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Abstract— Most change detection (CD) methods assume that
prechange and postchange images are acquired by the same
sensor. However, in many real-life scenarios, e.g., natural dis-
asters, it is more practical to use the latest available images
before and after the occurrence of incidence, which may be
acquired using different sensors. In particular, we are interested
in the combination of the images acquired by optical and
synthetic aperture radar (SAR) sensors. SAR images appear
vastly different from the optical images even when capturing
the same scene. Adding to this, CD methods are often con-
strained to use only target image-pair, no labeled data, and
no additional unlabeled data. Such constraints limit the scope
of traditional supervised machine learning and unsupervised
generative approaches for multisensor CD. The recent rapid
development of self-supervised learning methods has shown that
some of them can even work with only few images. Motivated
by this, in this work, we propose a method for multisensor CD
using only the unlabeled target bitemporal images that are used
for training a network in a self-supervised fashion by using
deep clustering and contrastive learning. The proposed method
is evaluated on four multimodal bitemporal scenes showing
change, and the benefits of our self-supervised approach are
demonstrated. Code is available at https://gitlab.lrz.de/ai4eo/cd/-
/tree/main/sarOpticalMultisensorTgrs2021.

Index Terms— Change detection (CD), deep learning, multi-
sensor analysis, self-supervised learning.

I. INTRODUCTION

OUR earth is rapidly changing, both due to natural and
man-made causes. Satellite image-based change detec-

tion (CD) is generally used to monitor the temporal evolution
of the dynamic earth [1]–[7]. CD ingests bitemporal images as
input and segregates all pixels as changed/unchanged. CD is
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a crucial step for several applications, including disaster man-
agement, urban monitoring, forestry, glacier monitoring, and
precision agriculture. Considering the variation of applications,
rarity of occurrences of some change-inducing incidents (e.g.,
natural disasters), and large geographic variation, it is impru-
dent to assume that large-scale training datasets corresponding
to all such tasks can be ever collected. Thus, there is a
significant inclination in the CD literature toward methods that
can process the target bitemporal region-of-interest without
using any training label or any additional pool of unlabeled
images. Motivated by its excellent performance in computer
vision, researchers have applied deep learning to satellite
image CD [8]. To exploit the potential of deep learning while
not using any training label or additional unlabeled images,
transfer learning-based CD methods are popular, which reuse
a pretrained network for bitemporal feature extraction and
comparison [1].

A striking feature of satellite data is its variability, in terms
of different sensors. Images captured using a passive optical
sensor are quite similar to the natural images studied in com-
puter vision. However, images captured by the active sensors,
e.g., synthetic aperture radar (SAR), are remarkably different
from the optical images [9]–[11]. While optical sensors use
wavelengths near visible light (approx. 1 μm), SAR uses a
wavelength of 1 cm to 1 m. Moreover, optical sensors rely
upon the natural illumination (e.g., sun) to create the bright-
ness observed by the sensor, while the SAR sensors carry their
own illumination source, in the form of radio waves transmit-
ted by an antenna. Moreover, satellite images are captured with
a different number of spectral bands (one to a few hundred),
different spatial resolutions (few cm/pixel to Km/pixel), and
different polarizations. While this vast variation provides an
opportunity for detailed earth observation, it is not trivial to
use the same set of methods for images from different sensors.
Due to this reason, most existing CD methods assume that the
prechange and postchange images are acquired using the same
sensor. The temporal frequency at which the same sensor can
image the same place depends on the revisit period of the
satellite on which the sensor is mounted. However, the better
the spatial resolution, the more close the satellite is to the
earth, and the more time it takes to revisit the same place. This
is a hindrance in the use of same-sensor CD in time-bound
applications, e.g., fast response for disaster management and
precision agriculture. Using different sensors may allow us
to obtain temporal sequences with better temporal frequency
without sacrificing spatial resolution. However, it is not trivial
to process multisensor bitemporal images as they are affected
by the spectral characteristics of the sensors. Moreover, dif-
ferent sensors capture a different type of information, making
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their comparison often challenging [12]. The difficulty of
this problem is further accentuated by the fact that we are
interested to detect change without using any labeled training
data or any abundant pool of unlabeled data.

The emergence of deep learning has seen many such
problems solved that were thought to be very challenging
in the past [13], [14]. Self-supervised learning has shown
remarkable success recently, even when only few images are
available [15]. Intrigued by this, in this article, we explore
the challenging problem of CD between optical and SAR
images, the disparity between which is evident in Fig. 1.
We exploit recent developments in the self-supervised learning
and deep clustering to propose a method for challenging
SAR-optical CD where one of the bitemporal images is
acquired by an optical sensor, while the other is acquired by an
SAR sensor.

The proposed method requires only the bitemporal target
scene (where change is to be detected), no training label, and
no additional unlabeled data. The target bitemporal scene is
typically large, few hundred pixels by few hundred pixels.
Smaller bitemporal patches (e.g., 64 × 64) are extracted
from it to train a two-branch network, similar to the Siamese
network [16]. Each branch of the network has a projection
module and a predictor. Projection modules learn features
unique to optical and SAR data without sharing weights,
while predictors share the weight. The output of the predictors
is used to estimate deep clustering loss for both images
separately. Moreover, considering that the prior probability
of changed pixels is much less than the unchanged ones,
a temporal consistency loss is proposed, which ensures that
pixels in the same location at two different times tend to
get the same label. To ensure that this does not lead the
network to learn a trivial solution, a contrastive loss is used.
By the combination of these losses, the proposed method
learns useful semantic features from the multisensor (SAR-
optical) bitemporal target scene, and after training, the network
predictions can be compared for CD.

The contributions of this article are given as follows.

1) We propose a self-supervised learning method for CD
in a bitemporal scene where one image is captured by
the optical sensor and the other by the SAR sensor. The
proposed method, only exploiting the available target
unlabeled scene, effectively absorbs several concepts
from the recent self-supervised learning literature, e.g.,
deep clustering, augmented view, Siamese network, and
contrastive learning. By effectively exploiting these con-
cepts and modifying them appropriately for the target
multisensor bitemporal data, the proposed method is able
to train a network that is further used for bitemporal
comparison and CD.

2) We show the versatility of self-supervised learning on
spatiotemporal satellite data that are very different from
typical computer vision images. Even though some form
of aerial images (e.g., drone images) is often studied in
computer vision, we stress that our satellite data (both
optical and SAR) are significantly different from the
typical aerial images.

Fig. 1. Visual contrast for Las Vegas between (a) optical image (prechange)
and (b) SAR image (postchange). Optical and SAR images emphasize differ-
ent properties of the target area, thus performing CD on them is challenging.

3) We experimentally show the efficacy of the proposed
method on four different bitemporal multisensor scenes.

The rest of this article is organized as follows. Related
works are briefly discussed in Section II. Section III outlines
the proposed method. Datasets and experimental results are
detailed in Section IV. Finally, we conclude this article in
Section V.

II. RELATED WORK

In this section, we briefly discuss existing works on unsu-
pervised CD (with a focus on the multisensor CD) and self-
supervised learning.

A. Change Detection

Prior to the emergence of deep learning, most unsupervised
CD methods used the concept of pixelwise image differencing,
i.e., change vector analysis (CVA) [17]. A number of super-
pixels and spatial neighborhood-based variants of CVA have
been proposed, e.g., parcel change vector analysis (PCVA) [18]
and robust change vector analysis (RCVA) [19]. Most deep
learning-based unsupervised CD methods use transfer learn-
ing. Reference [1] proposed deep change vector analysis
(DCVA), a CD framework that combines ideas from CVA
with feature extraction based on pretrained neural networks.
In nutshell, a deep model that has been trained for some
other task is reused to obtain pixelwise bitemporal deep
features from the target scene. Bitemporal deep features are
then compared to obtain deep change hypervectors for each
pixel in the scene, which is analyzed based on magnitude (�2

norm) to identify the changed pixels. While [20] shows that
sensor-specific pretrained network is more suitable for transfer
learning, [5] advocates models trained on ImageNet [21] for
transfer learning in CD. There is another class of unsupervised
CD methods that preclassifies some pixels with high confi-
dence as changed/unchanged using some traditional approach
and further uses those confident samples for training a CD
model [22].

It is not trivial to process multisensor bitemporal images
as they are affected by differences in spatial resolution and
differences in the spectral characteristics of the sensors.
Due to this, there are very few works that can work in
the setting where prechange and postchange images have
different spatial resolution [23], [24] or bands with differ-
ent spectral characteristics [25]. Moreover, those works deal
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with only minor variations in spatial or spectral character-
istics. Saha et al. [23] proposed a cycle-consistent genera-
tive adversarial network-based method to learn transcoding
between multisensor multitemporal domain. However, their
work assumes that a large (unlabeled) area corresponding to
both sensors is available as training data. Liu et al. [26] used a
symmetric convolutional coupling network (SCCN), and [27]
used denoising autoencoder (DAE) for CD in multisensor
images. Though those works considered optical-SAR images,
they applied their methods to scenes with limited spatial
complexity. While our work is strongly motivated by the
existing works on multisensor CD [23], [24], it takes them
a step further by considering the challenging scenario of
optical-SAR CD in complex urban scenes and, furthermore,
by integrating recent developments in self-supervised learning.

B. Self-Supervised Learning

Considering the difficulty of collecting labeled data and the
abundance of unlabeled data, machine learning researchers
have focused on developing unsupervised and self-supervised
deep learning methods in the recent past. Gidaris et al. [28]
used image rotation as a pretext task to learn unsuper-
vised semantic feature. Several other pretext tasks have been
explored in the literature, e.g., relative patch prediction [29]
and image inpainting [30]. Deep clustering, i.e., joint learn-
ing of the parameters of the deep network and the cluster
assignment of the resulting features, has also been shown
to be effective for unsupervised representation learning [31].
Remarkably, [15] has shown that the abovementioned unsu-
pervised methods learn useful semantic features even with a
single-image input. Contrastive methods function by bring-
ing the representation of different views of the same image
(“positive pairs”) closer while spreading representations of
different images (“negative pairs”) apart [32]–[34]. Boostrap
your own latent [35] and its variant SiamSiam [16] eliminate
the requirement of negative pair by using multiple views of the
same image. In more detail, SiamSiam [16] ingests as input
two randomly augmented views of an image and processes it
through a Siamese architecture. Each Siamese branch consists
of an encoder and a prediction head. The encoders share
weight between two views.

The proposed method is strongly inspired from the above
self-supervised methods. Like deep clustering [31], the pro-
posed method uses the concept of simultaneous representation
learning and cluster/label assignment. The bitemporal images
can be considered to be views of the same scene, such as
SiamSiam [16]. Like the contrastive methods, the proposed
method uses the idea of bringing closer the representation of
positive pairs and spreading apart the negative pairs. Like [15],
the proposed method works on a single scene (a pair of images
capturing the same location at two different times).

Multitemporal satellite image processing researchers have
also proposed self-supervised representation learning methods,
e.g., deep clustering for multitemporal segmentation [36]
and learning by rearranging randomly shuffled time-series
images [37]. The proposed method is related to them, using
the concept of deep clustering as in [36].

III. PROPOSED METHOD

Let X1 and Z2 be two images of size R × C taken over
the same geographical region at times t1 and t2, respectively.
Without loss of generality, we assume that the prechange
image X1 is acquired by an optical sensor (RGB), and the
postchange image Z2 is acquired by the SAR sensor. Since
SAR image is grayscale, the same channel is replicated thrice
to make it three-channel like the optical input. We aim to
detect changes from the images X1 and Z2 in an unsuper-
vised manner, i.e., without using any training labels and any
additional unlabeled data pool. Our goal is to divide the set
of all pixels � into two subsets �c and ωnc corresponding
to changed and unchanged pixels, respectively. Like most
existing unsupervised CD methods [1], we assume that the
prior probability of occurrence of change is less compared to
no change [38].

We can extract a set of bitemporal patches of size R� × C �
(R� < R and C � < C) from the images X1 and Z2.
In practice, one training iteration involves only a batch of
B patches from X1, denoted as X = {x1

1, . . . , xB
1 }, and

corresponding patches from Z2, denoted as Z = {z1
2, . . . , zB2 }.

xb
1 and zb

2 are processed separately with deep clustering loss,
as detailed in Section III-C. Furthermore, considering that xb

1
and zb

2 represent same location at two different times and prior
probability of change is less, a temporal consistency loss (see
Section III-D) is formulated using each such pair. Furthermore,
Z is shuffled to form negative samples Z �, and a contrastive
loss is used between pairs from X and Z �, as outlined in
Section III-E. The proposed method is outlined in Fig. 2.

A. Bitemporal Patches are Multiple Views of the Same
Location

We recall from Section II-B that many self-supervised
learning approaches build upon the concept of bringing closer
the representation of the multiple views of the same image.
Different views of the same image are generally obtained
by different augmentation techniques, e.g., random crops.
We argue that multisensor bitemporal patches xb

1 and zb
2

can be similarly thought to be multiple views of the same
location. They represent augmentation of the same place,
where the augmentation transformation is naturally caused by
multisensor differences and other factors, including weather
conditions. Considering that the prior probability of change
is less [38], most of the time, such a pair of patches xb

1 and
zb

2 represent the same information but from the eyes of two
different viewers (sensors).

B. Siamese Representation

Since bitemporal patches can be seen as multiple views of
the same location, we argue that semantic information can
be captured from them by using a Siamese-like architecture.
Similar to [16], both branches of the two-branch network
have projection modules fopt and fsar for the optical and
SAR branch, respectively. In addition, both branches have
prediction modules hopt and hsar for the optical and SAR
branches, respectively. However, unlike [16], the projection
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Fig. 2. Proposed unsupervised multisensor (optical-SAR) CD framework. The left-hand side denotes the self-supervised training process, while the right-hand
side shows the CD process using already trained model.

Fig. 3. Network simplified architecture with L1 = 4 and L2 = 1. Optical and SAR inputs are processed separately and subsequently fed to a common
prediction layer.

modules fopt and fsar do not share weight. This is because
SAR and optical images are significantly different processed
by two different projection modules using different sets of
weights. However, the prediction modules hopt and hsar share
weights and, henceforth, simply denoted as h.

The projection and the prediction networks consist of L1

and L2 (generally L2 = 1) convolutional layers, respectively,
where L = L1+ L2. The two projections compute a projected
representation from the optical and SAR images and project
them to a common domain. In the ideal scenario, where the
projectors have perfectly learned to project optical and SAR
images into a common domain and the bitemporal images do
not show any change, the output generated for an input pair is
expected to be identical. However, practically even in absence
of any change, there are differences caused by multisensor
acquisition and other factors that are not trivial for projection
modules to mitigate.

All but the last convolution layers are followed by the ReLU
activation function. They are further followed by the batch
normalization layer. We do not use any pooling layer; hence,
the size of the input is preserved in the output. While filters
of spatial size 3 × 3 are used for all convolution layers for
projection, the prediction module uses 1× 1 filter. The kernel
number of the final layer is K and can be thought of as K
different clusters/classes. Each pixel can be assigned to one of
these K clusters (as detailed in Section III-C). The network
architecture is shown in Fig. 3.

C. Deep Clustering

The deep clustering process involves the joint learning of the
parameters of the deep network and the cluster assignment of

the resulting features [31]. Deep clustering helps the network
to learn discriminative features that can identify different
classes/clusters in the images. Considering the processing of
the two images as an independent process, deep clustering can
be performed for each of them. The output obtained by the
network for a paired input patches xb

1 and zb
2 is

yb
1 = h

(
fopt

(
xb

1

))
(1)

yb
2 = h

(
fsar

(
zb

2

))
. (2)

yb
1 has same spatial dimension R� × C � as xb

1 and has kernel
number (or, feature dimension) K . The deep clustering process
is performed over the pixels, i.e., each pixel is assigned to a
cluster. Without loss of generality, we, henceforth, explain the
deep clustering process in reference to a generic pixel yb

1,n
from yb

1 . The dimension of yb
1,n is K that can be converted to

1-D label cb
1,n by argmax classification. This is achieved by

selecting the kernel/feature in yb
1,n that has maximum value.

If the kth feature of yb
1,n is represented by yb

1,n(k), then label
cb

1,n is obtained as follows:
cb

1,n = arg max
k∈K

yb
1,n(k). (3)

The rationale behind finding the highest activation of an
input pixel is that the pixels that obtain the highest activation
in the same feature are likely to have similar semantics, thus
belonging to the same group. While there are several possible
ways to define the pseudolabel, our approach more closely
follows the ones based on argmax classification of the final
layer [39], [40]. Once the pixels are assigned to the K clusters,
parameters of the deep network can be updated by using a
loss between the feature yb

1,n and the cluster cb
1,n . We use
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cross-entropy loss as

�b
1,n = crossentropy

(
yb

1,n, cb
1,n

)
. (4)

In practice, the loss term L1 is computed by taking mean
of �b

1,n over all pixels in xb
1 and all patches in the batch (b =

1, . . . ,B). L1 is used to adjust the weights of h and fopt.
Similarly, L2 is computed from zb

2 (b = 1, . . . ,B) and used
to modulate the weights of h and fsar.

While deep clustering helps to learn representation for each
sensor separately, they do not ensure that the independently
learned features are aligned with each other.

D. Temporal Consistency

Recalling from Section III-B, multisensor bitemporal
patches xb

1 and zb
2 are multiple views of the same location

in the absence of any change. In other words, in coregistered
bitemporal images, pixels in the same spatial location gener-
ally tend to belong to the same object as changes have a low
prior probability than the unchanged class. Thus, the features
computed for the bitemporal paired patches xb

1 and zb
2 should

be similar in most cases. For each input pixel xb
1,n and zb

2,n ,
we compute absolute error (AE) loss as

�b
12,n =

∥
∥yb

1,n − yb
2,n

∥
∥

1. (5)

A loss term L1,2 is computed by taking the mean of �b
12,n

over all considered pixels for all patches in the batch. The
proposed temporal consistency only ensures that the pixels at
the same location, however, at two different times, tend to have
the same label. This may lead to a degenerate solution where
all pixels simply have the same prediction for both times.
Moreover, some bitemporal pairs xb

1 and zb
2 may be indeed

changed and, however, penalized for producing dissimilar
output in this step.

E. Contrastive Learning

While Section III-D encourages the features computed for
paired patch xb

1 and zb
2 to be similar, in this section, we encour-

age the network to produce a dissimilar feature for different
inputs by employing concepts inspired by contrastive learning.
While we do not have negative samples under the unsupervised
setting in which our work is based on, we simply shuffle the
batch of patches Z to Z �. Recall that X and Z have location-
wise paired patches. This implies that X and Z � have unpaired
patches. Thus, there should be more dissimilar in comparison
to the paired patches in Section III-D. We encourage features
computed for xb

1 and zb�
2 to be dissimilar. This is achieved

by computing (negative) AE loss for each input pixel xb
1,n

and zb�
2,n

�b�
12,n = −

∥
∥yb

1,n − yb�
2,n

∥
∥

1. (6)

�b�
12,n has negative value. Ideally, �b�

12,n should be encouraged to
be more and more negative. However, in practice, we note that
simply shuffling Z to Z � does not always ensure that X and Z �
have semantically different patches. Even after shuffling, they
may have the semantically paired patches, however penalized
in this step for producing similar features. Thus, to control
its impact, we penalize the network with �b�

12,n only when

Algorithm 1 Self-Supervised Training for Multisensor CD

1: Initialize W
1, . . . , W

L

2: for i ← 1 to I do
3: Sample B patches from X1, denoted as X =
{x1

1, . . . , xB
1 }

4: Obtain corresponding B patches from Z2, denoted as
Z = {z1

2, . . . , zB2 }
5: Obtain Z � as random shuffling of Z
6: for j ← 1 to J do
7: for b ∈ B do
8: yb

1 = h( fopt (xb
1 ))

9: yb
2 = h( fsar (zb

2))
10: yb�

2 = h( fsar (zb�
2 ))

11: end for
12: Calculate deep clustering losses L1, L2

13: Calculate temporal consistency loss L1,2

14: Calculate contrastive loss L�1,2
15: if i ≤ I1 then
16: Use loss (L1 + L2)/2 to modulate W

1, . . . , W
L

17: else
18: For each 3 consecutive iterations j , use L1, L1,2,

and L�1,2, respectively, to modulate W
1, . . . , W

L

19: end if
20: end for
21: end for

it approaches 0, i.e., yb
1,n and yb�

2,n become too similar. This
is achieved by computing the loss term L�1,2 as mean of
exponentials of �b�

12,n over all considered pixels for all patches
in the batch.

F. Overall Loss and Network Refinement

The initialization process [41] is used to initialize all the
trainable weights of the network W

1, . . . , W
L , corresponding

to L layers. For updating of weights, we exploit stochastic
gradient descent (SGD) mechanism with momentum [42].
The training process is executed in two different steps of I1

and I2 epochs (summing to I). For each batch of data, J
iterations are performed. For the first I1 epochs, only the sum
of deep clustering losses (L1 + L2) is used to modulate the
network weights. For subsequent I2 epochs, in one training
iteration, L1 is used as loss function; in the following iteration,
L1,2 is used; and in the following iteration, L�1,2 is used.
The combination of three loss functions yields a balanced
training process taking into account coherent cluster formation,
temporal feature consistency, and feature dissimilarity for
unpaired patches. Alternatively, sum of L1, L1,2, and L�1,2 can
also be used as aggregated loss function. The self-supervised
mechanism for network training is shown in Algorithm 1.

G. Change Detection

Once the network is trained, it can be used to detect change
between X1 and Z2. Since the network is fully convolutional,
it enables us to obtain a pixelwise feature vector of dimension
K from X1 and Z2. Similar to [1], the pixelwise change
information is captured by taking the magnitude (�2 norm)
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Fig. 4. CD results for Las Vegas. CD maps: (a) reference, (b) proposed,
(c) false color composite (FCC) between reference and proposed (the correctly
detected region are in black, false alarms are in green, and missed alarms are
in pink), (d) CVA, (e) RCVA, (f) PCVA, (g) DCVA, (h) encoder–decoder, and
(i) SCCN.

of difference of the feature vectors computed from prechange
and postchange pixels. Changed pixels (�c) generate a higher
difference magnitude in comparison to the unchanged ones
ωnc, and they can be distinguished by using any suitable
threshold determination scheme [43].

IV. EXPERIMENTAL VALIDATION

A. Datasets

We use four paired optical (prechange)–SAR (postchange)
images to validate the proposed method. Optical images are
acquired by the Sentinel-2 sensor and are taken from the
Onera Satellite Change Detection (OSCD) dataset [44]. They
show 10-m/pixel spatial resolution. The OSCD dataset is
originally a single-sensor dataset consisting of only Sentinel-
2 images. Recalling the importance of multisensor CD (see
Section I), we extend this dataset by collecting the postchange
SAR Sentinel-1 images for the nearest available date as the
postchange image in the original OSCD dataset. Both Sentinel-
2 and Sentinel-1 sensors are part of the European Space
Agency’s Copernicus program.

The four scenes are collected over Las Vegas in United
States (824 × 716 pixels) (see Fig. 4), Chongqing in China
(730 × 544 pixels) (see Fig. 5), Abu Dhabi (799× 785 pixels)
(see Fig. 6), and Montpellier in France (426× 451 pixels) (see
Fig. 7). Thus, this provides us an opportunity to validate the
proposed method on geographically distributed complex urban
scenes with large variation.

Fig. 5. CD results for the Chongqing. CD maps: (a) reference, (b) proposed,
(c) FCC between reference and proposed (the correctly detected region are in
black, false alarms are in green, and missed alarms are in pink), (d) PCVA,
(e) DCVA, and (f) SCCN.

Fig. 6. CD results for the Abu Dhabi. CD maps: (a) reference, (b) proposed,
(c) FCC between reference and proposed (the correctly detected region are in
black, false alarms are in green, and missed alarms are in pink), (d) PCVA,
(e) DCVA, and (f) SCCN.

Fig. 7. Qualitative CD results for the Montpellier. CD maps: (a) reference,
(b) proposed, (c) FCC between reference and proposed (the correctly detected
region are in black, false alarms are in green, and missed alarms are in pink),
(d) PCVA, (e) DCVA, and (f) SCCN.

B. Compared Methods

To verify the effectiveness of the proposed method, we com-
pare it to related unsupervised CD methods.
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TABLE I

STRUCTURE OF THE NETWORK FOR PROCESSING
ONE OF THE TWO INPUTS

1) CVA [17], [45], a classical difference-based unsuper-
vised model for CD.

2) RCVA [19] that modifies CVA by taking into account
pixel neighborhood effects.

3) PCVA [18] that incoporates notion of the object (super-
pixels) in CVA.

4) DCVA [1] that detects change by comparing bitempo-
ral deep features extracted using a pretrained network.
We used the second convolution layer of pretrained
VGGNet [46] for feature extraction.

5) Image-to-image transfer model based on an
encoder–decoder network architecture that projects
prechange optical images into postchange SAR
image [47]. The CD map can be obtained by the
difference between the simulated prechange SAR image
(obtained as the projection of prechange optical image)
and the original postchange SAR image.

6) DAE-based joint feature extraction [27].
7) SCCN [26] that first identifies some unchanged pixels

and uses them to learn a coupled network.

While methods 1–3 are not deep learning-based, the fol-
lowing ones are deep learning-based. Methods 1–4 do not
have any explicit adaptation for multisensor input, while
methods 5–7 have.

C. Experimental Settings

The proposed method and compared methods are fed with
preprocessed images and postprocessed similarly. For the
proposed method, we use I = 5 (I1 = 1, I2 = 4),
J = 50 K = 4, L1 = 4, and L2 = 1. We show the architecture
of the network in Table I. A relatively simple architecture is
used considering that the number of patches available to us is
very few compared to the images in typical computer vision
datasets. Moreover, our target image has a coarse resolution
(10 m/pixel) compared to natural images in computer vision.
Spatial complexity in such coarse images can be handled by
simpler architecture compared to those in computer vision.
64 × 64 patches are used to train the model, and patches are
extracted from the bitemporal scene with a stride of 32. The
actual number of training patches for a scene depends on the
size of the particular scene. For example, for the Las Vegas
scene (824 × 716 pixels), the number of patches extracted is
504. For optimization, the SGD method is used with a learning
rate set to 0.001.

We show the result in terms of sensitivity (accuracy in per-
centage computed over reference changed pixels) and speci-
ficity (computed over reference unchanged pixels). In more

TABLE II

COMPARISON OF DIFFERENT METHODS ON LAS VEGAS

TABLE III

VARIATION OF RESULT FOR LAS VEGAS AS I IS VARIED

TABLE IV

VARIATION OF RESULT FOR LAS VEGAS AS K IS VARIED

detail, given true positive (TP), true negative (TN), false
positive (FP), and false negative (FN), sensitivity is TP/(TP +
FN), and specificity is TN/(TN + FP).

D. Results

1) Las Vegas: The reference CD map (ground truth) for Las
Vegas is shown in Fig. 4(a). Fig. 4(b) shows the result obtained
by the proposed method. For better visualization, a false color
composition between the reference map and the obtained result
is shown in Fig. 4(c). The proposed method can detect most of
the changed objects with fewer false alarms in comparison to
the compared methods. In many cases, the proposed method
partly detects the changed object, thus missing some objects
only partially [shown in pink in Fig. 4(c)]. CVA [see Fig. 4(d)]
performs poorly and incorrectly detects most urban areas as
changed. The result obtained by RCVA [see Fig. 4(e)] is
similar to CVA. While PCVA [see Fig. 4(f)], DCVA [see
Fig. 4(g)], encoder–decoder [see Fig. 4(h)], DAE, and SCCN
[see Fig. 4(i)] improve the result over CVA, the proposed
method still outperforms them by large margin. Quantitative
evaluation (see Table II) clearly shows the superiority of the
proposed method over state-of-the-art unsupervised methods.
This can be attributed to the superior capability of the proposed
method to ingest multisensor multitemporal images.

Further studies are conducted by varying different parame-
ters on the Las Vegas image pair.

Training epochs I are varied with different values, as tab-
ulated in Table III, while setting K = 4. We observe clear
improvement in performance from I = 1 to 2. Recalling
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TABLE V

VARIATION OF RESULT FOR LAS VEGAS AS THRESHOLD
DETERMINATION SCHEME IS VARIED

TABLE VI

COMPARISON OF DIFFERENT METHODS ON CHONGQING

TABLE VII

COMPARISON OF DIFFERENT METHODS ON ABU DHABI

from Section III-F that, for first I1 = 1 iterations, only
deep clustering loss is used, this shows that bitemporal deep
clustering itself is not sufficient to learn the correspondence
between two images, and the other losses (L1,2 and L�1,2) are
required. From I = 2 onward, we observe an increment in
performance initially followed by performance getting satu-
rated/dropping. Despite variation in performance, the proposed
method outperforms all compared methods for I = 3, 5, 10.

The kernel number of the last layer (K ) is varied from
2 to 16 in multiplicative steps of 2 while fixing the I = 5.
The variation in performance is shown in Table IV. While
performance improves from K = 2 to K = 4, a gradual fall
in performance is observed henceforth. The increasing value
of K is equivalent to allowing the scene to be partitioned into
more classes. Since the spatial area of the scene is fixed and
not too large (only few hundred pixels by few hundred pixels),
a large number of classes potentially leads the model to learn
irrelevant classes, impacting CD performance.

Thresholding is done using Otsu’s method [43], as it is
popular in unsupervised CD methods [19], [48]. However,
any other suitable method can be used, as shown in Table V.
Results obtained by the ISODATA method [49], [50] and the
adaptive method [1] are similar to Otsu’s method [43].

Loss plot visualization in Fig. 8 shows the interplay between
different components of loss. L1 consistently decreases [see
Fig. 8(a)] except that it rises for a while after epoch 1 when

Fig. 8. Evolution of the loss over training iterations for Las Vegas: (a) deep
clustering loss L1 and (b) temporal consistency loss L1,2 and contrastive
loss L�1,2.

TABLE VIII

COMPARISON OF DIFFERENT METHODS ON MONTPELLIER

L1,2 and L�1,2 are introduced to the training process. L1,2 and
L�1,2 balance each other, as shown in Fig. 8(b).

Projection layers fopt and fsar need to be modeled inde-
pendently by not sharing weights between them to capture
the different semantic properties of optical and SAR patches,
as hypothesized in Section III-B. Here, we test this hypothesis
by instead sharing the weights between fopt and fsar. For I = 5
and K = 4, the proposed method fails to detect most of the
changes. This shows that it is crucial to model the optical and
SAR patches differently.

The computation time requirement is not high. We tested
our code on a machine equipped with a Quadro T2000 GPU,
which is a low-end GPU. For processing the Las Vegas dataset
(training process over five epochs), it takes approx. 460 s.
The Las Vegas scene is 824 × 716 pixels with the 10-m/pixel
resolution, and thus, processing it is equivalent to processing
an approximate area of 8∗7 = 56 km2 in terms of geography.

The same sensor bitemporal input can be ingested by
the proposed method, though designed for multisensor CD.
For Las Vegas prechange optical–postchange optical input,
the proposed method can obtain a sensitivity of 64.74% and
specificity of 97.89%. However, we note that some character-
istics of the proposed method (e.g., temporal consistency loss)
are designed to reduce the representation gap of multisensor
input, which is less relevant in single-sensor input. Thus,
the proposed method may not be the most suitable choice
for single-sensor scenarios as there are numerous existing
CD techniques particularly designed for the same-sensor sce-
nario [1].

2) Chongqing and Abu Dhabi: Reference CD map (ground
truth) for Chongqing is shown in Fig. 5(a). Fig. 5(b) and
(c) shows the result obtained by the proposed method and
false color composition between the reference map and
the obtained result, respectively. The proposed method out-
performs all compared methods, as can be observed in
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quantitative results in Table VI). Similar result is obtained for
Abu Dhabi (see Fig. 6 and Table VII).

3) Montpellier: Reference CD map (ground truth) for Mont-
pellier is shown in Fig. 7(a). The proposed method [see
Fig. 7(b)] outperforms most of the state-of-the-art methods,
including PCVA [see Fig. 7(d)] and DCVA [see Fig. 7(e)],
as shown in Table VIII. However, SCCN [see Fig. 7(f)]
outperforms the proposed method. The performance of the
proposed method is relatively poor for Montpellier, which can
be possibly explained by: 1) smaller size of Montpellier scene,
which implies fewer data to learn proposed self-supervised
network and 2) uniform (showing mostly urban areas) geospa-
tial characteristics of Montpellier scene in comparison to
Las Vegas and Chongqing that show complex distribution
consisting of both urban and nonurban areas.

V. CONCLUSION

This article proposed a self-supervised learning-based
method for CD in multisensor bitemporal images where one of
the images is acquired by an optical sensor and the other one
is captured by an SAR sensor. The proposed method effec-
tively utilizes several concepts from self-supervised learning,
e.g., deep clustering, Siamese network, multiple views, and
contrastive learning, and operates under severe constraints,
i.e., nothing except that the target scene is used, and no labeled
data or additional unlabeled image is used. Despite the strong
difference in the input modalities and operating under stringent
constraints, it can identify a large fraction of the changed
pixels. Comparisons with the existing methods working under
unsupervised scenarios show that the proposed method brings
significant improvement, especially when the target scene is
large. Potential improvement of the proposed method may
be achieved by prior learning of clusters on the unrelated
domains/sensors and transferring them to target sensors on the
fly [51]. In addition, our future work will focus on extending
the method to other application domains, e.g., the comparison
of biomedical images.
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