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Abstract— Synthetic aperture radar (SAR) missions with short
repeat times enable opportunities for near real-time defor-
mation monitoring. Traditional multitemporal interferometric
SAR (MT-InSAR) is able to monitor long-term and periodic
deformation with high precision by time-series analysis. However,
as time series lengthen, it is time-consuming to update the
current results by reprocessing the whole dataset. Additionally,
the number of coherent scatterers varies over time due to
disappearing and emerging scatterers due to inevitable changes in
surface scattering, and potential deformation anomalies require
changes in the prevailing deformation model. Here, we propose
a novel method to analyze InSAR time series recursively and
detect both significant changes in scattering as well as defor-
mation anomalies based on the new acquisitions. Sequential
change detection is developed to identify temporary coherent
scatterers (TCSs) using amplitude time series. Based on the
predicted phase residuals, scatterers with abnormal deformation
displacements are identified by a generalized ratio test, while
the parameters of stable scatterers are updated using Kalman
filtering. The quality of the anomaly detection is assessed based on
the detectability power and the minimum detectable deformation.
This facilitates (near) real-time data processing and decreases
the false alarm likelihood. Experimental results show that the
technique can be used for the real-time evaluation of deformation
risks.

Index Terms— Anomaly detection, change detection, multitem-
poral InSAR, recursive process.

I. INTRODUCTION

MULTITEMPORAL interferometric synthetic aperture
radar (MT-InSAR) is a powerful tool for measuring

deformation of (objects on) the earth with millimeter-level
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precision. This technique is successfully used in many appli-
cations in earth observation including subsidence in urban
areas [1], [2], and the monitoring of infrastructure [3], [4],
landslides [5], [6], and volcano phenomena [7] since it over-
comes limitations due to atmospheric delay [8] as well as
spatiotemporal decorrelation noise [9] in differential InSAR.

The first implementation of MT-InSAR is persistent scat-
terer InSAR [10], [11], which focuses on point-like targets
showing high (temporal) coherence throughout the whole
time series. Most of these scatterers are related to man-made
infrastructure such as buildings and railways [4], [12], [13].
Therefore, its applicability in rural areas is often limited.
Compared to point scatterers (PSs), distributed scatterers (DSs)
are often found on natural terrain, which is more sus-
ceptible to temporal decorrelation. Small BAseline Subset
(SBAS) [14], [15] is a typical approach for DS analysis, which
only utilizes interferograms with small temporal baselines and
applies multilooking to limit the amount of decorrelation.

Other algorithms identify phase-stable scatterers using dis-
tinct criteria, such as the maximum likelihood estimation
method [16] and local phase analysis [17], which includes PSs
and DSs with high coherence. The latest MT-InSAR imple-
mentations increase the number of observations by exploiting
both PS and DS information. They combine all interferograms
to obtain the optimal phase of all DSs. The DS phase opti-
mization is conducted by identifying statistically homogeneous
pixels and phase reconstruction by phase triangle analysis
(PTA) [18] and extended methods proposed in [19]–[22].

As current synthetic aperture radar (SAR) sensors have
lower revisit times and wider swaths, data volumes increase
and subsequently the computational burden. Consequently,
conventional MT-InSAR algorithms will rapidly reach their
limits in terms of processing time. In [23], an efficient
processing chain including parallel as well as sequential steps
based on P-SBAS is presented for Sentinel-1 stacks. In [24],
a recursive estimator based on the Kalman filter is proposed
for phase unwrapping with a temporal smoothness constraint.
Ansari et al. [25] introduced a sequential estimator to achieve
an efficient phase-linking approach and get the optimal phase
time series of DSs sequentially. In [26], a deformation predic-
tion method is proposed combining time-series InSAR and the
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Unscented Kalman Filter (UKF). A recursive process converts
the InSAR method to a near real-time monitoring technique
with high precision and updates the prevailing deformation
model with new observations efficiently. However, updating
the phase model using the wrapped phase has a high likelihood
of being coincidentally correct, as an arbitrary random sample
in the [−π,+π) range, combined with a significant uncer-
tainty, may end up close to the expected value. This yields a
high probability of a false warning.

Deformation time series show different types of temporal
patterns, including linear and nonlinear motions, seasonal
trends, temperature-related signals, ground motion accelera-
tion, and other potential changes during the acquired period.
Apart from the steady-state deformation velocity and spatial
gradients, temporal anomalies in the deformation time series
are becoming more important since a large deformation within
a short time interval may do more harm to the health of
infrastructure than gradual long-term deformation [27], [28].
In order to find deformation anomalies within the deformation
time series, a post-processing method is proposed in [29],
where multiple hypothesis tests are applied to find an optimal
kinematic model from a library of canonical functions. This
way, both temporal phase unwrapping errors as well as optimal
models are detected automatically for all scatterers. Similarly,
[30] adopt a multiple linear regression model with m breaks
considering m + 1 observations to detect an anomalous trend,
which is solved by a dynamic programming technique. In [31],
different types of anomalies associated with slope instability,
subsidence, uplift, and geothermal activity are detected using
a continuously updated displacement time series.

However, these post-processing methods only focus on the
deformation time series of accepted scatterers in the updated
results, while scatterers with significant deformation anomalies
may have been discarded during the processing of the whole
time series. A feasible approach for detecting a deformation
anomaly is to test whether the new observation fits the prevail-
ing deformation model during the interferometric process. For
example, in [32], the structural health of a bridge is evaluated
by comparing a new observation with prediction intervals,
which are determined by the established displacement model
and a t-test.

During the interferometric processing, a temporal phase
anomaly can be caused by 1) a large deformation or 2) noise
in the data. The former should be related to a change in
the deformation model, while the latter is caused by phase
decorrelation. Unfortunately, we cannot discriminate between
these two types of phase anomalies using the interferometric
phase since the phase is wrapped, leading to a high probability
of false alarms. Pixels exhibiting coherent behavior only over
parts of the time series are called temporary coherent scatterers
(TCSs) [33], [34].

The amplitude can be strongly related to the properties of
ground targets [35], compared to the interferometric phase, and
a potential TCS can be identified by analyzing amplitude time
series. Assuming a Rayleigh/Rice distribution with a central
F-test [36] or Bayesian inference [37], the moment of the
abrupt change over the time series (denoted as step-time) can
be identified by amplitude change detection for single pixels.

Here, we propose a recursive multitemporal InSAR
approach for deformation anomaly detection by subsequently
analyzing amplitude and phase updates over time. The main
process contains three parts: 1) establishing the initial defor-
mation model, 2) detecting changes based on amplitude analy-
sis, and 3) detecting deformation anomalies. First, a stack
of images is processed using an MT-InSAR method and the
deformation model for each coherent scatterer is obtained. The
established deformation model is used to detect deformation
anomalies in the new observation. Second, the relative radio-
metric calibration factor of the new amplitude is determined
and the F-test based on the Rayleigh distribution is used to
conduct a single pixel change detection. Then the predicted
phase residual of each coherent scatterer is obtained based
on the new phase observation, and the χ2-test is utilized to
test whether there is a significant phase anomaly. Additionally,
we also introduce quality metrics for the minimal detectable
deformation (anomaly) (MDD) considering a given detectabil-
ity power [29]. Finally, we apply our method to both simulated
and real SAR data. The results of the recursive processing are
compared with those of the conventional method.

This article is organized as follows. We briefly introduce
the MT-InSAR process in Section II, followed by the recursive
processing method, anomaly detection, and quality metrics in
Section III. Both simulated and real data results are presented
in Section IV, followed by the conclusions in Section V.

II. INITIALIZATION MT-INSAR PROCESSING

The MT-InSAR methodology involves amplitude as well as
phase analysis in a recursive approach.

A. Amplitude Analysis

Both PS candidate selection as well as change detection use
amplitude observations from the original single look complex
(SLC) images. The original precalibrated SLC amplitude,
denoted as a′, is post-calibrated empirically using

a = αaa
′ (1)

where a denotes the empirically calibrated amplitude and
αa denotes the radiometric calibration factor. To simplify
the process, a relative radiometric calibration is imple-
mented in MT-InSAR [28]. The relative calibration factors
refer to the reference (master) image and are calculated
for all slave images using stable scatterers selected via
the normalized amplitude dispersion (NAD) with a low
threshold [10], [28], [38].

With m calibrated amplitude observations ai for a single
pixel, where i ∈ [1, m] is the acquisition index change
detection is conducted by testing whether two contiguous
temporal subsets stem from the same Rayleigh distribution.
Note that the amplitude values in all the following equations
are linear and not in dB. If a significant step is identified
between the pth and the (p + 1)th acquisition, the time series
is divided into two subsets: a1, . . . , ap and ap+1, . . . , am .
To test the null hypothesis H0 that σ 2

1 = σ 2
2 , the test statistic
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is defined as [39]

Fp =
∑p

i=1 a2
i

2 p

/∑m
i=p+1 a2

i

2(m − p)
= σ̂ 2

1

σ̂ 2
2

∼ F2p,2(m−p),0 (2)

with a central F-distribution with 2 p and 2m − 2 p degrees
of freedom, where σ̂ 2

1 and σ̂ 2
2 denote the estimated Rayleigh

scale parameters of the two subsets [39]. Given a level of
significance α, the critical value Kα is obtained. If σ̂1 < σ̂2,
we invert the ratio and the degrees of freedom [39]. This
way, we ensure that the F-value is always larger than 1.
If Fp < Kα , there is no significant difference between the
two subsets. Otherwise, the null hypothesis H0 is rejected,
which means a step is detected between image acquisitions
p and p + 1. Consecutively, testing for steps after each
acquisition, we obtain the corresponding F-values and find the
most significant step located at the maximum of the F-values.
Thus, the sequential number of the image preceding the
step is

p̂ = argmax
p=1:m−1

(
Fp|Fp > Kα

)
. (3)

If there is more than one significant step within a time series,
an iterative binary segmentation approach is adopted. In each
iteration, we apply the F-test to identify the step time and
split the time series into two subsets. This process is repeated
until no further steps exist in the subsets, or until the subsets
are shorter than a given threshold. Note that scatterers with
identified steps are potential TCS, which implies a significant
surface change during the acquisition period.

B. Interferometric Phase Analysis

In MT-InSAR, the basic observations are the differential
interferometric phases between pairs of scatterers, denoted as
arcs. We estimate the arc’s residual height and deformation
velocity using time-series analysis. Considering m − 1 dif-
ferential single master interferograms from m SAR images,
the phase difference between two scatterers i and j of a single
arc in the k th interferogram can be expressed as [28], [40]

�φk
i, j = ci, j − 4π

λ

Bk⊥,i
Ri sin θi

�hi, j

− 4π

λ
Bk

t �vi, j + 2πnk
i, j + ek

i, j (4)

where �hi, j and �vi, j denote the residual height differ-
ence and the velocity difference between the two scatterers,
nk

i, j ∈ Z denotes the integer phase ambiguity numbers, and
Bk

t and Bk⊥,i denote the temporal and perpendicular baseline,
respectively. Ri is the slant range, θi is the local incidence
angle, λ is the radar wavelength, ci, j denotes the phase
constant that corresponds to the atmospheric delay difference
in the master image, and ek

i, j denotes the random error of
the phase, including the atmospheric delay difference in the
slave image. Note that we only consider the linear velocity
in this initial deformation model—other parameters such as
temperature-related parameters may be added to (4). The
integer least-squares model of continuously coherent scatterers

(CCS, see [36] for the taxonomy) is defined as follows [40]:

E

⎧⎪⎨
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...
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⎤
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−4π
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B1
⊥,i

Ri sin θi
t1 λ

4π
...

...
...

Bm−1
⊥,i

Ri sin θi
tm−1 λ

4π

⎤
⎥⎥⎦
⎡
⎣�hi, j

�vi, j

ci, j

⎤
⎦ (5)

where E{·} denotes the expectation operator. In the arc
solution, the variance–covariance (VC) matrix of the phase
observations is determined by variance component estima-
tion (VCE) [34], [41], [42]. Based on the VC-matrix,
phase unwrapping is implemented using the Least-squares
AMBiguity Decorrelation Adjustment (LAMBDA) method
for all arcs [40], [43], and the validation of the ambiguity
resolution is tested by the so-called ratio test [44]. Thus,
the parameters as well as their precision can be estimated
using a least-squares approach and checked by the temporal
coherence [11], [45].

The selected CCS candidates, which are obtained via thresh-
olding the NAD, will have different noise levels. Therefore,
an agile process is conducted in which scatterers with dif-
ferent qualities are processed with different strategies [28].
A first-order network is constructed using scatterers selected
with a low NAD threshold to guarantee high precision of the
final result. A Delaunay network is used to establish an initial
network and arc solutions are obtained using (5). After remov-
ing arcs with low temporal coherence, every isolated scatterer
is connected to its neighbors to generate new arcs [45]. Only
scatterers that reach a minimal number of connections, for
example, 3, are accepted in the reference network. Subse-
quently, by increasing the NAD threshold, scatterers with a
medium noise level are identified, and a second-order network
is constructed to link these new scatterers to the first-order
network. New arcs are generated by linking every scatterer to
its nearest neighbors in the first-order network and these arcs
are computed in the same way. Details are shown in [36].

C. Initialization

Several parameters obtained in the initial MT-InSAR
processing are saved and used as input for the recursive
process.

1) NAD Values: The first elements in the initialization
are the NAD values including the average amplitude and
amplitude standard deviation for all scatterers. These are used
to select the coherent scatterers during the relative calibration.

2) Length of Valid Time Series: The potential step times
for all scatterers is obtained during the amplitude analysis
with a given level of significance. For recursive processing,
only time series from the last step time to the last observation
are considered, termed the “valid” time series. The length of
each time series for every scatterer is recorded. Note that the
scatterers used in the initialization are always CCS and thus
the length of a valid time series is equal to the total number
of acquisitions.
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3) Rayleigh Scale Parameters: The test statistic of the
F-test defined in (2) is the ratio of the two estimated Rayleigh
scale parameters of the two subsets. Here, the estimated
Rayleigh scale parameter of the amplitudes within the valid
time series is defined as [39]

σ̂ 2
Rayleigh,m =

∑m
i=p+1 a2

i

2(m − p)
(6)

where p is the sequential number of the image preceding the
step within the m amplitude observations. For CCS, p = 0.
Rayleigh scale parameters for all scatterers are retained.

4) Network: The CCS and the accepted arcs generated by
both the reference network and the second-order network are
retained separately.

5) Parameters and VC Matrix: The vector of estimated
parameters in (4), that is, the residual height, velocity, and
phase constant, as well as its corresponding VC matrix, are
retained.

III. RECURSIVE INSAR AND ANOMALY DETECTION

Similar to the initialization procedure, the recursive
approach includes both an amplitude and an interferometric
phase component. The flowchart is shown in Fig. 1. The
recursive approach follows a number of prediction and update
steps. The prediction step is conducted to detect observation
anomalies by comparing the model used in the initialization
with the new measurement update. If no anomaly exists,
the prevailing model will be sustained in the update step.
Note that both surface change detection as well as deformation
anomaly detection are included in the recursive approach.

A. Sequential Relative Calibration

If the initialization is conducted using m images, the recur-
sive processing updates the prevailing model using the (m+1)th

image. The relative calibration is conducted using all stable
scatterers, which are selected by thresholding the NAD in the
conventional MT-InSAR process [28]. Radiometric calibration
of the SAR data is necessary since both radiometric sensor
stability and the processing algorithm for the raw data induce
variation in amplitude [28], which may lead to less preselected
scatterers and a higher false alarm rate. Then, we use these
preselected scatterers to estimate the relative calibration factor
for each new image relative to the master image of the initial
stack.

Based on the retained average amplitude, am , and amplitude
standard deviation, σam , the NAD values for all pixels in the
(m + 1)th epoch are updated as follows:

NADm+1|m = σam+1|m

am+1|m
(7)

where σam+1|m and am+1|m are, respectively, the updates of the
standard deviation and average of amplitude in the (m + 1)th

epoch, which are computed by

am+1|m = am · m + am+1

m + 1
, and (8)

σam+1|m =
√

m − 1

m
σ 2

am
+ (am+1 − am)

2

m + 1
(9)

Fig. 1. Flowchart of the recursive InSAR time series and anomaly detection
approach.

where am+1 is the (m + 1)th empirically calibrated amplitude.
Then stable scatterers are selected with the updated NAD
values and the relative radiometric calibration factors of new
images are obtained subsequently.

B. Sequential Change Detection

In the prediction step, change detection is implemented
using the Rayleigh scale parameter of the initial parameters
and the new calibrated amplitude observation. If we add only
one new image each time, the F-test becomes

Fp = σ̂ 2
Rayleigh,m

/
a2

m+1

2
∼ F2m,2,0 . (10)

However, an estimated Rayleigh scale parameter from only
one observation is not reliable. Reliability will improve by
allowing some more datasets to be acquired, that is, at the
expense of timeliness. To test whether a step is located
between the m th and the (m +1)th image using d observations,
am+1, . . . , am+d each time, the F-test is defined as

Fp = σ̂ 2
Rayleigh,m

/∑m+d
i=m+1 a2

i

2d
∼ F2m,2d,0 . (11)
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Postulating a level of significance α, the critical value Kα

is obtained. If Fp < Kα , there is no surface change in the
(m + 1)th image. It is worth noting that most real significant
changes, for example, a demolished building, come with a
significant amplitude change, and therefore the method will
still work even if one of the two subsets contains only very
few images. Then, in the update step, the initial Rayleigh scale
parameter is updated as

σ̂ 2
Rayleigh,m+1 = σ̂ 2

Rayleigh,m · 2m + a2
m+1

2(m + 1)
. (12)

If Fp > Kα, a step is detected between the m th image and
the (m + 1)th image and the updated Rayleigh scale parameter
is a2

m+1/2.
The problem is that, as time-series lengthen, the NAD

parameter is less effective in identifying surface changes in
amplitude. The more images the time series will contain,
the smaller the effect of one new image will be on the total
value. This may lead to a bias in the relative calibration of the
new image, which will affect the detectability power of the
method. Therefore, amplitude change detection is required to
remove the unstable scatterers in an iterative way, to obtain a
set of preselected scatterers with sufficient quality.

As the change detection method finds scatterers with a
significant change in the new image, a subset of the initial
set of CCS will be reclassified as TCS. Subsequently, arcs
that contain TCS in the initial network are removed.

C. Ratio Test for Internal Reliability

After change detection using the amplitude observations,
the new interferometric phase can be evaluated against the
prevailing deformation model. Generally, this process is con-
ducted using a ratio test for internal reliability [44]. Consid-
ering the unwrapped phase difference between two scatterers
i and j in (5), a model for estimating a static parameter is
given by

E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
�φ1

i, j

�φ2
i, j
...

�φm−1
i, j

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

A1

A2
...

Am−1

⎤
⎥⎥⎥⎦xm−1, and (13)

D

⎧⎪⎪⎪⎨
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⎡
⎢⎢⎢⎣
�φ1

i, j

�φ2
i, j
...

�φm−1
i, j

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣
σ 2
�φ1

i, j
sym

σ�φ2,1
i, j

σ 2
�φ2

i, j

...
...

. . .

σ�φm−1,1
i, j

σ�φm−1,2
i, j

. . . σ 2
�φm−1

i, j

⎤
⎥⎥⎥⎥⎦ (14)

where σ 2
�φk

i, j
denotes the k th corresponding variance and σ�φk,l

i, j

denotes the covariance between the k th and l th interferograms.
Ak is design matrix that transforms the parameters into the
double difference phases. Parameter vector xm−1 contains
velocity differences, height residual differences, and phase
constants of the arc i– j , estimated at epoch m − 1. Note
that only m − 1 independent interferometric phase values
are possible with m SAR observations. Moreover, note that
the proposed recursive process is specifically designed for

CCS, which does not consider the decorrelation noise. The
VC matrix defined in (14) only describes the system noise
in different acquisitions. Thus, one VC matrix is assumed
applicable for all arcs. Then the prediction step tests whether
the new observation �φm

i, j at epoch m fits the phase model
built by the initial observations.

Assuming that the new observation fits the prevailing model,
the corresponding predicted observation is

�φ̂
m|m−1
i, j = Am x(m−1). (15)

An important element in the model test is the predicted
residual êm|m−1. It is the difference between the actual obser-
vation and the predicted observation, which is defined as

êm|m−1 = wrap
{
�φ̂

m|m−1
i, j −�φm

i, j

}
(16)

where wrap{·} denotes the phase wrapping operator [9]. Here,
we assume that a potential change in line-of-sight displace-
ment will be smaller than λ/4, as the wrapping of a larger
displacement will effectively reduce the predicted residual
again. The predicted residual of the new observation �φm

i, j
is here assumed to have statistical properties [46]

êm|m−1 ∼ N
(
0, Qêm|m−1

)
(17)

with corresponding VC matrix

Qêm|m−1 = D
{
�φm

i, j

} + Am D
{

x̂(m−1)
}

Am
T. (18)

During each observation update, the predicted residual and
its VC matrix are available.

The mathematical expressions of the null hypothesis H0 and
the alternative hypothesis H1 are given by

H0 : E

{
�φi, j

m×1

}
= A

m×n
x

n×1
; (19)

H1 : E

{
�φi, j

m×1

}
=

[
A

m×n
Cφ
m×q

] [
x
∇
]

(n+q)×1

,∇ �= 0 (20)

where matrix Cφ and an additional vector of unknown para-
meters ∇ with length q are used to specify the alternative
hypothesis.

The test for an alternative hypothesis follows the test
statistic Tq [47], which is given by

Tq = êQ−1
�φi, j

Cφ

(
CT
φ Q−1

�φi, j
Qê Q−1

�φi, j
Cφ

)−1
CT
φ Q−1

�φi, j
ê. (21)

This test statistic has the following distribution under H0

and H1:

H0 : Tq ∼ χ2(q, 0) H1 : Tq ∼ χ2(q, ν) (22)

where

ν = ∇T CT
φ Q−1

�φi, j
Qê Q−1

�φi, j
Cφ∇. (23)

Given a level of significance α, the critical value χ2
α(q, 0)

is computed using the central χ2-distribution with q degrees
of freedom. We reject H0 if Tq > χ2

α(q, 0), which means
that a deformation anomaly is detected after the m th phase
observation.
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D. Deformation Anomaly Detection

Double-difference phase values are obtained for all arcs
with each new coregistered SLC image and after removal
of the reference phase. In the prediction step, a deformation
anomaly detection method is implemented using a ratio test
(see Section III-C), jointly with the initial parameters, the VC
matrix as well as the new phase observation for all arcs.

Here, we also introduce the process with one observation
and d observations separately. Adding one new image each
time, the χ2-test is based on the first predicted phase residual,
for example, q = 1, m = 1, and the m × q matrix Cφ is
reduced to a 1 × 1 matrix Cφ = 1. Thus, the test value is
simplified to

T1 = ê2
m

σ 2
êm

∼ χ2(1, 0) (24)

which equals the square of the residual of the m th observation
divided by its variance.

Theoretically, we can test a single observation for anomaly
detection. However, this approach may be unreliable due to the
limited number of observations, leading to a high probability
of a false alarm.

An alternative approach is to test whether there is a deforma-
tion anomaly after the m th phase observation based on a set of
d new update observations, �φm

i, j , . . . ,�φ
m+d−1
i, j , to improve

the reliability. Different from the case with one observation,
there are different types of deformation anomalies if we
consider multiple update observations. Therefore, multiple
hypothesis testing (MHT) is adopted to test a set of alternative
hypothesis H j [29] with regard to different types of anomalies.
The flowchart of the deformation anomaly detection is shown
in Fig. 2. For all H j , the test statistics are compared with
the critical statistical value and test statistic T j

q follows a χ2-
distribution with different dimensions. Assuming that possible
deformation anomalies are limited to decorrelation, offset, and
velocity change, a set of possible deformation anomalies is
listed below.

1) Offset:

Cφ = [0 · · · 0 1 1 · · · 1]T . (25)

2) Velocity Increment:

Cφ = [
0 · · · 0 �t1 �t2 · · · �td

]T
. (26)

3) Offset and Velocity Increment:

Cφ =
[

0 · · · 0 1 1 · · · 1
0 · · · 0 �t1 �t2 · · · �td

]T

. (27)

4) Decorrelation:

Cφ =

⎡
⎢⎢⎢⎣

0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

...
...
...
. . .

...
0 · · · 0 0 0 · · · 1

⎤
⎥⎥⎥⎦

T

. (28)

Four alternative hypothesis tests H j are built using differ-
ent Cφ with dimensions 1, 1, 2, and d , respectively. Since
the test statistic T j

q follows a χ2-distribution with different
dimensions, we divide the test statistic by its critical value

Fig. 2. Deformation anomaly detection using MHT with d observations.

χ2
α j

to normalize it. When the ratio is greater than 1, the null
hypothesis H0 is rejected. Otherwise, the alternative hypothesis
H j is less likely than H0, indicating that the scatterer is stable.
Therefore, the maximal value of the ratios denotes the most
probable alternative hypothesis HB , if

T B
q = max

j

{
T j

q /χ
2
α j

(
q j

)}
. (29)

We reject H0 if T B
q > 1, which means that there is a defor-

mation anomaly after the m th phase observation. Other types
of deformation anomalies, such as seasonal and exponential
deformation, can be detected using the same approach with
the corresponding Cφ , as presented in [29].

Since the results of deformation anomaly detection denote
arcs with significant deformation anomalies, these arcs are
removed from the initial network. Then, the updated main
network is identified by the Depth First Search algorithm
(DFS) [48]. Scatterers within the main network are CCS
while those that are not connected to the main network are
deformation anomalies. This way, the scatterers in the initial
network are divided into two groups: CCS and scatterers with
a deformation anomaly.

Both detected TCS as well as scatterers with an identified
deformation anomaly are removed from the initialization.
In the case of subsequent changes in scattering at the same
location, for example, demolition of a building followed by
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construction of a new building, a minimum number of new
acquisitions is required for the temporal phase unwrapping.
Thus, the initialization needs to be reprocessed to reestablish a
deformation model for the new building. Similarly, considering
the detected deformation anomalies, the anomaly detection
procedure requires several new updates as well. The reliability
of identifying the type of deformation anomalies will be
improved by adding more observations.

E. Kalman Filter

In the update step, the initial parameters and corresponding
VC matrix for all arcs are updated with a new observation
and its variance. First of all, the variance components of
the new images are estimated based on the double-difference
phase observations of arcs between the CCS in the refer-
ence network. Note that independent arcs are selected in
the reference network to obtain an unbiased estimation of
the variance [40] [28]. Assuming, for now, that the noise
of all scatterers is the same within one image, the variance
component of double-difference phase between two scatterers
at epoch m is defined as

σ 2
�φm

i, j
= 2DQψ DT (30)

where Qψ = diag(σ 2
ψ1
, σ 2

ψ2
) is the VC matrix of the two SLC

acquisitions, D = [
1 −1

]
,and the factor two follows from

taking the difference between the two points. Then the variance
of the observation at the m th epoch is obtained jointly with
the phase residual and the initial VC matrix of the estimated
parameters, which is defined as

σ 2
�φm

i, j
= êmêT

m − Am Qx̂(m−1) Am
T . (31)

The final estimation of the variance component is obtained
by averaging the estimated values of the individual arcs. Note
that arcs without deformation anomalies are used during the
estimation. Thus, the estimation of the variance component is
performed iteratively until the estimated phase variances are
stabilized. With the estimated variances of the new observa-
tions, the update step is implemented using a static Kalman
filter. The filtering process is defined as [49]

Qx̂(m) = Qx̂(m−1) − G Am Qx̂(m−1) (32)

x̂(m) = x̂(m−1) + G
(
�φm

i, j − Am x̂(m−1)
)

(33)

where G is the gain matrix, defined as

G = Qx̂(m−1) Am

(
σ 2
�φm

i, j
+ Am Qx̂(m−1) Am

T
)−1

. (34)

After getting the updated arc solutions, we can estimate
parameters of the scatterers by integrating all arc solutions.
Note that scatterers in different levels are processed separately
without a loss of precision.

F. Quality Metrics of Anomaly Detection

Considering the alternative hypothesis H1 in (20), the qual-
ity metrics for deformation anomaly detection are established
using a statistical test. An important value is the MDD [12],
which indicates whether a deformation anomaly could be
detected with a probability γ0 based on the VC matrix. This
probability is commonly called the detectability power [12].

Fig. 3. Probability density functions under the null (no deformation) H0
and an alternative hypothesis H1. (q, ν) are the dimension and noncentrality
parameter.

Suppose that a γ0 is fixed, we can calculate the noncentrality
parameter ν with a given level of significance α as well as a
dimension q [50], which is defined as

ν0 = ν
(
γ0, χ

2
α(q, 0), q

)
. (35)

The relationship between γ0 and α is shown in Fig. 3.
Consequently, the MDD is defined as

∇MDD = λ

4π

√
ν0

CT
φ Q−1

�φi, j
Qêm|m−1 Q−1

�φi, j
Cφ

. (36)

On the contrary, with an a priori postulated ∇MDD, the non-
centrality parameter ν0 is obtained as

ν0 =
(

4π

λ

)2

∇MDDCT
φ Q−1

�φi, j
Qêm|m−1 Q−1

�φi, j
Cφ∇MDD (37)

and the detectability power γ0 is found to be

γ0 = F
(
χ2
α(q, 0)|q, ν0

)
(38)

where F(·) denotes the cumulative density function (CDF) of
the noncentral χ2 distribution.

In our processing approach, detecting deformation anom-
alies depends on three parameters, that is, the level of sig-
nificance α, the detectability power γ0, and the MDD. Given
two of them, the third one can be calculated. This yields two
strategies considering the quality metrics, which are listed as
follows:

1) Detectability Power γ0: Given a level of significance
and MDD, the detectability power of all scatterers with phase
anomalies is calculated. The MDD can be specified based on a
certain application. The detection power shows the probability
of the detectable deformation anomaly under the given MDD.

2) MDD: Given a level of significance and detectability
power, the MDD of all scatterers is obtained. We can obtain
the minimal deformation that can be detected based on the
specified probability.
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IV. APPLICATION ON SIMULATED AND REAL DATA

In order to validate the proposed method for deformation
anomaly detection and evaluate its performance, we test it on
a simulated dataset and demonstrate it on real data from the
TerraSAR-X satellite.

A. Deformation Anomaly Detection on Simulated Data

The simulated dataset includes 39 acquisitions, that is,
38 interferograms, and 5000 coherent scatterers over a range
of 500 × 500 pixels. Using a radar wavelength of 31.1 mm,
a deformation signal d(x, y, t) is simulated by a modified peak
function with a maximum deformation velocity of vmax =
15 mm/a along the line of sight, that is,

d(x, y, t) = t · vmax ·
(

3

5
(1 − x)2e−x2−(y+1)2

− 2

5

( x

5
− x3 − y5

)
e−x2−y2 − 1

5
e−(x+1)2−y2

)
. (39)

The height residual is simulated by assuming a uniform
distribution with a maximum value of 10 m. The atmospheric
signal is simulated using a power law behavior (see [9]).
Additionally, we assume that all scatterers have the same
statistics for the phase noise, where we assume a Gaussian
distribution with σ = 16◦ for the absolute (unwrapped)
phase, which corresponds with a Noise-Equivalent Sigma
Zero (NESZ) of −14 dB. After interferogram 35, we add addi-
tional displacements to a subset of 200 scatterers, to simulate
a change of behavior to be detected with our methodology.
Here, an increase in velocity is considered causing additional
absolute displacements for interferograms 36, 37, and 38 to
increase linearly. These velocities are drawn from a uniform
distribution with an absolute range of [1,10] mm per repeat
cycle and are referred to as deformation anomalies below. All
simulated values are then wrapped to the principal 2π interval.

The MT-InSAR method is initialized on the first 35 interfer-
ograms, yielding the initial parameters. After the initialization,
interferogram 36 is added and the corresponding deformation
anomalies are detected using the test metric in (24) with
a level of significance of α = 0.05. The result is shown
in Fig. 4(a), indicating that 172 of the 200 scatterers (86%)
with deformation anomalies are successfully detected, while
others are not detected. Fig. 5 shows the histograms of the
detected and missed (undetected) scatterers, as a function of
the deformation anomaly.

Setting a level of significance α = 0.05 and a detectability
power γ0 = 0.95, the MDDs of all scatterers are computed
[see (36)]. The average MDD of all scatterers is 2.8 mm.
According to the histograms in Fig. 5, most scatterers with
deformation anomalies larger than the average MDD are
successfully detected, while those with deformation anomalies
smaller than the average MDD are not detected. Therefore,
the results on simulated data show a good performance of the
proposed method.

Considering the quality metrics, both the detectability power
and the MDD of all scatterers can be computed, as shown
in Fig. 6. The difference of MDD/detectability power between

Fig. 4. Deformation anomaly detection by simulated data based on one
(a) and three (b) update observations. Blue boxes denote the detected
anomalies, while red boxes denote the missed (undetected) anomalies. For
one update, 84% of the scatterers with deformation anomalies are successfully
detected, while for three updates, this is 97%.

different scatterers is small since the simulated phase noise is
the same for all scatterers.

B. Practical Considerations

For practical applications, a user should choose between two
approaches. The first approach is to postulate the displacement
value to detect, for example, in cases when this displacement
value is critical for the failure of a construction. This is termed
the MDD-fixed approach. With a fixed MDD, we can compute
for each point the achievable detectability power. Being overly
ambitious in the MDD, that is, requiring a very small MDD,
would result in a low detectability power, and hence many
missed detections. A more conservative, hence greater, MDD
would result in a higher detectability power.

The second approach is to postulate the detectability power,
for example, since the consequence of a missed detection may
be acceptable or dire. This is termed the fixed-detectability
approach. Settling with a low detectability results in a low
MDD, and hence early detection, albeit with many false detec-
tions. Requiring a high detectability results in more correct
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Fig. 5. Histograms of the detected (86%) and missed, or undetected,
(14%) scatterers, as a function of the size of the deformation anomaly.

Fig. 6. Relationship between MDD and detectability power for all simulated
scatterers. For either an MDD-fixed or a fixed-detectability approach, the cor-
responding detectability power or MDD can be evaluated, respectively. Yellow
dots (aligned as cross-hairs) denote the quality metrics with an MDD-fixed
or fixed detectability power approach.

detections, albeit that the displacement needs to be greater to
achieve it, hence perhaps a detection at a later time. It is up
to the user to decide on the tradeoffs between the incentive to
detect even the smallest displacement anomalies, to minimize
the adverse impact of not-detecting a critical displacement,
and to minimize the number of false warnings.

As described in Section III, the power of detecting a defor-
mation anomaly can also be further improved by adding more
update observations, that is, d > 1. In this case, we set d = 3
and conduct a deformation anomaly detection based on three
update observations using MHT described in (29). In the result
of the deformation anomaly detection shown in Fig. 4(b),
194 of the 200 scatterers with deformation anomalies are
successfully detected (97%). Therefore, by adding update
observations, we can improve the capability of the deformation
anomaly detection significantly. Additionally, Fig. 6 shows the
relationship between MDD and detectability power for one and
three update observations, indicating that a larger MDD leads
to an increased reliability, or, likewise, that the same MDD can
be achieved with a higher detectability power by increasing the
number of observations.

Fig. 7. Histograms of the undetected deformation anomalies with different
number of updates. The MDDs with different number of updates are 2.6, 3.6,
and 6.7 mm, correspondingly. The percentage of the undetected scatterers are
64% for one update, 20% for three updates, and 10% for five updates.

Because both the detection of a deformation anomaly and
the calculation of the two quality metrics depend on the
noise-level of the phase, a second simulation is performed
using a medium noise level with σ = 35◦, which contains
41 interferograms. The other parameters are the same as in
the first simulation. Using a level of significance of α = 0.05,
the deformation anomaly detection is conducted using one,
three, and five updates. Fig. 7 shows that the MDD increases
significantly with a higher noise level, leading to more unde-
tected deformation anomalies. Nevertheless, the performance
of the deformation anomaly detection can be improved using
multiple updates. In this simulation, the percentage of unde-
tected scatterers is 64% for one update, 20% for three updates,
and 10% for five updates, indicating that multiple updates
help improve the performance of the deformation anomaly
detection, especially for data with more noise. However,
the reliability of the phase unwrapping in the initialization
decreases as the noise level increases, leading to more unde-
tected scatterers with a deformation anomaly larger than the
MDD, as shown in Fig. 7. The number of detected scatterers
that in fact have no anomaly is 2, 13, and 19, showing an
increasing false positive rate with more updates.

The third demonstration is conducted using a composite
displacement signal. For the initialization, the displacement
signal includes both a linear and a periodic component. Then
we add an additional exponential displacement signal, with
different scale parameters, to a subset of 200 scatterers. During
the deformation anomaly detection, a Cφ matrix including
offset, linear, and exponential displacement is considered to
identify different types of anomalies. Table I represents the
number of different types of deformation anomalies with
varying number of updates, showing that the various types
of deformation anomalies can be obtained accurately with
multiple updates.

C. Deformation Anomaly Detection in TerraSAR-X Data

We demonstrate the amplitude-augmented recursive inter-
ferometric processing using 60 stripmap TerraSAR-X
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TABLE I

DETECTED ANOMALIES GIVEN A DIFFERENT NUMBER OF UPDATES

Fig. 8. Distributions of the temporal and spatial baselines. The red dot
indicates the master image, blue dots indicate the slave images of the
initialization stack, and yellow dots indicate the slave images of the recursive
update stack.

images between June 2013 and January 2017 over Delft,
The Netherlands. The slant range and azimuth pixel spacings
are 1.37 and 1.86 m, respectively. External digital elevation
models (DEMs) are not used in our processing and only a
flat-earth phase correction is applied during data preprocess-
ing. Fig. 8 shows the distribution of the spatial and tempo-
ral baselines. The maximum temporal baseline is less than
900 days and the maximum perpendicular baseline is 600 m.
The initialization stack includes the first 34 images, while the
recursive stacking includes the other 26 images.

A comparison of the estimated radiometric calibration
factors between the conventional and recursive updating
approach is shown in Fig. 9(a). Compared with the con-
ventional approach, our recursive approach removes all
potential TCS during the calibration, as described in
Sections III-A and III-B. The calibration factors on the left
side of the dotted line are derived from the initial stack,
while the ones on the right side are the recursive updates,
showing a significant difference of the calibration factors due
to surface changes. To minimize this problem, we introduce an
iterative approach in the amplitude processing. First, the rela-
tive radiometric calibration is used to obtain initial calibration
factors. Then, change detection is implemented based on
the empirically calibrated amplitudes, in order to identify
scatterers with a significant change, that is, TCS. Subsequently,
the relative radiometric calibration is conducted again, but this
time only with the selected scatterers that do not change in
the time series. The comparison of the estimated radiometric
calibration factors between the conventional and the recursive
process with change detection is shown in Fig. 9(b), indicating
that the bias is corrected by considering the surface changes,
which leads to an improved detectability of TCS.

Then CCS in the first-order and second-order network are
identified and both the initialization and the whole stack

Fig. 9. Estimated radiometric calibration factors by conventional and
recursive approach (a) without, and (b) with removal of TCS after change
detection.

are processed separately. Fig. 10 shows their corresponding
velocity maps with 22 and 18 k scatterers, respectively. The
deformation velocity ranges from −13 to 3 mm/a. Comparing
Fig. 10(a) and (b), some scatterers located at the southeast of
the area disappear if we process a longer time series, which
is mainly caused by 1) surface changes or 2) deformation
anomalies.

In order to distinguish these two types of anomalies,
the proposed recursive update processing is implemented by
subsequently analyzing amplitude and interferometric phase.
During the recursive process, the sequential change detection
on the amplitude is applied where the level of significance in
the F-test was set to α = 0.02 and identified scatterers with
a detected surface change are removed to exclude them from
the subsequent phase analysis. Then a χ2-test is utilized to
detect the deformation anomalies with a level of significance
of 0.02. Note that the variance of the observations needs to be
estimated from the data [see (31)], by evaluating the residues
to the prevailing model, and that these estimates have a sig-
nificant impact on the detectability power of the deformation
anomaly. After the deformation anomaly detection, the initial
scatterers can be automatically divided into three groups,
that is, CCS, TCS, identified by changes in amplitude, and
deformation anomalies. Three scatterers in different groups are
selected, in Fig. 11, to show both amplitude and deformation
time series. Their locations are shown in Fig. 10(a). Based
on Fig. 11(a), (c), and (e), the amplitude time series of both
the CCS and the deformation anomaly are stable, while that
of the TCS shows a significant decrease of amplitude in the
59th image. Fig. 11(b) indicates that the results by the proposed
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Fig. 10. Velocity on CCS using (a) 34 images (initialization set, with 22 k
scatterers) and (b) 60 images (entire set, with 18 k scatterers).

recursive update approach agree well with those of the conven-
tional approach since CCS is stable over the whole time series.
Fig.11(d) and (f) shows the deformation time series of the
TCS and the deformation anomaly, which would be regarded
as CCS in the conventional process. It is obvious that both
decorrelation and an inappropriate deformation model will
bias the estimated velocity. However, the decorrelation cannot
be detected by the phase since the wrapped phase can be
coincidentally correct [see the last displacement in Fig. 11(d)].
Compared with the decorrelation, a deformation anomaly leads
to a more significant bias of the velocity [see Fig. 11(f)].

All detected deformation anomalies and TCS from the 35th

to the 60th images are shown in Fig. 12. Note that the moments
of both surface change and deformation anomaly on different

Fig. 11. Comparison of both amplitude and deformation time series on
selected scatterers in different groups. First column: amplitude time series.
Second column: deformation time series. (a) and (b) CCS. (c) and (d) TCS.
(e) and (f) Deformation anomaly. The blue and red lines in (b), (d), and
(f) indicate the estimated velocities.

scatterers vary. Two small regions, A and B, are selected
to show more details. Region A shows many TCSs, while
region B contains some deformation anomalies. Fig. 13(a)
shows the amplitude time series of several TCS in selected
region A, indicating a decrease of amplitude after the 36th

image, which suggests that a destruction occurred between
December 2014 and February 2015. Fig. 13(b) shows the
deformation time series of five deformation anomalies in
the region B. The deformation time series is obtained using
the conventional process with the whole 60 images and thus
these five scatterers are regarded as CCS. However, there is
a significant offset at the 46th epoch, which is a change of
deformation model rather than a phase unwrapping error since
it is smaller than one-quarter of the radar wavelength.

D. Comparison Between One and Three Updates

A comparison of the detection results with one and three
update observations is conducted to demonstrate its impact on
the sensitivity of detecting anomalies.

Fig. 14(a) and (b) shows examples of an amplitude time
series of a TCS and a deformation time series of a defor-
mation anomaly and their corresponding 98% confidence
intervals. The confidence interval of the amplitude is centered
at the mean amplitude over the initialization interval, while
that of the deformation is centered at the last observation
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Fig. 12. Result of deformation anomaly detection in the 60th image, with
test areas A and B evaluated in Fig. 13.

Fig. 13. (a) Amplitude time series of the TCS in region A of Fig 12.
(b) Deformation time series of the deformation anomalies in the region B of
Fig 12.

in the initialization. In the displacement time series shown
in Fig. 14(b), the velocity increases after the offset, leading
to a bias of the estimated velocity. However, this increasing
velocity cannot be detected by one image update since it does

Fig. 14. Confidence interval of amplitude with one and three updates.
The blue and green error bars denote a 98% confidence interval.

Fig. 15. Quality metrics between one and three update observations with an
MDD-fixed or fixed-detectability power approach.

not have an impact on the whole velocity. If the anomaly
detection is conducted by three update observations, this type
of anomaly can be detected, which demonstrates that we can
detect smaller deformation anomalies if we use more update
observations.

Then the quality metrics of all scatterers between one
and three updates are obtained (see Fig. 15), showing that
the MDD obtained by three update observations is smaller
than that by the single update observation with the same
detectability power. In addition, results by three update obser-
vations achieve a higher detectability power than those by one
update observation with a given MDD, which means that the
detection results by testing three update observations are more
reliable/powerful strategy.
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Fig. 16. Comparison of amplitude-augmented anomaly detection between
(a) one update observation and (b) three update observations.

Fig. 16 shows the results of anomaly detection in the 40th

image using one and three updates. The number of identified
TCS in Fig. 16(b) is more than that in Fig. 16(a) since the con-
fidence interval of amplitude with one update is large. Thus,
both change detection and deformation anomaly detection with
three updates gives a smaller confidence interval, leading to a
lower probability of falsely detection.

The following two comparisons demonstrate the importance
of incorporating the amplitude in the process. Detection results
are obtained by both amplitude-augmented and phase-only
anomaly detection, respectively. The first comparison (see
Fig. 17), demonstrates the difference of the two results in
the spatial domain. Comparing Fig. 17(a) and (b), both
detection results identify anomalies that happened on the
scatterers within the white box. However, these scatterers are
actually surface changes according to Google Earth maps
[cf. Fig. 17(c) and (d)], showing that detection results by a
phase-only approach have a high false alarm rate, since they
cannot separate surface change from deformation anomalies.

Fig. 17. Comparison between amplitude-augmented anomaly detection
and phase-only anomaly detection. (a) Result in 40th image by phase
anomaly detection. (b) Result in 40th image by amplitude-augmented anomaly
detection. (c) and (d) Google Earth images. White box shows the area with
a building change. Note that the 40th image is acquired on September 15,
2015. The acquisition dates of Google Earth images are August 27, 2014,
and October 11, 2015, respectively.

The second example shows the sensitivity of the amplitude
on the anomalies, which is shown in Fig. 18. Two areas with
significant differences in the two detection results are selected,
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Fig. 18. Comparison between amplitude-augmented anomaly detection and phase anomaly detection. (a) Denotes the result of detection in 38th image by
amplitude-augmented anomaly detection. (b) and (c) Results from 39th to 40th images by phase-only anomaly detection. White rectangles show area with
significant difference between two approaches. (d)–(i) Magnified views of the selected areas. (d), (f), and (h) Region A. (e), (g), and (i) Region B. (d) and
(e) are from (a). (f) and (g) are from (b). (h) and (i) are from (c).

which are marked by the two white rectangles in Fig. 18. From
the magnified view in Fig. 18(d) and (e), surface changes
in the 38th image over the two selected areas are detected
by amplitude change detection. However, detection result by
phase-only approach [see Fig. 18(f) and (g)] does not find
these anomalies in the 39th image. Furthermore, these surface
changes are regarded as deformation anomalies by phase-only
approach in the 40th image [see Fig. 18(h) and (i)]. This
implies that amplitude is more sensitive to surface change than
phase, and results by phase-only anomaly detection do not
only have high false alarm rates but also high omission errors.

V. CONCLUSION

A novel method for deformation anomaly detection is
proposed based on an amplitude-augmented recursive InSAR
approach. Assuming a Rayleigh distribution, an F-test is used
to recursively detect single pixel changes. For the phase,
a χ2-test is used to test the stability per arc-over time, and
the initial parameters and VC matrix are updated with new
phase observations using a static Kalman filter. We find that
amplitude is typically more sensitive to a surface change than
phase since the amplitude is associated with the electromag-
netic properties of the ground targets, while the phase can
be coincidentally correct when the surface changes lead to a
phase close to the expected (wrapped) value. Thus, detecting
deformation anomalies by combining amplitude and phase
observations decreases the number of false alarms.

During the recursive process, anomaly detection is evaluated
by adding both one and multiple update observations, where

it is shown that the latter can improve the reliability of both a
surface change and a deformation anomaly, at the expense of
timeliness. Additionally, the detectability power and the MDD
are metrics introduced for quality assessment and users can
choose an appropriate indicator based on their needs. Tests
on simulated and real data show that our recursive process
successfully detects deformation anomalies which would be
missed in a conventional MT-InSAR process and the proposed
amplitude-augmented approach shows a good performance in
separating deformation anomalies from surface changes.

The sensitivity of both detecting surface changes and defor-
mation anomalies depends on the choice of the significance
level α. Decreasing α will reduce the number of falsely
detected TCS in amplitude change detection, as well as the
number of false deformation anomalies in ratio test, but will
lead to a decreased detectability of true anomalies.

While the proposed recursive framework is designed for
PS, an extension is possible for medium-to-low coherent DS.
Interferograms would have to be generated using subsequent
SAR acquisitions instead of using a single master stack,
since DS typically suffer more from temporal decorrelation.
Multilooking would be required to improve the coherence
estimation, while the change detection should be conducted
using a multipixel strategy to improve the reliability due to
the speckle noise.
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