
1

Self-supervised Change Detection in Multi-view
Remote Sensing Images

Yuxing Chen, Lorenzo Bruzzone, Fellow, IEEE

Abstract—The vast amount of unlabeled multi-temporal and
multi-sensor remote sensing data acquired by the many Earth
Observation satellites present a challenge for change detection.
Recently, many generative model-based methods have been
proposed for remote sensing image change detection on such
unlabeled data. However, the high diversities in the learned
features weaken the discrimination of the relevant change in-
dicators in unsupervised change detection tasks. Moreover, these
methods lack research on massive archived images. In this
work, a self-supervised change detection approach based on
an unlabeled multi-view setting is proposed to overcome this
limitation. This is achieved by the use of a multi-view contrastive
loss and an implicit contrastive strategy in the feature alignment
between multi-view images. In this approach, a pseudo-Siamese
network is trained to regress the output between its two branches
pre-trained in a contrastive way on a large dataset of multi-
temporal homogeneous or heterogeneous image patches. Finally,
the feature distance between the outputs of the two branches
is used to define a change measure, which can be analyzed by
thresholding to get the final binary change map. Experiments
are carried out on five homogeneous and heterogeneous remote
sensing image datasets. The proposed SSL approach is compared
with other supervised and unsupervised state-of-the-art change
detection methods. Results demonstrate both improvements over
state-of-the-art unsupervised methods and that the proposed SSL
approach narrows the gap between unsupervised and supervised
change detection.

Index Terms—Change Detection, Self-supervised Learning,
Multi-view, Sentinel-1/-2, Remote Sensing.

I. INTRODUCTION

CHANGE maps are one of the most important products of
remote sensing and are widely used in many applications

including damage assessment and environmental monitoring.
The spatial and temporal resolutions play a crucial role in ob-
taining accurate and timely change detection maps from multi-
temporal images. In this context, irrelevant changes, such as
radiometric and atmospheric variations, seasonal changes of
vegetation, and changes in the building shadows, which are
typical of multi-temporal images, limit the accuracy of change
maps.

In the past decades, many researchers developed techniques
that directly compare pixels values of multi-temporal images
to get the change maps from coarse resolution images [1]–
[3], assuming that the spectral information of each pixel can
completely characterize various underlying land-cover types.
Image rationing and change vector analysis (CVA) [2] are early
examples of such algebraic approaches. With the development
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of remote sensing satellite technology, the spatial and spec-
tral resolutions of remote sensing images have significantly
increased. In this context, the use of spectral information
only is often not enough to distinguish accurately land-cover
changes. Accordingly, the joint use of spatial context and
spectral information to determine the land-cover changes has
gained popularity. Many supervised [4] and unsupervised [5]
techniques have been developed in this context. Most of
them are based on image transformation algorithms where the
crucial point is to obtain robust spatial-temporal features from
multi-temporal images. Recently, deep learning techniques and
in particular Convolutional Neural Networks (CNNs) methods
[6] have been widely used in this domain. CNNs allows one to
get effective and robust features for the change detection tasks,
achieving state-of-the-art results in a supervised way [7].

Most of the past works are limited to the use of single
modality images that are acquired by the same type of
sensor with identical configurations. Cross-domain change
detection has not received sufficient attention yet. Current
Earth Observation satellite sensors provide abundant multi-
sensor and multi-modal images. On the one hand, images taken
by different types of sensors can improve the time resolution
thus satisfying the requirement of specific applications with
tight constraints. A possible example of this is the joint use
of Sentinel-2 and Landsat-8 images for a regular and timely
monitoring of burned areas [8]. However, the differences in
acquisition modes and sensor parameters present a big chal-
lenge for traditional methods. On the other hand, multimodal
data are complementary to the use of single modality images
and their use becomes crucial especially when only images
from different sensors are available in some specific scenarios.
This could be the case of emergency management when, for
example, optical and SAR images could be jointly exploited
for flood change detection tasks [9]. In this scenario, methods
capable of computing change maps from images of different
sensors in the minimum possible time can be very useful. This
has led to the development of multi-source change detection
methods, which can process either multi-sensor or multi-modal
images.

Recent success of deep learning techniques in change detec-
tion is mainly focused on supervised methods [10]–[12], which
are often limited from the availability of annotated datasets.
Especially in multi-temporal problems, it is expensive and of-
ten not possible to obtain a large amount of annotated samples
for modeling change classes. Thus, unsupervised methods are
preferred to supervised ones in many operational applications.
The limited access to labeled data has driven the development
of unsupervised methods, such as Generative Adversarial
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Network (GAN) [13] and Convolutional AutoEncoder (CAE)
[14], which are currently among the most used deep learning
methods in unsupervised change detection tasks. Nevertheless,
some studies have shown that such generative models overly
focus on pixels rather than on abstract feature representations
[15]. Recent researches in contrastive self-supervised learning
[16]–[19] encourage the network to learn more interpretable
and meaningful feature representations. This results in im-
provements on classification and segmentation tasks, where
they outperformed the generative counterparts.

In this work, we present an approach to perform unsuper-
vised change detection in multi-view remote sensing images,
such as multi-temporal and multi-sensor images. The pro-
posed approach is based on two state-of-the-art self-supervised
methods, i.e., multi-view contrastive learning [16] and BYOL
[18], that are exploited for feature representation learning.
To this purpose, a pseudo-Siamese network (which exploits
ResNet-34 as the backbone) is trained to regress the output
between two branches (target and online sub-networks) that
were pre-trained by a contrastive way on a large archived
multi-temporal or multi-sensor images dataset. In addition, we
introduce a change score that can accurately model the feature
distance between bi-temporal images. Changes are identified
when there is a significant disagreement between the feature
vectors of the two branches.

The rest of this paper is organized as follows. Section II
presents the related works of unsupervised change detection in
multi-view images including homogeneous and heterogeneous
images. Section III introduces the proposed approach by
describing the architecture of the pseudo-Siamese network, the
two considered contrastive learning strategies and the change-
detection method. The experimental results obtained on five
different datasets and the related comparisons with supervised
and unsupervised state-of-the-art methods are illustrated in
Section IV. Finally, Section V draws the conclusions of the
paper.

II. RELATED WORKS

In the literature, unsupervised change detection techniques
in multi-view remote sensing images can be subdivided into
two categories: homogeneous remote sensing image change
detection and heterogeneous remote sensing image change
detection. Homogeneous image change detection methods are
proposed to process multi-temporal images acquired by the
same sensor or multi-sensor images with the same character-
istics. Heterogeneous image change detection methods focus
on processing heterogeneous images, which are captured by
different types of sensors with different imaging mechanism.

CVA [2] and its object-based variants are one of the most
popular unsupervised homogeneous change detection methods.
They calculate the change intensity maps and the change
direction for change detection and related classification. An-
other popular method is the combination of PCA and K-
means (PCA-KM) [20], which transforms and compares the bi-
temporal images in the feature space, and then determine the
binary change map using k-means. In [21], Nilsen et al. treated
the bi-temporal images as multi-view data and proposed the

multivariate alteration detection (MAD) based on canonical
correlations analysis (CCA), which maximizes the correlation
between the transformed features of bi-temporal images for
change detection. Wu et al. [22] proposed a novel change
detection method to project the bi-temporal images into a
common feature space and detected the changed pixels by
extracting the invariant components based on the theory of
slow feature analysis (SFA). As for homogeneous multi-sensor
images, Solano et al. integrated CVA into a general approach
to perform change detection between multi-sensor very high
resolution (VHR) remote sensing images [23]. In [24], Ferraris
et al. introduced a CVA-based unsupervised framework for
performing change detection of multi-band optical images with
different spatial and spectral resolutions.

However, the traditional methods are easily affected by the
irrelevant changes due to their weak feature representation
ability in presence of high-resolution remote sensing images
[25]. To get a robust feature representation, deep learning
techniques are widely used in remote sensing change detection
tasks. In [26], Liu et al. projected the bi-temporal images into
a low-dimension feature space using the restricted Boltzmann
machines (RBMs) and generated change maps based on the
similarity of image feature vectors. Du et al. [27] developed
the slow feature analysis into deep learning methods to cal-
culate the change intensity maps and highlight the changed
components in the transformed feature space. Then the binary
change map was generated by image thresholding algorithms.
Instead of pixel-based analysis, Saha et al. [6] used a pre-
trained CNNs to extract deep spatial-spectral features from
multi-temporal images and analyzed the features using tradi-
tional CVA. As an unsupervised learning method, generative
models also are used in unsupervised change detection. Lv et
al. [28] adopted a contractive autoencoder to extract features
from multi-temporal images automatically. In [29], Ren et al.
proposed to use GAN to generate the features of unregistered
image pairs and detected the changes by comparing the
generated images explicitly.

Unlike homogeneous change detection, the greatest chal-
lenge in unsupervised heterogeneous change detection is
to align the inconsistent feature representation of different
modality images. This requires transforming heterogeneous
representation into a common feature space where performing
change detection. There are a few traditional methods that
focus on this transformation of different modalities. Gong
et al. [30] proposed an iterative coupled dictionary learning
method that learns two couple dictionaries for encoding bi-
temporal images. Luppino et al. [31] proposed to perform
image regression by transforming images to the domain of
each other and to measure the affinity matrice distance, which
indicates the change possibility of each pixel. Sun et al. [32]
developed a nonlocal patch similarity-based method by con-
structing a graph for each patch and establishing a connection
between heterogeneous images.

Because of the ability of CNNs in feature learning, more
and more techniques based on deep learning were also pro-
posed in this area. Zhao et al. [33] proposed a symmetrical
convolutional coupling network (SCCN) to map the discrim-
inative features of heterogeneous images into a common
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feature space and generated the final change map by setting
a threshold. Similarly, the conditional generative adversarial
network (cGAN) was also used to translate two heterogeneous
images into a single domain [34]. Luppino et al. used the
change probability from [31] as the change before to guide
the training of two new networks, the X-Net with two fully
convolutional networks and the adversarial cyclic encoders
network (ACE-Net) with two autoencoders whose code spaces
are aligned by adversarial training [35]. In [36], they further
jointly used domain-specific affinity matrices and autoencoders
to align the related pixels from input images and reduce the
impact of changed pixels. These methods also work well for
homogeneous multi-sensor images.

III. METHODOLOGY

In this section, we present the proposed approach to multi-
temporal and multi-sensor remote sensing image change de-
tection based on self-supervised learning.

A. Problem Statement

Change detection is the operation of distinguishing changed
and unchanged pixels of multi-temporal images acquired by
different sensors at different dates. Let us consider two images
I1 and I2 acquired at two different dates t1 and t2, respectively.
The aim of change detection is to create a change intensity
map that contains the most salient changed pixels, from multi-
view images I1 and I2. As described in related works, the
crucial point in this task is to align the features of unchanged
pixels or patches from the different view data T1(θ) = fθ(p1)
and T2(φ) = gφ(p2). Here, p1 and p2 are unchanged patches
or pixels in images I1 and I2, respectively. The f and g
functions are used to extract the features from multi-temporal
images, where θ and φ denote the corresponding parameters.
The objective function of our task can be defined as:

θ, φ = argmin
θ,φ
{d[fθ(p1), gφ(p2)]} (1)

where d is a measure of feature distance between T1 and T2.
Many change detection techniques follow this formula-

tion including CCA, canonical information analysis (CIA),
and post-classification comparison (PCC). CCA and CIA
are used to calculate a linear/nonlinear relationship between
features from multi-temporal images. In classification-based
approaches, f and g represent two classifiers trained indepen-
dently or jointly [37]. While these change detection algorithms
have made some contributions to the various application
scenarios, they suffer some serious drawbacks, such as the
variation in data acquisition parameters and the detection of
unwanted irrelevant changes. Thus, we still need the develop-
ment of robust models, especially when the relevant changes
are very hard to differentiate from the images. With the
development of deep learning, the multi-view contrastive loss
and BYOL [38] were introduced in a multi-view setting to get
robust features. These methods are considered in this work as
they can extract multi-view features by maximizing the mutual
information of unchanged pixels or patches between views.
In the following subsections, we will describe the proposed
approach by introducing the pseudo-Siamese network, two

self-supervised methods (the multi-view contrastive loss and
BYOL) as well as the change detection strategy for obtaining
change maps.

B. Pseudo-Siamese Network

Siamese networks [39] are the most used model in entities
comparison. However, the comparison of heterogeneous image
pairs can not be performed by Siamese networks directly
for their different imaging mechanism. Siamese networks
share identical weights in two branches, while heterogeneous
image pairs have dissimilar low-level features. Hence, the
pseudo-Siamese network is used as the model architecture for
heterogeneous image change detection. It has two branches
that share the same architecture except for the input channel,
but with different weights.

Fig. 1 (a) shows the architecture used in this work for
heterogonous change detection, where two branches are de-
signed to extract the features of heterogeneous image pairs.
In this work, the ResNet-34 [40] is adopted as the backbone
of the two branches and the input channels are changed for
adapting to the heterogeneous image pairs, i.e., the polarization
of SAR image patches and the spectral bands of optical images
patches. In greater detail, the heterogeneous image pairs are
passed through the unshared branches and are then modeled
in output from the related feature vectors. The output feature
vectors of two branches are normalized and then used to
compute the similarity with each other and negative samples
of the batch. Finally, the model parameters are updated by
maximizing a loss function.

For homogeneous images, we propose to use the mean
teacher network [41] as the architecture of our model (Fig. 1
(b)). Mean teacher is a common pseudo-Siamese network used
in self-supervised learning, which uses an expositional moving
average (EMA) weight to produce a more accurate model than
using the same weights directly in the homogeneous images
setting. In this way, the target model has a better intermediate
feature representation by aggregating the information of each
step.

C. Self-supervised Learning Approach

In this subsection, we present the two considered self-
supervised methods that are used in our approach to hetero-
geneous (Fig. 1 (a)) and homogeneous (Fig. 1 (b)) remote
sensing image change detection.

1) Multi-view Contrastive Loss (heterogeneous images):
Contrastive learning is a popular methodology for unsuper-
vised feature representation in the machine learning commu-
nity [16], [17]. The main idea behind the contrastive loss
is to find a feature representation that attributes the feature
distance between different samples. For heterogeneous change
detection, let us consider each heterogenous image pairs
{Ii1, Ii2}i=1,2,...,N on a given scene i, which is considered as
a positive pair sampled from the joint distribution p(Ii1, I

i
2).

Another image pair {Ii1, I
j
2} taken from a different scene

is considered as a negative pair sampled from the product
of marginals p(Ii1)p(I

j
2). The method introduces a similarity

function, hθ(·), which is used to model the feature distance
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Fig. 1. Pretraining part of the proposed approach to change detection (a) for heterogeneous remote sensing images and (b) for homogeneous remote sensing
images. In the heterogeneous setting, the image pair consists of two images acquired by different types of sensors and the architecture of the network is
symmetric with each side consisting of an encoder and a projection layer. In the homogeneous setting, the image pair consists of bi-temporal images acquired
by the same sensor, and two symmetric subnetworks that share almost identical architectures but no prediction in the target subnetwork.

between positive and negative pairs. The pseudo-Siamese
network is trained to minimize the LScontrast defined as:

LScontrast = −E
S

[
log

hθ(I
1
1 , I

1
2 )∑N

j=1 hθ(I
1
1 , I

j
2)

]
(2)

where (I11 , I
1
2 ) is a positive pair sample, (I11 , I

j
2 |j ≥ 1) are

negative pair samples and S = {I11 , I12 , I22 , · · · , IN−1
2 } is a

set that contains N − 1 negative samples and one positive
sample.

During the training, positive image pairs are assigned to
a higher value whereas negative pairs to a lower value.
Hence, the network represents positive pairs at a close distance
whereas negative pairs at a high distance. The self-supervised
method takes different augmentations of the same image as
positive pairs and negative pairs sampled uniformly from the
different training data. However, such a sampling strategy for
negative pairs is no longer suitable in such a case. Robinson et
al. [42] proposed an effective hard negative sampling strategy
to avoid the ”sampling bias” due to false-negative samples with
same context information as the anchor. With this strategy,
we address the difficulty of negatives sampling in the self-
supervised heterogeneous change detection task.

For heterogeneous change detection, we can construct two
modalities image sets S1 and S2 by fixing one modality and
enumerating positives and negatives from the other modality.
This allows us to define a symmetric loss as:

L (S1, S2) = LS1
contrast + LS2

contrast (3)

In practice, the NCE method is used to make a tractable
computation of (3) when N is extremely large. This multi-
view contrastive learning approach makes the unsupervised
heterogeneous change detection possible.

2) Implicity Contrastive Learning (homogeneous images):
Recently, a self-supervised framework (BYOL) was proposed
that presents an implicit contrastive learning way without the
requirements to have negative samples during the network

training [18]. In this method, the pseudo-Siamese network,
including online and target networks, is used to regress each
other’s output during the training. The two networks are not
fully identical. The online network is followed by a predictor
and the weights of the target network are updated by the EMA
of the parameters of the online network. Hence, the loss of the
two networks can be written as the l2 distance of each output:

L , E(I1,I2)

[
‖qw (fθ (I1))− fφ (I2)‖22

]
(4)

Similar to the multi-view contrastive loss, the feature vectors
are l2-normalized before output. Here the online network
fθ is parameterized by θ, and qw is the predictor network
parameterized by w. The target network fφ has the same
architecture as fθ but without the final predictor and its
parameters are updated by EMA controlled by τ , i.e.,

φ← τφ+ (1− τ)θ (5)

The most important property of BYOL is that no negative
samples are used when training the two networks, and thus
feature representations are learned only from positive samples.
A previous work [43] has pointed out that the architecture of
Siamese network is the key to implicit contrastive learning
and the predictor with batch-normalization can avoid the
representation collapse during the training. In this approach,
the network is identical in the two branches, and the weights
of the target part are updated according to another branch.
Hence, this algorithm is very suitable to process multi-
temporal remote sensing images with the same modality (i.e.,
homogeneous images).

D. Change Detection

The change detection strategy described in this subsection is
based on the feature learned by the previously mentioned self-
supervised methods. Let S = {I1, I2, I3, ..., In} be a dataset
of either homogeneous or heterogeneous multi-temporal re-
mote sensing images. Our goal is to detect changes between
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Fig. 2. Schematic overview of the proposed change detection approach (SSL). Input images are fed through the pre-trained pseudo-Siamese network that
extracts feature vectors from homogeneous or heterogeneous bi-temporal image patches. Then, the pre-trained pseudo-Siamese network estimates regression
errors for each pixel. Change intensity maps are generated by combining results with a different patch side length and the final binary change map is obtained
by setting a threshold.

satellite images from different dates. As mentioned before,
most changes of interest are those relevant to human activities,
while the results are easily affected by irrelevant changes,
such as seasonal changes. Other relevant changes are usually
rare, whereas irrelevant changes are common during a long
period. This means that, under this assumption, the features of
relevant changes can be derived from the unchanged features.
To this purpose, the models are trained to regress the features
of images acquired at different dates. As shown in Fig. 2, here
we use the considered self-supervised learning algorithms to
get features of either homogeneous or heterogeneous multi-
temporal images. After training, a change intensity map can
be derived by assigning a score to each pixel indicating the
probability of change.

During the network training, images acquired by the differ-
ent sensors or at different dates are treated as two-views in
our approach. Homogeneous images are trained with BYOL,
while heterogeneous images are trained by using multi-view
contrastive loss. Image patches centered at each pixel are fed in
input to the network, and the output is a single feature vector
for each patch-sized input. In detail, given an input image
I ∈ Rw×h of width w, height h, we can get a feature vector
T (r, c) of a square local image region with a side length p for
each image pixel at row r and column c. To get different scale
feature representations, we trained an ensemble of N ≥ 1
randomly initialized models that have an identical network
architecture but use different input image sizes. Therefore,
changes of different sizes are detected by choosing one of
the N different side length values. During the inference, each
model provides as output a feature map that is generated by
different sizes of input images. Let T i1(r, c) and T i2(r, c) denote
the feature vectors at the row r and column c for the considered
bi-temporal images. The change intensity map is defined as the
pair-wise regression error e(r, c) between the feature vectors

of bi-temporal images:

e(r, c) = ‖T1(r, c)− T2(r, c)‖22

=

∥∥∥∥∥ 1

N

N∑
i=1

(
T i1(r, c)− T i2(r, c)

)∥∥∥∥∥
2

2

(6)

In order to allow all model outputs to be merged, we normalize
each output by its mean value eµ and standard deviation
eσ . Therefore, multi-scale change detection can be simplified
into sub-tasks that train multiple pseudo-Siamese ensemble
networks with varying values of p. At each scale, a change
intensity map with the same size as the input image is
computed. Given N pseudo-Siamese ensemble models with
different side length, the normalized regression error ẽ(r, c)
of each model can be combined by simple averaging.

One can see from Fig. 2 that pixels can be classified as
changed and unchanged by thresholding the feature distance
in the change intensity map. In this case, two strategies are
considered. The simplest strategy is to choose the opposite
minimum value of standardized intensity maps as the threshold
value. An alternative strategy is the Robin thresholding method
[44], which is robust and suitable for long-tailed distribution
curves. In this method, the threshold value is the ”corner” on
the distribution curve of the intensity map and the maximum
deviation from the straight line drawn between the endpoints of
the curve. In our technique, the threshold value is determined
by the first strategy if the absolute difference of these two
threshold values is smaller than half of their average value.
Otherwise, the threshold value is determined by the Robin
thresholding method.

IV. EXPERIMENTAL RESULTS

In this section, we first present the considered datasets,
then the state-of-the-art change detection methods used in the
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comparison, and finally conduct a thorough analysis of the
performance of different approaches and of their results.

A. Description of Datasets
We developed our experiments on five different datasets

including three homogeneous datasets and two heterogeneous
datasets. All remote sensing images in this work are raw
images from the google earth engine (GEE) and without any
specific pre-processing.

1) OSCD S2S2/ S1S1/ S1S2/ L8S2: The Onera Satellite
Change Detection (OSCD) dataset [45] was created for bi-
temporal change detection using Sentinel-2 images acquired
between 2015 and 2018. These images have a total of 13
bands with a relatively high resolution (10 m) for Visible (VIS)
and near-infrared (NIR) band images and 60 m resolution for
other spectral channels. The images of this dataset include
urban areas and present the change type of urban growth and
changes. The dataset consists of 24 pairs of multispectral im-
ages and the corresponding pixel-wise ground truth acquired in
different cities and including different landscapes. The pixel-
wise ground truth labels, which were manually annotated,
were also provided for each pair but with some errors due
to the relatively limited resolution of Sentinel-2 images. At
the original supervised setting, 14 pairs were selected for the
training set and the rest 10 pairs were used to evaluate the
performance of methods.

To use this dataset in self-supervised training, we down-
loaded additional Sentinel-2 images in the same location
as the original bi-temporal images between 2016 and 2020.
We considered images from each month to augment exist-
ing image pairs. Similarly, Landsat-8 multi-temporal images
and Sentinel-1 ground range detected (GRD) image products
are also provided in this dataset corresponding to the given
Sentinel-2 scenes. The Landsat-8 images have nine channels
covering the spectrum from deep blue to shortwave infrared
and two long-wave infrared channels and their resolution range
from 15 m to 100 m. The Sentinel-1 GRD products have
been terrain corrected, multi-looked, and transformed to the
ground range and geographical coordinates. They consist of
two channels including Vertical-Horizontal (VH) and Vertical-
Vertical (VV) polarization as well as of additional information
on the incidence angle.

To use this dataset for multi-view change detection, we
separate it into four sub-datasets: OSCD S2S2, OSCD S1S1,
OSCD S1S2 and OSCD L8S2. These datasets are com-
posed of homogeneous multi-temporal optical or SAR images
(OSCD S2S2, OSCD S1S1, OSCD L8S2) and heterogeneous
multi-temporal SAR-optical images (OSCD S1S2). To keep
consistency with previous research, 10 image pairs of these
four datasets corresponding to the OSCD test image pairs
are treated as the test dataset to evaluate the performance
of different methods, and image pairs acquired on other
scenes and on each month of four years are used for the
self-supervised pre-training. In practice, it is impossible to
acquire the test image pairs of OSCD S1S1, OSCD L8S2,
and OSCD S1S2 at the same time as the OSCD S2S2. Hence,
we only obtained these image pairs at the closest time to
OSCD S2S2 test image pairs.

2) Flood in California: The California dataset is also a het-
erogeneous dataset that includes a Landsat-8 (multi-spectral)
and a Sentinel-1 GRD (SAR) image. The multispectral and
SAR images are acquired on 5 January 2017 and 18 February
2017, respectively. The dataset represents a flood occurred
in Sacramento County, Yuba County, and Sutter County,
California. The ground truth was extracted from a Sentinel-
1 SAR image pair where the pre-event image is acquired
approximately at the same time as the Landsat-8 image.
However, we realized that the ground truth in [31] contains
many mistakes. Hence, we updated the reference data with
the PCC method according to bi-temporal Sentinel-1 images.
Other three image pairs of Sentinel-1 and Landsat-8 images of
the same scene acquired in 2017 and 2018, respectively, were
used for the self-supervised pre-training of the proposed SSL
approach.

B. Experimental Settings

1) Literature Methods for Comparison: We considered
different state-of-the-art methods for comparisons with the
proposed SSL approach on the five datasets mentioned above.
On the first two homogeneous datasets (OSCD S2S2 and
OSCD L8S2), the proposed SSL approach was compared with
two unsupervised deep learning approaches (DSFA [27] and
CAA [36]) and two deep supervised methods (FC-EF [10] and
FC-EF-Res [46]).

Deep Slow Feature Analysis (DSFA) is a deep learning-
based multi-temporal change detection method consisting of
two symmetric deep networks and based on the slow feature
analysis theory (SFA). The two-stream CNNs are used to
extract image features and detect changes based on SFA.
Code-Aligned Autoencoders (CAA) is a deep unsupervised
methodology to align the code spaces of two autoencoders
based on affinity information extracted from the multi-modal
input data. It allows achieving a latent space entanglement
even when the input images contain changes by decreasing
the interference of changed pixels. However, it degrades its
performance when only one input channel is considered. It is
also well suited for homogeneous change detection, as it does
not depend on any prior knowledge of the data.

Fully convolutional-early fusion (FC-EF) is considered for
the supervised change detection method on the OSCD dataset.
In this method, the bi-temporal image pair are stacked together
as the input. The architecture of FC-EF is based on U-Net
[47], where the skip connections between encoder and decoder
help to localize the spatial information more precisely and get
clear change boundaries. FC-EF-Res is an extension of FC-
EF with residual blocks to improve the accuracy of change
results. In addition, it is worth noting that the first dataset
(OSCD S2S2) has previously been extensively used in other
works. Hence, we also compare our results with those of
some conventional methods [45] (Log-ratio, GLRT and Image
difference), an unsupervised deep learning method (ACGAN
[48]) and supervised deep learning techniques (FC-Siam-conc
and FC-Siam-diff [45]) reported in previous papers.

On the Sentinel-1 SAR images dataset, only unsupervised
methods (DSFA, SCCN, and CAA) are used for comparison.
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Note that some change information present in multi-spectral
images is not detectable in SAR images, hence we did not
use supervised methods on them. On the two heterogeneous
remote sensing image datasets (OSCD S1S2 and California),
two state-of-the-art methods are used for comparisons, includ-
ing the symmetric convolutional coupling network (SCCN)
and CAA. Considering that only significant changes in the
backscattering of SAR images can be detected, we only con-
sider the LasVegas site in the OSCD S1S2 dataset. Similar to
CAA, SCCN is an unsupervised multi-modal change detection
method that exploits an asymmetrical convolutional coupling
network to project the heterogeneous image pairs onto the
common feature space. This method is also used in the
homogeneous SAR image pairs in our experiments.

2) Implementation details: We take the ResNet-34 as the
backbone of two branches of the pseudo-Siamese network
to get feature vectors of corresponding image patches. In
particular, we change the parameters of the strider from 2 to 1
in the third and fourth layers of the backbone for adapting the
network to the relatively small input size. In order to capture
the different scales of change, we use three different patch
sizes (p = 8, 16, 24 pixels) for the homogeneous image change
detection task and two different patch sizes (p = 8, 16 pixels)
for the heterogeneous change detection task.

During the training on OSCD S2S2, we randomly com-
posed all images acquired at different dates into pairs as the
input. While SAR/multi-spectral image pairs acquired in the
same month have been used as input pairs for the rest of the
multi-sensor dataset. After finishing the training process, the
test image pairs are feed into the pre-trained network and
then the related change intensity maps are derived. For the
supervised method (FC-EF and FC-EF-Res), we used the 14
bi-temporal training images considered in the previous work
[46]. In the self-supervised and supervised method, we use
four channels (VIS and NIR) in Landsat-8 and Sentinel-2
images, while two polarizations (VH and VV) in Sentinel-
1 images. CAA and SCCN methods require heterogeneous
image pairs having the same number of input channels. Ac-
cording, to keep consistency with the four input channels of
multi-spectral images, we augmented Sentinel-1 images with
the plus and minus operation between the two polarizations as
the other two channels.

3) Evaluation Criteria: To appraise the different methods
presented above, five evaluation metrics (precision (Pre), recall
(Rec), overall accuracy (OA), F1 score and Cohen’s kappa
score (Kap)) are used in this paper. We simply classify
the image pixels into two classes by setting an appropriate
threshold value according to the presented strategy and analyze
them with reference to the ground truth map. Then, the number
of unchanged pixels incorrectly flagged as change is denoted
by FP (false positive) and the number of changed pixels
incorrectly flagged as unchanged is denoted by FN (false
negative). In addition, the number of changed pixels correctly
detected as change is denoted by TP (true positive) and the
number of unchanged pixels correctly detected as unchanged
is denoted by TN (true negative). From these four quantities,

the five evaluation metrics can be defined as :

Pre =
TP

TP + FP
(7)

Rec =
TP

TP + FN
(8)

F1 =
2Pre ·Rec
Pre+Rec

(9)

OA =
TP + TN

TP + TN + FP + FN
(10)

Kap =
OA− PE
1− PE

(11)

PE =
(TP + FP ) · (TP + FN)

(TP + TN + FP + FN)2

+
(FN + TN) · (FP + TN)

(TP + TN + FP + FN)2

(12)

Obviously, a higher value of Pre results in fewer false alarms,
and a higher value of Rec represents a smaller rate of incorrect
detections. The overall accuracy OA is the ratio between
correctly detected pixels and all pixels of the image. However,
these three metrics will give a misleading over-estimate of the
result when the amount of changed pixels is a small fraction
of the image. F1 score and Kap can overcome the problem
of Pre and Rec and better reveal the overall performance.
Note that large F1 and Kap values represent better overall
performance.

C. Results on Homogeneous Datasets

We first evaluate the change detection performance of
the proposed approach and state-of-the-art methods (DSFA,
CAA and supervised methods) applied to the homoge-
neous change detection scenario. This includes bi-temporal
Sentinel-2 images (OSCD S2S2 test dataset), bi-temporal
landsat-8/Sentinel-2 images (OSCD L8S2 test dataset) and bi-
temporal Sentinel-1 images (OSCD S1S1 test dataset). The
performance metrics obtained on the OSCD S2S2 test dataset
are reported in Table I. As expected the FC-EF and FC-EF-
Res supervised methods applied to raw images achieved the

TABLE I
QUANTITATIVE EVALUATIONS OF DIFFERENT APPROACHES APPLIED TO

THE HOMOGENEOUS IMAGES OSCD S2S2 DATASET.

Type Method Pre(%) Rec(%) OA(%) F1 Kap

U
ns

up
er

vi
se

d

Prop. SSL 36.95 59.48 92.50 0.46 0.42
DSFA 26.77 54.24 92.63 0.36 0.32
AAC 23.49 52.96 91.66 0.33 0.29

ACGAN[44] - 64.63 77.67 - -
Img. Diff[41] - 63.42 76.12 - -

GLRT[41] - 60.48 76.25 - -
Log-ratio[41] - 59.68 76.93 - -

Su
pe

rv
is

ed

FC-EF 55.34 39.48 95.13 0.46 0.44
FC-EF-res 54.97 38.39 95.10 0.45 0.43

Siamese[41] 21.57 79.40 76.76 0.34 -
EF[41] 21.56 82.14 83.63 0.34 -

FC-EF*[42] 44.72 53.92 94.23 0.49 -
FC-EF-Res*[42] 52.27 68.24 95.34 0.59 -

FC-Siamese-Con*[42] 42.89 47.77 94.07 0.45 -
FC-Siamese-Diff*[42] 49.81 47.94 94.86 0.49 -
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Fig. 3. Examples of change detection results on OSCD S2S2, organized in one row for each location. Col. 1: pre-event image (Sentinel-2); Col. 2: post-event
image (Sentinel-2). Change maps obtained by: DSFA (Col. 3), CAA (Col. 4), FC-EF-Res (Col. 5), and the proposed SSL (Col. 6).

best performance in terms of Precision, OA, F1 and Kappa, but
not on Recall. Among all unsupervised methods, the proposed
SSL approach with an OA of 92.5 % and a Kappa coefficient
of 0.42, obtained the best performance on all five metrics
and the third-best performance among all methods (included
the supervised ones) implemented in this work. Although two
supervised methods performed better than other methods on
most metrics, they have a much worse performance on Recall
than the proposed SSL approach. It is also worth noting
that the proposed SSL approach is effective in closing the
gap with the supervised methods on Kappa, which indicates
its effective overall performance. In addition, the results of
other unsupervised methods (i.e., ACGAN, Image difference,
GLRT, and Log-ratio) and supervised methods (i.e., Siamese
and EF) on VIS and NIR channels in [45] are reported in
the table. They are all worse than those of the proposed
SSL approach. The results of other supervised methods (i.e.,
FC-EF*, FC-EF-Res*, FC-Siamese-Con* and FC-Siamese-
Diff*) applied to carefully processed RGB channel images are
reported in the last rows of Table I. Their accuracies on most
metrics are slightly better than those of the proposed SSL
approach, but they can not be achieved when working on raw
images as a high registration precision is required. Indeed,

in the related papers, multi-temporal images are carefully co-
registered using GEFolki toolbox to improve the accuracy of
change maps [45]. On the contrary, the proposed SSL approach
is based image patches where the registration precision of
Sentinel system is enough for obtaining a good change map.

Besides the quantitative analysis, we also provide a visual
qualitative comparison in Fig. 3, where the TP, TN, FN and FP
pixels are colored in green, white, blue and red, respectively.
One can see that change maps provided by DSFA and CAA are
affected by a significant salt-and-pepper noise where plenty of
unchanged buildings are misclassified as changed ones. This
is due to the lack of use of spatial context information in
these methods. This issue is well addressed by the proposed
SSL approach and the FC-EF-Res supervised method, which
provide better maps. Most of the changed pixels are correctly
detected in the proposed SSL approach, but with more false
alarms than in the supervised FC-EF-Res method. Note that
this is probably due to some small changes that are ignored in
the ground truth. Nonetheless, since these results are processed
in patches, some small objects are not classified correctly
and false alarms on boundaries of buildings are provided
by the proposed SSL approach. A possible reason for this
is the small patch-based method with a poor spatial context
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Fig. 4. Examples of change detection results on OSCD L8S2, organized in one row for each location. Col. 1: pre-event image (Landsat-8); Col. 2: post-event
image (Sentinel-2). Change maps obtained by: DSFA (Col. 3), CAA (Col. 4), FC-EF-Res (Col. 5), and the proposed SSL (Col. 6).

information learning ability. Instead, the change maps obtained
by the FC-EF-Res method are in general more accurate and
less noisy due to the use of spatial-spectral information in
U-Net and the supervised learning algorithm. However, the
FC-EF-Res method failed to detect most of changed pixels
in the first scenario. This confirms that the change detection
results of supervised methods heavily rely on the change type
distribution and the quality of training samples. This is not an
issue for the proposed SSL approach.

The performance of each model is also validated on the
OSCD L8S2 test dataset, which was obtained by different
optical sensors having different spatial resolutions, and the
quantitive evaluation is reported in Table II. In general, the
supervised methods outperform DSFA and CAA considering
all five metrics. However, the performance of FC-EF-res on
Recall is much worse than those of CAA and the proposed
SSL approach. Meanwhile, the proposed SSL approach with
an overall accuracy of 92.6% and a Kappa coefficient of
0.29, obtained the best accuracy among other unsupervised
methods and is very close to the supervised methods on all five
metrics. Fig. 4 presents the binary change maps obtained by
all methods on the OSCD L8S2. One can see that the change
maps contain a larger number of false alarms for all methods

TABLE II
QUANTITATIVE EVALUATIONS OF DIFFERENT APPROACHES APPLIED TO

THE HOMOGENEOUS IMAGES OSCD L8S2 AND OSCD S1S1 DATASETS.

Dataset Type Method Pre(%) Rec(%) OA(%) F1 Kap

L8S2 U
ns

up
. Prop. SSL 31.67 34.59 92.61 0.33 0.29

CAA 18.45 45.80 90.25 0.26 0.22
DSFA 8.08 24.29 86.64 0.12 0.07

Su
p. FC-EF 29.75 34.08 92.27 0.32 0.28

FC-EF-res 39.14 27.14 93.93 0.32 0.29

S1S1

U
ns

up
. Prop. SSL 23.06 40.39 89.74 0.29 0.24

SCCN 7.48 27.80 78.04 0.12 0.04
CAA 19.80 34.81 89.12 0.25 0.20
DSFA 10.96 22.78 92.63 0.15 0.08

compared with the maps obtained on the OSCD S2S2. This
is probably due to the relatively lower resolution of Landsat-8
VIS and NIR channel images with respect to the counterparts
in Sentinel-2 images. Consistently with the results obtained
on OSCD S2S2 (see Fig. 3), the proposed SSL approach has
a better segmentation result but with lower accuracy on all
metrics, which indicates that the different resolution images
increase the difficulty of change detection tasks.

To complete the evaluation on homogeneous datasets, the
performance of all unsupervised methods are validated on the
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Fig. 5. Examples of change detection results on OSCD S1S1, organized in one row for each location. Col. 1: pre-event image (Sentine-1); Col. 2: post-event
image (Sentine-1). Change maps obtained by: DSFA (Col. 3), SCCN (Col. 4), CAA (Col. 5), and the proposed SSL (Col. 6).

OSCD S1S1 test dataset. The quantitative results are reported
in Table II, which shows that the proposed SSL approach
produces a better accuracy than other methods on all metrics,
except for OA. The binary change maps obtained by each
unsupervised methods are shown in Fig. 5. One can see that
all results appear much noisier due to the influence of speckle
in SAR images. It is worth noting that only a new building
that appeared in the post-event SAR image can be detected
because minor growth of the building does not cause signifi-
cant backscatter change. Apart from this, the boundaries of the
detected objects are not accurate as those in the optical dataset
due to the side-looking imaging mechanism. In addition, the
performance of the proposed SSL approach on OSCD S1S1 is
close to that obtained on OSCD L8S2 but with fewer correct
detections and more false alarms than the latter. In general,
the above three experiments based on homogeneous images
demonstrate that the proposed SSL approach obtained the best
quantitative and qualitative performance with respect to all the
other considered unsupervised change detection techniques.

D. Results on Heterogeneous Datasets

In the second change detetcion scenario, we consider two
heterogeneous datasets which consist of a Sentinel-1/Sentinel-

2 image pair (OSCD S1S2) and a Sentinel-1/Landsat-8 image
pair (California).

The performance of three unsupervised methods (SCCN,
CAA and SSL) on OSCD S1S2 is reported in Table III. One
can see that the proposed SSL approach performs much better
than the other two unsupervised methods on most metrics due
to the separated training on the archived images. In contrast,
SCCN and CAA are both trained on the test image only and
the complicated background in the scene makes them hard to
separate the unchanged pixels for the network training causing
too many false alarms in change detection maps. Compared
with the results obtained in the homogeneous experiments, the
results presented here are much worse. This demonstrates the
difficulty of heterogeneous change detection in complicated
backgrounds, such as an urban area. Fig. 6 presents the
qualitative visual results in terms of binary change maps. One
can observe that the results provided by SCCN and CAA are
affected by many more missed detections and false alarms
than in the homogeneous case. The result of the proposed
SSL approach has fewer false alarms but with more missed
detections with respect to the homogeneous setting owing to
the larger domain discrepancy.

Differently from the previous dataset, the California dataset
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Fig. 6. Change detection results on OSCD S1S2 and califorlia flood, organized in one row for each location. Col. 1: pre-event image (Sentine-1 for
OSCD S1S2 and Landsat-8 for the califorlia flood); Col. 2: post-event image (Sentine-2 for OSCD S1S2 and Sentine-1 for the califorlia flood). Change maps
obtained by: SCCN (Col. 3), CAA (Col. 4), and the proposed SSL (Col. 5). Col. 6: the ground truth.

TABLE III
QUANTITATIVE EVALUATIONS OF DIFFERENT APPROACHES APPLIED TO

THE HETEROGENEOUS IMAGES OSCD S1S2 AND THE CALIFORNIA
DATASETS.

Dataset Method Prec(%) Rec(%) OA(%) F1 Kap

S1S2
SCCN 7.38 22.45 68.54 0.11 -
CAA 21.91 28.71 84.79 0.25 0.17

Prop. SSL 70.32 19.01 92.20 0.30 0.27

California
SCCN 51.42 64.44 92.88 0.57 0.53
CAA 76.49 40.38 94.68 0.53 0.50

Prop. SSL 48.79 63.82 92.39 0.55 0.51

is related to a simpler background and to more significant
changes resulted from the flood. Table III presents the results
of all methods on this dataset. The three unsupervised methods
(SCCN, CAA and SSL) have similar performance on overall
evaluation metrics (OA, F1 and Kappa). The SCCN achieves
the best Recall, F1 score, Kappa and the second-best values
on Precision and OA, while the CAA achieved the highest
Precision and OA values. The proposed SSL approach gets the
second-best values on three of five metrics, thus it does not
show obvious superiority. Fig. 6 illustrates the Landsat 8 and
Sentinel-1 images and the change maps from the compared
methods. Maps provided by SCCN and ACC show a clear
boundary of change areas, whereas the one of the proposed
SSL approach is less precise. The map of SCCN contains
more false alarms, while the map of the CAA has more
missed detections. Even if the performance of the proposed
SSL approach on the California dataset is not the best, it is
still no worse than that of the other two methods considering

all five metrics. In general, considering the results on the two
heterogeneous test datasets, the proposed SSL approach is the
most accurate followed by the CAA, which is the second-
best method and is only slightly worse than the proposed SSL
approach.

V. CONCLUSION

In this work, we have presented a self-supervised approach
to unsupervised change detection in multi-view remote sensing
images, which can be used with both multi-sensor and multi-
temporal images. The main idea of the presented framework
is to extract a good feature representation space from homo-
geneous and heterogeneous images using contrastive learning.
Images from satellite mission archives are used to train the
pseudo-Siamese network without using any label. Under the
reasonable assumption that the change event is rare in long-
time archived images, the network can properly align the
features learned from images obtained at different times even
when they contain changes. After completing the pre-training
process, the regression error of image patches captured from
bi-temporal images can be used as a change score to indicate
the change probability. If required, a binary change map can
be directly calculated from change intensity maps by using a
thresholding method.

Experimental results on both homogeneous and heteroge-
neous remote sensing image datasets proved that the proposed
SSL approach can be applicable in practice, and demonstrated
its superiority over several state-of-the-art unsupervised meth-
ods. Results also show that the performance declines when
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the resolution of the two sensors is different in a homogeneous
setting. Moreover, in the SAR-optical change detection setting,
the change detection results are affected by the complexity of
the background.

As a final remark, note that in this work we only considered
bi-temporal images to detect changes. This has negative im-
pacts on false alarms. Our future work will be focused on the
refinement of changed maps by further decreasing false alarms
by combining a larger number of images from the time-series.
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