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CNN Cloud Detection Algorithm Based on Channel
and Spatial Attention and Probabilistic Upsampling
for Remote Sensing Image

Jing Zhang™', Yuchen Wang

Abstract— In the field of remote sensing image, how to transmit
image information more efficiently with limited bandwidth has
always been a research hotspot. Compared with other ground
objects, cloud pixels in remote sensing image are invalid informa-
tion, so it is a meaningful research work to remove cloud before
transmitting image and reduce the waste of useless information.
In remote sensing image, due to the existence of thin clouds
and the complexity of the underlying surface, most of the cloud
detection algorithms struggle to achieve effective separation of
clouds and ground objects. A deep learning (DL) cloud detection
algorithm based on attention mechanism and probability upsam-
pling has been proposed in this article. In order to enhance the
information of the key areas, in the channel attention module,
crucial information is highlighted in the channel dimension of the
encoder, and the useless information is weakened. The spatial
attention module is in the spatial dimension. The information
fusion between each point in the image is strengthened. To reduce
the information loss caused by the down-sampling module, a
probabilistic upsampling block (PUB) is proposed to restore the
image. Eventually, experiments are performed on Gaofen-1WFV
data, and the results indicate that the algorithm proposed in this
article has better detection results than other cloud detection
algorithms in different scenarios.

Index Terms— Channel attention, cloud detection, probabilistic
upsampling, spatial attention.

I. INTRODUCTION

ITH the development of remote sensing technology,
W satellite images are increasingly being used in various
research [1]-[4]. An increasing amount of remote sensing
data is being used in agriculture, environmental protection,
urban development, military, the monitoring of land changes,
hydrology, and so on [5]-[8]. However, nearly 70% of the
earth’s surface is covered by clouds [9], including thick clouds
and thin clouds. The underlying surface of thick clouds cannot
be known from the images, undoubtedly, the areas covered by
clouds in remote sensing images are invalid information [10].
Although thin clouds do not completely cover the ground
features, they still cannot fully know the ground features
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under the thin clouds when mixed with the underlying surface,
therefore, thin clouds and thick clouds are the same invalid
information. Because the transmission bandwidth on remote
sensing satellites is limited, when these cloud regions are
detected and identified as invalid information, the Region of
Interest compression method will greatly improve the trans-
mission efficiency between satellite and ground. Therefore,
accurate and efficient detection of cloud regions is a hot spot
in remote sensing image preprocessing.

Traditionally, the research methods of cloud detection are
the combination of multi-band threshold, texture analysis,
pattern recognition, and so on. Li ef al. [11] presented the
MEFC algorithm, which combined band threshold with texture
analysis method, firstly, threshold segmentation based on spec-
tral features was realized, followed by which, a preliminary
cloud mask was generated through mask thinning guided fil-
tering, finally, the geometric features and texture features were
combined to improve the cloud detection results. Li ef al. [12]
adjusted the segmentation threshold value by analyzing the
physical properties of clouds and made it more suitable for
mitigating the effects of clouds. The textural feature difference
between clouds and the underlying surface is strengthened
before texture identification. Using some morphology oper-
ations were eventually used to further refine the coarse cloud
regions and extract the thin clouds. Chen et al. [13] aimed at
the problem of complicated types of cloud and land. Firstly,
the image to be detected was enhanced, and then the texture
features of the image were analyzed in multi-scale space
to distinguish between cloud and ground. Liu er al. [14]
proposed a thin cloud removal method based on the cloud
physical model, which uses the correction method and adaptive
brightness factor to decrease the effect of transmission and
obtain the final image. The results show that the method can
more effectively remove thin clouds, improve the contrast of
the image, and retain more details. These traditional methods
usually require a lot of time for adjusting the parameters and
tuning threshold. Also, this multistage process usually has poor
detection accuracy.

With the development of new technologies, artificial neural
networks (ANNs) have achieved impressive development.
ANN is basically a mathematical model that simulates the
human brain processing information. It is composed of a large
number of processing units and can independently process
multiple sets of information. The advantage of ANN is that it
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can deal with a lot of nonlinear problems and find the effective
and optimal solution of the model by some constraints. In the
1990s, Key and Barry [15] first used this network to cloud
detection of remote sensing images, and then more and more
researchers began to use it in the field of cloud detection.
Shi [16] based on the five-channel data of NOAA-AVHRR,
used a simple neural network model to classify the images,
including cumulonimbus, cumulus, cumulus, cirrus, medium
cloud, low cloud and land, water, and unknown pixels. In 2006,
Hinton put forward the concept of deep learning (DL). In the
DL network, single-layer neurons are firstly constructed layer
by layer so that a single-layer network is trained every time.
After all the layers are trained, the optimization process begins.
After multi-layer nonlinear feature extraction, high-level fea-
tures with strong expression ability can be derived, and DL
of data features can be realized without human participation.
With the improvement of DL systems and the contribution of
many scientific workers, in recent years, the deep convolu-
tional neural network has achieved substantial success in the
field of computer vision [17]-[21]. End to end does not require
any human intervention, and through its powerful feature
expression ability, it has become the prime research method
in many fields of image processing [24]. Zhang et al. [25]
integrated wavelet features into the DL network and achieved
the task of speckle removal for SAR image. Yolo series [26]
uses an end-to-end DL algorithm to accomplish the task of
high-speed target detection.

In the exploration of DL methods for cloud detection, some
new methods are proposed, which significantly improve the
performance of cloud detection. By comparing the traditional
cloud detection methods [28], it can be concluded that the
feature learned by the convolutional neural network is better
than the traditional manual feature. Owing to the complexity
and diversity of the underlying surface, it is usually diffi-
cult to identify thin clouds compared to thick clouds, the
multi-scale feature convolution neural network proposed by
Shao et al. [29] can detect thin clouds as well as thick clouds
at the same time, and the detection results are impressive.
Li et al. [10] proposed a multi-scale convolutional feature
fusion method based on DL. Dense connection groups are
added in the symmetric encoder-decoder module to seek local
and global information; the algorithm exhibits good detection
performance in bright regions. Segal-Rozenhaimer et al. [30]
proposed a convolutional neural network that can be adap-
tively applied to a variety of datasets. The robustness of
this algorithm is verified by experiments. Aiming at the
complicated underlying surfaces and the variety of cloud types,
Liu et al. [14] proposed an innovative model named fuzzy auto
encode model (FAEM), which combines the coding network
and fuzzy function to achieve high-precision cloud detection
of remote sensing image in complex environments.

In this article, we propose a cloud detection algorithm
based on a convolutional neural network. Starting from the
particularity of cloud detection task, we mainly focus on the
relationship between the spectral segments of multispectral
image and the points of spatial dimension. At the same time,
we focus on the texture complexity of cloud images and a
large number of thin clouds.
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II. BACKGROUND OF U-NET

U-Net [32] is an image segmentation algorithm based
on FCN-network architecture [33], which has been widely
used in various image segmentation fields, such as medical
image segmentation, industrial detection, and satellite image
segmentation. U-Net network consists of two parts: encoder
and decoder. The encoder is similar to VGG-Net [34] for
feature extraction. Through convolution and downsampling,
the input image size is compressed gradually, and the number
of channels becomes more. In the decoder, the image is
recovered by linking the convolution layer and the upsampling
layer, and fused with the corresponding size feature extraction
layer of the coding segment after each upsampling. At the final
layer, a convolution is used to map each feature vector to the
desired number of classes.

As an efficient and lightweight convolutional neural
network, U-Net has attracted the attention of many
scholars [35]-[37]. U-Net was first applied to medicine image
segmentation. With the later expansion, U-Net is introduced
into the field of remote sensing image segmentation. For
example, Jeppesen et al. [38] and others have made improve-
ments based on U-Net and proposed RS-Net remote sensing
cloud detection algorithm. Guo et al. [39] added a channel
attention module to U-Net, and realized efficient cloud and
non-cloud segmentation algorithm.

In this article, our proposed algorithm based on encode—
decode DL image segmentation network U-Net. We added
a channel attention module between the decode and the
encode of each layer, A spatial attention module is added
in the last layer of the network, to improve the information
loss caused by downsampling, probabilistic upsampling block
(PUB) is added, in order to verify the effectiveness of the
algorithm, and high score data is used to carry out the
experiments.

III. METHOD

In this article, our proposed algorithm consists of three
parts: channel attention module, spatial attention module, and
probability upsampling module. To adaptively adjust the char-
acteristic response value of each channel, the channel attention
module fuses the information of the encoder-decoder, and
models the dependency relationship between the channels. The
obtained information is added to the decoder for image restora-
tion. By modeling different position relationships, the spatial
attention module adjusts the feature response value of the
spatial dimension. The probabilistic upsampling module fuses
the downsampling information from encode to decode, which
improves the image edge problem caused by the roughness of
downsampling as demonstrated in Fig. 1.

A. Background of Attention Mechanism

The visual attention mechanism is a special brain signal
processing mechanism of human vision. By quickly scanning
the global image, human vision can identify the target area
that needs to be focused, that is, the focus of attention, and
then invest more attention resources in this area to obtain
more detailed information of the concerned target, so as to



ZHANG et al.: CNN CLOUD DETECTION ALGORITHM BASED ON CHANNEL AND SPATIAL ATTENTION

Encoder path

5404613

512x512x4 B12x512%52 1
256x256x64
pool n | B eI :
Conv*2 Conv*2 Conv*2
[ > —
Concat Concat
| X v \ 4 v v Upsample |||
Conv Upsample Upsample Conv2
| Conv*2 Conv*2 Conv*2 00 |
SA ¢—=| pruB €@ CA = cA {—=| cA I
| N\ 64x64x%256 I
— 128x128x128 |

Fig. 1.
single channel binary image.

suppress other useless information. This is a means of rapidly
screening the high-value information from a large volume of
information by using limited attention resources. Also, this
is a survival mechanism formed in the long-term evolution
of human beings. The human visual attention mechanism
significantly improves the efficiency and accuracy of visual
information processing. Inspired by the process of human
visual attention, the visual attention mechanism has been
introduced into DL and is widely used in natural language
processing, speech recognition, and image processing. In the
year 2014, the Google team drew attention toward the RNN
model for image classification [40] and achieved impres-
sive performance. In 2017, researchers introduced the atten-
tion mechanism into the CNN network [41]. Subsequently,
the attention mechanism based on CNN has been widely
used. CNN’s attention module can be categorized into two
parts: the channel attention module and the spatial attention
module. Channel attention emphasizes the correlation among
the dimensions of the channel, which focuses the network
attention on the useful channel information and suppresses
the useless channel information. Hu et al. [42] proposed a
new architectural unit, which has been termed as the squeeze-
and-excitation (SE) block. The characteristic response value
of each channel can be adjusted adaptively by modeling
the relationship between the channels. Compared to SE-Net,
the CBAM proposed by Woo et al. [43] not only adds spatial
attention but also introduces the parallel structure of maximum
pooling and average pooling in channel attention, and its effec-
tiveness is verified by experiments. Spatial attention focuses on
the region of interest in the spatial domain. In recent years,
Wang et al. [44] proposed the spatial attention structure of
non-local, which is widely used in various tasks. This structure
improves the expression ability of the network by capturing
long-distance dependence and expanding the receptive field to
the whole picture.

Decoder path

Graphic model of proposed network structure. The input of the network is multi-spectral image with four spectral segments, and the output is a
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Fig. 2. Block diagram of the CA module.

B. Channel Attention Module

In this article, the proposed channel attention module
includes two parts: a multi-scale sampling module and a spatial
compression module, as shown in Fig. 2.

In order to increase the expression ability of the module,
we choose to perform a multi-scale parallel convolution oper-
ation on the input before entering the spatial compression
module. Szegedy et al. [45] indicate that width is a key factor
in improving the performance of the model. More filter parallel
structures with different dimensions can obtain features of
different sizes of receptive fields, and the fusion of these
features can improve the network performance. In the research
of multi-scale modules, the prominent focus is put on the size
and number of filters. The final structure has been chosen as a
four-channel parallel structure, and 2-D convolution with the
size of (3, 3) and 3-D dilated convolution with a three-way
expansion rate of {2, 5, 7} have been used. Dilated convolu-
tion [46]-[48] is widely used as it can improve the network
performance while keeping the parameters intact. Dilated
convolution increases the receptive field without increasing
the parameters and enables images to establish long-distance
information association. Considering the channel attention
module, we use the 3-D dilated convolution. Hence, long-
distance information can be acquired in the channel dimension.
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The fusion of this information can enhance the expression
ability of the network. Experiments also verify this concept of
using 3-D dilated convolution to get more expressive features.

The space compression module transforms the information
in the original image into another space and retains the key
information. The key part of the image is enhanced, and
the useless information of other parts is suppressed. The
information obtained by the multi-scale sampling module is
taken as the input of the space compression module. Further,
through the parallel structure of global maximum pooling and
global average pooling, the spatial information aggregation is
carried out, and the context information of 1 x 1 x C size
is generated. The corresponding channel attention graph is
generated through two channels of MLP. Eventually, these two
channels of information are added to obtain the final channel
attention graph.

Moreover, we explore the difference and relationship
between the encoder segment and the decoder in U-Net
network. The saliency map of low-level features contains
many details, the saliency map of high-level features is only
a rough result, and some basic areas may be weakened. Zhao
and Wu [49] concluded through a series of experiments that
deep features usually contain global context information, focus
more on salient areas, and ignore some edge information.
This will bring disastrous effects in the cloud detection tasks
because edge regions are often thin clouds. The shallow feature
contains more spatial information, so it also contains the
thin cloud region. The proposed attention module uses the
shallow feature-coding segment, generates the final weight
vector through the multi-scale sampling module and spatial
compression module, and then uses the decoder to multiply
the weight vector to detect the final output feature. The
features of the thin cloud region are enhanced to a certain
extent by adding the elements with the original features of
the decoder, while the features of the thick cloud area are not
weakened.

C. Spatial Attention Module

The visual attention model of the human brain has been
simulated in the spatial attention model of DL. In recent years,
it has been widely used by scientific workers, especially in the
field of DL [50], [51]. In order to extract the key information,
the spatial attention module makes a corresponding spatial
transformation of the spatial domain information in the picture,
generates the mask of the space, score, and finally multiplies
the elements with the original image to seek the desired
result. The original image is usually fit by the compression
channel and simple convolution. Through analysis, it has been
found that for image segmentation or classification tasks,
the computer is not as sensitive as the human vision to
identify the category of a certain area. If the focus is only
on the local area, the computer cannot complete the task
of segmentation and classification. Usually, the convolution
operation is limited by the size of the convolution kernel and
can only fit the local information. For cloud feature extraction,
long-distance information is often equally crucial because in
the final analysis, cloud feature is only a classification problem
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for cloud and non-cloud regions, and most of the cloud pixels
are identical. The effective use of the similarity between cloud
pixels is the focus of this research work.

In order to make effective use of the long-distance infor-
mation, one method is to enlarge the convolution kernel as
much as possible, even to the whole image, or to expand
the receptive field by accumulating the empty convolutions
in the network, which will enlarge the receptive field and
acquire the wider information distribution, However, such a
continuous superposition method will substantially increase
the amount of computation, and the deepening of the network
will make it difficult for the network to converge, which boosts
the difficulty of optimization. In 2011, Buades et al. [52]
proposed a spatial filtering method non-local mean denoising.
In this method, the pixels in the image are not considered to
exist in isolation. There must be some association between
the pixels of one point and the pixels of other places, which
can be considered as gray correlation and geometric structure
similarity. Meanwhile, it was also found that similar pixels
are not limited to a certain local area, such as the long edge,
structure, and texture in the image. Natural images contain
abundant redundant information, so image blocks that can
describe the structural features of images have to be used to
seek similar blocks in the whole image. The basic idea of
non-local mean denoising is that the gray value of the current
pixel is obtained by a weighted average of all pixels in the
image with a similar structure.

Inspired by the idea of non-local mean denoising,
Wang et al. [44] introduced the idea of non-local mean denois-
ing into DL, the maximum non-local information sharing is
achieved by expanding the receptive field area to the size of
the whole image. As an end-to-end module, non-local neural
network modules can be added to any CNN network, and
it will substantially improve the overall performance of the
network. However, this module has a fatal disadvantage in that
the matrix multiplication leads to a huge number of parameters
leading to a high hardware requirement. Cao et al. [53] found
that in the original non-local structure for each query location,
the important areas are basically the same area, that is, the
attention of each location is almost the same. Hence, by adding
the characteristics of these important areas to each location, the
accuracy of the network does not decline, but the amount of
computation is reduced significantly. Based on this, the way of
non-local neural network module has been modified to obtain
the context information, and convolution has been done instead
of a large number of matrix multiplication operations, In this
way, the number of parameters is prominently reduced, and
considering that the features learned by the non-local networks
are location independent, the information of the whole graph
has been integrated into one point. In the final structure,
a 1 x 1 convolution has been used to fit the information.

Based on past experience, the convolutional neural network
is very significant for visual tasks to represent features on
multiple scales. While exploring the stronger expression ability
of the network, it has been noticed that the better feature
extraction ability can be obtained by grouping the features
and fusing the results layer by layer. Hence, we proposed
a multi-level convolution fusion-block (MFC-block) (Fig. 4).
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A packet convolution module is added to this spatial atten-
tion module to represent the multi-scale features in a more
fine-grained way and increase the receptive field of each
network layer, firstly, the input feature passes through a 1
x 1 convolution operation, then the features are divided into
several groups based on the channel dimension, and each
group is fused with the features of the previous group and
then fit by a 3 x 3 convolution. The result of each group is
spliced and then taken as output, at the same time, referring
to the Res-Net structure, the input feature and output feature
are added to obtain the final output.

The spatial attention module proposed here is demonstrated
in Fig. 3. The module combines the multi-level convolution
fusion module with the improved non-local neural network
module. On the one hand, it boosts the relevance of each
local region through grouping convolution, and on the other
hand, it cross-fuses the long-distance information through the
non-local idea. The module is designed as a residual structure
and added to the last layer feature of the decoder.

D. Probabilistic Upsampling Block

In the image segmentation task, the boundary details play
a significant role. If the spatial information of some key

5404613

88

51096 20(20(8|8|

1421241zz> indiitle ¢ E>24243536 12(18( 4 |8
3%

Rest of the the
2(7|8 |16 network 2|24

‘
g
|

\
=T=

P S

= | =

——— -~~~ encoder path ————————

05’1 05| 1 2|4 (12|24

0.2‘0.4 075/ 0.5|
033/05( 1 | 0.5]

1 /0.17]0.33/0.67

Fig. 5. Block diagram of probabilistic upsampling-block (PUB).

positions is ignored, the segmentation task turns out to be inef-
ficient; hence, Seg-Net proposed by Kendall and Cipolla [54]
stores the maxpooling index in the encoder feature map before
downsampling. This suggests that the position of the maximum
feature value of each pool window is used as the feature
map from each encoder to decoder. This structure alleviates
the loss of boundary information to a certain extent, and
its effectiveness is manifested by experiments. In the cloud
detection task, once the spatial location information is lost,
the cloud or non-cloud texture will be incoherent; this will
significantly affect the detection performance. In order to solve
this problem, a PUB module has been designed, which will
optimize the problem of common upsampling information loss.

Compared to Seg-Net, the position information of the input
image before downsampling has been achieved through this
method, and the index of the maximum value is obtained.
At the same time, the ratio of the other three positions is set
to the maximum index value, that is, the maximum position
is set to 1, and the other positions are tuned to the ratio of
the maximum value. This information is stored in the weight
graph when the decoder performs upsampling; it first performs
upsampling, and then multiplies the result of the encoder. This
structure not only optimizes the boundary missing issue but
also maintains the continuity of space to a certain extent.
The experimental results prove that this structure not only has
better detection performance but also has a faster convergence
speed; PUB is shown in Fig. 5.

E. Loss Function

While performing the binary classification task, binary
cross-entropy [55] can be selected as the loss function. When
the output of the network is activated through the sigmoid
function, the probability value of the output ranges between 0
and 1; if the value exceeds 0.5, it can be classified as a positive
sample, if it is less than 0.5, it is a negative sample. Cloud
detection is a binary image segmentation task, positive samples
in cloud detection are cloud pixels, and the negative samples
are non-cloud pixels, the binary cross-entropy can be used
as the loss function; through the experiment, good detection
results can be achieved. But through the analysis, it can be
analyzed that the distribution of cloud and non-cloud is not
balanced in a scene cloud image, for the thick cloud and
non-cloud areas, since these regions are easy to distinguish for
the network when the prediction value of an area is close to 1,
it is surely a cloud area. On the contrary, when the prediction
value of an area is close to 0, it is certainly a non-cloud area.
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However, if it is the boundary between cloud and non-cloud or
the thin cloud area, the prediction value is usually close to 0.5,
which makes it difficult for the network to identify, to which
area, the point belongs to. This makes the cloud detection
task strenuous. Often, whether the detection of these regions
is correct or not is the key to judge the performance of an
algorithm, the use of the binary cross-entropy loss function
will make the iterative process of the loss function slow and
unable to converge to the optimal in a large number of simple
samples. In view of this, the focus of the presented research
is to identify the means of improving the binary cross-entropy
loss function to make the loss function more suitable for cloud
detection tasks, the binary cross-entropy loss function can be
computed as follows:

L =—ylogy' — (1 —y)log (1 —y'). (1

In the above formula, y’ is the output through the activation
function, and the size is between 0 and 1.We notice that in
the Focal loss function [56], add a constraint term to the
binary cross-entropy loss function to achieve better detection
performance, such as adding a balance factor to balance
positive and negative samples, and adding a constraint term
(1—y’) to make the network pay more attention to difficult
and misclassified samples. Compared with thick clouds and
other ground objects, thin clouds are easy to be misclassified,
so if the relevant constraints are added to the loss function,
the network will pay more attention to the detection of
thin cloud areas. In the cloud detection task, because the
number of cloud pixels and non-cloud pixels in a scene is
uncertain, the balance factor is not necessary for us. To avoid
a lot of meaningless optimization in simple samples, relevant
constraints are added to the binary cross-entropy function
to improve the loss function. We use focal loss with only
constraints. The formula is as follows:

L, (1—=y)logy = (1—=y)y'log(1-y). ()
When the positive samples (cloud pixels), when they are
misclassified due to their dimension, the modulation factor
(1—y’) is close to 1, and the loss will not be greatly affected.
When they are correctly classified, it is close to 1, so the
modulation factor is a value close to 0. The same is true for the
negative samples. For the samples with correct classification
and the samples with the wrong classification, the loss will
be reduced, but the reduction degree of the samples with
correct classification is greater than that of the samples with
false classification. Hence, more attention will be transferred
to the samples with false classification, and the proportion
of the samples with better classification will be reduced. For
the cloud detection task, for example, a certain region is
very similar to the underlying surface of the cloud, which
will lead the cloud area to be assigned most likely to the
negative samples. Therefore, more attention is paid to these
areas, which makes the presented network more robust.

IV. DATASET AND EXPERIMENTAL ENVIRONMENT
A. Dataset

In 2013, China launched the first high-resolution earth
observation satellite called GF-1 WFV, which was equipped
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with two 2 m/8 m panchromatic cameras and four 16 m multi-
spectral cameras. Gaofen-1 satellite breaks through the optical
remote sensing technology of high spatial resolution, multi-
spectral and high temporal resolution, multi-payload image
mosaic and fusion technology, high precision, and high stabil-
ity attitude control technology. The wide field of view camera
consists of four bands of visible light and near infrared, namely
R, G, B, and NIR. The spatial resolution is 16 m, and the
observation range is 800 km. Owing to high precision and wide
observation range, it has been applied in many fields, such as
environmental disaster reduction, ocean, security, and remote
sensing. It is a challenging task to do any research activity on
cloud detection algorithms based on high score data. Because
there are only four bands of information, and there are no
bands such as thermal infrared bands, which are supreme in
the cloud detection task, it is a challenging and meaningful
research work to use the limited spectral information to better
segment the cloud and underlying surface.

The dataset that is used in the experiment is the open-access
GF-1 WFV imagery [10]. This set of data comprises 108
data collected from various locations around the world. For
scenes with different cloud cover distributions, all data have
corresponding cloud masks. A variety of geomorphic envi-
ronments, including urban areas, barren areas, areas covered
by snow, areas covered by a lot of vegetation, and oceans or
lakes, are covered in this dataset. The resolution of the image
is 16 m, covering the visible and near-infrared bands. The
image size is approximately 17000 x 16000 x 4. Among the
108 scenes, 86 were selected as training data. The rest are test
data. As shown in Fig .6, to remove the black area around each
scene, all the images are rotated and cut to 11264 x 11264,
and each scene is cut to 512 x 512. In this way, 52272 x 512
x 512 images are obtained for training and testing including
41624 images for training and 10648 images for testing the
size of 11264 x 11264 x 4. Finally, the pixel values of these
images are divided by 1023 to normalize between O and 1.

As shown in Fig. 7, it can be seen that the ground features
are quite different, and the colors of various ground objects are
very different, especially the snow and water images, which
are very similar to clouds.

B. Experimental Environment

In this article, all the experiments are programmed and
implemented with Keras framework on Ubuntu 18.04 and
trained with NVIDIA RTX 2080 Ti GPU. The training batch
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TABLE I
EVALUATION RESULTS WITH U-NET MODELS AND PU-NET MODELS ON THE TEST DATASET

Class OA(%) FAR(%) Pre(%) Recall(%) Kappa(%) F1(%)

U-Net 96.73 4.46 89.86 89.66 82.31 89.74

PU-Net 96.89 3.60 92.32 91.24 86.46 91.28

2 x precision x Recall

Fl=2-2P (10)

(a) (b) (© [N (e)

Fig. 7. NIR-R-G images of five experimental data, including (a) barren,
(b) snow, (c) urban, (d) vegetation, and (e) water.

size is set to 4 and the maximum training epoch to 50. Adam
optimizer is used to optimize [57], and the learning rate is set
to 107°.

V. EXPERIMENTS
A. Evaluation Metrics

The overall accuracy (OA) and false alarm rate
(FAR) [30], [38], [60] are chosen as the main experimental
verification indicators. In addition, we also selected precision,
Recall, Kappa, and F1-Score as auxiliary indicators. In the
field of DL, OA refers to the ratio of the number of samples
correctly classified by the classifier to the total number of
samples in a given test dataset. FAR indicates the ratio of the
negative samples misclassified by the classifier to the total
number of all the negative samples. Recall represents the
ratio between the correct number of detected cloud pixels to
the actual number of cloud pixels in the ground truth. Kappa
is a coefficient used to evaluate the consistency in image
segmentation. The higher the value of Kappa, the better
the model performance of the network. F1 (F1-Score) is a
measure of classification problem, which is the harmonic
average of Precision and Recall. Generally, the higher the
score of F1, the better the quality of the model [58].

The above-mentioned metrics are defined, as follows:

_ TP+TN )
" TP+ TN+ FP +FN
FP
FAR = ——— 4)
TN + FP
.. TP
Precision = ————— (5)
TP + FP
TP
Recall = ——— (6)
TP 4+ FN
P, — P,
Kappa = ~% ¢ 7
appa = —— P @)
TP + TN
P, = (8)
TP 4+ TN + FP + FN
P(TP + FP) + N(FN + TN)
P, = 5 9
(P+N)

Precision + Recall

where TP indicates the true positive outcomes, i.e., the number
of cloud pixels that are correctly identified as cloud pixels in
the generated mask; TN represents the true negative outcomes,
i.e., the number of non-cloud pixels correctly identified as
the non-cloud pixels in the generated mask; FP indicates the
false-positive outcomes, i.e., the number of non-cloud pixels
wrongly identified as cloud pixels in the generated mask; while
FN is the false-negative outcomes, i.e., the number of cloud
pixels falsely identified as non-cloud pixels in the generated
mask. P denotes the number of cloud pixels in the ground
truth and N denotes the number of non-cloud pixels in the
ground truth.

When calculating far, if all the pixels in the result are
non-cloud pixels, TN and FP are both 0, then the denominator
of far is 0. We add an infinitely small number ¢ = ¢~'* to
avoid the situation where the denominator is 0.

B. Evaluation of PUB

The purpose of PUB is to ensure the continuity of spatial
information while restoring the image at the decoder and to
optimize the problem of boundary loss caused by the upsam-
pling. The spatial attention and channel attention modules are
removed, the network is identified as PU-Net. Compared to
U-Net, PU-Net only adds the PUB, therefore, the performance
of PU-Net is compared with U-Net. In the process of training
the network, it is observed that PU-Net not only has better
detection results than U-Net but also has a faster convergence
speed. The test results are mentioned in Table I. From the
above test results, it can be analyzed that PU-Net has achieved
higher OA, and far has also decreased by 0.86%.

As highlighted in Fig. 8, it is a test picture of water
classification. The results obtained by the U-Net algorithm
demonstrate obvious discontinuities in the texture, while the
results of PU-Net do not have this situation, the subjective
and objective results are combined, the proposed PUB thus
seems effective. As shown in Fig. 9, the convergence speed of
PU-Net in the first few epochs is significantly higher than that
of U-Net, and the final OA is also higher than that of U-Net,
so we can draw a conclusion, PUB can effectively improve
the convergence speed and network performance.

C. Evaluation of CA Module

In order to verify the CA module, a few random experiments
have been carried out. Firstly, for the demonstration of the
multi-scale sampling module structure of the CA module, the
comparative experiments of 2-D dilated convolution and 3-D
dilated convolution are performed. The CA module is then
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TABLE 11
EVALUATION RESULTS WITH CA MODELS USING 3-D CONVOLUTION AND 2-D CONVOLUTION ON THE TEST DATASET

Class OA(%) FAR(%) Pre(%) Recall(%) Kappa(%) F1(%)
CA-2D 97.05 441 90.41 90.12 83.49 90.26
CA-3D 97.16 341 91.52 90.55 85.88 91.03

TABLE III
EVALUATION RESULTS WITH U-NET MODELS AND U-NET-SA ON THE TEST DATASET
Class OA(%) FAR(%) Pre(%) Recall(%) Kappa(%) F1(%)
U-Net 96.73 4.46 89.86 89.66 82.31 89.74
U-Net add SA 97.15 3.59 92.02 90.85 86.32 91.43
97.4 5
45
97.3 97.34
9731 4
97.2 . iac 35 4
g o2 286 s
(b) (d) < o1 TG g = 2P 3

Fig. 8.
(¢) U-Net and (d) PU-Net.

(a) NIR-R-G image, (b) ground truth, and masks generated by

97
96.5
96
95.5

S o
94.5
94
93.5
93
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
epoch
—@— U-Net =@= PU-Net
Fig. 9. Comparison of the convergence speed of OA between U-Net and
PU-Net.

added to the deepest layer of the U-Net network. Through
many experiments, it has been concluded that one convolution
in parallel and three convolution groups with expansion rates
{2, 5, 7} have the best detection results. Therefore, 2-D
and 3-D convolutions are chosen for the three-way expansion
convolution. From the table, it can be noticed that the accuracy
and FAR of the structure with 3-D dilated convolution are
optimized compared to that of 2-D dilated convolution. 3-D
dilated convolution can not only fit the information in spatial
dimension but also operate in channel dimension. Therefore,
3-D dilated convolution is believed to be better than 2-D
dilated convolution, and the detection results also confirm this
conjecture, as listed in Table II.

To further verify the effectiveness of the CA module,
experiments are conducted by controlling the number of CA
modules. Since U-Net has a total of five feature layers,

97 2
1 2 3 4

Number of CA —0— OA(%) —8— FAR(%)

Fig. 10. Influence of the number of CA modules on the test results.

as demonstrated in the figure, from the deepest layer of the
network up, add 1, 2, 3, and 4 CA module units, respectively.
Through the detection results of 22 scenes, it can be analyzed
that more CA modules can improve the performance of
the network. As demonstrated in Fig. 10, while OA increased,
FAR also decreased.

D. Evaluation of SA Module

For the SA module, we choose to add the SA module to
the last layer of the U-Net network because we added the
CA module in the deepest four layers of the U-Net network.
To avoid the mutual influence caused by the mixing of the
CA module and the SA module in the final network, the only
discussion is done for adding SA to the last layer. At the
same time, another reason is that the proposed SA is doing
information fusion in a spatial dimension, and the last layer
is the largest compared to other layers. It will make this SA
module play a maximum role, making it more effective. The
SA module added by U-Net is later compared with the original
U-Net to verify the effectiveness of the SA module. The results
are mentioned in Table III. As shown in Fig. 11, the network
with SA shows better detection performance for snow-covered
areas.

E. Evaluation of Proposed Method

The final network is based on U-Net, adding CA module,
SA module, and PUB module. The CA module strengthens
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TABLE IV
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EVALUATION RESULTS WITH PROPOSED MODELS USING BINARY CROSS-ENTROPY AND OUR LOSS FUNCTION ON THE TEST DATASET

Class OA(%) Pre(%) Recall(%) Kappa(%) F1(%)
Binary cross- 97.42 94.14 86.28 92.72
entropy
Focal loss 97.45 94.45 87.00 92.82
TABLE V
EVALUATION RESULTS WITH DEEPLABV 3+, RS-NET, NGAD, AND OUR METHOD MODELS ON THE TEST DATASET
Class method RS-Net Deeplabv3+ NGAD Proposed method
OA(%) 97.74 97.83 98.42 98.24
FAR(%) 1.71 0.88 0.12 0.20
Barren Precision(%) 95.21 86.94 94.54 95.50
Recall(%) 72.83 76.61 79.14 79.00
Kappa(%) 80.46 80.04 86.55 85.41
F1(%) 81.60 81.22 84.69 86.47
OA(%) 98.21 97.54 98.54 98.56
FAR(%) 047 1.16 0.87 0.83
Vegetation Precision(%) 95.22 91.50 94.47 95.04
Recall(%) 90.49 87.85 94.19 93.97
Kappa(%) 91.42 87.31 93.34 90.56
F1(%) 92.60 88.93 94.33 94.50
OA(%) 94.85 94.32 96.21 96.72
FAR(%) 433 4.60 2.63 5.80
Snow Precision(%) 87.55 87.50 93.88 91.69
Recall(%) 87.43 84.00 86.20 88.16
Kappa(%) 78.34 75.77 83.03 83.67
F1(%) 87.42 85.70 89.88 89.89
OA(%) 91.64 91.07 93.38 93.40
FAR(%) 18.10 11.34 8.25 8.86
Water Precision(%) 95.76 98.02 97.01 95.53
Recall(%) 90.63 87.39 92.02 93.22
Kappa(%) 69.69 71.67 78.01 78.35
F1(%) 92.70 92.03 94.45 94.36
OA(%) 99.53 99.30 99.56 99.58
FAR(%) 031 0.47 031 0.29
Urban Precision(%) 89.10 82.98 88.59 87.73
Recall(%) 92.36 90.27 91.56 93.48
Kappa(%) 90.44 86.09 91.25 90.24
F1(%) 90.70 86.47 90.05 90.51
OA(%) 96.71 96.18 97.42 97.45
FAR(%) 397 3.25 222 2.65
All Precision(%) 94.34 91.31 94.39 94.45
Recall(%) 87.92 85.99 90.57 91.24
Kappa(%) 84.74 82.37 88.12 87.00
F1(%) 91.02 88.57 92.44 92.82
T s =
P A, ‘:,:‘ ‘ P
e e 32
, o S 4 , .
IR & 8
(b) (b) () (d)

Fig. 11.  (a) NIR-R-G image, (b) ground truth, and masks generated by
(¢) U-Net add SA and (d) U-Net.

the fusion of channel dimension information, the SA mod-
ule strengthens the fusion of the spatial dimension informa-
tion, and the PUB module guides the acquisition module
of the code terminal by supervising the location informa-
tion of the acquisition module. Also, we compare focal loss

Fig. 12. (a) NIR-R-G image, (b) ground truth, and masks the loss function
uses generated by (c) binary cross-entropy and (d) our loss function.

with binary cross-entropy loss function. Focal loss focuses
more attention on the samples that are difficult to clas-
sify, through the detection results as Table IV, it can be
observed that the focal loss function has better detection
performance.
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Fig. 13.

As shown in Fig. 12, from the ground truth lesson, we can
see that most areas of the test map are covered by clouds, and
many thin cloud areas can be seen from the corresponding
NIR-R-G image. Compared with the binary cross-entropy
loss function, the focal loss function shows less missed
detection.

To further verify the performance of the algorithm, the algo-
rithm with some existing image segmentation networks,
including DeeplabV3+ [19], RS-Net [38], and NGAD [59]
are compared. To ensure the fairness and accuracy of the
experiment, the code used in the experiment is given by the
algorithm author, and the same data is used for training and
testing. The final results can be analyzed from the subjective
image and objective data that the proposed algorithm has
many advantages over other algorithms in cloud detection
tasks.

As demonstrated in Fig. 13, the first row and the third row
are barren and urban classified images, respectively. In the
upper left corner of the image, some ground objects similar to
clouds are shown. The deeplabV34 and RS-Net algorithms
identify these areas as clouds, and the proposed algorithm

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

(a) NIR-R-G image, (b) ground truth, and masks generated by (c) RS-Net, (d) DeeplabV3+, (e) NGAD, and (f) our proposed method.

correctly detects these non-cloud areas. Therefore, it can be
considered that our algorithm has better detection ability in
local high reflection areas.

The second row and the fourth row are snow and vegetation
classification images, as shown in the red frame selection
area. From the JPEG image, it can be seen that there are
a lot of thin clouds in these areas. DeeplabV3-+, Rs-Net,
and NGAD are the three contrast algorithms having the
phenomenon of missing thin clouds. Since attention is paid
to these difficult areas, the presented algorithm shows a better
detection effect, when the texture is more similar to the
ground truth.

The fifth row is the water classification image, as shown
in the red frame area. Since it is difficult to distin-
guish water from the cloud under the illumination of
light, the low detection performance of the algorithm
is observed in these areas; nevertheless, the proposed
method is better than the other three methods on the
whole.

Table V lists the average values of objective indexes of each
category of 22 test images of several algorithms, including



ZHANG et al.: CNN CLOUD DETECTION ALGORITHM BASED ON CHANNEL AND SPATIAL ATTENTION

TABLE VI

COMPARISON OF DETECTION PARAM SI1ZE AND FLOPS OF
DIFFERENT ALGORITHMS

Model Param Size Flops
RS-Net 29.93 MB 15.69 MFLOPs
DeeplabV3+ 159.10 MB 83.90 MFLOPs
NGAD 58.48 MB 30.65 MFLOPs
Proposed method 42.98 MB 22.52 MFLOPs

DeeplabV3+-, RS-Net, and NGAD. Among them, NGAD is
the algorithm of other students in the research group; it can
be observed from the table that the FAR of NGAD and the
presented method is lower than that of the other algorithms.
This proves that in the face of cloud-like areas, these two
algorithms divide them correctly into non-cloud areas. From
the perspective of OA, the proposed algorithm has greater
improvements than other algorithms. On the whole, it has a
similar performance to the NGAD, the algorithm proposed in
this article has higher OA than NGAD, but also higher FAR
than NGAD. In general, our algorithm has greater advantages
compared with RS-Net and DeeplabV3+. Compared with
NGAD, although FAR performance is not good, other indi-
cators are improved compared with NGAD. F1-Score, in par-
ticular, reflects the quality of a network. We have achieved the
best results in this area, which also reflects the effectiveness
of our work at the same time. NGAD uses complex Gabor
features in the network, which greatly increases the network
computation, while our network is relatively light and easier
to deploy.

Table VI presents a comparison of the parameters of differ-
ent algorithms. By comparing the parameters of several algo-
rithms, we can see that RS-Net has the smallest parameters,
but because of the simple model, the detection performance
is not enough. While DeeplabV3+ has the largest parameters,
and the detection performance is not high, and the detection
performance of NGAD is similar to that of our algorithm, but
its parameters are 36% more than our model. We can conclude
that our algorithm achieves the best detection performance,
also well controls the model parameters; therefore, we can
think that our algorithm is advanced compared with other
cloud detection algorithms.

After analysis, we can find that our FAR is slightly higher
than NGAD because we pay more attention to the thin cloud
area. Although our OA and Precision detection results have
achieved better results, in the edge of thin cloud region,
the probability of non-cloud region recognition for cloud
region is greatly improved, how to better identify the edge of
cloud. This is what we need to further improve in our future
work.

In summary, from a subjective and objective point of view,
the proposed algorithm exhibits excellent cloud detection per-
formance. This justifies the meaningfulness and effectiveness
of this algorithm, at the same time; it also has the charac-
teristics of lightweight, which makes our network have fewer
limitations in application and better deployable.
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VI. CONCLUSION

With the enhancement of DL theory systems, more and
more researchers choose to use the convolutional neural net-
work based on DL for cloud detection and other related
research. Nevertheless, when the convolutional neural network
is used to get effective cloud information, a large number of
redundant information will be fed into the network at the same
time, which will lead to subsequent false classification. Cloud
detection, a special segmentation task, is very sensitive to the
distribution of texture, once an area is classified incorrectly,
it will lead to the final result image texture disorder. There are
also some common problems: the binary cross-entropy loss
function cannot take into account the regions that are more
difficult to classify, resulting in low detection performance.
In view of these issues, the proposed attention module auto-
matically adjusts the weight of the region to retain more useful
information and suppress the useless information. In order
to solve the problem that the convolutional neural network
does not take into account the boundary texture information,
the PUB module has been proposed. The upsampling module
has been thus optimized; finally, the binary cross-entropy loss
function has been optimized to pay more attention to the
critical regions such as thin clouds. Experiments prove the
effectiveness of this algorithm, as the OA is 97.45% and far is
2.65%. Compared to other algorithms, the proposed algorithm
achieves better detection results.
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