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Convolutional Sparse Coding Fast Approximation

with Application to Seismic Reflectivity Estimation
Deborah Pereg, Israel Cohen, and Anthony A. Vassiliou

Abstract—In sparse coding, we attempt to extract features of
input vectors, assuming that the data is inherently structured as
a sparse superposition of basic building blocks. Similarly, neural
networks perform a given task by learning features of the training
data set. Recently both data driven and model driven feature
extracting methods have become extremely popular and have
achieved remarkable results. Nevertheless, practical implemen-
tations are often too slow to be employed in real life scenarios,
especially for real time applications. We propose a speed-up
upgraded version of the classic iterative thresholding algorithm,
that produces a good approximation of the convolutional sparse
code within 2-5 iterations. The speed advantage is gained mostly

from the observation that most solvers are slowed down by
inefficient global thresholding. The main idea is to normalize each
data point by the local receptive field energy, before applying
a threshold. This way, the natural inclination towards strong
feature expressions is suppressed, so that one can rely on a
global threshold that can be easily approximated, or learned
during training. The proposed algorithm can be employed with
a known predetermined dictionary, or with a trained dictionary.
The trained version is implemented as a neural net designed
as the unfolding of the proposed solver. The performance of
the proposed solution is demonstrated via the seismic inversion
problem in both synthetic and real data scenarios. We also
provide theoretical guarantees for a stable support recovery.
Namely, we prove that under certain conditions the true support
is perfectly recovered within the first iteration.

Index Terms—Deep Learning; Convolutional Neural Net; Con-
volutional Sparse Coding; Seismic Inversion; Sparse Reflectivity.

I. INTRODUCTION

In sparse coding, we attempt to decompose an observation

signal y ∈ R
N×1 into its building blocks (atoms) [1]. Namely,

the sparse representations model [2] assumes a signal y ∈
R

N×1 that can be formulated as a sparse superposition of

atoms. Mathematically speaking, we assume the observation

signal y obeys

y = Dx, (1)

where D ∈ R
N×M is a matrix called the dictionary, that

consists of the atoms di ∈ R
N×1, i = 1, ...,M , as its

columns, and x ∈ R
M×1 is the sparse vector of the atoms

weights. Generally, we do not impose any relation between

N and M . That is, the dictionary could either be complete

(N = M ), over-complete (N < M ) or under-complete

(N > M ).
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Over the years, great efforts have been invested in finding

sparse solutions to (1). Breaking down a signal into its building

blocks has become a popular task in many fields related to sig-

nal processing, such as: image processing [2], computer vision

[3], compressed sensing [4], radar [5], ultrasound imaging [6],

seismology [7]–[9], visual neurosciense [10], [11], and more.

Moreover, from a certain perspective, neural networks can be

viewed as an unfolding of an iterative sparse coding solver

[12]. In a sense, deep neural nets (DNNs) are trained to seek

the atoms weights, specifically convolutional neural networks

(CNNs) [13], that are trained to find a set of filters tailored to

perform a classification or a regression task at hand. However,

in many real-time applications, such as pattern recognition,

sparse coding is still a bottleneck in terms of inference time.

Most often, a sparse code is required for every image patch.

Consequently, many attempts have been made to pursue faster

methods for sparse coding.

The Iterative shrinkage thresholding algorithm (ISTA) [14]

is one of the most popular algorithms for sparse coding.

Despite its simplicity, ISTA is considered as a slow algorithm.

Over time, faster extensions have been suggested, such as,

Fast-ISTA (FISTA) [15], Learned-ISTA (LISTA) [16] and

Ada-LISTA [17]. LISTA [16], for example, uses a learned

substitute dictionary, and ada-LISTA [17] incorporates an

adaptive threshold, where the first threshold corresponds to the

maximal feature weight in the data. Then, the thresholds are

gradually decreasing at each iteration. Since the seminal idea

of LISTA - to unroll the iterative algorithm into feed-forward

layers - was first proposed, many similar sparse coding model-

based deep learning methods have been proposed, such as:

ADMM with CNN [18], ADMM-CSNet [19], and FISTA-Net

[20]. These methods are designed to provide accurate and fast

reconstruction compared with other deep learning methods.

Inspired by the classic iterative thresholding algorithms, in

this work, we propose a fast alternative algorithm that produces

a good approximation of a convolutional sparse code. Most

solvers are slowed down by the use of one global threshold

(bias) to detect each local feature shift along the signal, or a

predetermined constant local threshold. This way, even if the

signal (or the input batch) is normalized, when we apply a

threshold at each iteration, if the threshold is too high, weak

expressions are annihilated, and strong expressions can “cast

a shadow” over low-energy regions in the signal, which can

be interpreted as false-positive support locations. On the other

hand, if the threshold is very small, as often is the case in

ISTA, many iterations are required to compensate for false

detections in early iterations, especially in the presence of

noise, and in real-time applications due to model perturbations.
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Alternatively, we propose to normalize each data point by

a locally focused data energy measure, before applying a

threshold. In other words, each receptive field of the data is

scaled with respect to the local energy. This way even when the

data is inherently unbalanced, we can still use a common bias

for all receptive fields, without requiring many iterations that

are usually required in order to globally detect the features sup-

port. The proposed algorithm can be employed with a known

predetermined dictionary and global fixed bias terms for each

iteration, or with a learned dictionary and learned bias terms.

In practice, the trained version is implemented as a small

recurrent CNN that corresponds to a few unfolded iterations

of the proposed method. An approximate solution is produced

within only 2-5 iterations, that is, to our knowledge, the state

of the art performance in terms of speed and computational

complexity versus accuracy error.

We further demonstrate the applicability of the proposed

solution to seismic inversion, via experimental results with

real data and synthetic data, demonstrating that even if the

mutual coherence of the dictionary is relatively high, the first

iteration of the method accurately detects at least 70% of

the features weights. The following few iterations make the

required corrections. We performed extensive synthetic data

and real data numerical experiments, in order to verify the

robustness of the method in noisy and attenuating environment.

We also prove that under sufficient separation and sufficiently

low mutual coherence the first iteration of our method is

guaranteed to perfectly recover the true support. Furthermore,

in our opinion, the proposed predictor can be potentially

included in learning systems in many applications, such as,

recognition systems and biomedical-imaging super-resolution.

The main contribution of this work is a highly efficient

method for fast convolutional sparse coding approximation.

We also propose a learning-based (data driven) variation of

the proposed method. The performance is demonstrated via

extensive numerical experiments conducted with seismic real

data as well as with synthetic data. Furthermore, we prove

that the proposed method achieves a reliable solution under

sufficient separation or low mutual coherence.

The remainder of this paper is organized as follows. Sec-

tion II provides the necessary background for sparse represen-

tations, convolutional sparse coding and iterative thresholding

algorithms. Section III describes the seismic inversion prob-

lem. In Section IV, we present the proposed method and its

theoretical guarantees. Sections V-VI introduce synthetic and

real data experimental results. Section VII proposes a learned

version of the proposed algorithm, and demonstrates its em-

ployment experimentally. Finally, Section VIII concludes and

discusses future research directions.

II. BACKGROUND AND RELATED WORK

A. Sparse Representations

The sparse representations model [2] assumes a signal y ∈
R

N×1 that is formulated as a sparse superposition of atoms:

y = Dx, (1)

where D ∈ R
N×M is a matrix called the dictionary, built

of the atoms di ∈ R
N×1, i = 1, ...,M , as its columns, and

x ∈ R
M×1 is the sparse vector of the atoms weights.

An immense amount of work has been dedicated to sparse

coding, that is, to the recovery of x. To find the sparsest

solution, the one with the smallest ℓ0-norm, we attempt to

solve

(P0) : min
x

‖x‖0 s.t. y = Dx, (2)

where ‖x‖0 denotes the number of non-zeros in x. Since P0

has been proven to be, in general, NP-Hard [21], we often

replace the ℓ0-norm with the ℓ1-norm

(P1) : min
x

‖x‖1 s.t. y = Dx, (3)

where ‖x‖1 ,
∑

i |xi|. In noisy environment or when some

error is allowed we attempt to solve

(P1,ε) : min
x

‖x‖1 s.t. ‖y −Dx‖2 ≤ ε, (4)

where ‖x‖2 ,
√∑

i x
2
i . Under certain conditions, the sparsest

solution to P0 and P1 has been proven to be unique and can

be retrieved using practical algorithms, such as orthonormal

matching pursuit (OMP) or basis pursuit (BP), depending on

the dictionary’s properties and the sparsity of x. Namely,

under the assumption that ‖x‖0 < 1
2

(

1+ 1
µ(D)

)

, where µ(D)

is the mutual coherence defined as the maximal correlation

coefficient between two dictionary atoms,

µ(D) = max
i6=j

∣
∣
∣dT

i dj

∣
∣
∣

‖di‖2 · ‖dj‖2
, (5)

the true sparse code x can be perfectly recovered [22].

One of the most intuitive ways to recover x is to project

y on the dictionary, and then extract the atoms with the

strongest response by taking a hard or a soft threshold. In

other words, the solution is a closed-form solution, formulated

as x = Hβ(D
Ty) or x = Sβ(DTy), where the hard threshold

and the soft threshold operators are respectively defined as

Hβ(z) =

{

z, |z| > β

0, |z| ≤ β
,

and

Sβ(z) =







z + β, z < −β
0, |z| ≤ β

z − β, z > β

.

Note that the rectified linear units (ReLU) activation function

commonly used in DNNs satisfies

ReLU(z−β) = max(z−β, 0) = S+β (z) ,

{

0, z ≤ β

z − β, z > β
.

Therefore, the soft threshold solution can be also written as

x = S+β (DTy)− S+β (−DTy)

= ReLU(DTy − β)− ReLU(−DTy − β).

However, simple thresholding is guaranteed to recover the true

support only under a more restrictive assumption that ‖x‖0 <
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1
2

(

1+ 1
µ(D)

|x|min

|x|max

)

, where |x|min, and |x|max are the minimum

and maximum values of the vector |x| on the support, implying

that when the data is unbalanced - this approach is bound to

collapse.

Papyan et al. [12] show that the forward pass of CNNs

is equivalent to the layered thresholding algorithm designed

to solve the convolutional sparse coding (CSC) problem. A

convolutional layer’s forward pass is guaranteed to recover a

sparse estimate of the underlying representations of an input

signal, only for dictionaries with very low mutual coherence,

and when the ratio between the maximal and minimal spikes’

ampiltudes in absolute value is close to one. In addition, the

ℓ0,∞ of the true solution x, that is, the required maximal

number of non-zeros in a stripe of coefficients contributing to a

data point, depends on the ratio
|x|min

|x|max
. Therefore, under these

very limiting conditions, when applied to real-life applications,

such as the seismic reflectivity estimation problem, for which

the mutual coherence of the dictionary is very high and the

seismic data set is inherently unbalanced (i.e., with peak and

trough amplitudes that are not close), this course of action is

inadequate.

One may also wonder whether the dictionary D is known,

and if not, then how and under what conditions could one find

the atoms or features concerning his or her specific problem.

Some of these questions are addressed in Section VII and in

Appendices A and C.

B. Iterative Shrinkage Algorithms

Consider the cost function

f(x) =
1

2
‖y −Dx‖22 + λ‖x‖1.

Following Majorization Minimization (MM) strategy, we can

build a surrogate function [2], [14]

Q(x,xθ) = f(x) + d(x,xθ) =

1

2
‖y −Dx‖22 + λ‖x‖1 +

c

2
‖x− xθ‖22 −

1

2
‖Dx−Dxθ‖22.

The parameter c is chosen such that the added expression

d(x,xθ) = Q(x,xθ)−f(x) =
c

2
‖x−xθ‖22−

1

2
‖Dx−Dxθ‖22

is strictly convex, requiring its Hessian to be positive definite,

cI − DTD ≺ 0. Therefore c > ‖DTD‖2 = λmax(D
TD),

i.e., greater than the largest eigenvalue of the coherence matrix

DTD. In essence, the term d(x,xθ) is a measure of proximity

to a previous solution xθ . If the vector difference x − xθ is

spanned by D, the distance drops to nearly zero (We usually

choose c = ‖D‖22). Then, we remain with a minimization

over the original cost function f(x). Alternatively, if D is not

full rank and the change x − xθ is close to the null space of

D, the distance is simply the approximate Euclidean distance

between the current solution to the previous one.

The surrogate function Q(x,xθ) obeys equality at xθ:

Q(xθ,xθ) = f(xθ). It is upper-bounded by the origi-

nal function: Q(x,xθ) ≥ f(x) ∀x, and tangent at xθ:

∇Q(x,xθ)|x=xθ
= ∇f(x)|x=xθ

. Hence, the solution se-

quence is guaranteed to yield decreasing values of the original

cost function f(x) because

f(xθ+1) ≤ Q(xθ+1,xθ) = min
x

Q(x,xθ)

≤ Q(xθ,xθ) = f(xθ).

Following the MM strategy, that is, minimizing Q(x,xθ)
instead of f(x), the sequence of iterative solutions is generated

by the recurrent formula

xθ+1 = argmin
x

Q(x,xθ),

where θ ∈ N is the iteration index. Therefore, we can find a

closed-form solution for its global minimizer

xθ+1 = Sλ
c

(1

c
DT (y −Dxθ) + xθ

)

.

Intuitively, this sequence can be interpreted as an iterative

projection of the dictionary on the residual term, starting from

the initial solution that is simply a thresholded projection of

the dictionary on the observation signal (assuming x0 = 0):

xθ+1 = Sλ
c

(1

c

project on dictionary
︷︸︸︷

DT (y −Dxθ)
︸ ︷︷ ︸

residual term

+ xθ
︸︷︷︸

add to current solution

)

.

Under the assumption that the constant c is large enough,

it was shown in [14], that the above algorithm is guaranteed

to converge to its global minimum. Hence, we are guaranteed

to recover a local minimum of f(x). This approach can also

be viewed as a proximal-point algorithm [23], or as a simple

projected gradient descent algorithm.

It is worth mentioning that ISTA can be also viewed as a

Recurrent Neural Net (RNN) unfolded through time [12]. As

previously stated, despite its simplicity, ISTA is considered

as a slow algorithm. Over time, faster extensions have been

suggested, such as: Fast-ISTA (FISTA) [15], Learned-ISTA

(LISTA) [16] and Ada-LISTA [17]. We refer the reader to the

corresponding references for further details.

C. Convolutional Sparse Coding

In the special case where D is a convolutional dictionary,

the task of extracting x is referred to as convolutional sparse

coding (CSC). In this case, the dictionary D is a convolutional

matrix constructed by shifting a local matrix of m filters in

all possible positions. Equivalently, let us assume a convolu-

tional dictionary that is structured as a concatenation of m
convolution matrices,

D = [D1,D2, ...,Dm], (6)

where Dp ∈ R
Ly×Lx , p ∈ N, 1 ≤ p ≤ m is the convolution

matrix of the p’th filter denoted by d̃p ∈ R
Ld×1 shifted in all

possible directions. We assume a linear convolution, such that

Ly = Lx + Ld − 1. Accordingly, the sparse weights vector

x ∈ R
mLx×1 obeys

x = [xT
D1

,xT
D2

, ...,xT
Dm

]T , (7)

where Lx is the support size for each of the filters, and

xDp
, p ∈ N, 1 ≤ p ≤ m is the sparse weights vector
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corresponding to the pth filter shifts along the signal. Overall,

there are M = mLx atoms in the dictionary, such that the ith
atom di, i = (p − 1)Lx + l, l ∈ N, 1 ≤ l ≤ Lx is the pth

filter’s shift to the lth support location.

In the forward-pass of a each layer in a CNN, the input

is convolved with a set of learned filters. Then, we apply

a pointwise nonlinear function to the computed feature map

summed with a bias term. This process can be viewed as

equivalent to the layered thresholding algorithm for the CSC

model [12]. In other words, the forward pass of a CNN

is inherently based on revealing an estimate of a hidden

convolutional sparse code of a given signal.

Since CNNs were inspired by the study of the visual brain

cortex, the term receptive field is borrowed to describe a

small limited local visual area that a neuron reacts to [24].

In other words, in CNNs, a neuron located in a certain layer

is connected only to the output of neurons in a limited small

area of the previous layer. Considering (6), since the ith atom

of dictionary Dp is the pth filter shifted to the the lth support

location, having a small restricted support of Ld samples

around l in the data, each of these small local support areas

is referred to as a receptive field.

D. The Signature Dictionary

The signature dictionary [25] is essentially a convolutional

dictionary of a single filter (m = 1). In this case we attempt

to represent a signal solely by one small kernel. An elaborated

discussion on the learning of the signature dictionary and its

signal representation can be found in [25].

III. PROBLEM FORMULATION

In this section, the mathematical formulation focuses on

the settings of the seismic inversion task. Nonetheless, the

model can be applied to a wide range of applications (such as,

medical-imaging, computer-vision, pattern recognition, etc.)

and can be incorporated in any system employing CNNs and

RNNs. The method is not restricted to signature dictionaries,

and can be applied to convolutional dictionaries with more

than one filter, and to non-stationary convolutional operators

as described below.

Signal model

Consider an unknown 2D reflectivity signal X ∈ R
Lx×J

of J channels representing the true reflectivity cross sec-

tion. We assume a layered subsurface structure and acoustic

waves propagation, where reflections are generated at acoustic

impedance boundaries. Hence, each hidden column of index

l in the reflectivity image is a 1D signal x(l) ∈ R
Lx×1 inde-

pendently modeled as a sparse weights vector. In a discrete

setting, we consider a set of two-way travel-times T = {tm}
lying on a grid kTs, k ∈ Z, where tm = kmTs, with a

sampling rate Fs = 1
Ts

, corresponding to a reflector’s time-

depth location in the ground. Accordingly, a 1D reflectivity

signal is formulated as

x(l)[k] =
∑

m

cmδ[k − km], k ∈ Z, cm ∈ R, l = 1, ..., J,

(8)

where δ[k] denotes the Kronecker delta function [26],
∑

m |cm| < ∞, and K = {km} is the set of discrete time

delays.

We assume the support K is sufficiently separated. In other

words, it obeys the minimal separation condition (see [27,

Definition 2.2]), with a separation constant ν. Namely,

∆k , min
km,kn∈K,m 6=n

|km − kn| ≥ Fsνσ.

where σ > 0 is a given kernel scaling. ∆t , νσ is the

smallest time interval between two reflectors, for which we

are guaranteed to perfectly recover two distinct spikes in

a noise-free environment. In [27] we prove that under the

minimal separation condition, in a noise-free environment,

x(l)[k] is perfectly recovered by solving a constrained ℓ1 norm

optimization problem. We also presented theoretical bounds on

the seismic reflectivity recovery error and on the localization

error, based on earth Q model.

In a time-variant model we take into account the attenu-

ation and dispersion of the reflected pulses recorded at the

geophones on the ground. In this case, y(l) ∈ R
Ly×1, an

observed seismic discrete trace of channel l, in the observed

seismic 2D data Y ∈ R
Ly×J , is of the form

y(l)[k] =
∑

n

x(l)[n]gσ,n[k − n] + w(l)[k], n ∈ Z (9)

where {gσ,n} is a known set of kernels (pulses) corresponding

to a possible set of time delays [27]. As stated before, σ > 0
is a known scaling parameter, and w(l)[k] is an additive noise

signal. The shape of each pulse gσ,n depends on the time

(depth) tn it corresponds to, and the subterrain characteristics,

that can be mathematically described by the earth Q model

[27]–[30]. A brief review of the time-variant pulses model-

based estimation can be found in Appendix D.

Alternatively, one can assume a conventional convolution

model where the wavelet is time-invariant. In other words, all

kernels are identical: gσ,n[k] = gσ[k] ∀n. Namely, in the time-

invariant case, each seismic observed trace can be described

as

y(l)[k] =
∑

n

x(l)[n]g[k − n] + w(l)[k], n ∈ Z. (10)

where g[k] is a seismic wavelet of length Lg, and w(l)[k] is

an additive noise. Clearly Ly = Lx + Lg − 1. The wavelet is

assumed to be invariant in both time and space (i.e., both in

horizontal and vertical directions). We assume that the seismic

signal is free of multiple reflections [31].

In matrix-vector form we can model the observed 2D

seismic data image Y ∈ R
Ly×J in both cases as

Y = GX+W. (11)

Generally, G is an operator matrix such that Gk,n = gσ,n[k−
n]. In the time-invariant case G is a convolution matrix of

size Ly×Lx such that Gk,n = g[k−n], and W is an additive

i.i.d white noise matrix independent of X, with zero mean and

variance σ2
w. We do not impose any prior knowledge of the

structure or possible patterns in the reflectivity image.

Note that practically, even in a noise-free scenario under
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the separation condition, x(l) and G do not obey the bound

guaranteeing neither a unique solution for P1 nor a stable

solution for P1,ε. Namely, in most practical cases we have,

‖x(l)‖0 >
1

2

(

1 +
1

µ(G)

)

.

The mathematical analysis takes a worst-case point of view.

For this reason, the stability and success guarantees are known

to be quite pessimistic. Tighter bounds could have probably

been obtained. Yet, this bound is still widely used, perhaps

due to its simplicity.

IV. PROPOSED METHOD

As described in Section II, one way to look at the seismic

inversion problem is to simply solve a CSC problem, trace by

trace, using one of the popular methods (such as ISTA, FISTA,

LISTA, ada-LISTA, etc. [14]–[17]). Classical pursuit methods,

such as ISTA, for example, are guaranteed to recover the true

unique solution to the P0 problem [2] providing that the num-

ber of non-zeros per stripe is less than 1
2

(

1+ 1
µ(D)

)

. In real-

life scenarios, where we usually consider the P1,ε problem,

stability of the results is also guaranteed under the assumption

that x is sparse enough. Namely, if ‖x‖0 < 1
2

(

1+ 1
µ(D)

)

, than

the deviation of the recovery x̂ from the true x is bounded by

[2]

‖x− x̂‖22 ≤
4ε2

1− µ(D)(2‖x‖0 − 1)
.

Nevertheless, in many practical cases, we observe four

major issues inherent to the data:

1) The mutual coherence of the dictionary is relatively high.

For example, in the seismic scenario usually 0.5 <
µ(G) < 1 (depending on the sampling rate and the

wavelet’s scaling σ and on the Q attenuation factor).

2) The signal (or even a signal stripe (or a patch)) is not

sufficiently sparse for a successful recovery (see [12]).

3) The ratio between the global maximal and minimal x

values in absolute value
|x|max

|x|min
is high. This in turn leads

to longer convergence time and erroneous results due to

difficulty to determine the required parameters, especially

the thresholds (biases).

4) Recovering the sparse code takes too much time and

cannot be applied to real-time applications.

Motivated by these challenges, we suggest a simple mod-

ification in the conventional approach. Besides its simplicity,

the main advantage of the proposed method is a substantial

speed up, without requiring any pre-training. Our approach

could also be potentially incorporated in conventional neural

nets forward pass.

A. Receptive Field Normalization Iterative Thresholding Al-

gorithm

Most thresholding algorithms are inherently limited by

the challenge of setting a (global or local) threshold that

is not inclined towards spikes of strong amplitudes, even

when assuming sufficient separation, and imposing low mutual

coherence. In other words, when projecting the signal on the

dictionary, in order to detect the presence of a dictionary

atom in the signal (or the residual), we need to choose

a threshold that would fit strong spikes as well as small

spikes. A threshold that is too small would yield a smeared

solution (not sparse enough), whereas a threshold that is too

large results in missed spikes (too sparse). To cope with

this problem ISTA [14] repeatedly iterates over the residual

term, with a constant yet relatively small threshold, which

makes convergence considerably slow. In ISTA, the threshold
λ
c controls the desired sparsity. To cope with this issue, FISTA

incorporates a momentum term in the update step at each

iteration [15]. On the other hand, LISTA [16] and Ada-LISTA

[17] attempt to learn more suitable weight matrices and use

adaptive thresholds.

We propose a different approach. That is, instead of mod-

ifying the threshold and/or the dictionary, or having learned

different local thresholds for each receptive field (as can be

done in CNNs), we normalize the energy of each receptive

field, before projecting it on the features space.

Definition 1: Receptive Field Normalization Kernel

A kernel h[k] can be referred to as a receptive field normal-

ization kernel if

1) The kernel is positive: h[k] ≥ 0 ∀k.

2) The kernel is symmetric: h[k] = h[−k] ∀k.

3) The kernel’s global maximum is at its center: h[0] = 1 ≥
h[k] ∀k 6= 0.

4) The kernel’s energy is finite:
∑

k h[k] <∞.

Definition 2: Receptive Field Normalization

Assuming a receptive field normalization kernel h[k] of odd

length Lh, we define the local weighted energy of a time

window centered around the kth sample of a 1D observed

data signal y ∈ R
Ly×1

σy[k] ,

( Lh−1

2∑

n=−Lh−1

2

h[n]y2[k − n]

) 1
2

. (12)

When y[k] is modeled in accordance to (9), or any other

application where y = Dx + e, and h[k] is a receptive

field normalization window function of length Lh ≤ Ld odd

number of samples. For our application we used a truncated

Gaussian-shaped window, but it is possible to use any other

window function depending on the application, such as: a

rectangular window, Epanechnikov window, etc. The choice of

the normalization window and its length affects the choice of

the thresholding parameters. If h[k] is a rectangular window,

then σy[k] is simply the ℓ2 norm of a data stripe centered

around the kth location. Otherwise, if the chosen receptive

field normalization window is attenuating, then the energy is

focused in the center of the receptive field, and possible events

at the margins are repressed. The window size is Lh ≤ Ld so

as to avoid interference of adjacent events as much as possible.

Yet it is recommended not to use a winodw that is too small.

Lh ≥ Ld

2 can serve as a good rule of thumb.

Receptive field normalization is employed by dividing each

data point by a local energy measure, before projecting the

signal on the dictionary and taking a threshold. Assuming a

signal y and a convolutional dictionary D, an initial solution
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x0 = 0 and an initial estimated support ∆q0 = 0 at θ = 0.

At the first iteration θ = 1, we compute the local variance of

y[k] as defined in (12), namely,

σy[k] =
√

h[k] ∗ y2[k], (13)

where h[k] is a receptive field normalization window, and

∗ denotes the convolution operation. Then, we normalize

the signal by dividing each data point by the corresponding

receptive field energy. In order to avoid amplification of low

energy regions, we use a clipped version of σy[k]. Namely,

σ̃y[k] =

{

σy[k]
∣
∣σy[k]

∣
∣ ≥ τ1

1
∣
∣σy[k]

∣
∣ < τ1

, (14)

where τ1 > 0 is a predetermined threshold for the first

iteration. Empirically, for our application 0.15 ≤ τ1 ≤ 0.4
works well. We define the signal normalization weight matrix

W0 ∈ R
Ly×Ly ,

W0 = diag

(

1

σ̃y[k]

)

, k = 1, ..., Ly. (15)

Also, we define the dictionary normalization weight matrix as

WD = diag

(

1

σdi

)

, i = 1, ...,mLx. (16)

where σdi
= ‖di‖2 is the ℓ2 norm of the ith atom. Recall

that since the dictionary is convolutional, the ith atom, i =
(k−1)Lx+l is the kth filter shifted to the lth support location.

Clearly, when the dictionary is a time-invariant convolutional

dictionary, σd(k−1)Lx+l
= σdk

∀k ∈ [1,m].

The detected support at the first iteration is

q1 = Iβ1(WDD
TW0y), (17)

where I is an element-wise thresholding indicator function

Iβ1(xk) =

{

1 |xk| ≥ β1

0 |xk| < β1.
(18)

If the dictionary atoms are assumed to be normalized, such

that σdi
= 1 ∀i, then of course WD is simply an identity

matrix, and one can simply ignore WD throughout the entire

formulation.

It is a well known fact that according to Cauchy-Schwartz

inequality the correlation coefficient defined as

ρab ,
aTb

‖a‖2‖b‖2
(19)

is bounded by one (in absolute value): |ρab| ≤ 1. Therefore,

if we were to divide the inner product DTy by each receptive

field’s energy and by the corresponding atom’s energy, we

could detect an atom’s sole presence and a perfect match in

a time-window of the signal y, when the result is exactly

1. Of course, when several pulses interfere in a single time

window, when the mutual coherence is not small enough,

the threshold needs to be adjusted accordingly, and a few

iterations for corrections may be needed. Choosing an at-

tenuating normalization kernel can repress adjacent spikes.

Overall, accurate detection depends on the correlation between

neighboring atoms and on neighboring spikes amplitudes, as

analytically described in Theorems 1-3.

As stated below, if the support is sufficiently separated, and

the mutual coherence is sufficiently small, then the true support

is perfectly recovered at this stage, within the first iteration.

Once the support is recovered there are two simple ways to

determine the amplitudes. The first, and more accurate, is sim-

ply to solve an LS problem for the subsystem y = DK1xK1 ,

where DK1 denotes the partial dictionary matrix having |K1|
columns from the columns of D with indices in K1 - the

estimated support in the first iteration. Alternatively, if one

wishes to speed-up the algorithm, or in real-life applications

where the support is not sufficiently sparse, it is possible to

approximate the amplitudes simply as x1 = q1⊙
(
W2

DD
Ty
)
,

where ⊙ denotes the Hadamard product.

In the special case of a signature dictionary (m = 1), it

is possible to approximate the support amplitudes by x[k] =
y[k+∆d]/d

p
k, where k ∈ K1 is a support index, ∆d , Ld−1

2
is the convolution time shift, and dpk = dk[k+∆d] denotes the

corresponding atom’s central value. For a signature dictionary

of a Ricker wavelet, dpk = ‖dk‖∞ = g[0] = 1, ∀k. Empirically,

we have not witnessed a significant advantage for the first

accurate method over the approximate one, in the case of the

signature dictionary. For the sake of brevity, in this subsection,

we assume without loss of generality that the dictionary atoms

central value is one, i.e., dpk = 1, ∀k.

If the support is sufficiently separated, the algorithm is done

at this stage, within one iteration. Otherwise, we can proceed

to perform iterative stages as follows. At each iteration, we find

the required change in the support by projecting the dictionary

on the normalized residual. The residual at iteration θ is

∆rθ+1 = y −Dxθ. (20)

We now compute the local weighted variance of the residual

term

σθ+1
∆r [k] =

√

h[k] ∗∆r2θ+1[k], (21)

and its clipped version

σ̃θ+1
∆r [k] =

{

σθ+1
∆r [k]

∣
∣σθ+1

∆r [k]
∣
∣ ≥ τθ

1
∣
∣σθ+1

∆r [k]
∣
∣ < τθ

, (22)

Once again, we build the corresponding normalization weight

matrix,

Wθ = diag

(

1

σ̃θ+1
∆r [k]

)

, k = 1, ..., Ly. (23)

Then, we project the dictionary on the normalized residual and

threshold the obtained signal,

∆qθ+1 = Iβθ+1
(WDD

TWθ∆rθ+1)

= Iβθ+1
(WDD

TWθ(y −Dxθ)). (24)

The updated solution at iteration θ + 1 is

xθ+1 = ∆qθ+1 ⊙
(

W2
DD

T∆rθ+1

)

+ xθ, (25)

where ⊙ denotes the Hadamard product. Note that the algo-

rithm should converge in a few iterations. About 2-5 iterations
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should be enough. To ensure stable convergence, incorporating

a momentum, is also possible:

xθ+1 = αr

(

∆qθ+1 ⊙
(

W2
DD

T∆rθ+1

))

+ xθ, (26)

where 0 < αr ≤ 1 is a constant step size. In practical cases,

when the data is not sufficiently separated and the mutual

coherence is relatively high, an exact stopping rule may be

hard to determine and solutions may be unstable. In these

cases, early stopping after a predetermined small number of

iterations is recommended. Note that as opposed to ISTA, here

the shrinkage operator is applied only to the projection on the

residual, without formerly adding it to the previous solution.

As previously stated, in the case of a signature dictionary it

is possible to use

xθ+1 = αr

(

∆qθ+1 ⊙∆rθ+1

)

+ xθ, (27)

instead of (26).

From a neural network perspective, receptive-field normal-

ization (RFN) increases the sensitivity of a neuron to its

receptive field. In some cases, where the energy of receptive

fields in different locations is unbalanced, some atoms may

be strongly expressed, whereas others are significantly weaker.

RFN overcomes this obstacle, without having to set local or

adaptive thresholds. This way, the activation of a neuron is

independent of the scaling of other events in the signal. In

other words, the neuron is able to detect a feature (reflection),

even if its energy is relatively low, comparing to other events

in the data.

Note that τθ essentially determines the minimal |x|min that

can be detected at each of the above steps. It should be deter-

mined taking into account the noise expected level. Namely,

since we usually assume the nuisance noise is uncorrelated

with the signal, therefore,

E‖y‖22 = E‖Dx‖22 + E‖e‖22,
where E denotes mathematical expectation. In order to avoid

noise amplification, we would set τθ such that

τθ ≥ |x|minmin
i
‖di‖2 + εd, (28)

where εd denotes the noise ℓ2 norm over a data stripe of length

Lh.

We project the dictionary on the normalized signal though it

is possible to normalize the projection DT (y−Dxθ) instead.

Yet, the two options are not equivalent. Normalization of the

signal prior to projection as in (23) rescales each sample, and

therefore might cause some distortion to the signal. It is more

suitable for admissible kernels (see [27, Definition 2.1]), where

most of the kernel’s energy is focused at its center. On the

other hand, it promotes muting of close spikes and decreases

noise influence especially when dealing with relatively small

environments.

A summary of the proposed methods is presented in Algo-

rithms 1-3.

Algorithm 4 shows a further simplification of the proposed

method. Namely, after computing the locally normalized signal

ỹ , W0y at the first iteration, we propagate through the

iterations without computing the spikes amplitude and without

Algorithm 1: Receptive Field Normalization Iterative

Thresholding Algorithm

input : signal y, dictionary D

Init: x0 = 0, ∆q0 = 0, θ = 0

compute: WD = diag
(

σ−1
di

)

, i = 1, ...,mLx.

while ‖xθ+1 − xθ‖2 < δ or θ ≤ Nit do
∆rθ+1 = y −Dxθ

compute:

σ̃θ+1
∆r [k] =

{

σθ+1
∆r [k]

∣
∣σθ+1

∆r [k]
∣
∣ ≥ τθ

1
∣
∣σθ+1

∆r [k]
∣
∣ < τθ

,

Wθ = diag
(

σ̃θ+1
∆r [k]

)−1

, k = 1, ..., Ly

∆qθ+1 = Iβθ+1
(WDD

TWθ∆rθ+1)
solve the subsystem ∆rθ+1 = DKθ+1

∆xθ+1,

DKθ+1
- partial dictionary matrix corresponding to

the support ∆qθ+1.

xθ+1 = αr∆xθ+1 + xθ

θ ← θ + 1
end

Algorithm 2: Approximate Receptive Field Normal-

ization Iterative Thresholding Algorithm

input : signal y, dictionary D

Init: x0 = 0, ∆q0 = 0, θ = 0

compute: WD = diag
(

σ−1
di

)

, i = 1, ...,mLx.

while ‖xθ+1 − xθ‖2 < δ or θ ≤ Nit do
∆rθ+1 = y −Dxθ

compute:

σ̃θ+1
∆r [k] =

{

σθ+1
∆r [k]

∣
∣σθ+1

∆r [k]
∣
∣ ≥ τθ

1
∣
∣σθ+1

∆r [k]
∣
∣ < τθ

,

Wθ = diag
(

σ̃θ+1
∆r [k]

)−1

, k = 1, ..., Ly

∆qθ+1 = Iβθ+1
(WDD

TWθ∆rθ+1)

xθ+1 = αr

(

∆qθ+1 ⊙
(

W2
DD

T∆rθ+1

))

+ xθ

θ ← θ + 1
end

normalizing again, in order to estimate only the support. When

the support is fully revealed, we calculate the weights by

solving an LS problem or an approximation as described

above. This variation can be used if more speed is necessary,

on the expense of accuracy, or for implementing a learned

version as discussed is Section VII.

B. Theoretical Analysis for the RFN-thresholding with a Con-

volutional Sparse Model

Consider a stripe of length Lh around some index i and the

corresponding atoms shifts around this location in the signal.

Hereafter, the ith entry of a vector v is denoted by v[i], and a

stripe cropped around the ith index is denoted by vi. Note that

due to the convolution properties of the dictionary, a data stripe

yi ∈ R
Lh×1 is affected from input spikes in xi ∈ R

mLs×1,

such that Ls = Lh + Ld − 1. To shed some light on the
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Algorithm 3: Approximate Receptive Field Normal-

ization Iterative Thresholding Algorithm for a Signa-

ture Dictionary

input : signal y, dictionary D

Init: x0 = 0, ∆q0 = 0, θ = 0

compute: WD = diag
(

σ−1
di

)

, i = 1, ...,mLx.

while ‖xθ+1 − xθ‖2 < δ or θ ≤ Nit do
∆rθ+1 = y −Dxθ

compute:

σ̃θ+1
∆r [k] =

{

σθ+1
∆r [k]

∣
∣σθ+1

∆r [k]
∣
∣ ≥ τθ

1
∣
∣σθ+1

∆r [k]
∣
∣ < τθ

,

Wθ = diag
(

σ̃θ+1
∆r [k]

)−1

, k = 1, ..., Ly

∆qθ+1 = Iβθ+1
(WDD

TWθ∆rθ+1)

xθ+1 = αr

(

∆qθ+1 ⊙∆rθ+1

)

+ xθ

θ ← θ + 1
end

Algorithm 4: Support Detection Approximate Recep-

tive Field Normalization Iterative Thresholding Algo-

rithm for a Signature Dictionary

input : signal y, dictionary D

Init: x0 = 0, ∆q0 = 0, q0 = 0, θ = 0
compute:

σ̃y [k] =

{

σy[k] |σy[k]| ≥ τ1

1 |σy[k]| < τ1
,

WD = diag
(

σ−1
di

)

, i = 1, ...,mLx.

W0 = diag
(

σ̃−1
y [k]

)

, k = 1, ..., Ly,

ỹ = W0y

while ‖∆ỹθ+1 −∆ỹθ‖2 < δ or θ ≤ Nit do
∆ỹθ+1 = ỹ −Dqθ

∆qθ+1 = Iβθ+1
(WDD

T∆ỹθ+1)
qθ+1 = αr∆qθ+1 + qθ

θ ← θ + 1
end

x̂ = q̂⊙ y

theoretical aspects of the proposed method, let us define the

local sparsity of a stripe of x as the maximum number of non

zeros weights corresponding to a data stripe of length Lh at

location i,

s = ‖x‖S
i
h

0,∞ = max
i
‖xi‖0 = max

i

∑

l∈Si
h

I0(x[l]), (29)

where Si
h denotes a neighborhood of mLs point values corre-

sponding to Lh data points symmetrically distributed around

index i, and redefining I0(0) = 0. Let us rephrase equation

(12) in matrix-vector form

σy[i] = ‖Hyi‖2. (30)

where yi denotes a stripe of length Lh around some index

i ∈ [1, Ly], that is, yi =
[
y[i− Lh−1

2 ], ..., y[i + Lh−1
2 ]

]T
and

H = diag(h
1
2 ) (ignoring boundary issues). Throughout the

proofs we assume σy[i] > τ ∀i ∈ [1, Ly].

Theorem 1 (Support Recovery using RFN in the Presence of

Noise). Let y = Dx+ e, where D is a convolutional dictio-

nary, with normalized atom’s variance ‖di‖2 = σd = 1 ∀i ∈
[1,mLx]. Assume a rectangular receptive field normalization

kernel, that is h[k] = 1, h ∈ R
Lh×1, such that Lh = Ld. In

other words H simply extracts a local data stripe. Assuming

that

1)

|xi|min

|xi|max +
εd
s

>
sµ

1 + µ

(

1 +

√
s

√

1− (s− 1)µ− ε̃d,∞

)

+
2sεs
1 + µ

∀i ∈ K.
(31)

where |xi|max and |xi|min are the highest and the lowest

entries in a stripe xi respectively, εd , ‖ei‖2, ε̃d,∞ , εd
|x|min

and εs ,
εd
τ .

2) The threshold β1 is chosen according to

(1 + µ)|xi|min

s|xi|max + εd
−µ−εs > β1 >

√
sµ

√

1− (s− 1)µ− ε̃d,∞
+εs.

(32)

Then the support of x is perfectly recovered with receptive-

field normalization thresholding,

Supp(x1) = Supp(x),

where Supp(·) is the support of a vector, and x1 is the

recovered sparse vector within one step of RFN thresholding

(or one iteration of Algorithms 1-4).

Proof: see Appendix A.

Consequently, in the noise-free model y = Dx, the true

support is perfectly recovered within one iteration of Algo-

rithms 1-4 provided that

1)

|xi|min

|xi|max
>

sµ

1 + µ

(

1 +

√
s

√

1− (s− 1)µ

)

∀i ∈ K.

(33)

where |xi|max and |xi|min are the highest anf the lowest

entries in a stripe xi respectively.

2) The global threshold β1 is chosen according to

1 + µ

s

(

min
i∈K

|xi|min

|xi|max

)

− µ > β1 >

√
sµ

√

1− (s− 1)µ
.

(34)

The conditions (31) and (33) may appear too strict at first

glance, but note that we are considering the local ratio
|xi|min

|xi|max

rather than the global ratio
|x|min

|x|max
. Also the bound is far from

being tight since in practice

|aTi dj | <<
µ

σy[i]
∀{(i, j) : i 6= j, i ∈ K, j /∈ K},

and

|aTi e| << εs ∀i,
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where we denote ai = W0di. Good support recovery can be

achieved in practical cases with sufficient separation for much

higher values of µ, s and
|xi|min

|xi|max
, as demonstrated in Section

V.

Stable recovery of Hard Thresholding in the noiseless case

is acquired as long as [2]

min
i∈K
|dT

i y| > max
j /∈K
|dT

j y|. (35)

Leading to

|x|min − (s− 1)µ|x|max > β1 > sµ|x|max. (36)

In other word,
|x|min

|x|max
> (2s− 1)µ. (37)

Suppose s = 1, meaning that there can only be one atom in

each stripe, than we have

|x|min

|x|max
> µ. (38)

Practically, in many convolutional models, if the stride is not

large enough, this condition is not met, leading us to the

following theorem.

Theorem 2 (Support Recovery using RFN under Sufficient

Separation). Perfect recovery in the noiseless case where

s = 1 with RFN is guaranteed for any ratio

0 <
|x|min

|x|max
≤ 1.

Proof: see Appendix B.

It is important to emphasize that in most practical cases,

even if the above assumptions do not hold, it does not mean

the support detection will fail. It solely means that we cannot

guarantee, by means of the following proofs, perfect support

detection at the first iteration.

Denote Di ∈ R
Lh×mLs as the submatrix partial dictionary

yielding point y[i], that is obtained by restricting the dictionary

D to the support of mLs samples equally distributed around

point i.

Theorem 3 (Support Recovery with Attenuating RFN kernel in

the Noiseless case). Let y = Dx, where D is a convolutional

dictionary, with normalized atom’s variance ‖di‖ = σd =
1 ∀i. Assume a symmetric strictly decreasing receptive field

normalization kernel, that is h[|k|] > h[|k + 1|] (e.g., a

truncated Gaussian window), of length Lh = Ld, such that

µ(HDi) << µ(D), ∀i ∈ [1, Ly]. Assuming that

1) K obeys the minimal separation condition with a separa-

tion constant ν.

2)
√
sµ

hd,min
< β1 < 1−

(
hd(ν) + µ

) ‖x−i‖1
|x[i]|+ hd(ν)‖x−i‖1

∀i ∈ K,
(39)

where hd(ν) , maxp∈[1,m]Hd[∆k + (p − 1)Ls,∆k + (p −
1)Ls], such that Hd is a diagonal matrix holding the attenuated

atoms ℓ2 norms at the support around some point data at

index i. Namely Hd[k, k] = ‖Hdi
k‖2, k ∈ Sh

i , where

di
k ∈ R

Lh×1 denotes the kth atom of the submatrix Di.

In other words hd(ν) is the maximal ℓ2 norm of an atom’s

shift at the minimal separation distance multiplied by the

RFN window. Recall that we defined ∆k as the minimal

number of samples between adjacent events. On the other

hand, hd,min , mink Hd[k, k] is the lowest ℓ2 norm of a

shifted atom multiplied by the RFN window centered around

some point i, and ‖x−i‖1 ,
∑

t∈Si
h
,t6=i |x[t]| = ‖xi‖1−|x[i]|

is the sum of weights affecting the ith stripe, besides the spike

at location i. Then, the support of x is perfectly recovered with

receptive-field normalization thresholding,

Supp(x1) = Supp(x),

where Supp(·) is the support of a vector, and x1 is the

recovered sparse vector within one iteration of Algorithms 1-4.

Proof: see Appendix C.

The suggested approach and the above theorems shed a

light on the role of spatial-stride and maxpooling in CNNs

[24]. When using a spatial-stride, we convolve an input signal

is a certain layer, while skipping a fixed number of spatial

locations, primarily in an attempt to reduce the computational

burden. Consequently, the mutual coherence of the stride con-

volutional dictionary is smaller, guaranteeing more accuracy

and less redundancy at the activation stage. Alternatively, when

the atoms shifts are small, usually due to a high sampling

rate, the mutual coherence of the convolutional dictionary is

relatively high. Naturally, the projection of a shifted atom on

the signal may yield strong values in a small area around

its true location in the signal. In this case threhsolding can

lead to a group of spikes around each true spike. In their

work, Gregor and Lecun [16] refer to these issues as “mutual

inhibition and explaining away”. One possible way to address

this issue in CNNs is by maxpooling. Namely, by taking

into account only the maximal or average value in a small

local samples neighborhood. In the above method, we propose

another possible way to address this issue. That is, one can

suppress the strong expressiveness of one component over the

other by using an attenuating normalization window, such as a

Gaussian window (as opposed to an averaging window), and

by fine tuning of the applied thresholds.

The proposed method is closely related to local response

normalization (LRN) [32]. LRN normalizes each neuron’s

response with respect to the sum of the squared responses of

adjacent kernel maps at the same spatial position. The idea,

inspired by natural processes in biological neurons, is that

strong neuron responses will inhibit weaker neurons responses.

In terms of neural nets training, LRN reduces feature maps

similarity and encourages competitiveness, which in turn can

improve generalization. Practically, the main difference is that

we propose to locally normalize the input signal, with respect

to spatially close inputs, before applying a filter, in an attempt

to scale all responses to the same range, and to prevent stronger

spikes from “casting” a shadow over weaker spikes, both

locally and globally, that is, across all of the signal.
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V. EXPERIMENTAL RESULTS

In the following two sections, we provide synthetic and real

data examples demonstrating the performance of the proposed

technique. Hereafter, we refer to the proposed method as

RFN-ITA (receptive field normalization iterative thresholding

algorithm).

A. Synthetic Data

In order to verify the robustness of the proposed method,

we conducted extensive experiments in different scenarios.

First, we generated J = 1000 random reflectivity indepen-

dent sequences of length Lx = 60. Each reflectivity column

is modeled as a zero-mean Bernoulli-Gaussian process [33],

i.e., reflectors times (depths) are independently distributed with

Bernoulli probability p, and reflectors amplitudes are normally

distributed with mean µ and variance σ2. Mathematically, each

reflectivity sequence x(l)[k] is described as

x(l)[k] = r(l)[k]q(l)[k], j = 1, ..., J,

where r(l)[k] ∼ N (µ, σ2
r ) and q(l)[k] ∼ B(p). Clearly, p

determines the degree of sparsity. In the following experiments

σr = 3, and 0.1 ≤ p ≤ 0.4, depending on the chosen minimal

separation ∆k - the minimal separation between two spikes.

Here, ∆k does not necessarily obey the minimal separation

condition.

We assume a source waveform g(t) defined as the real-

valued Ricker wavelet

g(t) =
(

1− 1

2
ω2
0t

2
)

exp
(

− 1

4
ω2
0t

2
)

, (40)

where ω0 is the dominant radial frequency [28], determining

the width of the pulse. The seismic traces are calculated

according to (10), in a time-invariant noise-free environment,

with sampling interval Ts = 4 ms. Since in this case G is

a signature dictionary, we implemented algorithm 3 using a

truncated zero-mean Gaussian window of length Lh, with vari-

ance σ2
h. The thresholds β1 and β2 are explicitly determined,

and for the rest of the iterations we set βl = 0.5βl−1, where

l is the iteration number. The algorithms is stopped when

‖xl − xl−1‖2 < 10−4. We allow up to 4 iterations (Nit = 4).

The step size αr = 0.5 is constant for all experiments.

As a figure of merit, we use the correlation coefficient

between the true reflectivity and the recovered reflectivity,

ρ
X,X̂ =

XT
csX̂cs

‖Xcs‖2‖X̂cs‖2
,

where Xcs and X̂cs are column-stack vectors of the true

reflectivity image and the recovered reflectivity image, respec-

tively. Table 1 presents the estimated reflectivities score at

the first iteration and at the final iteration, and the average

number of iterations per trace with respect to the wavelets

width, the minimal separation distances and the algorithm

parameters β1, β2, Lh, σh. Usually β1 is close to 1, depending

on the minimal separation. Notice that in these experiments

the mutual coherence is relatively high: µ(G) = 0.764, 0.585
for ω0 = 50π, 80π respectively.
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Fig. 1. Synthetic data Receptive Field Normalization example: (a) seismic
trace; (b) seismic trace after applying receptive-field normalization, with an
averaging window of size Lh = 15.

Figure 1 presents a simple example of a trace after partial

receptive-field normalization ỹ = W0y, with ω0 = 80π, and

∆k = 5 samples. In this example, the pulses are intentionally

completely separated. As can be clearly seen, when the pulses

are sufficiently separated, the normalized signal is perfectly

balanced regardless of the original local energy. Also, the

pulses shape is preserved. Therefore, beyond the theoreti-

cal analysis, it can be intuitively comprehended why given

sufficient separation, all spikes locations can be detected by

simply projecting the dictionary on the normalized signal and

applying a threshold, without considering the ratio between

the minimal and the maximal coefficients in absolute value

in x(l). Hence, all iterations beyond the first one are required

only when reflectors are insufficiently separated with respect

to the wavelet’s length and the mutual coherence.

Figure 2(a) presents an example of a reflectivity channel of

length Lx = 110 samples (Ts = 4ms), with p = 0.4, σr = 3
and a minimal separation distance of ∆k = 3 samples. The

corresponding seismic trace with ω0 = 80π is depicted in

Fig. 2(b), and the corresponding estimated reflectivity with

β1 = 0.95, βl = 0.9, 2 ≤ l ≤ 4 and step size αr = 1 is

presented in Fig. 2(d). The estimated reflectivity in the first

iteration is presented in Fig. 2(c).

Figure 3 shows how well one can estimate the reflectivity

depending on the dominant frequency of the Ricker wavelet

ω0 = 2πf0 ranging from 25Hz to 50Hz. Here we used a

reflectivity of J = 1200 channels of length Lx = 60 samples

(Ts = 4ms), with p = 0.4, σr = 3 and a minimal separation

distance of ∆k = 5 samples. The seismic data was further

destructed by additive noise with SNR = 40dB. Here, we used

a Gaussian RFN window of length Lh = 11 and σh = 2. We

allow up to 4 iterations where β1 = 1.22−0.01(f0−25), β2 =
β1 + 0.2, βl = 0.5βl−1, l = 3, 4, and αr = 0.5. In Fig.

3(a) the blue line corresponds to the log of the mean square

error log(E‖x − x̂‖22) as a function of log(ω0). The black

dashed line corresponds to f(ω0) = c1 − 3.5 log(ω0) where

c1 = 8F 2
s

√
LxE‖e‖22/βg is a constant, βg is a parameter that

characterizes the concavity of the wavelet as defined in [27,

Definition 2.1]. As can be observed the mean square error

E‖x − x̂‖22 decreases by a rate of ω3.5
0 . In [34, Theorem 1]

we prove that under the separation condition the mean square
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TABLE I
SYNTHETIC EXAMPLE - RESULTS AND PARAMETERS: WAVELET’S SCALING ω0 , MINIMAL SEPARATION CONSTANT ν , THRESHOLDS β1 ,β2,

NORMALIZATION WINDOW SIZE Lh , NORMALIZATION WINDOW STD σh , RECOVERED REFLECTIVITY SCORE AT THE FIRST ITERATION ρ1
X,X̂

, FINAL

RECOVERED REFLECTIVITY SCORE ρ
X,X̂

, AVERAGE NUMBER OF ITERATIONS Mit .

ω0 ν β1 β2 Lh σh ρ1
X,X̂

ρ
X,X̂ Mit

80π (40 Hz) 5 0.95 0.88 11 2 0.97 0.995 2.58

80π (40 Hz) 3 0.95 0.87 11 2 0.92 0.97 2.64

80π (40 Hz) 1 0.8 0.66 9 2 0.81 0.89 3.6

50π (25 Hz) 5 0.98 0.98 17 3 0.93 0.985 2.19

50π (25 Hz) 3 0.98 0.87 17 4 0.83 0.9 2.38
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Fig. 2. 1D synthetic test: (a) True reflectivity; (b) Synthetic trace with 40 Hz
Ricker wavelet; (c) Recovered 1D channel reflectivity signal, first iteration
ρ1
X,X̂

= 0.91; (d) Recovered 1D channel of reflectivity signal ρ
X,X̂

= 0.98.

error is inversely proportional to ω2
0 . Hence, the estimation

error produced by the proposed algorithm decreases faster than

expected, with respect to the wavelet’s frequency, even when

the separation condition is not satisfied. Figure 3(b) depicts

the correlation coefficient ρ
X,X̂ as a function of the wavelet

dominant frequency f0(Hz).

VI. REAL DATA

We applied the proposed method, to real seismic data from

a small land 3D survey (courtesy of GeoEnergy Inc., TX). A

small 2D seismic image that consists of 400 traces is used

(a)

(b)

Fig. 3. Reflectivity estimation as a function of the dominant frequency of the
Ricker wavelet, SNR=40dB: (a) The blue line corresponds to the log of mean
square error log(E‖x − x̂‖2

2
) as a function of log(ω0). The black dashed

line corresponds to f(ω0) = c1−3.5 log(ω0) where c1 = 8F 2
s

√
Lxσn/βg

is a constant; (b) Correlation coefficient ρ
X,X̂

as a function of the wavelet

dominant frequency f0(Hz).

for demonstration. Each trace is 1.2 s in duration (300 time

samples), with 4 ms sampling rate. The seismic image is

shown in Fig. 4(a). As can be observed, the data is non-

stationary, reflectors are closely spaced and not sufficiently

separated and reflectors amplitudes are unbalanced. Assuming

an initial Ricker wavelet with ω0 = 80π (40Hz), we estimated

Q = 200 as described in [36], and derived the set of time-

variant pulses {gσ,n} (see [27],Appendix D). The estimated

reflectivity image and the corresponding reconstructed seismic

image using RFN-ITA, at the first iteration and at the second

(and final) iteration are depicted in Fig. 4 and Fig. 5, respec-

tively. For the first iteration we set β1 = 1 and τ1 = 0.4. For
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(a) (b) (c)

Fig. 4. Real data inversion results: (a) Seismic data; (b) Estimated reflectivity with Nit = 2 maximum number of iterations per trace; (c) Reconstructed
seismic data, ρ

Y,Ŷ
= 0.89.

(a) (b)

Fig. 5. Real data inversion results: (a) Estimated reflectivity in the first iteration; (b) Reconstructed seismic data in the first iteration, ρ1
Y,Ŷ

= 0.77.

the second iteration we set β2 = 0.7, τ2 = 1 and αr = 0.3.

The normalization window is a Gaussian window of length

Lh = 9 with σh = 2.

Since the ground truth is unknown, in order to quantify

the estimation success, we calculate the reconstructed seismic

image from the recovered reflectivity, i.e, Ŷ = GX̂, depicted

in Fig. 4(c). We assess its correspondence with the given data

by the correlation coefficient,

ρ
Y,Ŷ =

YT
csŶcs

‖Ycs‖2‖Ŷcs‖2
,

where Ycs and Ŷcs are column-stack vectors of the ob-

served seismic image and the reconstructed seismic image

respectively. In terms of the correlation coefficient between

the predicted data to the observed data, the first iteration

achieved ρ1
Y,Ŷ

= 0.77. While the second iteration achieved

ρ
Y,Ŷ = 0.89. Increasing the number of iterations and/or

decreasing βl or τl can increase the correlation score, on

the expense of the reflectors localization resolution, i.e., these

parameters settings can produce smeared results of decreased

sparsity, which is usually unwanted. As can be seen, reflectors

curves, in the reflectivity estimated in the first iteration, are a

bit thick due to high mutual coherence values and insufficient

spikes separation. Also, some reflectors are missing. Yet, this

image is very close to the final one. Using our method most

relevant information is recovered in the first iteration.

Figures 6-8 compare the proposed methods results to ISTA

results with β = 0.14 and a score of ρ
Y,Ŷ = 0.91, and to

the multichannel time-variant method in [34] with a score of

ρ
Y,Ŷ = 0.92. As can be seen, a slightly better score does not

necessarily indicate a visually enhanced reflectivity. As can

be observed in the predicted reflectivity produced by ISTA,

some layers are incomplete, and it appears that some spikes are

annihilated. Here, ISTA required an average of 1087 iterations

per trace. In this example, RFN-ITA reduces the number of

required iterations by a factor of 500. Figure 9 presents one

seismic trace at in-line offset 7.5 km, and the corresponding

estimated 1D reflectivity by ISTA and by RFN-ITA. As can

be visually observed, the data is of inherent ambiguity, and

the estimated results differ mostly in amplitude, and share

relatively close supports.

Throughout our experiments with ISTA, we observed that
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(a) (b)

Fig. 6. Real data inversion results using ISTA: (a) Estimated reflectivity with Mit = 1087 average number of iterations per trace; (b) Reconstructed seismic
data, ρ

Y,Ŷ
= 0.91.

(a) (b)

Fig. 7. Real data inversion results using multichannel time-variant deconvolution [34] with 3 channels taken into account for each channel estimation,
employing LSE discontinuity measure [35]: (a) Estimated reflectivity; (b) Reconstructed seismic data, ρ

Y,Ŷ
= 0.92.

decreasing β = c
λ , which decreases the sparsity of the solution,

comes at the expense of significantly increasing the number

of iterations. Also, as can be seen in the presented examples,

ISTA performance is terms of the visual quality of the image,

deteriorates with a time-variant dictionary, taking a Q factor

into account. Moreover, in practice, ISTA number of iterations

increases dramatically with the length of the signal. Another

drawback is that the constant c
λ depends on the maximum

eigenvalue of DTD that is harder to compute at larger scales

[15]. RFN does not suffer from this complications because

an approximate solution is reached within a limited number

of iterations, where each data stripe is analyzed locally, yet

the signal is updated globally without significant increase in

computational complexity.

It is important to emphasize that most real data super

resolution problems, and specifically seismic inversion, do

not comply with the theoretical bounds constraints (e.g. [2],

[12]) for separation, amplitude balance and noise. Therefore,

applying classical algorithms to real data applications is not

expected to result in perfect recovery. In [27] and [34] we show

that under the separation condition in a noise-free environment

we can perfectly recover the reflectivity in an attenuating

environment, providing that we can estimate Q. However,

when working with real data there is no guarantee that the

true reflectors are sufficiently separated nor that Q is constant

or estimated correctly. Also, we observe that the resolution

of the estimation results is highly sensitive to user-dependent

parameters. Overall, real data is of inherent uncertainty.

Since the proposed method requires only 2-4 iterations per

trace, its implementation entails significantly low computa-

tional complexity. Solving using MATLAB, the processing

time of the above data set of 300 × 401 on a standard CPU

Intel(R)Core(TM)i7-7820HQ@2.90GHz is 122 ms, that is,

about 305 µs per trace. Whereas the processing time of the

same data set for ISTA is 13.13 seconds, that is, 32.8 ms

per trace. For the 3D time-variant multichannel method the

processing time is 16.06 minutes, and 2.41 seconds per trace.

Which means, the proposed method is about 100 times faster

than ISTA. This in turn assures us of a promising potential of

the suggested method to be incorporated in the future in large
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(a) (b) (c)

Fig. 8. Zoom into the predicted reflectivities in Figs. 4-7: (a) RFN-ITA; (b) ISTA; (c) Multichannel time-variant deconvolution.

scale real-time data processing applications.

Fig. 9. Real data results 1D example: seismic trace; ISTA estimated
reflectivity, RFN-ITA estimated reflectivity.

VII. LEARNED RFN-ITA

At this stage, a learned version of the proposed method,

inspired by LISTA, seems almost inevitable. Namely, let us

unfold Θ iterations of RFN-ITA, and set the filters building

each convolutional dictionary at each iteration Dθ as trainable

parameters. In other words, we design a neural net, such that

the output at layer θ is

∆rθ+1 = y −Dθxθ

∆qθ+1 = Sβθ+1

(

DT
θ+1W̃θ∆rθ+1

)

xθ+1 = αθ+1

(

∆qθ+1 ⊙∆rθ+1

)

+ xθ, θ = 0, 1, ...,Θ− 1,

(41)

where W̃θ is a scaled RFN matrix as defined in (23), without

dividing by ‖di‖2, since at the training stage the dictionary is

unknown. In other words,

W̃θ = diag

(

1

σ̃θ+1
∆r [k]

)

, k = 1, ..., Ly. (42)

Ψ = {αθ, βθ,Dθ} are the learned parameters. Here we have

used the soft-thresholding operation because its implementa-

tion using the ReLU function facilitates convergence. Training

is performed using stochastic gradient descent to minimize the

loss L(y; Ψ) between the model predicted code xΘ = f(y; Ψ)
to a known code over a training set of known {y}Pp=1 and the

corresponding {x}Pp=1,

min
Ψ

1

P

P∑

p=1

‖f(yp; Ψ)− xp‖22. (43)

Once trained, the model is expected to produce sparse codes

for signals from the same probability distribution, without

requiring their original true dictionary.

Figure 10 compares the learned filters to the true wavelet

g[k] that was used to create the observed traces, for a two layer

model, that is Θ = 2, trained to recover only the support, as

described in Algorithm 4. In this section we used Pytorch [37]

for the numerical implementation. A training set of N = 997
random reflectivity independent sequences of length Lx = 60,

as described in Section V-A, with ν = 3, ω0 = 80π, and

Fs = 250Hz. Table 2 presents the testing correlation score for

this example ρA
X,X̂

, the support correlation score ρS
X,X̂

, and the

learned parameters, β1, β2 for a test set of N = 997 traces,

with different minimal separation constants ν = 5, 3, 1. We do

not force any constraints on the weights parameters.

Figure 12 shows the learned filters versus the true wavelet,

for a two layer model, that is Θ = 2, trained to recover both the

support and amplitude with ν = 1, as described in Algorithm

3. Figure 11 presents the learned filter for Algorithm 3 when

ν = 1, ω0 = 50π and we force D1 = D2. As can be seen, the

learned pulse is significantly narrower then the original one,

and its side-lobes are shallower. The corresponding correlation

scores ρB
X,X̂

and ρC
X,X̂

, respectively, are also presented in

Table 2. As evident, there is no significant variations between

the models’ performance, since the prediction precision is

inherently dependent on sufficient separation between spikes,

and the signal bandwidth, represented by ν and ω0.

At this stage, we shall leave further work on the learned

extension of RFN-ITA, the relevant mathematical analysis and

its applications to our future research.
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TABLE II
SYNTHETIC EXAMPLE - RESULTS AND PARAMETERS: WAVELET’S SCALING ω0 , MINIMAL SEPARATION CONSTANT ν , THRESHOLDS β1 ,β2,

NORMALIZATION WINDOW SIZE Lh , NORMALIZATION WINDOW STD σh , RECOVERED SUPPORT SCORE ρS
X,X̂

, FINAL RECOVERED REFLECTIVITY SCORE

ρA
X,X̂

FOR LEARNED ALGORITHM 4 IMPLEMENTATION, FINAL RECOVERED REFLECTIVITY SCORE ρB
X,X̂

FOR LEARNED ALGORITHM 3

IMPLEMENTATION, FINAL RECOVERED REFLECTIVITY SCORE FOR LEARNED ALGORITHM 3 IMPLEMENTATION ρC
X,X̂

WITH D1 = D2 .

ω0 ν β1 β2 Lh σh ρS
X,X̂

ρA
X,X̂

ρB
X,X̂

ρC
X,X̂

80π (40 Hz) 5 0.90 0.57 11 2 0.99 0.998 0.985 0.986

80π (40 Hz) 3 1.24 0.43 11 2 0.95 0.97 0.96 0.96

80π (40 Hz) 1 0.81 0.29 9 2 0.89 0.91 0.89 0.91

50π (25 Hz) 5 2.17 0.80 17 3 0.99 0.99 0.985 0.987

50π (25 Hz) 3 2.58 0.43 17 2 0.94 0.93 0.87 0.957
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Fig. 10. Learned RFN-ITA parameters: (a) D1 kernel; (b) D2 kernel; (c) 80π Ricker wavelet (Fs = 250Hz).
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Fig. 11. Learned RFN-ITA parameters: D1 = D2 compared to original 50π
Ricker wavelet (Fs = 250Hz).

VIII. CONCLUSIONS

We have presented an efficient modification of the classic

iterative thresholding algorithms for convolutional sparse cod-

ing. We have shown that receptive field normalization leads

to a substantial reduction in the number of required iterations

to reach an approximate sparse code vector. We demonstrated

that whether the dictionary is known or learned via neural

network training, about 2-4 iterations are sufficient to produce

a sparse code close to the true one, even when the dictionary’s

mutual coherence is relatively high. The proposed algorithms

entail a significantly low computational complexity, and there-

fore can potentially contribute to a dramatic speed-up in many

real-time applications, such as super resolution and pattern

recognition systems, as well as neural nets feature extraction

in other existing systems. Hopefully, future work will further

investigate the proposed methods and their extension to other

applications. An extension to seismic blind deconvolution is

also possible. The theoretical analysis could be extended to

a statistical point of view rather than a worst case scenario

approach.

APPENDIX A

Proof of Theorem 1

We introduce the following assumptions:

A 1 (Stationary Receptive-Field Energy) We assume that

for every support index i the local weighted energy as defined

in (12) is approximately constant and equal to the energy at

i, that is

σy[k] = σy[i] ∀k ∈ Ki, i ∈ K, (44)

where Ki is the neighborhood of i, and k belongs to the neigh-

borhood Ki provided that |k − i| ≤ Ld

2 − 1. Assume without

loss of generality the dictionary columns are normalized, and

denote ai = W0di. According to the above assumption we

have

|aTi di| =
1

σy[i]
∀i ∈ K. (45)

In other words the corresponding atom after RFN is approx-

imately equivalent to a scaled version of the original atom.

Denote vi such that ai = diag−1(σy[i])⊙ (di−vi), then (45)

is true when either vT
i di = 0 or vi = 0. Clearly, assumption

A 1 is not completely accurate, since for each data sample,

the normalization window changes its location, therefore the

local energy changes. However practically we observe that

the difference ‖σy[i]ai − di‖2 is relatively very small and

that vT
i di can be neglected for the purposes of the following

mathematical analysis and for the sake of brevity.
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Fig. 12. Learned RFN-ITA parameters: (a) D1 kernel; (b) D2 kernel; (c) 80π Ricker wavelet (Fs = 250Hz).

A 2 (No Atoms Mismatch)

|aTi dj | ≤
1

σy[i]
|dT

i dj |

≤ µ

σy[i]
∀{(i, j) : i 6= j, i ∈ K, j /∈ K}. (46)

In other words, RFN can only decrease local stripe correlation

to dictionary atoms that are not on the support. This assump-

tion is very accurate, even in practical cases.

A 3 (Noise Scaling)

|aTi e| ≤ |W0d
T
i e| ≤

‖dT
i ‖2‖ei‖2

mini σy[i]
≤ εd

τ
= εs ∀i, (47)

where ei is a noise stripe of length Lh such that ‖ei‖2 = εd
, based on Cauchy-Schwartz and assuming atoms with unit

norm dT
i e ≤ ‖dT

i ‖2‖ei‖2 = ‖ei‖2. In other words, the

correlation of a local stripe noise to the dictionary atoms after

RFN remains well bounded. Note that εd << ε.

One may suggest that the above assumptions simply propose

that thresholding the expression DTW0y is equivalent to

thresholding W0D
Ty. In other words, scaling the projection

values is equivalent (or advantageous) to normalizing the

(error) signal and then projecting it on the dictionary. In

practice the two approaches are mathematically equivalent

only when the atoms are at least Ls samples apart. Indeed,

projection post-normalization can distort the observed signal.

However, it is beneficial for preventing false detections. For

example, in Section V we presented examples using the Ricker

wavelet. RFN helps to prevent the “side wings” from being

misdetected as main lobes of the wavelet. This is achieved by

the neighborhood energy reducing the normalized side lobe’s

correlation to atoms at these locations, implying that it cannot

be a true support location.

These three assumptions are not necessarily realistic in the

case of the seismic inversion. However many assumptions

made for seismic deconvolution in the field of seismic pro-

cessing are not necessarily realistic either, and yet seismic de-

convolution has been applied for many years with considerable

success [38].

Now we shall proceed to the proof of Theorem 1. Perfect

support detection is guaranteed if the requirement

min
i∈K
|aTi y| > max

j /∈K
|aTj y| (48)

is met. Assuming a rectangular receptive field normalization

window of length Lh = Ld.

σy[i] = ‖Dixi + ei‖2, (49)

where xi denotes a stripe of length mLs located around a data

point i, and Di is the submatrix partial dictionary yielding

point y[i], that is obtained by restricting the dictionary D to

the support of mLs weights corresponding to Lh data points

equally distributed around point i. Denote µ = µ(Di) (obvi-

ously µ = µ(D)), and assume without loss of generality the

dictionary columns are normalized, that is σdi
= 1∀i ∈ [1,M ],

according to the stripe Restricted Isometry Property (sRIP) (

[39, Definition 14])
(

1− (s− 1)µ
)

‖xi‖22 ≤ ‖Dixi‖22 ≤
(

1 + (s− 1)µ
)

‖xi‖22.
(50)

Moreover,

‖Dixi‖2 ≤
∑

j∈Sh
i

‖dj‖2‖xi‖2 ≤ ‖xi‖2. (51)

Then, we can lower-bound the right term in (48) by

min
i∈K
|aTi y| ≥ min

i∈K
|aTi (y − e)| − |aTi e|

≥ min
i∈K

|dT
i Dx|

‖Dixi + ei‖2
− εs

≥ min
i∈K

|dT
i Dixi|

‖Dixi‖2 + ‖ei‖2
− εs

≥ min
i∈K

|dT
i Dixi|

‖xi‖2 + ‖ei‖2
− εs

≥ min
i∈K

|dT
i Dixi|

‖xi‖1 + εd
− εs

≥ min
i∈K

|x[i]|dT
i di

‖xi‖1 + εd
−
∣
∣
∣
∣
∣

∑

t∈Si
h
,t6=i

x[t]dT
i dt

‖xi‖1 + εd

∣
∣
∣
∣
∣
− εs

≥ min
i∈K

(1 + µ)|x[i]|
‖xi‖1 + εd

− µ
( ∑

t∈Si
h

|x[t]|
‖xi‖1

)

− εs

≥ min
i∈K

(1 + µ)|x[i]|
‖xi‖1 + εd

− µ− εs, (52)

where we have used the relation ‖xi‖1 ≥ ‖xi‖2 and assump-
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tions A 1-A 3. On the other hand,

max
j /∈K
|aTj y| = max

j /∈K

|dT
j y|

‖Djxj + ej‖2
+ |aTj e|

≤ µ‖xj‖1
‖xj‖2

√

1− (s− 1)µ− εd
+ εs

≤
√
sµ‖xj‖2

‖xj‖2
(√

1− (s− 1)µ− ε̃d
) + εs

≤
√
sµ

√

1− (s− 1)µ− ε̃d,∞
+ εs. (53)

where we denote ε̃d = εd
‖xj‖2

, and ε̃d,∞ = εd
|x|min

. Combining

(52) and (53) we require

min
i∈K

|x[i]|(1 + µ)

‖xi‖1 + εd
− µ− εs >

√
sµ

√

1− (s− 1)µ− ε̃d,∞
+ εs.

(54)

It follows that

|x[i]|
‖xi‖1 + εd

>
µ

1 + µ

(

1 +

√
s

√

1− (s− 1)µ− ε̃d,∞

)

+
2εs
1 + µ

∀i ∈ K.
(55)

Taking the worst case analysis point of view, considering that

‖xi‖1 ≤ s|xi|max, we deduce

|xi|min

|xi|max +
εd
s

>
sµ

1 + µ

(

1 +

√
s

√

1− (s− 1)µ− ε̃d,∞

)

+
2sεs
1 + µ

∀i ∈ K.
(56)

In a noise-free model we have

|xi|min

|xi|max
>

sµ

1 + µ

(

1 +

√
s

√

1− (s− 1)µ

)

∀i ∈ K. (57)

This completes the proof.

APPENDIX B

Proof of Theorem 2

Perfect support detection is guaranteed if the requirement

min
i∈K
|aTi y| > max

j /∈K
|aTj y| (48)

is met. When s = 1 assuming y = Dx, we have

min
i∈K
|aTi y| = min

i∈K

|dT
i y|

‖Dixi‖2
≥ min

i∈K

|dT
i y|
‖xi‖2

≥ min
i∈K

|x[i]|
|x[i]|d

T
i di = 1. (58)

on the other hand,

max
j /∈K
|aTj y| = max

j /∈K

|dT
j y|

‖Djxj‖2
≤ µ|xj [kj ]|
|xj [kj ]|

≤ µ, kj ∈ K, kj ∈ Sj
h. (59)

Since µ < 1, for any 0 < |x|min

|x|max
≤ 1 the support is perfectly

recovered at the first iteration using RFN.

APPENDIX C

Proof of Theorem 3

Recall that we have defined the stripe local energy in (30)

as

σy[k] = ‖Hyk‖2 = ‖HDkxk‖2. (60)

Similarly to the stripe Restricted Isometry Property (sRIP) (

[39, Definition 14]) we can observe that

‖HDixi‖22 = xT
i (HDi)

THDixi

≤ |xi|T [H2
d + µ(HDi)(1− I)]|xi|

≤ ‖Hdxi‖22 − µ(HDi)‖xi‖22 + µ(HDi)‖xi‖21
≤ ‖Hdxi‖22 + (s− 1)µ(HDi)‖xi‖22, (61)

where Hd is a diagonal matrix holding the attenuated atoms

ℓ2 norms, namely H2
d = diag(trace((HDi)

THDi)) and

Hd[j, j] = ‖Hdi
j‖2, j ∈ Sh

i , where di
j ∈ R

Lh×1 is the jth

atom of the submatrix Di. Clearly, we also have

‖HDixi‖22 = xT
i (HDi)

THDixi

≥ |xi|T [H2
d − µ(HDi)(1− I)]|xi|

≥ ‖Hdxi‖22 + µ(HDi)‖xi‖22 − µ(HDi)‖xi‖21
≥ ‖Hdxi‖22 − (s− 1)µ(HDi)‖xi‖22. (62)

By assumption h is a receptive field normalization kernel that

is monotonically descending away from its center, therefore

we assume µ(HDi) << µ(Di), and hereafter use the ap-

proximation

σy[k] ≈ ‖Hdxi‖2. (63)

Also, under the separation condition let us denote hd(ν) ,

maxp∈[1,m] Hd[∆k + (p − 1)Ls,∆k + (p − 1)Ls]. In other

words hd(ν) is the maximal ℓ2 norm of an atom shifted by

the separation distance multiplied by the RFN window.

As stated above, to guarantee perfect support detection we

have to show that the requirement

min
i∈K
|aTi y| > max

j /∈K
|aTj y| (48)

is satisfied. We shall begin with the left-hand-side term,

min
i∈K
|aTi y| ≥ min

i∈K

|dT
i Dx|

‖HDixi‖2
≈ min

i∈K

|dT
i Dx|

‖Hdxi‖2

≥ min
i∈K

|x[i]|
‖Hdxi‖2

dT
i di −

∣
∣
∣
∣
∣

∑

t∈Si
h
,t6=i

x[t]

‖Hdxi‖2
dT
i dt

∣
∣
∣
∣
∣

≥ min
i∈K

|x[i]| − µ
∑

t∈Si
h
,t6=i |x[t]|

‖Hdxi‖1

≥ min
i∈K

|x[i]| − µ
∑

t∈Si
h
,t6=i |x[t]|

|x[i]|+ hd(ν)
∑

t∈Si
h
,t6=i |x[t]|

= 1−
(
µ+ hd(ν)

)
max
i∈K

∑

t∈Si
h
,t6=i |x[t]|

|x[i]|+ hd(ν)
∑

t∈Si
h
,t6=i |x[t]|

,

(64)

where we have used ‖Hdxi‖1 ≤ |x[i]|+h(ν)
∑

t∈Si
h
,t6=i |x[t]|

since the closest nonzero input entry is at distant ∆k samples
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from i. Turning now to the right-hand-side of (48) we have

max
j /∈K
|aTj y| = max

j /∈K

|dT
j y|

‖HDjxj‖2
≤ µ‖xj‖1
‖Hdxj‖2

≤ µ‖xj‖1
hd,min√

s
‖xj‖1

≤
√
sµ

hd,min
, (65)

where we have lower bounded the denominator, assuming

σy[j] > τ ,

‖Hdxj‖2 ≥ hd,min‖xj‖2 ≥
hd,min√

s
‖xj‖1, (66)

It is worth mentioning that a tighter bound could be obtained

using

max
j /∈K
|aTj y| = max

j /∈K

|dT
j y|

‖HDjxj‖2

≤
√
s
∑

k∈Sh
j
,k 6=j |dT

j dk||xj [k]|
∑

k∈Sh
j
,k 6=j Hd[|k − j|]|xj [k]|

. (67)

Which means no false detection are guaranteed as long as
√
s|dT

j dk|
Hd[|k − j|] < β1, ∀k ∈ Sh

j , j /∈ K. (68)

Combining (66) and (64), and denote ‖x−i‖1 ,
∑

t∈Si
h
,t6=i |x[t]| = ‖xi‖1 − |x[i]|, we have that as long as

√
sµ

hd,min
< β1, (69)

and

‖x−i‖1
|x[i]|+ hd(ν)‖x−i‖1

<
1− β1

µ+ hd(ν)
∀i ∈ K, (70)

the true support is fully recovered by RFN thresholding. This

concludes the proof.

APPENDIX D

Earth Q-model time-variant wavelets estimation

We recall from [27], [34], that we can estimate the set

of time-variant pulses {gσ,n} in (2.2) according to the earth

Q-model. Namely, we begin with an initial wavelet with a

dominant frequency ω0, e.g., the real-valued Ricker wavelet,

g(t) =
(

1− 1

2
ω2
0t

2
)

exp
(

− 1

4
ω2
0t

2
)

. (40)

In this setting, the scaling parameter is σ = ω−1
0 . Following

the earth Q-model [29], assuming we know Q [30], a reflected

pulse at travel time tn, is

un(t−tn) = Re
{ 1

π

∫ ∞

0

G(ω) exp[j(ωt−κr(ω))]dω
}

, (71)

where G(ω) is the Fourier transform of the source waveform

g(t),

κr(ω) ,
(

1− j

2Q

)
∣
∣
∣
∣

ω

ω0

∣
∣
∣
∣

−γ

ωtn, (72)

γ ,
2

π
tan−1

( 1

2Q

)

≈ 1

πQ
, (73)

Note that in the frequency domain, the phase change ex-

ponential operator represents velocity dispersion, while the

amplitude attenuation exponential operator corresponds to

energy absorption of the traveling pulses

Un(ω) exp
−jωtn = G(ω) exp

(

− j

∣
∣
∣
∣

ω

ω0

∣
∣
∣
∣

−γ

ωtn

)

× exp
(

−
∣
∣
∣
∣

ω

ω0

∣
∣
∣
∣

−γ
ωtn
2Q

)

. (74)

The time-domain seismic pulse reflected at two-way travel

time (depth) tn is

un(t− tn) =
1

2π

∫

Un(ω) exp[jω(t− tn)]dω. (75)

Therefore, the estimated set of pulses {gσ,n} based on the

earth Q model are defined as

gσ,n(t− tn) = u(t− tn)|σ=ω−1
0

. (76)
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