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Abstract—Sentinel-1 is a synthetic aperture radar platform
that provides free and open source images of the Earth. A
product type of Sentinel-1 is Ground Range Detected (GRD),
which records intensity while discarding phase information from
the radar backscatter. Especially in cross-polarized GRD images,
there are noticeable intensity changes throughout the image that
are caused by amplifying the noise floor of the signal, which
varies due to non-uniform radiation pattern of the satellite’s
antenna. While Sentinel-1 has Instrument Processing Facility
(IPF) software to estimate the noise floor, even in the newer
versions (3.1 or above) of the IPF software there are still instances
where the estimates provided do not fit to the actual noise floor in
the image, which is particularly noticeable in transitions between
adjacent subswaths.

In this work we propose a method that reduces the impact
of the varying noise-floor throughout the image. The method
models the intensity of the noise floor to be a power function
of the radiation pattern power. The method divides the swath
into several sections depending on the location of the local
minimum and maximum of the radiation pattern power with
respect to the range. The parameter estimation is portrayed
as a geometric programming problem that is transformed into
a linear programming problem by logarithmic transformation.
Affine offsets are computed for each subswath by a weighted
least squares approach. Vast improvement is found on extra-
wide (EW) and Interferometric Wide (IW) Sentinel-1 modes
over cross-polarized images. Code implementation is available
at https://github.com/PeterQLee/sentinell_denoise_rs.

Index Terms—Sentinel-1, SAR, noise floor, denoising, additive
noise, linear programming

I. INTRODUCTION

Synthetic aperture radar (SAR) is a method of remote
sensing that uses backscatter from emitted radar pulses to
infer physical characteristics about the surface. Sentinel-1 is
a mission by the European Space Agency (ESA) that uses
two satellites (Sentinel-1A and Sentinel-1B) to provide a free
and open source of SAR images of the planet. Consequently,
Sentinel-1 remains an important resource for remote sensing
practitioners.

In every Sentinel-1 product there are one or two image
files that represent the recorded backscatter, which we will
call the unprocessed images, in addition to several other files
containing metadata. One issue that is apparent in unprocessed
images are the noisy intensity patterns that disrupt the appear-
ance of the desired backscatter intensity, which are sometimes
described as additive noise, noise equivalent sigma zero, or as
scalloping and banding patterns. Throughout this paper these
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noise patterns will be described as the noise floor of the image,
which is the total sum of noise sources within a signal mea-
surement. Throughout its lifespan, Sentinel-1 has had multiple
iterations of its Instrument Processing Facility (IPF) software,
which provides a method of estimating and subtracting the
noise floor from the image in order to normalize the intensity
within the image. In IPF 2.9, azimuth vectors were added to
compensate for the scalloping patterns that occur along the
azimuth [1]. In IPF 3.1 further improvements were made to
improve the consistency of the noise floor among different
subswaths [1]]. In early versions of the IPF, remote sensing
practitioners had difficulty compensating for the varying noise
floor, particularly in cross-polarized images [2], [3], [4], [5].
While more recent versions have improved this, issues still
remain. The recent article by [6] evaluated the calibration
of Sentinel-1 images finding that calibration can suffer par-
ticularly in scenarios with lower backscatter. In addition to
radiometric differences between the two satellites, it was also
found that the look angle was a factor for discrepancies in
intensity.

The types of images most affected by the noise floor
issue are cross-polarized images over maritime regions, due
to the low backscatter of ice and water. Consequently, noise
floor removal is critical for applications that require uniform
and consistent measurements throughout the image. One such
application is sea ice analysis, where the backscatter is used
to determine the physical qualities of the ice [2], [S]. Wind
speed analysis also relies on cross-polarized images, with the
literature showing that wind speed algorithms are adversely af-
fected by the noise floor patterns in Sentinel-1 images [7]], [8]].
Therefore, ensuring homogeneous intensity throughout cross-
polarized images could greatly improve visual interpretation
and the performance of the models applied for these tasks.

There are a limited number of methods in the literature that
attempt to compensate for the noise floor in Sentinel-1 images.
In the work by [4], a methodology was proposed that rescales
the default ESA noise floor in an affine manner for each
subswath. Our previous work [9] built onto the work of [4]
by formulating a method to dynamically estimate parameters
of the noise floor specific to each image. Specifically, a least
squares approach was used to estimate linear scaling param-
eters for each of the different subswaths such that applying
this re-scaled noise floor results in a more consistent intensity
profile throughout the image. However, as noted [9], the noise
floor is sometimes misfit in a non-linear manner that makes it
not possible to choose a linear scaling parameter that satisfies
all sections within a subswath. Sun and Li [10] took a similar
approach of estimating linear scaling parameters based on the
variance of adjacent subswaths. The authors also attempted
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to compensate for the textural patterns that are caused by the
noise-floor effect, a topic also pursued by Park et al. [11],
although it should be noted that the scope of this paper is
firmly based on the issue of the additive bias of the noise
floor rather than the textural issues.

In this work, we attempt to compensate for this non-linear
misfit of the noise floor in the subswaths. We observe that
the radiation pattern of the platform matches the scale of the
true noise floor much better than the ESA noise floor. We
propose a novel model of the noise floor to be a power function
of the platform’s radiation pattern, whose parameters are
estimated by solving a geometric program, that is converted
to a linear program in the log transformed domain. To ensure
compatibility between adjacent subswaths, offsets for each
subswath are computed using a weighted least squares formula
to compensate for the gamma distribution of backscatter. This
work makes refinements of our initial research presented in
the conference IGARSS 2020 [12] by modifying the model
to estimate different power functions based on range splits
(see Section [[II-Al), improving the offset estimation with
gamma variance weighting (see Section[[II-B), providing more
details and motivations behind the algorithms, and providing
a more complete analysis of the model by considering IW
mode images, more diverse EW mode images, a simulation
experiment (Section[I[V-A)), an experiment analyzing the effects
on bias (Section [V-C), and an extended discussion (Section
V).

We evaluate our method with three experiments. The first
experiment evaluates the performance of the proposed method
within a simulated experiment on a selection of RADARSAT-
2 images. The second experiment evaluates the method on
a selection of Sentinel-1 images, using version IPF v3.1+,
in both EW and IW mode, whose quantitative performance
is determined based on the characteristics of open water in
the images. The third experiment determines the difference in
radiometric bias compared to the default ESA method. Overall,
the first two experiments showed that the proposed method is
able to substantially improve the image quality under different
conditions, particularly in its ability to correct for the non-
linear misfit in the images. The third experiment indicated
that the proposed method results in a different radiometric bias
than the baseline ESA method. However, it is unclear whether
the radiometric bias change is an error, as there are some
examples where the ESA method loses significant features in
images. Therefore, we recommend further studies comparing
known materials to the backscatter for calibration purposes.

II. BACKGROUND

To understand the problem of estimating the noise floor, we
first provide an abridged overview of how the Sentinel-1 SAR
platform operates in GRD mode, which records backscatter in-
tensity and discards phase information (c.f. [13]]). The satellites
emit radar pulses towards the surface of the planet, measure the
backscatter signal produced, and create images based on these
measurements. The backscatter intensity depends on factors
of the sensor (e.g., antenna radiation power, wavelength, and
look angle) and the environment (e.g., surface roughness and

dielectric properties). If a hypothetical isotropic antenna were
used, the antenna’s radiation power (FP) would be identical
in all relevant directions and thus could be considered as a
constant. However, due to the limits of manufacturing, the
radiation pattern of Sentinel-1 antennas are non-isotropic and
vary depending on the look angle. To compensate for the
varying radiation pattern, the measured signals must be ampli-
fied differently according to the azimuth and elevation angle
to ensure that the backscatter measurements are comparable
throughout the image. An impact of this amplification is that
the thermal noise floor, which is the lowest possible measured
signal caused by the sum of noise sources (e.g., within the
circuitry of the satellite) [14]], is also amplified differently
according to look angle. This results in non-stationary noise
floor patterns throughout such images because regions that
are acquired with lower radiation power have an amplified
noise floor with higher intensity and regions that are acquired
with higher radiation power have an amplified noise floor with
lower intensity. In Sentinel-1 this has been called additive
noise or noise equivalent sigma zero (NESZ) and is commonly
associated with banding and scalloping patterns [[15]], [16].
The two Sentinel-1 modes this paper considers are Extra-
wide (EW) and Interferometric Wide (IW) modes, which have
the option to produce GRD types of images. These sensor
modes use Terrain Observation with Progressive Scans SAR
(TOPSAR) to scan in a compromise between resolution and
surface area covered [17]. TOPSAR works by breaking an area
into different subswaths defined in the range direction. During
orbit, it measures all subswaths concurrently by sequentially
emitting bursts rotated towards different elevation angles that
correspond to the different subswaths. Due to the design of
the antenna, the radiation pattern is unique for each subswath.
EW mode has five subswaths and is typically applied to ocean
regions with its first subswath, EW1, having a very high
magnitude noise floor with a multimodal pattern, while the
remaining four subswaths, EW2, EW3, EW4, and EWS5 have
U-shaped patterns. IW mode has three subswaths, IW1, IW2,
and IW3, all of which have U-shaped patterns. For both of
these sensor modes, the higher numbered subswaths will typi-
cally be generated with higher radiation power than the earlier
subswaths. The unprocessed images have significant changes
of intensity due to the varying noise floor. The changes are
particularly abrupt at boundaries between subswaths, since the
radiation patterns used are discontinuous due to the subswath
merging. Fig. [T] shows examples and the relationship between
the estimated noise floor and the antenna radiation power.
Note a couple of conventions in this paper. In Sentinel-1
products measurements and noise-floor estimate are typically
specified in pixel coordinates that may be exchanged with
the appropriate azimuth and ground/slant range angles with
provided lookup tables. Because the noise floor removal is
typically done on the image level, the azimuth and range will
be specified in row and column coordinates throughout this
paper. Also, at the noise floor removal stage values are still
specified in terms of Digital Numbers (DN). This is prior
to when the DN converted to backscatter quantities (e.g.,
00, Bo,7y). Because our pipeline is firmly entrenched in the
noise floor removal stage, this paper will primarily report
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Fig. 1: Plots of the estimated noise floor (top) and the antenna
radiation pattern power (bottom) along the range direction for
both EW and IW images (unit-less). Their values show an
inverse relationship. Both the ESA noise floor and antenna
radiation power values were derived from XML files from the
Sentinel-1 products.

results in terms of Digital Numbers.

The ESA provides noise-calibration extensible markup lan-
guage (XML) files that estimate the noise floor Ypsa =
NgxNre, With g, and n,., being the azimuth and range noise
vectors, so that subtracting the original image and the noise
floor will result in a more consistent intensity profile through-
out the image. However, as shown in previous work [9], these
estimations have issues fitting to the images. While linear
rescaling methods improve on this [4], [9], a critical issue
that remains is that there is non-linear mis-scaling within each
subswath [9]. For instance, Fig. [2a] plots the ESA noise floor
and the observed measurement of open water respect to the
range that demonstrates an example where the noise floor is
misfit in a non-linear manner. Linear rescaling will not fix this
because one side of the subswath is under-compensated, while
the other is over-compensated.

The observation that motivates this work is that in the
log-log domain a piece-wise linear function can be used to
describe the true noise floor with respect to the antenna pattern.
Fig. [2b] demonstrates this by showing an example of the log
transformed antenna pattern with respect to log transformed
measurements over a section of open water, which is a good
approximation of the true noise floor. The figure also shows
that there is also a piece-wise relationship between the ESA
noise floor and the measurements, an aspect that will be
discussed further in Section

III. METHODS

Given our observations above, we wish to model noise floor,
Y, as a power function of the antenna radiation pattern

Y = " P™Yoimuth + 0. (D

with the goal of removing the noise floor through subtraction
(X —Y). In terms of measured variables Yrs 4 as the default
noise floor provided by ESA, Y, .imutn as the azimuth noise
vectors, X as the raw measurements, and P as the elevation
antenna radiation pattern. In addition, we have optimization
parameters that are estimated from the data from each scene:
m, b, and o. These parameters serve different purposes. The
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(a) Figure shows clear misfit between the default noise floor (Yrsa)
and the measurement over open water (X), a material that has
low backscatter in cross-pol and therefore a good estimate of the
true noise floor. Note that the left side of the subswath is over-
compensated, while the right side is not. This implies that there is no
choice of linear scale will rescale the noise floor correctly because one
side of the subswath will always remain over- or under-compensated.
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(b) Figure showing a log-log plot comparing measurement intensity
(In(X)) to the antenna pattern power (In(P)) and the ESA noise floor
(In(YEsa)) respectively. Both of these trends reveal a piece-wise
linear relationship in the log-log domain, showing a disjoint spatial
relationship between the actual noise floor and model estimates.

Fig. 2: Non-linear misfit in a homogeneous section of EW4
(S IB_LEW_GRDM_ISDH_20200111T211332_20200111T211432_019774_02563C_2069).

power function parameters, m and b, are used adapt to the
overall shape of the noise floor within different sections of
the subswath. The offset parameter, o, is used to correct for
affine bias that may occur between the subswaths. Values for
P are derived from the antennaPattern fields in the XML
files that are included in the Sentinel-1 products, using the
geoLocationGrid lookup tables to convert elevation angles to
range coordinates. Critically, the unitless values from anten-
naPattern were divided by an arbitrarily large number that
was greater than all pattern measurements (we chose e*3-3)
for numerical stability purposes. The measurements, X, are
taken from the image files in the product, with pixel values
squared to convert to intensity. As the power function e’ P™
only models the noise floor with respect to the range, we
multiply it with the azimuth component of the ESA noise-
calibration XML files, Y, imutn, to compensate for scallop-
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Fig. 3: Sections of an EW image divided by subswath a
(hatched), bursts g (green), and range divisions s (light red).
The parameter o is different for each subswath and the
parameters m and b are different for each range split, as
labelled in gray braces.

ing. The model (I)) differs significantly from other solutions
because the power function model allows the curvature of the
profile to be adapted by adjusting the m parameter, in contrast
to alternative linear rescaling methods. The proposed model
has increased parametric complexity compared to the linear
models as a consequence of generating noise floor profiles
more effectively.

The images are divided into several regions, being the
subswaths (a), range splits (s), and bursts (g) as depicted
in Fig. 3] that will play a roll in how the parameters are
estimated. While a is determined by the TOPSAR scanning
mode, we define s as the division of the subswath along
the range between the local minimum or maximum in P.
Also, g corresponds to the sections TOPSAR captures along
the azimuth within a radar pulse, that can be observed by
the scalloping pattern along the azimuth. The power function
parameters m and b are estimated in context of a geometric
programming problem that is converted to a linear program
and take different values for each subswath a and range split
s. As will be discussed in further detail in Section [[lI-A] the
optimization attempts to take the lower bound of the aggregate
values of X and P over all bursts for each subswath in range
split (i.e., g € a N s). The parameter o is found for each
subswath a and is estimated by a weighted least squares. The
objective of this approach is to minimize the affine offsets
between the adjacent subswaths in the intermediate denoising
result, X, of subtracting the power function, as described in
Section [[II-B] A summary of the entire algorithm is given in
Algorithm [T}

A. Power function

The idea behind estimating the parameters of the power
function is that the model should act as a tight lower bound

Algorithm 1: Main procedure for noise floor estima-
tion and subtraction in SAR image.

1 for each subswath a € A do

2 for each split s € a do

3 Construct G, s by Algorithm [2| // Get data
points for lin. prog.

4 Compute parameters m, b by solving

// Solve lin. prog.

/+ With the base parameters solved, smooth
out the function between x/

/* range splits with linear interpolation

for each subswath. */
5 for each split s € a do
6 Determine parameter values between the
adjacent range split using Algorithm
7 Compute X within @ and s by computing

// Compute the partial denoised

result, without offsets

Compute o by solving (EI) using X;
Compute noise floor and denoise by computing

e e

)

on the measurements (X). To this end, the problem is shaped
into the following geometric program

max e’ T (P, X)
b @)
such that ebPim < X,

with the assumption that P and X vary along the range,
with P; and X; being observed pairs of radiation power and
measurement points from the data. The intuition behind using
constrained optimization to estimate the parameters is that
the noise floor has the fundamental property of being the
minimum measurable signal. Constrained optimization offers
a way to find a lower bound of the noise floor function based
on the observed measurements. To this end, the inequality
constraints ensure that the parameters m, b that are estimated
result in (m) being a lower bound of the measurements (X).
From a typical optimization perspective, the objective func-
tion may seem unusual, as one would typically attempt to
choose m, b to minimize the distance between measured points
and the power function. However, in our case we want to
specify tightness to the lower bound of points; minimizing
the difference between points would be counter productive
because the backscatter intensity interfere with this estimation.
Consequently, approaches like least squares regression would
not result in a viable noise floor. Therefore, the objective
function e®I"™ (P, X) is used to maximize the position along
a moment of the curve, and allowing the inequality constraints
to bound it underneath the measurements. The scalar I'(P, X)
is chosen to utilize all available pairs of points (P and X)
to arrive at an appropriate moment, which we abstain from
defining until we convert (2) into a linear program.

The approach of applying log transformations to geometric
programs is a prominent strategy in geometric programming in
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Fig. 4: Top figures show the range splits, based on the local-
minima and local-maxima of the antenna pattern, correspond-
ing to measurements in the linear domain. Bottom plots show
log-log graphs of the antenna pattern versus the measured
intensity. The range splits are divided in terms of colour,
clearly showing that there is a linear trend that changes each
time a local min/local max is passed. EW plots come from
SIB_EW_GRDM_ISDH_202001 12T183748_20200112T183848_019787_02560c_3309 and IW plOtS

come from S1B_IW_GRDH_1SDV_20190908T232059_20190908T232128_017953_021CC5_7FCE.

order to make original problem easier to solve [18]. The spe-
cial case of the power function is convenient as it transforms
directly to a linear function

In(e?P™) = mIn(P) + b= mp + b. (3)

Given our observations in Section [II| pertaining to the linearity
of the true noise floor in the log-log domain, it is logical
to transform the objective function to be a linear function.
Optimizing parameters of a linear objective function with
respect to a set of linear inequalities is the definition of a
linear program [19]. This is convenient as linear programs
are a well known class of problems with many applicable
algorithms available for use.

We aim to model several different functions contingent to
the different subswaths (a) and range splits (s) discussed
above. We observe that on open water regions the linear trend
changes slope at different range sections of the subswath,
which we call range splits. These changes appear at local
minimum and maximum of the radiation pattern power. An
example of this is shown in Fig. @ Therefore, separate power
functions are modelled for every range split s in each subswath
a.

The aim for the parameter estimation problem is to tightly
fit the power function to the true noise floor as it varies
along the range. To use the measurements for parameter
estimation, several preprocessing steps are needed. As we aim
to model separate power functions for every range split s,

we require a method to obtain potential points of the true
noise floor throughout s from which to estimate the power
function parameters. We denote this set of points as G s,
by extracting pairs of log transformed antenna pattern values
and measurements (p;, x;) over all bursts within a and s. The
overall process of constructing G, is given in Algorithm [2}
The method involves extracting indices that cover the overlap
between burst g and slice s € a, and gathering the average
measurements along the range. Further processing is done in
the form of convolution with a boxcar filter of size 51 (to
remove outliers). A critical step is the subtraction that occurs
on line 6 using a set of values from B that represent the
minimum value of noise floor free backscatter measurements
for a specific burst and subswath. This is important for
allowing the method to adapt to different target compositions
and ensuring the lower bound that is found will represent an
appropriate noise floor. Note that for the set B, we selected
the minimum measurements that are produced by the ESA
noise floor removal method for each burst and split. Note
that if one has some alternative prior information on what
the minimum backscatter should be, this could be replaced
and could possibly result in a better quality lower bound and
improve parameter estimation.

Algorithm 2: Construct G, ¢

1 Let Ga,s ={}h

2 Let B be a set of estimates of the minimum noise
floor free measurement for each burst in subswath a;

3 for each burst g € a do

4 | Let X = mean reduction of X € {g N s} along the

azimuth axis; // obtain a 1D array of

measurements with respect to the range

5 | Let T =X xboxcar(51); // smooth array with

low pass filter

6 Let Q=T — B(g); // Subtract the minimum

measured value,

so that Q is closer to
the true noise floor
7 Update G, s = Gos U (In(Q),In({P € s}));

// Concatenate the altered measurements

and antenna pattern

The linear program takes the form of
max ym +b
such that mp; +b < x; V (24, p;) € Ga s, “)
m < —0.75, and m > —1.25,

where m and b are optimization parameters, (z;, p;) are pairs
of points obtained by Algorithm [2] and v is the objective
variable. Again, note that different versions of m, b, and ~
are created for every pair of subswath a and split s, but are
not annotated differently in the formulas for visual clarity. As
mentioned previously, by estimating parameters m and b in a
linear function mp + b in log space is equivalent to e®P™,
which is part of the proposed model of the noise floor.
Because the noise floor is the lower bound signal, linear
constraints mp; + b < x; are set, indicating that the noise



floor estimate cannot exceed the signal measurements. We also
found it beneficial to add additional inequalities m < —0.75
and m > —1.25, since occasionally the program would result
in extreme slope values that were inappropriate.

The objective ym + b is designed to promote a line that
is close to the constraining points as possible. If one ignores
the m < —0.75 and m > —1.25 constraints, mathematically
the choice of v must be between min(p) and max(p) or else
the linear program has the possibility of being unbounded.
More intuitively, v could be thought of the factor controlling
where the line should be most tight to the constraining points.
For example, if v is chosen as max(p) then the resulting line
will be tight for points close to max(p), but looser for points
close to min(p), and vice versa. Thus, a choice of « should be
chosen so that the resulting line is suitable for as many points
as possible. While a naive choice of v would be the mid point
of {p; € Gq 5}, this would cause a bias towards lower values
due to the logarithmic transformation. To account for this, an
unbiased value of ~y is determined by selecting the associated
points {(Zmin(p), MiN(p)), (Tmax(p), Max(p))} € G, in or-
der to compute the midpoint v = ln(eXp(wmi“(P))—geXP(w"““"(”) ).
The percentage scaling is put back into the log scale as o =
mm:X:pf'i‘;‘::n(m. Finally, v = max(p) — a(max(p) — min(p)).

Since @) and all its requisite terms have been determined,
there are no further major steps for estimation, as the desired
parameters m and b can be easily determined by using off-
the-shelf solvers. We implemented the problem by using the
cvxpy library[20], [21] with the splitting conic solver [22],
[23] to solve for the parameters. This process is repeated for
each division of subswaths independently. For reference, Fig. ]
shows an example of the bounding line estimated from (@)
aggregated over a series of non-homogeneous series of bursts.

7.2

-10.4 -10.2 -10.0

In(P)
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Fig. 5: Example of the bounding line estimated from the linear
rogram using data points from aggregated non-homogeneous
ursts in a range split. The processed log measurements,

x; € (g, in blue are bounded by the dashed orange

line, mp; + b, so that all x; are above this line. Data from
S1B_EW_GRDM_ISDH_20191218T193518_20191218T193618_019423_024B12_5B75.

Another consideration of the algorithm is the transition

between different range splits. Due to the simplicity of the
parameter estimation model, there is no guarantee that the
linear functions estimated at range splits will intercept close
to the measured points. If uncompensated, this can result in
discontinuities in the estimated noise floor between adjacent
range splits. To compensate for this, m and b are transitioned
between range splits by means of linear interpolation between
a boundary gap. This process is detailed in Algorithm [3] At
this stage, we denote the partial corrected result as

)} =X - emeYazimuth7 (5)

with Y, imuen being the azimuth noise vector taken from the
ESA noise-calibration XML files, which is used to reduce the
scalloping effect along the azimuth from stitching together the
bursts that compose the image. These azimuth vectors have
values around 1.0 - 1.2 and are designed to be multiplied by
the range component of the noise floor, in this case e’P™
(note that we rescaled these azimuth vectors to be centered
around 1.0). The azimuth component is not included in the
optimization of m and b because it is minute compared to the
variation along the range. Fig. [6] provides a visual example of
how the parameters estimated in the log domain of each range
split are mapped to the linear domain.

Algorithm 3: Smoothness interpolation of m and b
between different range splits.

1 Let sp and s; be range splits in subswath a;

2 Let parameters mg, m; and by, b; be associated with
sg and s1;

3 Let u = [ug, u1] € Z be the discrete range indices
dividing sg and s1;

4 m(i)=(1- = )ymo + P (my —myg) for i € u;

5 b0(1) = (1 — ——)bp + ——(by — bp) for i € u;

Ul —uoQ U1 —uUQ

A final consideration regards the use of the ESA provided
noise floor Y g 4 rather than the antenna pattern P to estimate
m and b. Both Ygg4 and P present piecewise linear trends
can could be interchanged within the algorithm; the main
difference will be that m will be positive for Ygg4. For
YEsa, one will want to alter the boundary constraint to
0.75 < m < 1.25. Using Ygs4 may provide some theoretical
advantages because it considers factors that influence the noise
floor in addition to the antenna pattern, such as power gain
products and range spreading loss [13]], although empirically
we did not find there was a significant difference in samples
we collected.

B. Subswath offsets

While we found that the power function would be effective
at estimating the noise floor within subswaths, an issue remains
in that the overall intensity between subswaths remains imbal-
anced from applying (3). To compensate, offsets are computed
for each subswath using a weighted least squares approach.
The core of the problem is to choose a vector of offset values
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Fig. 6: Association of how the log parameters are mapped to the linear domain as the partial estimated noise floor. The figure
shows the four range splits in subswath EW1 over a region of open water. The left graph shows the measurements (solid) and
estimated linear function (dashed) in the log domain. After exponentiation and reordering to range indices, the right graph
shows the reconstructed range measurements and noise floor estimate. Data from siz_ew_Grom_isDH_20200112T183748_20200112T183848_019787_02569C_3399.

o so that the difference between values in adjacent subswaths
is minimized. Specifically, this takes the form

in 3

min
ac€A—max(A) g€a

+ 3 Moa)?,
acA

- (©6)
where we take I(X,a,g) as the average of the 30 rightmost
pixels of subswath a along the azimuth lines in g, (X, a, g) as
the average of the 30 leftmost pixels of subswath a + 1 along
the azimuth lines in g, wy is a burst specific weight, and A
is the set of subswaths in the image. In the first summation
the last subswath is skipped, since there are only N-1 borders
among N subswaths.

The selection of weights is based on the statistical distribu-
tion of SAR backscatter. SAR backscatter is distributed by the
gamma distribution [24], whose variance scales with the mean
of the random variables. This means that regions with higher
backscatter are less reliable for estimating o than regions
of lower backscatter and will cause poor estimations. The
variance of a gamma random variable is £2(X)/L [25], where
E(X) and L are the expectation of X and the shape parameter
respectively (i.e., the number of looks). We incorporate this
knowledge by selecting the weights to be the inverse variance
of the difference of two gamma random variables

L
- (X, a,9) +1r3(X,a,9)
The regularization term )., A(0,)? is added to ensure that

the system remains well-posed. Solving (6) is determined by
solving a linear system [19].

)

Wg

IV. EXPERIMENTS

We implement three experiments to evaluate the impact
of the proposed method (i.e., the output from Algorithm [T).
The first two experiments are adapted from previous work [9]]
that aim to evaluate and compare the quality of the different
correctional methods. The first experiment is a simulation
experiment that takes 21 RADARSAT-2 images and adds

ng(l(jaa’vg) + 04 — (r()?,a,g) + 0a+1))

an artificial noise floor by adding (T). The second evaluates
the appearance on Sentinel-1 images, measuring improvement

,quantitatively by the calculating the error of the measurements

with respect to a linear regression over open water regions,
assuming that the ideal intensity over these regions is flat. The
third experiment aims to analyze the change in radiometric
bias that is incurred by the proposed method on Sentinel-
1 images. Where possible, we make comparisons of the
proposed method to the unmodified images, the noise floor
provided by ESA, which we will call Method 1: ESA S1QC
IPF_v3.1+ (2020) [, and the method from our previous work,
which we refer to as Method 2: Lee et al., 2020 [9]. However,
Method 2 [9] was only implemented for EW images, so it was
excluded for analysis concerning IW images. Note that for
the quantitative measures, negative values were not clipped.
However, for display purposes the values were clipped to 1%
and 99% of the pixel values in each image, multilooked, and
square rooted to display amplitude.

A. RADARSAT-2: Simulation

The goal of the simulation experiment is to investigate
the ability to re-estimate parameters of an artificially applied
noise floor, where the ground truth clean image is known. We
follow the approach from our previous work [9], where we
selected 21 RADARSAT-2 images over the Beaufort sea and
subsequently generate and synthesize a noise floor through the
power function model . We selected a template EW imageﬂ
and a template IW image E| with similar characteristics of the
RADARSAT-2 images for which to model the noise floors and
intensity values.

There are several key differences in this simulation exper-
iment compared to our previous work. First, we ran this set
of experiments using both EW and IW noise floor profiles.
Second, the noise floor was simulated using the power function
model, rather than the noise floor originally provided by
the ESA. Third, instead of selecting scaling parameters by
sampling random distributions as we did in [9], we took a

2 SIB_EW_GRDM_ISDH_20200112T051555_20200112T051655_019779_02565A_2451
3 SIB_IW_GRDH_1SDV_20200111T232801_20200111T232836_019776_025644_396F



more conservative approach. While Method 2 [9] only had
one parameter to estimate per subswath, the power function
model has many more parameters (two (m,b) for each range
split, plus an affine offset (0)). Randomly selecting parameters
in the power function model can generate unrealistic noise
floors. Instead, we found it necessary to reuse parameters that
were estimated by from the experiment in Section [[V-B] for
both of the respective template images.

Before simulating the noise on the RADARSAT-2 images,
several image transformation steps were carried out to ensure
that the intensity values for the RADARSAT-2 image and
the Sentinel-1 image were similar. First, the pixels in the
RADARSAT-2 image were squared to convert to intensity
and spatially linearly interpolated to be the same size as the
template. A lookup table was created to map the percentiles of
the recorded intensities over all of the RADARSAT-2 images
in 0.1% increments. A second lookup table was created to map
the percentiles of the intensities for the template Sentinel-1
image after it was corrected by the proposed method. These
two mappings were then applied to map the RADARSAT-2
intensities to the template Sentinel-1 image.

After the image transformation steps, the simulated noise
floor was added onto the image using the selected parameters
Xnoise = Xelean + emeYazimuth’ where P and Yo imuth
were taken from the template image and b and ™ were
the estimates taken from experiment in Section As in
previous work [9]], we used the metrics of structural similarity
index (SSIM) [26], pixel-wise normalized mean squared error
(P-NRMSE), and peak signal to noise ratio (PSNR) to compare
the results of the noise floor removal methods to the clean
images X jeqn, Which we consider as ground truth. There
were up to four different methods that would be compared, the
unprocessed noisy image, Method 1 [[1], the proposed method,
and optionally Method 2 [9] for the EW template image.

A sample of the visual results of the simulation are shown in
Fig. [7] (EW), Fig. [§] IW), and Fig. [0 with metrics recorded in
the caption. Many of the images, such as Figs. 7| and 8| appear
to successfully remove the simulated noise floor as evidenced
by the improved metrics, however there were a few instances,
like in Fig. E] with worse metric scores, mis-estimation in
IWI1, and a higher overall brightness than the clean image.
The median metric values of the synthesized samples for
each method are reported in Table |I| for both EW and IW
cases. Due to the non-normal distribution of the residuals,
one-tailed Wilcoxon non-parametric tests were used to test
the significance of the paired difference in metrics. In terms of
statistics, one-tailed Wilcoxon tests with a threshold of 0.05
were applied for each metric to determine if the proposed
method was significantly better than the other methods, due to
the non-normal distribution of residuals. Overall, the proposed
method had better image quality than the original unprocessed
image, Method 1 [1], and Method 2 [9] in terms of the
metrics. The improvement was within significant levels except
for Method 2 in terms of SSIM for the EW case and PSNR
for Method 1 for the IW case.

B. Sentinel-1: Appearance

To evaluate our method, samples of 40 EW and 18 IW
Sentinel-1A and Sentinel-1B images, with IPF version 3.1 or
above, were selected to compare the proposed method to the
baseline methods. For EW images, we attempted to select a
sample from all five oceans. The selection of IW images was
less diverse, as IW mode is not specialized towards ocean
regions. Thus, the IW images were selected from a select few
coastal regions in the Pacific Ocean and Hudson Bay. Some
examples of these EW and IW images are shown in Figs. [I0]
and[TT] which show the visual difference between the proposed
method and the baseline methods.

Due to the unavailability of a ground truth image without
noise, we could not evaluate the effectiveness of the method
using conventional pixel difference measures. A characteristic
we exploited for our analysis is the appearance of open water.
Due to the low backscatter coefficient of calm water [6], one
should expect that a region of calm water would have a rela-
tively flat intensity profile. We then expected that significant
variation along the range is a result of the changing noise floor.
So if a noise floor removal method has significant variance
along a region of open water, we assume that this is the result
of uncompensated noise floor.

To accommodate this strategy, we selected rectangular re-
gions from the 40 EW and 18 IW images spanning the range
of the image that we deemed to be open water through visual
inspection. The mean was computed along the azimuth of each
rectangular regions so that points of measurements along the
range were generated for each rectangle. This vector was also
convolved with boxcar filter of size 151 for the values in each
subswath, using valid padding, in order to remove the outliers
and isolate the overall intensity changes.

The quantitative measure was derived by computing the
normalized mean squared error (R-NMSE) of the processed
points, as mentioned above, with respect to a best fit linear
regression along the range, for each method. The median
R-NMSE values and significance levels over the gathered
samples are summarized in Table Once again, we apply
Wilcoxon tests and report median values due to the non-
normal distribution of the residuals. For EW, the proposed
method had statistically lower R-NMSE than the unmodified
image, the images produced by Method 1 [1], and those
modified by using Method 2 [9]. The proposed method also
had a significantly lower median for IW images, albeit the
magnitude of improvement was less. While we saw an overall
improvement, the magnitude of improvement varied for each
image.

C. Sentinel-1: Intensity bias

One consideration to be aware of when designing noise
floors is the effect of the overall intensity among subswaths af-
ter subtraction. A potential undesired outcome from modifying
noise floors is raising or lowering the overall intensity of the
SAR images so that the backscatter intensity does not match
the expected intensity of a physical ground target, so that there
is a bias of intensity away from expected radar cross section.
Consequently, this experiment aims to evaluate how the total



TABLE I: Quality metric comparisons for simulation experiment. Median values are reported for each method over all simulated
samples. P-values are taken from a one-tailed Wilcoxon test, comparing the metrics to the proposed method. Bold p-values
indicate significance and non-bold indicates non-significance at a threshold of 0.05.

Method [ P-NRMSE | P-value [ PSNR | P-value [ SSIM ] P-value
EW (N=21)

Original 349 x107T [ 298 x1075 | 1992 | 298 x 1072 | 043 [ 2.98 x 10~ °
Method 1 6.73 x1072 | 2.98 x 1075 | 2868 | 298 x10°% | 079 | 1.85x 103
Method 2 [9] | 1.88 x10~2 | 4.51 x 10~% | 37.82 | 3.09 x 10~% | 091 3.58 x 10~1

Proposed 5.52 x10~3 N/A 4521 N/A 0.94 N/A

IW (N=21)

Original 461 x1071T [ 298 x 107° [ 13.15 | 298 x10°2 | 032 | 2.98 x 10~ °
Method 1 3.63 x1072 | 1.49 x 1072 | 29.51 1.29 x 10~ 0.87 | 3.18 x10°3
Method 2 3.11 x10—2 N/A 30.50 N/A 0.90 N/A

(a) Noisy (b) Method 1

(c) Method 2 [9]

(d) Proposed (e) Clean

Fig. 7. Simulated EW correction comparison. Visually the proposed method is able to remove the sharp discontinuities
between subswaths. a)SSIM=0.45,P-RNMSE=3.5 x 10~ PSNR=20.8 b) SSIM=0.73,P-RNMSE=6.7 x 10~2,PSNR=28.2 c¢)
SSIM=0.89,P-RNMSE=1.8 x 1072 PSNR=37.7 d) SSIM=0.91,P-RNMSE=1.1 x 10~2 PSNR=39.4

(a) Noisy (b) Method 1 [I]]

L

(c) Proposed (d) Clean

Fig. 8: Simulated IW correction comparison. The proposed method produces cleaner results, albeit still with some distortion at
the subswath boundaries. Again, note that no comparison was made to the Method 2 [9] due to it not being implemented for IW
images. a)SSIM=0.23,P-RNMSE=2.5 x 10~2,PSNR=32.0 b) SSIM=0.85,P-RNMSE=3.6 x 10~3,PSNR=48.8 ¢) SSIM=0.90,P-

RNMSE=3.4 x 10~3,PSNR=49.4

intensity varies in subswaths for between the proposed and
Method 1 [I]]. This is done by directly comparing the overall
intensity in each subswath between the methods through paired
differences.

The data used in this experiment is essentially the same as
the previous experiment, but instead of attempting to measure
the quality of the images, we measure overall change in bias.
For each corrected image, the mean intensity measurements
were computed for each subswath. Thus, a vector of size 40
(EW) or 18 (IW) was made for each subswath and each of
the two correction methods.

The change in bias was evaluated on a subswath-wise
manner so that the paired differences were taken between the

two correction method for each subswath. The significance of
its difference vector was evaluated using a two-tailed paired
t-test, with the implied null hypothesis being that the mean
intensity for the subswath is the same for the two methods.
Ultimately, all intensities showed the means were significantly
different, save for EW4, EWS5, and IW1. These results are
shown in Table [Ill] Overall, this indicates that there is a
significant difference in radiometric bias between the results
of the two methods.

V. DISCUSSION

Within the experiments, there is significant evidence that
the proposed method is able to accomplish the goal for



(a) Noisy

(b) Method 1 [T]

(c) Proposed (d) Clean

Fig. 9: Example of a scene generated from the simulation experiment where the proposed method is less successful. Although
the transitions between subswaths are continuous, the first range split in IW1 is not estimated correctly and much of the
image appears brighter than ground truth. a) SSIM=0.07,P-NRMSE=4.6 x 10~!,PSNR=10.5 b) SSIM=0.48,P-NRMSE=5.3 x
1072, PSNR=27.4 ¢) SSIM=0.70,P-NRMSE=4.6 x 10~2,PSNR=27.0

TABLE II: Experiment comparison for range regression over
open water. The median R-NMSE results are reported for the
samples for both EW (N=40) and IW (N=18) images. The
listed p-value is derived through a one-tailed Wilcoxon test to
determine if the proposed method has a lower R-NMSE than
the other methods.

Method | Median R-NMSE | P-value
EW (N=40)

Original 2.87 x10? 1.78 x10~=%
Method 1 [1]] 3.75 x100 5.92 x1078 v
Method 2 [9] 3.20 x10° 1.88 x10~6 v

Proposed 1.07 x10° N/A

IW (N=18)

Original 2.04 x107T 9.82 x10~° v
Method 1 [T]) 9.10 x10—1 321 x1072 v

Proposed 3.83 x10~1 N/A

TABLE III: Average intensity values of different subswaths for
Method 1 [1] and proposed. The percentage of the original
measurement is also recorded below for reference. P-values
from paired two-tailed t-test are recorded comparing the
distribution of intensities between Method 1 and proposed.
For reference, the percentage is reported under the values to
indicate the average ratio of the final intensity with respect to
the original unprocessed measurements (i.e., the noisy image).

Subswath | Method 1 [[1] | Proposed | P-value (t-test)
EW1 R Laoee | 436 x1072 v
Ew2 279.23% 3;.14666% 3.69 x10~* v/
EW3 3i%01€%> 3%,11227% 132 x1073 v
EW4 o Jsrse | 372 x1071 X
EWS 55%429% 489.%% 341 x107t X
Wi 26‘?2% 254.;‘11% 467 x10~1 X
W2 ), 42.(1)2% 21133% 117 x1072 v
w3 412.?;% 352.4512% 1.10 X102 v/

compensating for non-linear mis-shape in the noise floor.
The first two experiments directly support the ability of the
proposed method to improve image quality. While the third
experiment indicates that there is a significant difference in
radiometric calibration, we describe the implications of this
in more detail below. We also discuss some other important
details regarding parameter estimation and other factors on the
observed intensity.

The results from the simulation experiment also indicate that
the proposed method is able to result in a better quality images
than the alternatives under the assumptions of the simulation
pipeline. The three metrics generally support the effectiveness
of the proposed method over the baseline methods. Statisti-
cally, the metrics showed significant improvement except for
the PSNR metric in EW and the SSIM metric in IW. There
were some examples however, as shown in Fig. E], where
the proposed method was less successful. This highlights a
key assumption made by the proposed method of there being
sufficient critical points along the line mp + b that best fits
the true noise floor. If there are an insufficient number of
points, then the parameters may estimate in a less successful
manner, which typically occurs when m is tightly fit to the
constraints of m > —0.75 or m < —1.25. For example in
Fig. [0l m = —1.25 for the rightmost range split of IW1, where
the result is most divergent from the ground truth.

The images generated in the second experiment such as in
Figures [I0] and [TT] show that the proposed method is able to
compensate for the noise floor in both EW and IW images.
Visually, there was a large improvement in image quality in-
duced by the proposed method over the other methods, which
was particularly evident by the smooth transitions between
subswaths. To this end, this demonstrates visual evidence that
the non-linear misfit is compensated effectively. Quantitatively,
the range regression over open water provides strong evidence
that the proposed method can estimate more accurate noise
floors than the alternative methods. The proposed method had
significant improvement of normalized mean squared error
with respect to the regression along the range. Specifically
for EW images, the improvement is of high impact and
is successful in normalizing the intensity changes. For IW
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Fig. 10: Comparison of Sentinel-1 EW images. Coordinates coorespond to the center.
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Fig. 11: Comparison of Sentinel-1 IW images captured within the Hudson Bay.
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Fig. 12: Top figures show zones of open water that are pre-
selected in red. Bottom figures showing the regression along
the range over sections of open water. The proposed method
(blue), is compared to the Method 1 [I]] (red) and Method
2 [9] (green). In these examples, Methods 1 and 2 have
noticeable discontinuities at the start and end of each subswath,
something that the proposed method is able to compensate.

images, there was still significant improvement, albeit with
less impact due to the higher signal-to-noise floor-ratios from
the sensor mode. In terms of the types of surfaces captured
in IW images, noise floor compensation towards land surfaces
is less necessary since the measurements are dominated by
backscatter intensity. Instead, the method shows more promise
towards IW images containing water or ice, and thus could
be useful towards supporting remote sensing applications over
inland water or ice. Although our study was mainly focused
towards Sentinel-1 images of IPF version 3.1 or above, our
method is still applicable versions below that, so long as
azimuth noise vectors are available. To verify we evaluated
our method on a set of 41 EW images from our previous
study [9] and found that our method had a median R-NMSE
value that was 3.2 lower than our previous method, with a
Wilcoxon p-value of 0.012 thanks to its ability to correct for
the noise floor effects.

The main result from the third experiment is that there is a
difference in overall intensity between the proposed method
and Method 1 [1]. This implies that there is a significant
difference in radiometric bias; an important factor depending
on the remote sensing application. Whether this is a adverse
change in radiometric bias is not clear. For example, Fig. [[3|
shows that Method 1 results in sections of the ice formation
being removed because the intensity values are below zero.
Because the ice formation is visible in the proposed method,
this provides evidence that the total power of Method 1 may
not be ideal and removing the noise floor while accurately
recovering the backscatter of the ground targets is a non-
trivial problem. This problem could conceivably be alleviated
if one has some prior knowledge of the correct measurements
for some fiducials in the image. This information can be
embedded into the proposed method in two ways. The first is
through adjusting the choice of B in Algorithm 2] The second
is by augmenting equation [6] with a regularization term on o



(a) Method 1 [1]]

(b) Proposed

0.00 Digital Number 96.16

Fig. 13: Close up example comparing Method 1 [1] and
proposed denoised examples extracted from the image in
64.2°S,15.7°W, 2020-01-12, as seen in Fig. Notice that
Method 1 loses ice features due to the noise floor being too
high at the subswath transition.

to guide the estimates to towards the desired intensity values.

In terms of parameter estimation, Figs. [[4a]I4b] summarize
the parameters m, b, and o estimated for the Sentinel-1 exper-
iment. An interesting observation is the correlation between
m and b is extremely high, with coefficients of 0.9778 for
EW and 0.9777 for IW. The plot shows that each parameter
estimated is not independent, with each parameter having a
clear centre. However, the spread of estimates is still quite
large. Figs. likewise show the spread of parameters
for the simulation experiment. The same correlation between
m and b is clear, with coefficients of 0.9925 for EW and
0.9961 for IW. Compared to Figs. [[4a][l4b] the spread of the
estimates in the simulation experiment is much smaller. Indeed
for the simulation experiment the sum of standard deviations
was 0.6962 for EW and 0.2388 for IW while for the Sentinel-
1 experiment it was 1.077 for EW and 0.3787 for IW. This
is an important observation that supports the importance of
estimating new parameters for every scene because if the ideal
parameters were the same for each scene the spread of both
of the experiments would be more similar. Specifically for the
simulation experiment, the parameter estimates appear to be
centred around the ground truth for the EW case, especially in
lower SNR subswaths (e.g., EW1), with estimates becoming
more divergent with later subswaths with higher SNR (e.g.,
EWS5). The estimates also showed divergence for the IW
case in later subswaths. An explanation for the divergence
may be due to the over-determined nature of the model.
This is especially true for subswaths with a lower magnitude
relative noise floor, where the curvature of P is less severe.
Depending on the magnitude and shape of X and P, different
combinations of parameters can result in similar results.

Another factor to consider is that the total intensity of
individual bursts in a subswath can differ due to non-local
targets. Fig. [I5] shows two examples where the intensity
from high backscatter targets bleeds over into low intensity
targets within the burst, thereby causing discontinuity between
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Fig. 14: Spread of parameter estimates for the experiment on
Sentinel-1 images (a) and (b) and the simulated experiment
(c) and (d) for m (top), b (middle), and o (bottom). The
box plots are marked by their range split on the horizontal
axis and divided into their respective subswaths by the gray
vertical lines. The simulated experiment have the ground truth
parameters used to generate the noise floor marked by the
horizontal dashed green lines.
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Fig. 15: Example of an IW image where high intensity targets
bleed over into other targets within the burst. This causes
discontinuity between adjacent bursts, as indicated by the burst
division (red line). The division between subswaths (blue line)
is identified for reference.

adjacent bursts. The cause for this likely lies in the signal
processing pipeline, where the observed signal components of
the backscatter radiation within the range of the subswath is
transformed into the spatial intensity seen within the image.
This cannot be compensated by the current proposed method
because it assumes that the noise floor should be calibrated in
the same way for each burst throughout the entire subswath.
Correcting this on the image processing side would require
estimating parameters for each specific burst. However, this
would be difficult to accomplish due to the limited amount of
data in a single burst needed to produce estimates.



A final consideration regarding image quality is the com-
pensation for speckle. While directly out of scope for this
manuscript, it is worth mentioning its impact on the images.
Speckle in SAR is typically modelled with the Gamma dis-
tribution [24] and is described as multiplicative noise, where
its variance increases with respect to the original signal. As a
result, even when the noise floor is subtracted the increased
variance remains in regions where the noise floor was higher. If
one were to combine a despeckling approach with our method,
they must bear in mind that the statistics of speckle are still
linked to that of the original measurements.

VI. CONCLUSION

In this manuscript we proposed a new model for estimating
the noise floor in Sentinel-1 GRD intensity images in order to
account for non-linear misfit of the default noise floor estima-
tion that other methods in the literature cannot compensate for.
The model considers the noise floor to be an power function of
the radiation pattern power. We observed that different trends
occur at different sections of each subswath and therefore
estimate multiple power functions per subswath. Through log
transformation the problem of estimating parameters for the
power functions is relaxed to a linear programming problem.
To account for affine imbalance between subswaths, subswath-
wise offsets are computed using a weighted least squares
approach, making the entire estimation a convex optimization
problem. The method was overall successful in estimating the
noise floor in both Sentinel-1 images and simulated images.
While there is a change in radiometric bias, compared to the
baseline method provided by the ESA, the impact of this will
depend on the remote sensing application. While the focus of
this work has been on maritime regions, the applicability of the
method towards the heterogeneous features of land dominant
scenes has not been evaluated. While the noise floor for land
areas is less of a concern due to the higher signal to noise
ratio, noise reduction on such scenes is nevertheless a topic
for future study.
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