo-referenced focusing grid are approximately collinear.
In the second case, the nonorthogonality of the two projections
is considered. Consequently, the range-walk is significantly
higher than in the first scenario and it should be compen-
sated before azimuth profiles processing. Since the high-
order components of the RCM trajectory may be neglected,
the KT is applied to perform the correction. Lastly, the range-
compressed recovered data is focused through back-projection
(BP) algorithm [27].

The remainder of this article is organized as follows.
In Section II the bistatic signal model along with the RCMC
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are discussed whereas in Section III the theory of CS is briefly
reviewed highlighting the particularities of the multiaperture
reconstruction. Besides, relevant CS solvers are discussed.
The proposed processing workflow is detailed in Section IV.
Finally, the results on both simulations and real-world data are
illustrated and discussed in Section V. Section VI presents the
conclusions of this article.

II. BISTATIC SIGNAL MODEL

The bistatic acquisition scenario relies on the C-band
Sentinel-1 transmitter of opportunity and the COBIS ground-
based receiver [5]. As illustrated in Fig. 1, the receiver
comprises at least two distinct receiving channels. One is
oriented toward the satellite (synchronization channel) whereas
the other ones are oriented toward the scene of interest.

We consider the transmitted signal, i.e., a linear frequency
modulated set of pulses (1) spanning a bandwidth B, in the
interval [F, —B/2, F.+ B/2]. The variables t and # denote the
fast time and the slow time, respectively. In (1), K, denotes the
frequency modulation slope, j is the imaginary unit whereas
rect(z/Tp) is the rectangular function centered in the origin of
the time axis and having the duration 7j

. T
s(r) = rect<F0)

B 2
X exp {27rj <_§T + K,%)] x exp(2xwjF.r). (1)

In the following, we consider the bistatic processing of a point
scatterer P (see Fig. 1). The receiver direct path signal and
the echo channel are presented in (2)

Ry _
s;y;m(f, n) = S(T — M)

€o

R
e =(s - 220)

_ S(T _ Rp_p(n)+ RP—RA(ﬂ)) )
co

The range compression in (3) is performed by employing
the synchronization channel as reference

sync echo
® SRx

src(fa n = SRx

= A(r,n) % MFR(T —

RP(’?) , }7). 3)

€o

In (3), R} denotes an equivalent range history of the target
P that will be discussed in Section II-A, “®” denotes the
cross correlation operation and A(z, 7) models the effect of
the antenna azimuth pattern (AAP), the radar cross section
of the target and the triangular weighting function resulted
from the cross correlation of the linear frequency modulated
pulses envelopes. Since the second part is unknown, only the
AAP will be taken into account in our bistatic SAR processor.
MREF is the matched filter response on the range direction. F,
denotes the carrier frequency.

A. KT-Based RCMC
Any processing applied in the azimuth direction should
be performed only if the RCM has been previously cor-

rected. In our case, the stationary target P has a range walk
which depends on its relative position to the space-borne

transmitter and ground-based receiver. Next, we will derive
the RCM for the following particularities of the bista-
tic acquisition setup: stationary receiver, the distance from
the imaging area to Rx is much smaller than to the Tx.
The semimonostatic component of the range variation
Rr,_p(n) is depicted by (4)

Re—p () = \/ (R )" + (Vaan)” “)

Since the processed azimuth time covers many apertures,
the second-order approximation of the Taylor expansion in
(5) is no longer valid for the semimonostatic phase history

o0
Rrp() =R} _p+ > yi™nt
k=1

o0
Rr_p () = R) _p + > 7"n". )
k=1
However, because the range compression operator uses a signal
which has a similar range azimuth coupling as the one from
the echo channel, the high order terms may be neglected
for s,.(z, 77). Also, the previously mentioned equivalent range
history is given by (6)

Rp(n) = Rr,—p(n) + Rp_g, — Ry, (1). (6)

By introducing (5) in (6) the following linear approximation
of the equivalent bistatic range variation is obtained (7):

Ry() = R _p+ Rp—r, — RY_g + (177 =75y
= R(})’ + Vrez?- 7

As a consequence of the linear approximation in (7),
the azimuth bandwidth is extremely narrow. Therefore,
the SAR image may be simply obtained by projecting range
compressed data along cross-range dimension in the Fourier
domain. This property of azimuth compression through fast
Fourier transform (FFT) basis along with the assumption of
scene spatial sparsity justifies the possibility of the azimuth
profile recovery by CS with Fourier sparsifying dictionary.

From (7), it may be seen that the longer the multiaperture
interval, the higher the range walk effect. Since we aim to
process each iso-range profile with CS, an RCMC step is
necessary.

Furthermore, the RCMC is performed by KT. The range
compressed data are Fourier transformed over the range direc-
tion. Its analytic form, S(f,#) in (8), is derived using the
stationary phase approximation

0
By introducing (7) into (8), we get

RO
S(fn) = A(f, n) x exp {—47TJ'C—;D(f + Fc):|

|: . Vrez!]
x exp|—4rj
o

(f+Fc):|- ©)

The second exponential term in (9) illustrates the coupling
between range and azimuth

7 (10)
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Fig. 3. Range compressed phase history versus reramped phase of a point-

like scatterer.

The range-azimuth linear coupling is canceled on the modified
azimuth time axis #,, by rescaling the azimuth time # with the
range frequency-dependent term in (10). A similar transform
is employed for reversing the process. The scaling factor is
modified to ((f + F.)/F.). The main advantage of this RCMC
technique is that it works with no prior information about the
range migration slope.

B. Azimuth Reramping

The Fourier-based sparsity assumption on the azimuth direc-
tion discussed in Section II-A is limited to small integration
intervals. Thus, a more robust approach should be consid-
ered. In Fig. 3, the simulated unwrapped phase history (after
range compression—RC) of a point scatterer validates the
assumption of extremely narrow azimuth bandwidth (¢rc(7))
employed in [7] and consolidates the proposed methodol-
ogy given the expanded bandwidth associated with the blue
parabola (¢rc-moaif(77)) in Fig. 3. The latter is obtained using
the synchronization channel phase history. Both phase histories
are defined in (13)

RTA—P(ﬂ))

€o

Rg,—p
<o
Rr,—g, (77)>

€o

The azimuth profile of a scatterer P in the scene, ypgrc(7)
is given in (11) whereas the modified complex valued profile
YP-RCpoginea (1) 18 defined in (12). Z(#) accounts for the effects
of the azimuth antenna pattern and the variation of the scat-
terer’s radar cross section in slow time. By reducing the phase
term corresponding to the time-varying distance between the
transmitter and the stationary receiver, we obtain the modified
phase history (12) or the reramped azimuth phase

. Rr._p(n)
yP'RCmodif(”) = Z(”/) exp(—27rj FCT

Rp _
xexp(—ZEchiR’“ ”('7)>. (12)
co

yere(n) = Z(n) eXp(—Zﬂj F,

X exp(—anFC

xexp(—i—anFC (1Y

In (12), the term Rk _p(#) is a constant, thus the azimuth
phase history variation is given only by Ry, _p ()

¢pre(n) = L(yprc(n))

¢P'Rcmndif (77) =/ (yP—RCmodif (7])) . (13)
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Since this distance variability is considered only one way
(not two way as in monostatic), the resulted cross-range
resolution is usually half that in the monostatic case. However,
by considering more than one aperture for focusing, the reso-
lution would be remarkably improved. In real-world contexts,
the signal from many apertures is received either from the
transmitter sidelobes or from side sections on the main lobe
for multiswath scanning modes. The latter case occurs when
a multiswath scanning mode is employed (e.g., TOPSAR
and ScanSAR). Thus, the entire azimuth response of a target
looks “chopped” and also contains subintervals with low SNR.
Consequently, a recovery/enhancement algorithm should be
applied before azimuth focusing. Otherwise, unwanted grating
lobes will affect the final SAR image.

III. COMPRESSIVE-SENSING RECONSTRUCTION
A. CS General Framework

The theory of CS [14] guarantees the perfect reconstruction
of the original signal x from less samples than the lower bound
established by the Nyquist sampling theorem. The classic
model of CS is depicted by (14). In (14), ® € C"*? denotes
the measurement matrix,¥ € C"" is the over-complete
sparsifying basis, x € C" and y € C? represents the original
signal and the available samples, with p < n whereas € € C?
is a vector modeling the noise

y=®Va+e€ =0ua+e€. (14)
The sparse representation of x is depicted in (15)
x =V, |lall=K. (15)

In (15), K denotes the sparsity degree and formally is
depicted by L( norm (cardinality of nonnull coordinates subset
of o).

The problem of recovering x starts with solving (16) and
then replacing the outcome into (15)

min |y — a3, st fefo =K. (16)

The recovery of the original signal x is guaranteed if ®
satisfies the Restricted Isometry Property (RIP) and the Mutual
Coherency Property (MCP) [13], [28]. Nevertheless, the recov-
ery algorithms impose various lower bounds regarding the
sufficient number of measurements relative to the worst cases
of RIP and MCP [29], [30].

The opportunistic bistatic multiaperture scenario provides an
intermittent extended azimuth response of the scene. To benefit
from this feature, without degrading SAR image quality,
the useful samples i.e., y (characterized by high SNR) should
be involved in the prediction of the missing samples. Thus,
by assuming the natural spatial scene sparsity, the answer for
this problem may be provided by the CS tools.

B. CS Solvers Overview

The L constraint makes the CS problem NP-hard. Thus,
many CS solvers emerged based on its convex relaxation
L (least absolute shrinkage and selection operator (LASSO)
[31], Dantzig Selector [32], Basis Pursuit and, Basis Pursuit
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Denoising [33]). Typically, to solve such problems either
greedy algorithms or convex/nonconvex relaxations may be
employed. Out of the first category, orthogonal matching pur-
suit (OMP) [34], regularized OMP (ROMP) [35], generalized
OMP (GOMP) [36], CoSaMP [37], iterative hard thresholding
(IHT) [38], subspace pursuit (SP) [39], conjugate gradient
iterative hard thresholding (CGIHT) [40], hard thresholding
pursuit (HTP) [41], SWAP [42], and correntropy matching
pursuit (CMP) [43] will be further discussed. In the category
of convex relaxed approaches, Approximate Message Passing
(AMP) [44], SPGL1-BPDN [45], and fast iterative shrinkage-
thresholding algorithm (FISTA) [46] algorithms are evaluated.
Finally, the BCS algorithm [47], Iterative Reweighted Least
Squares (IRLS) [48], and Iterative Jumping Threshold (IJT)
[49] with L,/ penalty are considered representatives for
nonconvex relaxation-based CS solvers.

1) Greedy Solvers: The main idea of the greedy algorithms
is to iteratively select the dictionary atoms having the best
correlation coefficients. The main differences between them
are the number of dictionary atoms kept at each iteration and
the moment when the solution (usually a least square estimate)
is computed (at each iteration or in the end). ROMP [35]
and GOMP [36] are advanced alternatives for OMP which
provide better reconstructions either by using a regularization
step or by updating the support vector set with multiple atoms.
In contrast to OMP, some of the atoms selected at one iteration
may be dismissed until the final result is computed. Most of
the greedy algorithms use the degree of correlation between
the residual and the basis vectors to select the candidates from
the sparsifying dictionary and the final solution is computed as
a least-squares (LS) estimate of the underdetermined system.
CoSaMP [37] first identifies the atoms that have the greatest
degree of similarity with the residual and then updates the
support set with the newly found vectors. Then an intermediate
LS solution is computed. At this point, the pruning step is
applied. Thus, only the largest coefficients from the solution
are retained and finally, the LS solution is reevaluated. The
main differences between SP [39] and CoSaMP are related
to the number of selected atoms (SP is less complex than
CoSaMP) and the threshold used in the pruning step. Since
both CoSaMP and SP select multiple dictionary vectors, they
are considered parallel greedy algorithms. CoSaMP/SP are not
suitable for CS frameworks with low-rank measurement matrix
as is the case of narrow-band azimuth signal recovery using
chirp-based sensing matrix. IHT algorithm is an iterative algo-
rithm introduced in [38]. It encourages the biggest coefficients
obtained at each step by using the hard-thresholding nonlinear
function. The intermediate solution is achieved using (17)

T = S(® + 210" (y — O1))). (17)

In (17), S denotes the shrinkage operator whereas A accounts
for the amount of change at each iteration and (.)” denotes
the Hermitian transpose operator. IHT is less computational
demanding than other nonconvex solvers (e.g., IRLS [48],
IRL1 [50]), therefore IHT is suitable for large scale problems.
HTP [41] and its variants fast hard thresholding pursuit
(FHTP) and normalized hard thresholding pursuit (NHTP)
combine ideas from both CoSaMP and IHT. SWAP algo-
rithm proposed in [42] is a greedy solver that should be

provided either an initial set of support vectors or a simple
and fast algorithm (e.g., OMP) to generate the initial guess.
On each iteration, the support set is modified in such a way
a cost function is optimized. Hence, SWAP offers a good
solution to the L, constrained problem even if the atoms
in the measurement matrix are correlated. However, SWAP
has a higher computational complexity than the other greedy
solvers because of its “brute-force”/combinatorial manner of
reaching the solution. Correntropy Matching Pursuit (CMP)
was recently introduced in [43]. CMP replaces the mean square
error by the correntropy cost function. In this way, the effect
of the outliers is mitigated and also accounts for the false
Gaussianity assumption on the errors.

2) Nonconvex Relaxation Solvers: The inversion problem of
CS may be also solved by transposing it in terms of Bayesian
formalism, as in BCS [47]. The basic idea of the IRLS
algorithm [48] is to obtain an approximate sparse solution by
solving an ensemble of weighted least squares problems. Each
basis vector is assigned a weight and each iteration the weights
are adjusted. Finally, the solution is computed via (18), where
0 is a diagonal matrix containing the weights

= 00"egel)'y. (18)

DT [49] employs a sub unitary norm Lg, (0 < g < 1)
as nonconvex penalty. Innovative jump discontinuous thresh-
olding functions are also used in IJT. Even though they are
more difficult to solve than the nonconvex penalties, subunitary
norm constrain forces the solution to be sparser than the
convex regularization constraints based on L; norm.

3) Convex Relaxation Solvers: AMP is an iterative thresh-
olding algorithm proposed in [44], which aims to reduce the
lower bound of sparsity-undersampling ratio for which the
reconstruction is guaranteed. It provides qualitative results
on a CS framework involving structured sensing dictionaries
(Fourier, circulant matrices, and Toeplitz). SPGL1-BPDN [45]
offers a fast convergence and an accurate estimate under high
SNR conditions. FISTA [46] is a version of ISTA [51] in which
the low convergence rate specific to this category of solvers
is improved.

The greedy algorithms are preferred instead of the con-
vex/nonconvex approaches due to their fast convergence. Yet,
their major disadvantage is related to the sparsity degree
estimation. The overestimation of K leads to the failure of
the reconstruction. IRLS, AMP, SPGL1, and FISTA provide
proper results under low to mild noise conditions (SNR >
0[d B]). IRLS proves the least robustness to noise. By contrast,
most of the greedy algorithms succeed in recovering a signal
similar to an azimuth profile depicted by (12) as long as the
lowest nonzero element in & exceeds the noise power [52].

C. Proposed Sparsifying Dictionary

The proposed framework stands on the idea of a chirp-
based sparsifying dictionary i.e., WCHRP Yet, for comparison,
the processing flow is also adapted for the Fourier basis
i.e., WFFT. Both complex-valued basis satisfy the RIP and the
MCP [13]. The atoms in WEHRP are constructed using the
transmitter orbital information (position, velocity and, acceler-
ation) and a reference point (usually mid-scene position). First,

the reference phase history WEHRP is computed. Then, each
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Fig. 4. Sparse multiaperture reconstruction framework: CS-CHIRP.

dictionary atom \IIiCHIRp is obtained using (19). In (19), PRF
refers to pulse repetition frequency whereas naperure denotes
the considered aperture time interval, A is the wavelength
whereas rect() represents the boxcar function (zero-centered)
having the impulse width equal to the denominator of its

argument
1
CHIRP CHIRP ;
i1 21

— 557 R — 557

= rect Uy vd exp —27tj—P(’7 PRF)
naperlure A

19)

Both chirp and Fourier matrices are Toeplitz and are highly
structured. The orthogonality of the vectors in the Fourier
matrix is guaranteed since they are all complex-valued har-
monics whereas, in the case of the chirp-based matrix, this
property strongly depends on the explored bandwidth. This
assumption holds for a wide azimuth frequency span as is the
case of a multiaperture acquisition. Since we assume the scene
is sparse in the space domain, ® is a partial identity matrix.

IV. MULTIAPERTURE EXPLORATION

In this section, we summarize some methods suitable for
solving the problem of harnessing sparse multiaperture inter-
vals for SAR image formation and we give the details of
the proposed CS with WCHIRP workflow presented in Fig. 4.
In the following CS-CHIRP and CS-FFT refer to solvers used
for the proposed problem based on CS with linear frequency
modulated basis vector and Fourier dictionary, respectively.

A. Autoregressive Model

A common method for filling the gaps in audio signals is
by using autoregressive (AR) models [53]. However, there
are some constraints imposed on the extend of the “gap”
under reconstruction [54]. AR models can be employed in the
multiaperture processing chain for azimuth profile recovery.
Note that AR will fail for large reconstruction intervals since
the short-term stationarity assumption is no longer verified.
For the sake of comparison, we use Forward-Backward trained
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AR models. In plain terms, the missing samples are extrap-
olated from both existing sets of points surrounding the gap.
The AR model order selection is given by the Akaike infor-
mation criteria [55].

B. CS-FFT

A simple CS-based way for solving our problem is to con-
sider the assumption of spatial sparsity and to use the Fourier
basis as a sparsifying dictionary. Although this approach
significantly reduces the computational complexity it faces the
following issue: for large integration intervals, the extremely
narrow band assumption on cross-range direction fails. More-
over, it is more sensitive to noise than the CHIRP-based
method.

C. Proposed Processing: CS-CHIRP

The main goal of this article is to derive a CS-based
scheme for azimuth profile reconstruction, such that the
multiple-aperture available data contribute to azimuth reso-
lution enhancement. We evaluate two CS-based approaches
and the AR-based recovery technique. Before casting the
data to one of those frameworks, the signals from the two
receiving channels data are preprocessed. Thus, the following
operations are performed: azimuth antenna pattern (AAP)
compensation, range compression as discussed in Section II
and azimuth resampling. AAP compensation may be easily
merged into the general CS frame but it needs to be carefully
performed since TOPS mode introduces a range-dependent
Doppler centroid shift caused by steering of the transmitter
antenna beam. The last procedure is needed as a consequence
of different pulse repetition frequencies used in the TOPS
mode for each subswath. Next, the KT transform [22] is
applied for linear RCM removal. Since range and azimuth
have been decoupled, the reconstruction algorithm may be
applied independently on each iso-range. The proposed work-
flow reramps the range compressed data, then constructs the
CHIRP sparsifying dictionary according to the azimuth extent
of the multiaperture interval and a specific mid-range swath
using (19). After a large-scale suitable CS solver algorithm
is applied, the reconstructed data is deramped. In order to
generate the final SAR image by BP algorithm [27], the inverse
KT restores the initial linear range walk.
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Fig. 5. Aligned hyperbola scenario (Study Case I)-corresponding to an
ascending orbit of Sentinel-1. (a) Acquisition geometry. (b) Google Earth
optical image of the covered area (Bucharest, Romania).

D. Computational Complexity

The computational complexity of the proposed multiaper-
ture gap reconstruction framework is given by two KT trans-
forms, two Hadamard multiplications, and the computational
complexity of the CS solver. For most of the greedy solvers
(e.g., OMP, ROMP, GOMP, CoSaMP, SP), since K <« M < N
the computational amount is O(KM N). That is because the
correlations between the residues and the dictionary atoms
are the most resource-consuming operations. Because of its
“brute-force” manner of refining the solution, SWAP is one
of the least computational effective solvers. Unlike Matching
Pursuit approaches, the algorithms based on convex/nonconvex
relaxations are more computationally demanding. Among the
ones analyzed in this work, the fastest are SPGL1-BPDN and
IJT-L,/3. Further, the reramping and deramping processes are
characterized by O(N?). The KT transform implies applying
the Fourier Transform over the range direction, O (N; log(Ny)),
where N is the number of range samples. For regular SAR
system parameters, N; < N. Finally, the linear interpolation
step may be efficiently computed with complexity O(N?).

V. EXPERIMENTS AND VALIDATION

In this section, we assess the validation of the proposed
processing flow. First, simulated data are fed to the work-
flow in order to evaluate the reconstruction accuracy of the
“chopped” azimuth profile. Then, two real-world data sets
are processed with the proposed framework. The first rep-
resents the particular case in which the hyperbolic phase
history corresponding to the receiver synchronization channel
(Rx-Tx range) and the Tx-target-Rx semimonostatic hyperbola
are azimuth time-aligned. Such an acquisition scenario is
sketched in Fig. 5. In other words, the projection of the Tx-
Rx line segment onto the Geo-referenced grid is approximately
colinear with the receiver LOS (the velocity vector of Sentinel-
1 is orthogonal to the Rx LOS). The acquisition setup is
configured as follows: COBIS is located on the rooftop of the
University “Politehnica” of Bucharest (UPB) central building

——geocoded grid
 COBIS Rx
* Mill Lake Peninsula
= Cathedral Plaza

|—South

—West

{1 |[—>Towards Sentinel 1
"\ |==Normal to grid

Rx-Tx projection on grid

(b)

Fig. 6. Miss-aligned hyperbola scenario (Study Case 2)-corresponding to
an ascending orbit of Sentinel-1. (a) Acquisition geometry. (b) Google Earth
optical image of the covered area containing the Mill Lake.

in Bucharest having its receiving echo channel oriented toward
Cathedral Plaza [see Fig. 5(b)]. In Fig. 6, the second real-
world data set acquisition setup is shown. This presents a more
general case in which the hyperbolic phase from the receiver
synchronization channel is no longer aligned with the phase of
the illuminated targets. That is why for this case a special range
dependent AAP compensation processing is applied. COBIS is
located on Building B of the UPB campus and the echo chan-
nel is oriented toward Mill Lake, Bucharest [see Fig. 6(b)].
Generally, the hyperparameters of the CS solvers ensure both
convergence and estimation accuracy [56]. Thus, for the real-
world numerical experiments, they are tuned to offer the best
estimate. The greedy solvers halt when the residue decreases
under 10% from the initial energy. Concerning the simulated
data tests, we have used the real sparsity degree as input
for the greedy solvers whereas for the convex/nonconvex
solvers the maximum number of iterations was limited to
100. The acquisition scenarios displayed in Figs. 5 and 6
ensure an obtuse angle formed by Sentinel-1-COBIS-area of
interest. Hence, the reference channel is the first to receive
the transmitted signal, then depending on its energy, the echo
channels are triggered.

A. Empirical Imaging Scene Extent

The LFM basis proposed for the CS frame is determined
usually according to the scene center and it ensures the
level of sparseness for targets in the neighborhood of the
reference point. Therefore, we carry out an empirical analysis
regarding the scene extent for which the sparsity assumption
holds with no upgrade of W. In this sense, only the azimuth
chirp slope has been analyzed. Fig. 7 reveals that for the
two scenes centered on Mill Lake Peninsula(Bucharest) and
Cathedral Plaza (Bucharest) containing an area of 1 km?,
the azimuth frequency slope varies with less than 0.045% for
a multiaperture interval of 1.6805 s. However, for larger scene
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Fig. 7. Azimuth frequency slope variation on (a) Study case 1 and (b) Study
case 2.

extents or for higher reconstruction accuracy, this parameter
should be accordingly updated.

B. Simulated Bistatic Data

In this section, we present the performance comparison of
different reconstruction methods. More precisely, the proposed
processing flow is adapted also for CS recovery with FFT spar-
sifying basis. The solvers presented in Section III-B are then
employed. Apart from CS-based recovery, we also evaluate
the AR-based method. Simulations are performed using real-
world scenario parameters. Some of the parameters involved
are given in Table I. More precisely, the ones corresponding
to the second real-world experiment because it explores the
case with the biggest degree of generality.

The accuracy parameters presented in Fig. 8 were obtained
by considering a single point scatterer i.e., the system point
spread function (PSF) and SNR = 3 dB. The following
quality parameters were evaluated: the root mean square error
(RMSE), the mean absolute phase error (MAPE), the peak-
to-sidelobe ratio (PSLR), and the integrated to sidelobes ratio
(ISLR). For the results displayed in Fig. 8(a), and Fig. 8(b)
represents the gaps in the aperture emulating the ones in
the second study case representing &~ 40% of all samples, and
the accuracy variation is strictly dictated by the various noise
samples generated over 100 iterations. Before reconstruction,
we have altered the ideal signal with white Gaussian noise
with SNR = 3 dB. The mean (thick bars) and the standard
deviations (thin segments) of the quality parameters are dis-
played. In Fig. 8(a) and (b), we have also tested the robustness
of the recovery against gaps sizes and positions. Thus, we have
randomly generated seven gaps representing 30% to 50% of
the entire data over 250 trials. Remarkably, that the solvers
based on convex relaxations are generally more sensitive to
noise (IRLS is the most noise-dependent). A smaller SNR
value would drastically decrease their reconstruction accuracy.
Except for IRLS, all CS recoveries based on WHRP outper-
form AR and CS-FFT. In contrast, the FFT-based reconstruc-
tions using greedy approaches fail since we have employed
the real sparsity level i.e., K = 1 and this assumption is not
satisfied for the representation of extended-aperture data in the
Fourier domain. In Fig. 8(a) and (b) the most accurate results
are provided by the greedy solvers. SPGL-BPDN fails under
poor prior noise level estimation. Yet SPGL1-BPDN together
with IJT-L,,3 are suitable for large-scale problems due to their
sped-up convergence. By simultaneously considering RMSE,
MAPE, PSLR and, ISLR, the best recovery is obtained by
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TABLE I
SIMULATION AND REAL WORLD DATA PARAMETERS
Parameter Value/Description
F. 5.405 GHz
Fs 250 MHz (Study case 1), 122.88 MHz (Study case 2)
BW 50 MHz
PRF 2 KHz (after resampling)

IJT-Ly/3. The subunitary norm promotes the sparsity more
than the L; norm whereas the jumping thresholding functions
make this algorithm act in a quasi-greedy manner. However for
larger noise levels 1JT-L,/3 also fails. Remarkably, CoSaMP
manages to generate a reliable outcome. However, compared
to the other greedy solvers, CoSaMP is more sensitive to the
sparsity degree miss-estimation, and also it is less efficient
when the CS framework employs a redundant dictionary as
may be the case of smaller aperture extents.

For the experiments with real-world data, we will mainly
focus on the results provided by the highlighted approaches.
If some other algorithm provides a remarkable result, it will
be also discussed.

C. Real World Bistatic Data

In this section, we assess an extensive analysis regarding
the benefits of the proposed CS recovery against the raw
integration, AR and, CS-FFT.

1) Study Case I: For this study case, the receiver echo
antenna is oriented toward the east [see Fig. 5(b)]. The bistatic
SAR images in Fig. 9 illustrate an urban area of 950 m x
2350 m from Bucharest, Romania. In Fig. 9(a) the focused
SAR image is obtained from a single aperture interval
(0.323 5). The raw integration of the multiaperture interval
(1.7905 s) is shown in Fig. 9(b). The SAR images resulted
after reconstruction of the azimuth profiles are presented
in Fig. 9(c)—(i). All methods manage to reduce the effect of the
grating lobes. Yet some important observations should be high-
lighted: CS-FFT methods fail (strong scatterers’ main lobes are
smeared in the azimuth direction) even though it seems to gen-
erate a “clean” SAR image. Generally, the CS-CHIRP methods
outperform CS-FFT and AR reconstructions. To prove this, not
only by visual inspection, further local analysis is carried on.
The area under test is marked with a red rectangle in Fig. 9(a)
(200 m x 200 m). It represents a spatial sparse area containing
some strong point scatterers from Cathedral Plaza Tower. First,
the proposed processing chain is evaluated by introducing
two artificial gaps in the single aperture interval. The gaps
have equal lengths and are centered at one quarter and three
quarters in the aperture emulating a likely multiaperture real
data. We have employed 646 range profiles (0.323 s) and at
each of the ten iterations, 50 of them were removed, corre-
sponding to 0.025 s. Therefore, the tenth iteration considers
two gaps of 0.125 s each. The remaining data were fed to the
reconstruction algorithms. In Fig. 10(a) and (b) are displayed
the RMSE of the magnitude component and the recovered
phase of the most intense scatterer relative to the SAR image
focused using the entire single aperture interval.

Out of the CS-FFT-based approaches, FISTA provides the
most accurate result. However, FISTA-W™T does not even
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Fig. 8. Reconstruction accuracy on simulated data obtained by various CS solvers using either WFFT op WCHIRP -4 RMSE. (b) MAPE. (¢) PSLR. (d) ISLR.
The values are sorted such that the reconstruction accuracy decreases. Each category of solvers has at least one representative approach in the list of highlighted

algorithms.

outperform the raw integration. In the CS-CHIRP category,
the greedy solvers prove a quasi-invariant response to the gap
size. IJT-L,/3 performance linearly decreases with respect to
the extent of gaps whereas for AR and ROMP, the RMSE
increases exponentially. Since the single aperture interval has
a high SNR the SPGL1-BPDN has high efficiency in recon-
structing the azimuth profiles (both magnitude and phase).
Furthermore, we evaluate the behavior of the recovery algo-
rithms over a multiaperture interval of 1.7905 s (3581 range
profiles). The gaps in this interval correspond to critically low

SNR (regions centered on the null points in the AAP). All
the gaps represent 24.46% from the entire data. The location
of the removed profiles can be identified in Fig. 11(a) (dark
blue stripes). Some examples of reconstructed azimuth profile
results for the region centered on Cathedral Plaza are displayed
in Fig. 11(b)—(h).

The greedy solvers provide similar reconstructions whereas
some of the convex/nonconvex solvers fail either because the
SNR is too low or because the gaps are too large. In Fig. 11(b)
the AR results highlight its limitation as the largest gap
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Fig. 10.  Quality parameters evaluation on single aperture interval with
increasing artificial gaps (Study Case 1). (a) Magnitude RMSE. (b) Recon-
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Fig. 11.  Azimuth profile reconstruction highlighted on range compressed
date centered on Cathedral Plaza. (a) Raw data. (b) AR. (c) CoSaMP-YCHIRP
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is partially recovered. In perturbed scenarios, IJT-L;/3 and
SPGL1-BPDN may amplify the noise as shown in Fig. 11(g)
whereas the recovery achieved by IRLS displayed in Fig. 11(f)
proves it is unsuitable for noisy cases. Fig. 11 indicates that
the range migration over the entire multiaperture interval is
extremely small. However, the RCMC step is compulsory
otherwise, artifacts may appear in the final SAR image.

The noisy aspect of the naive integration Fig. 12(b) is
suppressed by all the greedy methods. Nevertheless, our
proposed workflow is superior to AR and CS-FFT in both

Longitude

(b)

Longitude Longitude

(e)

Longitude

(€9) (h) ®

Fig. 12. Normalized bistatic SAR images (in dB [-40,0]) over the patch cen-
tered on Cathedral Plaza. (a) Single aperture. (b) Raw data integration. (c) AR.
(d) CoSaMP-¥CHIRP ¢y GOMP-PCHIRP () CMP-PCHIRP (o) GOMP-YFFT,
(h) UT-Ly/3-PCHIRP_ (i) SPGL1-BPDN-CHIRP,

resolution enhancement and grating lobes suppression. The
outcomes provided by AR, SPGL1-BPDN, and IJT-L;/3 shown
in Fig. 12(c), Fig. 11(h), and Fig. 12(h) partially mitigate
the sidelobes because the largest gaps are erroneously recon-
structed. On the other side, CoSaMP, GOMP, and CMP
[Fig. 12(d)—(f)] may achieve high-quality reconstructions over
sparse scenes confirming their robustness to noise and gap
extend.
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images shown in Fig. 12.

Fig. 14.  Multiaperture focusing overlaying Google Earth optical image.
Sparse areas are marked by red (Mill Lake dam) and green (Mill Lake
peninsula) frames.
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Fig. 15. Simplified acquisition geometry in geocoded grid coordinates.

Fig. 13 presents the normalized cross-range sections (in
dB) over the most powerful scatterer in the SAR images
in Fig. 12. The undesired sidelobe influence is reduced by
the CS-based processing flow. By harnessing a multiaperture
interval, the azimuth resolution at —3 dB is enhanced from
~16 m to ~3.25 m. However, the overall SAR image aspect is
strongly influenced by the presence of the grating lobes. The
best sidelobes suppression is achieved by CoSaMP, GOMP
and, OMP with WCHRP The average azimuth grating lobes
mitigation is ~14.90 dB relative to the SAR image obtained
by raw integration. AR achieves a sidelobe reduction with
~6.9 dB. The CS-FFT greedy methods fail for large inte-
gration intervals as displayed in Fig. 12(g). This happens
because, for an aperture length of 1.7905 s, the resulted
azimuth band of the range compressed data is 3.9 Hz. This
small azimuth bandwidth gathers eight frequency bins, thus,
the sparsity approximation in the Fourier domain is no longer
sustained (does not match the number of the point scatterers in
the scene). Nevertheless, since the nongreedy approaches do
not need an estimate of the sparsity degree, they manage to
provide more accurate results with FFT sparsifying dictionary
(FISTA-WFFT section in Fig. 13).

2) Study Case II: The sketch in Fig. 6 shows the acqui-
sition scenario for this study case. The receiver, located at

Fig. 16. Quality parameters evaluation for second study case. (a) RMSE.
(b) RPE standard deviation.

Azimuth tim

Fig. 17.  Range compressed image corresponding to second study case
illustrating reflected signal from Mill Lake peninsula and Mill Lake dam.
The zoomed area indicates the linear range walk of a strong scatterer.

[44.434063 N, 26.057119 E] has the echo channel main lobe
antenna oriented toward Mill Lake in Bucharest, Romania.
Unlike the first case, the Rx LOS is no more collinear with
the Rx-Tx segment. As illustrated in Fig. 17, for this case
the range cell migration step is essential before the gap-
filling processing block. Another significant difference to the
previous case is that the spatial sparsity assumption in the
ambiguity-free region is valid for fewer regions. As marked
in Fig. 14, only two areas in the neighborhood of the water
body will be considered in the following experiments: Mill
Lake dam (red frame) and Mill Lake peninsula (green frame).
Data were recorded on the 7th of March 2020. Another
particularity of this second study case is given by the AAP
compensation step. For each iso-range line, an updated version
of the AAP should be considered. The AAP linear shift in (20)
over range may be easily estimated from the misalignment
shown in Figs. 6 and 15. Specifically, the AAP shift slope is
given by the angle between the Rx LOS and Rx-Tx segment
projection on the focusing grid (f). Before considering a mul-
tiaperture interval we assess the same procedure of introducing
two synthetic gaps in the single aperture interval. The quality
parameters displayed in Fig. 16 were obtained by using the
main lobe pulses interval (0.35 s) and introducing two equal
gaps. The gaps were progressively enlarged by 0.0125 s each
over 10 iterations. The patch under test contains the Mill
Lake Peninsula (green frame in Fig. 14) and covers an area
of 500 m x 500 m

(20)

AAP, () ~ AAP (;7 . M)

| Vsat |

The performance parameters displayed in Fig. 16 confirm that
CS-CHIRP methods surpass AR and CS-FFT for larger gaps in
terms of RMSE for magnitude and relative phase error (RPE)
standard deviation.
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Fig. 18. Normalized bistatic SAR images (in dB [-25,0]) over the
patch centered on Mill Lake Dam (red frame). (a) Single aperture.

(b) Raw data integration. (c) AR. (d) CoSaMP-¥CHIRP ' (¢) GOMP-WCHIRP,
(f) CMP-¥CHIRP (o) GOMP-YFFT. (h) UT-L,/3. (i) SPGL1-BPDN-yCHIRP,

The CS-FFT reconstructions produced by the greedy solvers
reveal an unstable behavior. Except for CoSaMP and CGIHT,
all the greedy algorithms manage to achieve performances
similar to OMP, ROMP, and GOMP. The methods based on
belief propagation, i.e., BCS and AMP, in conjunction with
the CHIRP dictionary offer a precise recovery of the signal for
relatively small gaps. Using the FFT dictionary, the CS-solvers
do not obtain good enough results. The most competitive result
is provided by FISTA.

The two subregions marked in Fig. 14 are separately ana-
lyzed for a multiaperture interval of 1.68 s. A part of the
range compressed for this study case is illustrated in Fig. 17.
The zoomed area stresses the considerable linear range walk
whereas, in the left part, the AAP overlays the “chopped” data.
It worth noticing that the biggest gap lasts 0.4 s, almost twice
bigger than the largest gap in the Study Case I.

The first evaluated region presents the dam in the northwest
of Mill Lake. The area (700 m x 500 m) is centered on
[44.45945 N, 26.02005E]. In Fig. 18(c) the outcome provided
after AR reconstruction shows that it just manages to slightly
reduce the grating lobes. In contrast, the greedy CS-CHIRP
approaches [Fig. 18(d)—(f)] manage to enhance the resolution,
to preserve the “S” shape of the dam together with an
important attenuation of the sidelobes. The failure of CS-FFT
is emphasized in Fig. 18(g).

The second image covers a 500 m x 500 m area and is
centered on [44.45881 N, 26.02909 E]. Initially, the sidelobes
corresponding to the scatterers from the Mill Lake peninsula
cover a significant part of the water-body. Even though for the
structural part of the dam the failure of the CS-FFT method is
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Fig. 19. Normalized bistatic SAR images (in dB [-40, 0]) over the
patch centered on Mill Lake Peninsula (green frame). (a) Single aperture.
(b) Raw data integration. (c) AR. (d) CoSaMP-WCHIRP ' (¢) GOMP-@CHIRP
(H  CMP-YCHIRP (o) GOMP-PFFT.  (h)  IT-L,/;-PCHIRP,
(i) SPGL1-BPDN-yCHIRP,

not so obvious, in Fig. 19(g) it may be noticed that the SAR
image seems defocused. This artifact is produced by the poor
approximation of the azimuth narrow band in the context of a
large integration interval.

AR does not manage to reconstruct the bistatic azimuth
profiles corresponding to the Mill Lake Peninsula. In addition,
not even CS-CHIRP methods [Fig. 19(h) and (i)] based on
convex/nonconvex solvers do not achieve a great performance
in reducing the sidelobes. The accuracy is low because the
proportion of available data and also the SNR is smaller than
that in the context of the Study Case I. Even though the greedy
solvers may provide qualitative reconstructions [Fig. 19(d)—(f)]
they are more sensitive to AAP compensation error than other
categories of CS solvers. This lack of robustness is caused by
the residue update step which is performed by subtracting the
contribution of the very last selected dictionary atom(s).

VI. CONCLUSION

This article presented a CS-based methodology for reso-
lution enhancement in the context of an opportunistic bistatic
SAR imaging having Sentinel-1 as a transmitter and COBIS as
a ground-based receiver. The use of the CS concept for signal
reconstruction is essentially based on spatial sparsity assump-
tion on each iso-range and the existence of a chirp-based spar-
sifying dictionary. The framework exploits the opportunistic
acquisition properties of the data. First, low complexity and
effective RCMC algorithm (KT) is employed and then the
azimuth band is expanded using Sentinel-1 orbital parameters.
Furthermore, we choose to remove the range profiles with
low SNR and recover the missing azimuth samples by various
CS solvers in conjunction with a locally adapted chirp-based
sparsifying basis. An extensive list of greedy, convex and,
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nonconvex relaxation algorithms was discussed and compared.
The experimental results over diverse acquisition scenarios
demonstrate the effectiveness of the proposed method regard-
ing the following two aspects: cross-range resolution improve-
ment and grating lobes suppression.CS-CHIRP approaches
outperform the AR model and CS-FFT in terms of amplitude
RMSE and phase error. Moreover, as opposed to CS-FFT
which is strongly influenced by the length of the synthetic
aperture, AR which is pushed to the limit of its working
interval (50 ms), the proposed workflow proved to be quasi-
invariant to extent of the gaps.
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