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Semi-supervised Superpixel-based Multi-Feature
Graph Learning for Hyperspectral Image Data

Madeleine S. Kotzagiannidis, Carola-Bibiane Schönlieb

Abstract—Graphs naturally lend themselves to model the
complexities of Hyperspectral Image (HSI) data as well as to serve
as semi-supervised classifiers by propagating given labels among
nearest neighbours. In this work, we present a novel framework
for the classification of HSI data in light of a very limited
amount of labelled data, inspired by multi-view graph learning
and graph signal processing. Given an a priori superpixel-
segmented hyperspectral image, we seek a robust and efficient
graph construction and label propagation method to conduct
semi-supervised learning (SSL). Since the graph is paramount
to the success of the subsequent classification task, particularly
in light of the intrinsic complexity of HSI data, we consider
the problem of finding the optimal graph to model such data.
Our contribution is two-fold: firstly, we propose a multi-stage
edge-efficient semi-supervised graph learning framework for HSI
data which exploits given label information through pseudo-
label features embedded in the graph construction. Secondly,
we examine and enhance the contribution of multiple superpixel
features embedded in the graph on the basis of pseudo-labels
in an extension of the previous framework, which is less reliant
on excessive parameter tuning. Ultimately, we demonstrate the
superiority of our approaches in comparison with state-of-the-art
methods through extensive numerical experiments.

Index Terms—Hyperspectral image classification, graph Lapla-
cian learning, semi-supervised learning

I. INTRODUCTION

THE problem of determining the optimal graph represen-
tation of a given dataset has been considered for various

tasks in different fields, ranging from signal processing to
machine learning, yet remains largely unresolved. Hyperspec-
tral image (HSI) data, with its rich and descriptive spatial
and spectral information contained in several hundred bands,
encapsulates several layers of dependencies between the high-
dimensional pixels and their corresponding labels [1], and
a plethora of methods have sought to exploit these under
different modelling assumptions.
In hyperspectral image classification, a classifier is sought
to assign a class label to each pixel, in light of arising
difficulties including high spectral dimensionality, large spatial
variability and limited availability of labels. While the majority
of frameworks involve a supervised classifier, due to the time
and cost associated with obtaining labelled samples, semi-
supervised learning (SSL) has experienced a rapid develop-
ment by tackling the small sample problem through effective
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exploitation of both labeled and unlabelled samples [2].
Multiple views or features of data can provide rich insights
into the underlying data structure, while exploiting diverse
information and thus gaining robustness for subsequent tasks.
The identification of suitable features, however, represents a
problem in itself. Inspired by the field of multi-view clustering
[3] and in an effort to incorporate more sophisticated model
priors, we adopt the perspective of learning a graph from
multiple data features (or views) in order to effectively capture
the complexity of hyperspectral data, while further integrating
the label information into the graph so as to exploit prior
knowledge of label dependencies. We further resort to super-
pixel segmentation of the data in order to effectively reduce
the complexity of the classification task, while simultaneously
capturing a first level of spectral-spatial dependencies through
the clustering into local homogeneous regions.
In this paper, we introduce a novel semi-supervised framework
for HSI classification which involves the design of a graph
classification function which is smooth with respect to both
the intrinsic structure of the data, as described via superpixel
features, as well as the label space. The proposed graph
learning framework is special due to its edge-efficient analytic
solution, known to satisfy graph-optimality constraints, and
ability to incorporate multiple features, as well as due to its
optimization of both the graph and classification function,
resulting in pseudo-labels. In addition, in light of the range of
parameters required to tune a multi-feature superpixel graph,
we propose a variation of the framework which, instead of
incorporating pre-set feature weights, learns them by imposing
an additional smoothness functional. We summarize the main
contributions as follows:

• We extend multi-view graph learning to the domain
of superpixels and HSI data, with tunable pseudo-label
generation incorporated into an updateable graph. In
particular, we employ an initial soft graph on which
labels are firstly propagated among nearest neighbours to
generate pseudo-label features, which are subsequently
utilized to inform an improved graph.

• We propose a pseudo-label-guided framework for HSI
feature selection, weighting and subsequent graph con-
struction, enhanced by dynamic pseudo-label-features. To
the best of our knowledge, the issue of feature contribu-
tion on a multi-feature graph for HSI-data has not yet
been tackled, beyond a simple parameter search.

• We extensively validate our proposed approaches on the
basis of three benchmark datasets and demonstrate their
superiority with respect to comparable state-of the-art
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approaches.
The proposed framework facilitates edge-efficient graph and
label learning, while flexibly incorporating multiple features
which capture spectral-, spatial- and label-dependencies within
the given data. The remainder of this paper is organized as
follows: Section II discusses related work, Section III explores
the preliminaries, and details of the proposed methods are
stated in Section IV. Section V presents the experimental
results of our methods in comparison with state-of-the-art
approaches, and Section VI contains concluding remarks.

II. RELATED WORK

Works in SSL can be categorized into generative models,
which employ probabilistic generative mixture models, co-and
self-training methods, low-density separation methods, which
seek a decision boundary through low density regions, and
graph-based methods [2]. Popular modelling assumptions and
concepts have included spectral clustering, data manifolds
and local-global consistency [4], according to which nearby
points and points residing on the same cluster or manifold
are likely to have the same label [2]. In the context of HSI
data, earlier approaches comprise kernel methods such as the
purely spectral-based SVM [5] and spectral-spatial multiple
kernel learning [6]. Feature extraction methods, such as [7],
[8], [9], have sought to characterize a lower dimensional
subspace which best captures the spectral-spatial information
of the data. Further, classical signal processing concepts such
as sparse representation, low-rank, and wavelet analysis have
been notably incorporated into SSL methods [10], [11], [1].
More recent methods have gained in complexity by generating
multi-stage workflows with different pre- and post-processing
levels as well as by combining the strengths of different clas-
sifiers in an effort to create more sophisticated models which
exploit multiple dependencies of HSI data and counteract the
small sample problem through a gradual learning process [1].
Graph-based SSL methods have become increasingly pop-
ular due to the superior modelling capabilities of graphs,
particularly as a means to counteract the limited amount of
labels available, and have included pixel-based [12] as well as
superpixel-based graph constructions [13], [14], [15], ranging
from end-to-end approaches, that utilize graphs for both data
modelling and label propagation, to hybrid approaches. We
note that many existing methods, such as EPF [16], which
makes use of the bilateral filter, exhibit underlying graph-
like qualities, while not directly or only in part employing
graphs, and as a result have exhibited superior performance. In
addition, approaches such as [17], have sought to incorporate
label information early on in the workflow, known as pseudo-
labelling, which is progressively refined, in an effort to inform
data modelling; nevertheless, the graph construction is not
necessarily analytic. While identification of the correct model
graph is essential for SSL [18], extensive parameter analysis is
still inevitable in order to study their influence, as performance
is strongly affected by all components of the graph; never-
theless, previous studies have generally not found explorable
patterns [18], and stability is preferred over excellence in a
narrow parameter range.

A preceding body of work on multi-view clustering has
sought to unify the tasks of data similarity learning (i.e.
graph construction) and clustering/label propagation in a joint
optimization framework [3], [19], [20], which, to the best of
our knowledge, has not been fully investigated for the joint
challenge of HSI data and SSL. Graph learning and label
propagation are separate tasks but recent efforts have opted
to combine them, thereby updating and incorporating label
information into the graph, under the driving assumption that
a single static graph is not sufficient to solve the entire SSL
task successfully. Nevertheless, and not least of all for complex
data such as HSI, the issue of propagating error noise into each
task needs to be addressed. There are multiple ways in which
the label information can be incorporated into the graph, which
include space fusion approaches, i.e. the graph and label space
are fused via the addition of a label correlation matrix [21] or
the removal of differently labelled edges [22], and implicit
approaches, which instead consider the graph as a function of
the distances between labels [3].
Deep learning (DL) methods have penetrated graph-based
classification in the form of Graph Convolutional Networks
(GCNs), which usually require a given pre-constructed graph,
such as the spectral-spatial GCN [23], and have been employed
to extract features automatically [24]. Under the assumption
that the mapping from the feature to the label space is
sufficiently smooth, the theoretical relation between label
propagation (LP) and GCNs, as instances which propagate
labels and features respectively, has been notably shown to
satisfy a smoothness inequality [25]. Nevertheless, DL-, and
non-DL methods alike, ultimately rely on the optimality of
the graph while often performing worse with limited labels.
Neural networks have further been employed to learn graphs
from scratch (see e.g. [26]), which inevitably comes at a high
computational cost, however, for complex and rich datasets
such as HSI the formulation of sophisticated (graph) model
priors is paramount to the successful performance of any
classifier.
Graphs ultimately capture model constraints in the form of
linear dependencies between data points (as per the graph
Laplacian [27]) and, as such, present versatile modelling tools
which can help simplify more complex modelling assump-
tions. Most graph-based methods operate under the assumption
that the given graph is optimal and/or that the given data
naturally resides on a known graph, so any subsequent tasks
and operations are subject to noise pertaining to an imperfect
model. Given a data set, approaches have opted to either
hand-craft the graph, or learn it automatically through the
minimization of a chosen optimization function. In the former
case, this has included local and/or adaptive graph weighting
and connectivity schemes, which take into account variations
in i.a. (spectral) data density, and are increasingly refined
but also bear a risk of distorting neighborhood information
[28]. While handcrafted approaches usually lead to higher
accuracy, automated ones can be more robust to variable
datasets, requiring less parameter tuning while nevertheless
being more costly due to lack of an analytic solution. In an
effort to combine the advantages of both, we therefore seek
an analytic solution to a well-defined optimization problem
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Fig. 1. Main Workflow: The proposed MGL and PMGL methods are mainly composed of spectral dimensionality reduction, superpixel segmentation, superpixel
feature extraction and superpixel label regularization, followed by a pseudo-label driven graph learning stage, and culminating in the final classification result
via label propagation.

with the possibility of sophisticated parameter learning (i.e.
reduction) through regularization.

III. PRELIMINARIES AND PRIOR WORK: GRAPH
(LAPLACIAN) LEARNING

An undirected graph G = (V,E) is characterized by a
set of vertices V and a set of edges E, and its connectivity
is encapsulated in the symmetric adjacency matrix W, with
Wi,j > 0 if there is an edge between vertices i and j, and
Wi,j = 0 otherwise. The non-normalized graph Laplacian
matrix is defined as L = D −W, where D = diag(W1) is
the diagonal degree matrix, with 1 denoting the vector of 1’s.
The construction of a graph which optimally represents a given
dataset X = {x1, ...,xN} is a multi-part task, which gener-
ally establishes relations of the form Wi,j = Ai,jw(xi,xj)
between data points xi,xj ∈ Rd, where w : Rd × Rd → R
is a similarity function and A an adjacency matrix, for which
Ai,j = 1 iff j ∈ Ni for some pre-determined neighborhood
Ni of node i, and Ai,j = 0 otherwise. From the smoothness
of w to the range of influence N , each component is vital in
ensuring effective discriminative data representation.
In graph signal processing, Graph Laplacian Learning (GLL)
considers the minimization of the graph Laplacian quadratic
form with respect to data (aka graph signal) matrix X:

Tr(XTLX) =
1

2

∑
i,j

Wi,j ||xi − xj ||22 =
1

2
||W ◦ Z||1,1,

with trace operator Tr(·) and Zi,j = ||xi − xj ||22, and can
be alternatively expressed as a weighted sparsity l1-norm of
W, whose minimization enforces connectivity (large Wi,j)
between similar features xi and xj . Previous works (see
e.g. [29], [30]), have considered variations of the general
framework:

min
W∈W

||W ◦ Z||1,1 + f(W), (1)

consisting of the graph Laplacian quadratic form and a, pos-
sibly sparsity-promoting, regularization term f(W), subject
to graph constraints, e.g. W = {W ∈ RN×N≥0 : W =

WT , diag(W) = 0}. We select f(W) = α||W||2F , α ∈ R,
with Frobenius norm ||W||F =

√∑
i,j |Wi,j |2, which con-

trols sparsity by preventing the occurrence of strong edges,
and due to the edge-locality of the functional, facilitates the
decomposition of the problem into a sum over graph edges,
and hence an analytic solution.
Specifically, the optimization problem of Eq. (1) becomes
separable for f(W) = α||W||2F , and can be rewritten in row-
wise form [3], for row Wi of W, as

min
Wi1=1,Wi≥0,Wi,i=0

N∑
j=1

Zi,jWi,j + α

N∑
j=1

W 2
i,j (2)

yielding the closed-form solution

Wi,j =

(
ηi −

Zi,j
2α

)
+

,

where (x)+ = max(0, x) and scalar ηi. Since the second term
creates a dense edge pattern, one can further enforce kNN
connectivity by determining the maximal αi per row s.t. the
optimal Wi has exactly k non-zeros (see [3] for details). This
leads to

Wi,j =

{
Zi,k+1−Zi,j

kZi,k+1−
∑k

h=1 Zi,h
, j ≤ k

0, j > k.
(3)

where entries {Zi,1, ..., Zi,N} are assumed to be ordered
from small to large wlog, and we have ηi = 1

k +
∑k

h=1 Zi,h

2kαi

and αi = (k/2)Zi,k+1 − (1/2)
∑k
h=1 Zi,h. Here, Wi,i = 0 is

enforced and Zi,i = 0 appended at the end. Symmetrization
is achieved through L = D− W+WT

2 .
It has been noted that this approach is computationally
efficient due to its analytic solution and in-built sparsity
which does not require oblique tuning of α (instead only
requiring the straight-forward number of edges k) and is
further scale-invariant w.r.t. feature vectors xi.

For different features (views) of type v, we consider
Zi,j =

∑
v cvZ

v
i,j with feature coefficients cv ∈ R. In order
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to reduce parameters, it has been proposed to constrain the
coefficients to be proportional to pre-set feature-dependent
functionals and subject to regularization [19], [20].

IV. PROPOSED METHOD: SUPERPIXEL-BASED
MULTI-FEATURE GRAPH LEARNING

In the proposed method, several instances of data dependen-
cies are exploited in a multi-level workflow: after conducting
an initial spectral dimensionality reduction using PCA [31],
we consider a priori the segmentation of the hyperspectral
image into superpixels to define local regions of homoge-
neous spectral content and to reduce spatial dimensionality.
Subsequently, we compute analytic superpixel features, which
capture different image properties, and extrapolate given pixel
labels to superpixel labels via a simple averaging filter. We
then compute an initial graph G0 and form pseudo-label
features through a soft label propagation to nearest neighbors
on G0. This is subsequently updated and refined, before a final
graph classifier is applied (see Fig. 1).

A. Superpixel-based Feature Extraction

Given the raw HSI data cube I ∈ RX×Y×B , we apply
dimensionality reduction in the first instance in the spectral do-
main using PCA to obtain the reduced Ĩ ∈ RX×Y×b, b << B.
Subsequently, the first PC component is used to conduct
superpixel segmentation via SLIC [32], resulting in the 2D
superpixel labelling map S̃ ∈ RX×Y with N superpixels:

Sk s.t. Sk = {S(i,j)|S(i,j) = k}, S̃ = ∪Nk=1Sk.

While it has been established that the goodness and scale of
the superpixel segmentation is foundational for the success of
subsequent data modelling and classification tasks, it is not
the objective of this work to optimize this particular instance
of the workflow; as such, we select SLIC [32] as the base
superpixel segmentation algorithm and determine the number
of superpixels approximately according to [33], which takes
into account both the size and resolution of the HSI image
(albeit not the scene complexity).
Let Y ∈ RXY×c denote the initial class indicator matrix with
Yi,j = 1 if pixel i belongs to class j for c classes. Following
superpixel segmentation, we regularize this to YS ∈ RN×c
by averaging over the existing pixel labels per superpixel.
Specifically, Y Si,j records the number of pixels per superpixel
Si which belong to class j divided by the total number of
pixels in Si.
As statistical descriptors for the superpixels, we consider the
features as proposed in [6], comprising the mean feature vector
sMk

sMk =

∑Nk

i,j Ĩ(i,j)

Nk
, S(i,j) = k, k = 1, ..., N

which takes a simple average of the Nk pixels per superpixel
k, and the spatial-mean feature vector sSk

sSk =

J∑
i=1

wk,ais
M
ai , wk,ai =

exp (−||sMai − sMk ||22/h)∑J
i=1 exp (−||sMai − sMk ||22/h)

which constitutes a weighted sum of the mean feature vectors
of adjacent superpixels, given by index set Ak = {a1, ..., aJ}
for the k-th superpixel and with pre-set scalar h ∈ R. Further,
we consider the centroidal location of each superpixel as:

sCk =

∑Nk

j=1 lk,j

Nk

where lk,j denotes the 2D image coordinate of the k-th
superpixel. We note that an optimized graph can only be as
good as the extracted features it is built upon, however, the task
of feature optimization, in line with superpixel segmentation,
represents a problem in itself and is not the focus of this work.

B. Dynamic Graph Learning and Label Propagation

In the following, we wish to learn a superpixel HSI graph
and conduct classification through label propagation.
Consider the joint optimization problem over the graph W
and the labelling function F

min
W,F

∑
i,j

(Zi,j + γZFi,j)Wi,j + αW 2
i,j , (4)

s.t.
∑
j

Wi,j = 1, Wi,j ≥ 0, Fl = YS
l .

with ZFi,j = ||fi−fj ||22, where fi denotes the i-th row of F, and
YS
l ∈ Rl×c is the labelled submatrix of YS . Via alternating

optimization, the optimal graph W can be computed according
to Eq. (3) with Zi,j → Zi,j + γZFi,j and by absorbing α into
k, the number of edges per row, while for F, this yields the
solution

Fu = −L−1u,uLu,lYS
l (5)

for the unlabelled superpixel nodes, which is also known as
harmonic label propagation [20], [34]. Here, Lu,u denotes
the graph Laplacian submatrix with rows and columns cor-
responding to unlabelled nodes. The final superpixel labels
are assigned via the decision function

yi = argmax
j
Fi,j , ∀j = 1, ..., c. (6)

Accordingly, we require the optimal graph to exhibit
smoothness with respect to both the pre-designed
superpixel features, as extracted from the HSI data,
as well as the labelling function F. The functional
Tr(FTLF) = 1

2

∑
i,j Z

F
i,jWi,j , given L, has been employed

as a standalone graph classifier (e.g. [4], [34]), while in the
present framework, it is further utilized to enrich the graph
construction process, rendering it dynamic.

Let Zv with Zvi,j = ||svi − svj ||22 denote the Euclidean
distance matrix between superpixel feature vectors of type
(or view) v ∈ {M,S,C}, as previously defined in Sect.
IV-A, and cv the feature weight. In a variation of the above,
we propose to employ the superpixel multi-feature dynamic
graph G of the basic form as in Eq. (3) with weighted
pairwise distances Zi,j =

∑
v cvZ

v
i,j and ZF̃i,j = ||f̃i − f̃j ||22,

the latter of which we define as pseudo-label features

f̃i[j] =
∑
k

P 0
i,kY

S
k,j , j = 1, ..., c
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where f̃i denotes the i-th row of F̃ ∈ RN×c, W0 the initial
graph based on Zi,j and P0 = D−10 W0 its random-walk
normalized version. In particular, F̃ constitutes one instance
of a random walk, as opposed to the fully converged solution
in Eq. (5). The motivation behind this construction is to
provide a soft pre-labelling approach by propagating given
labels among their nearest neighbors, as determined through
an initial superpixel graph W0 based solely on HSI superpixel
features, thereby merging information from the label and
superpixel dependencies. The resulting distance matrix ZF̃

is then utilized as an additional component to rebuild the
graph, with large values penalizing nodes not in the same class,
further rendering the graph construction dynamic and implicit.
Final label propagation on this graph is conducted via the
converged harmonic solution in Eq. (5) and class assignment
via Eq. (6). We summarize the approach in Algorithm 1.

Algorithm 1 Multi-Feature Graph SSL for HSI Data
1: INPUT: raw HSI cube I, label matrix Y, parameters: k,
{cv}v , γ.

2: OUTPUT: Classification map F.
3: Apply PCA on I to obtain Ĩ.
4: Conduct superpixel segmentation to obtain S̃ and label

regularization to obtain YS .
5: Extract superpixel features {sM , sS , sC}.
6: Compute initial superpixel-feature graph W0 with Zi,j =∑

v cvZ
v
i,j , pre-set cv , v ∈ {S,M,C}, via Eq. (3) &

symmetrize.
7: Compute pseudo-label features F̃ = P0YS and ZF̃ .
8: Update graph with Z̃i,j = Zi,j + γZF̃i,j and symmetrize.
9: Compute unknown labels with graph classifier Fu =
−L−1u,uLu,lYS

l .
10: Assign final classes via Eq. (6).

Remark: The RBF kernel with Wi,j = exp
(
− ||xi−xj ||22

σ2

)
constitutes a prominent approach to model graph weights [18]
and is incidentally the result of the optimization problem in
Eq. (1) with f(W) = σ2

∑
i,jWi,j logWi,j in normalized

form. Nevertheless, performance is strongly affected by the
tuning of σ and graph connectivity, the latter of which is not
embedded into the graph solution and both of which are non-
trivial.
While the proposed approach simplifies the issue of tuning
edge connectivity and neighbourhood range, thus increasing
robustness, it still comprises a range of parameters, which are
categorized into: k (the number of nearest neighbour edges),
{cv}v (superpixel feature weights), and γ (pseudo-label feature
weight). As the goodness of the graph is dependent on the
goodness of its features, we proceed to simultaneously learn
feature weights and update the graph with the goal to help
guide as well as minimize uninformed parameter-tuning.

C. Parameter-optimal Multi-feature Graph Learning

While a reduction of parameters generally occurs at the sac-
rifice of performance and cannot replace a thorough parameter
search, we investigate the possibility of a pseudo-label guided
parameter reduction and further propose a variation of the

preceding framework, inspired by [19], in an effort to facilitate
training and generalizability to diverse datasets.
Consider individual superpixel feature graphs, denoted with
Av , whose entries are computed from Zvi,j using Eq. (3)
with k edges per row, and initialize the global graph W =∑V
v=1 cvA

v with cv = 1
V . We assume that the deviation

rv = ||W−Av||2F from W is inversely related to the feature
importance cv . After an initial pseudo-label computation F̃
using Eq. (5), we update the global graph W by solving

min
Wi≥0,Wi1=1

∣∣∣∣∣∣∣∣Wi +
(γ1/2)Z

WF
i −

∑
v cvA

v
i∑

v cv

∣∣∣∣∣∣∣∣2
2

(7)

In contrast to the previous method, we determine the pseudo-
labels F̃ here via the converged harmonic solution in Eq.
(5) and apply a binary mask W which holds the nonzero
locations of the current global graph estimate W, giving
the Hadamard product ZWF = W ◦ ZF̃ . As such, when
solving Eq. (7) the positions of the non-zero graph weights
remain fixed, while their values are perturbed, i.e. re-weighted
or eliminated according to pseudo-label information. This
prevents the formation of noisy edges when ZF̃ is dense, and
constitutes an alternative to soft pseudo-labelling (for which
we previously employed one random walk). Subsequently, we
regularize the weights cv via an l2-norm term:

min
c

∑
v

cv||W−Av||2F +γ2||c||22, s.t. cv ≥ 0, cT1 = 1 (8)

which can be simplified to

min
cv≥0,cT 1=1

∣∣∣∣∣∣∣∣c+ r

2γ2

∣∣∣∣∣∣∣∣2
2

. (9)

Notably, Eq. (2) can be written in the same form as Eqs. (7)
and (9), which constitute the Euclidean projection onto the
probabilistic simplex [35]; however, as we cannot apply the
same kNN simplification, we solve the latter two iteratively,
whereby we employ Newton’s method to enforce the unity
sum constraint. As such, both the graph edge learning and
feature weight learning stage are essentially the same.
By recomputing ZWF and then W with corresponding pa-
rameter γ3, we obtain a pseudo-label enhanced graph which
is used by the graph classifier of Eq. (5) to obtain the final
solution.
Overall, γ2 controls the disparity between feature weights,
while replacing V parameters with one, while γ1 and γ3
regulate the pseudo-label contribution at different stages. Here
we employ pseudo-labels in a two-fold way to inform feature
contribution as well as to form a separate feature embedded
in the graph. While this can be tuned with a single parameter
γ1, in practice, we observe that performance benefits from
weighting the steps separately by introducing γ3, as we will
demonstrate in Sect. V. We summarize the graph learning
stage of the approach in Algorithm 2; here, each computed
graph is a posteriori symmetrized via W+WT

2 . The approach
is similar to solving the joint optimization problem of Eqs. (4)
(with respect to F) and (8) alternately, as each step constitutes
an optimal closed-form solution; however, we refrain from
further iterations between steps 4 and 6 to limit possible noise
resulting from pseudo-labelling.
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We note that large deviations in (feature) scales, and thus
in r, result in binary weights (i.e. single-feature selection),
which can be remedied, in part, by tuning γ2, as well as by
refining the feature selection. For this approach, we introduce
two composite superpixel feature measures, which merge the
centroidal feature, which is less informative for a standalone
feature graph, with either of the spectral-content features.
Specifically, we consider the multiplicative Zvi,j ◦ ZCi,j and
additive Zvi,j+λZ

C
i,j , v ∈ {M,S}, with v chosen as per dataset

and λ ∼ σv/σC , where σv =
∑
i,j Z

v
i,j/N

2 denotes the scale
per feature.

Algorithm 2 Parameter-optimal Multi-Feature Graph SSL
1: Initialize superpixel-feature graphs Av with Zv via Eq.

(3) and W0 =
∑
v cvA

v with cv = 1
V , then symmetrize.

2: Compute pseudo-label features F̃ via Eq. (5) and ZWF =
W ◦ ZF̃ .

3: Update graph with Z̃i,j = (γ12 Z
WF
i,j −

∑
v cvA

v
i,j)/

∑
v cv

with pre-set γ1 by solving Eq. (7), symmetrize.
4: Compute feature weights cv with pre-set γ2 via Eq. (9).
5: Update pseudo-labels F̃ via Eq. (5).
6: Update graph with pre-set pseudo-label weight γ3 in Eq.

(7), then symmetrize.
7: Compute final labels via graph classifier Fu =
−L−1u,uLu,lYS

l and Eq. (6).

Remark: One could further consider the constraint rv =∑
i,j Z

v
i,jWi,j in Eq. (8) as a non-separable way to estimate

the feature weights, however, we observe that discrepancies in
scaling render the parameter γ2 more difficult to tune. Instead,
we opt to separate the graph into the sum of individual feature
graphs. While this bears the bias of reduced global interaction
between the features (i.e. in Eq. (3) the sum Zi,j =

∑
v cvZ

v
i,j

drives the assignment of the nearest k edges), we remedy
this by incorporating pseudo-labels into the framework as a
means to perturb the solution and reinforce inter-and intra-
class relations as well as by introducing composite features.

V. EXPERIMENTAL RESULTS

A. Dataset Description

We validate our approach on three benchmark HSI datasets:
Indian Pines: This data set was gathered by an Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) over an agri-
cultural site in Indiana and consists of 145× 145 pixels with
a spatial resolution of 20 m per pixel. The AVIRIS sensor has
a wavelength range from 0.4 to 2.5 µm, which is divided into
224 bands, of which 200 are retained for experiments. There
are 16 classes, the distribution of which is imbalanced, with
Alfalfa, Oats and Grass/Pasture-mowed containing relatively
few labeled samples.
Salinas: The second data set was similarly acquired by the
AVIRIS sensor over Salinas Valley, California, comprising
512 × 217 pixels with a notably higher spatial resolution of
3.7 m per pixel. Further, 204 bands are retained. The scene
contains 16 classes, covering i.a. soils and fields.
University of Pavia: The third data set was collected by
the Reflective Optics System Imaging Spectrometer (ROSIS),

containing 610× 340 pixels with a spatial resolution of 1.3 m
per pixel, the highest of the three datasets. The spectral range
from 0.43 to 0.86 µm is divided into 115 spectral bands, of
which 103 are retained. The urban site contains 9 classes and
covers the Engineering School at the University of Pavia.

B. Experimental Design

In the following, we conduct the experimental evaluation of
our method on the benchmarking datasets and demonstrate
its superiority compared to state-of-the-art algorithms. For
evaluation, experiments are repeated 10 times and performance
is assessed on the basis of the average and standard deviation
of three quality indeces: the overall accuracy (OA), as the
percentage of correctly classified pixels, the average accuracy
(AA), as the mean of the percentage of correctly classified
pixels per class, and the Kappa Coefficient (κ), as the per-
centage of correctly classified pixels corrected by the number
of agreements expected purely by chance. Further, we compare
performance with the Local Covariance Matrix Representation
(LCMR) [9], the Edge-Preserving Filtering (EPF) [16], the
Image Fusion and Recursive Filtering (IFRF) [7], and the SVM
[5] methods, which, as established state-of-the-art methods,
were specifically chosen as comparisons due to their inherent
spectral-spatial modelling techniques (with exception of the
purely spectral SVM). The SVM algorithm is implemented in
the LIBSVM library [36], adopting the Gaussian kernel with
fivefold cross validation for the classifier. We further adopt
model-parameters as specified in these works. The proposed
methods are abbreviated as Multi-Feature Graph Learning
(MGL) and Parameter-optimal Multi-Feature Graph Learning
(PMGL) respectively.

C. Parameter Specification

For both proposed methods, we conduct PCA on the stan-
dardized data to explain 99.8% of the data’s variance and
employ SLIC [32] for superpixel segmentation with a com-
pactness of 10, where we fix the number K of superpixels per
dataset to K = 1287 (Indian Pines), K = 2237 (Salinas) and
K = 3080 (University of Pavia). For all graph constructions,
we set k = 10 as the number of edges per node, and for the
spatial mean feature construction, we select h = 15.
For the first method (MGL), we employ pseudo-label feature
weight γ = 10 and superpixel feature weights cS = 1,
cM = 0.5, cC = 10−2 (Indian Pines), cS = 0.5, cM = 5,
cC = 10−5 (University of Pavia), and cS = 1, cM = 0.1,
cC = 10−4 (Salinas).
For the second method (PMGL), we employ γ1 = 0, γ2 = 30,
γ3 = 1 (Indian Pines), γ1 = 20, γ2 = 40, γ3 = 0 (University
of Pavia) and γ1 = 1, γ2 = 30, γ3 = 1 (Salinas). Further,
for the latter method we construct three individual feature
graphs respectively based on the following feature distances:
{ZM ,ZS ,ZC ◦ ZS} (Indian Pines), {ZM ,ZS ,ZM + λZC}
(University of Pavia), {ZS ,ZM +λZC ,ZS+λZC} (Salinas),
which were deemed to summarize most effectively the main
properties of the different HSI scenes.
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D. Experimental Results & Discussion

Performance is evaluated using a very limited amount of
labels for training, with rates of 3−20 samples per class, which
are randomly selected, in several stages of experiments. In the
first instance, we conduct numerical evaluations and compar-
isons of classification accuracy of the proposed methods with
state-of-the-art approaches, as detailed above, followed by an
evaluation of the corresponding visual classification maps.
E1: We begin by evaluating the OA and Kappa coefficient
in comparison using a reduced label rate of 3-20 randomly
selected labels per class, whose results are graphically dis-
played in Fig. 2 for the three benchmark data sets. We observe
that both proposed methods consistently outperform the other
methods over the entire range of label rates for all three
benchmark data sets. In particular, the performance gain is
highest for lower label rates, signifying that the proposed
pseudo-label guided graph-based methods perform strongly
even when extremely few labels are available as a result
of their superior model. LCMR and IFRF form the closest
competitors for the Indian Pines and Salinas data sets with a
maximum gap of approximately 10% and 8% respectively to
the closest competitor at 3 labelled samples, with LCMR being
the dominant competitor for the more complex Pavia Univer-
sity data set with a gap of 10% to PMGL. Further, among the
two proposed methods, in the lower label limit of the Pavia
dataset, PMGL exhibits up to 4% gain in OA performance,
while for the other data sets, this gain is vanishingly small
with the two methods performing comparably. This indicates
that a more refined parameter selection can be beneficial for
structurally complex data sets.
E2: To demonstrate the influence of the pseudo-labels and
feature coefficients in PMGL on performance, we consider the
overall accuracy at a fixed label rate of 7 samples per class with
varying feature parameters over 10 trials. In particular, in order
to illustrate the interaction between pseudo-label contribution
and feature contribution, we fix pseudo-label parameter γ3,
while varying γ1, along with the feature weight-regularization
parameter γ2, and consider the mean OA in a 3D plot. We
report results for the University of Pavia data set, as the most
structurally complex of the three, in Fig. 3 with the OA plotted
against γ1 and γ2 and γ3 = 0 in (a), and γ3 = 1 in (b), with
(c) showing the resulting feature coefficient distribution for (a).
We observe that in (a), OA is highest when both γ1 and γ2
are increased, generating a perturbation toward more evenly
distributed coefficients, which, as shown in (c), corresponds
to the gradual matching of composite coefficient cM+λC and
spectral mean coefficient cM , while the contribution of the
spatial mean coefficient cS is negligible. When additionally,
the pseudo-label feature is incorporated into the graph via γ3,
the coefficient distribution for the best OA changes, instead
overall moving toward one dominant superpixel feature. While
we observe interactions between pseudo-label and superpixel
features which drive performance, the feature regularization
parameter is ultimately dependent on the data set and the
selected features at hand.
E3: For each data set we use 7 labeled samples per class and
run the methods again to calculate the OA, Kappa coefficient,

AA, and a full class by class accuracy breakdown over 10
trials. For all three data sets, the proposed methods MGL
and PMGL consistently outperform the competitors in OA,
Kappa coefficient and AA, and for the majority of per class
accuracies. For the Indian Pines data set, PMGL performs
only slightly better than MGL in the first three measures, and
around 10% improvement in OA over its closest competitor,
LCMR. In the case of the University of Pavia data set, the gain
of PMGL over MGL is even larger with 3-4%, followed by
LCMR with 10% improvement in OA. Lastly, for the Salinas
data set, MGL and PMGL perform comparativey well, with
a gain of 3% over their closest competitor, IFRF. Overall,
we observe that while PMGL utilizes more intricate relations
and selective feature contributions, MGL is still close in
performance, with a gain of the former becoming more evident
for increasingly complex data sets, such as Pavia University.
E4: At last, we show the full classification maps produced
for training with 7 samples per class for all methods in
comparison. In Fig. 4, classification maps for the Indian Pines
data set illustrate increased smoothness and local homogeneity
for the proposed graph-based MGL and PMGL, exemplifying
their superiority. Their closest competitor, LCMR exhibits
more noisy regions. Fig. 5 shows the University of Pavia
classification maps, which as the most structurally complex
scene of the three with some scattered classes, similarly
exhibits smooth yet spatially refined classification results for
the proposed MGL and PMGL, despite the inherent crudeness
of superpixel segmentation and label regularization. At last,
for the Salinas data set in Fig. 6, which due to its locally
homogeneous regions and overall spatial regularity represents
a simpler scene, the proposed methods still to manage to
improve over existing methods, achieving near perfect clas-
sification.
It becomes evident that the use of superpixels, ensuring local
homogeneity, as well as that of graphs, for refined local and
global modelling, which incorporates pixel-and superpixel-
level as well as spectral-spatial-label dependencies, facilitates
a significant performance gain. Notably, EPF and IFRF employ
a spectral-spatial filtering approach which can be likened to
graph filtering, with the distinction that the latter is more
flexible and versatile to model; nevertheless, the use of the
SVM classifier in all competitors, as opposed to a graph-filter
in the latter case, contributes to a comparatively decreased
accuracy owing to the noise of the spectral-based SVM.

VI. CONCLUSION

In this work, we have developed a pseudo-label-guided
and superpixel-based graph learning framework for semi-
supervised classification of HSI data. Specifically, we have
presented two methods: while the former constructs a single
dynamic graph by fusing different superpixel features along
with a pseudo-label feature, the latter constructs a global
graph as the sum of individual feature graphs whose con-
tribution is informed through pseudo-label regularization. We
have demonstrated on the basis of benchmark data sets the
superiority in performance through quantitative and qualitative
results in comparison to state-of-the-art methods, particularly
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Fig. 2. Comparison of the classification accuracy (OA) and Kappa coefficient of different methods with varying number of training samples over 10 trials.
The solid lines represent the mean while the shaded area covers the standard deviation from the mean.
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Fig. 3. University of Pavia: results for 7 training samples per class, 3D plot of pseudo-label weight γ1 vs feature regularization weight γ2 against OA of
PMGL with (a) γ3 = 0, (b) γ3 = 1, and (c) feature coefficient distribution for γ3 = 0.

in the small labelled sample limit.
The incorporation of multiple features as well as label infor-
mation through pseudo-labels into the graph facilitate refined
modelling of the complex dependencies present in HSI data,
and ultimately leverage these for an improved classification
performance. Furthermore, the multi-stage workflow, which
employs superpixels and a flexible, inherently sparse graph
design with the option to reduce parameters through regu-
larization, is versatile by allowing for multiple components
and exploiting multiple levels of spectral-spatial and label-
dependencies. Nevertheless, it remains a challenge to com-
pletely eliminate parameters whilst maintaining competitive
performance as well as to select the ideal features upon which
the goodness of subsequent steps depends; ultimately, the
process of feature selection/extraction and feature weighting
presented is not exhaustive. In our future work, we wish to
explore automated DL approaches for both feature selection

and graph construction which can be guided by sophisticated
model-based priors.
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TABLE I
OA, KAPPA, AA AND PER CLASS BREAKDOWN IN % WITH 7 TRAINING LABELS PER CLASS

Indian Pines
CLASS MGL PMGL LCMR [9] EPF [16] IFRF [7] SVM [5]

C1 97.95± 1.03 97.95± 1.03 99.23± 1.24 95.13± 7.69 99.23± 1.24 72.05± 13.54
C2 66.17± 10.17 70.63± 11.86 73.36± 8.24 39.32± 9.52 65.58± 9.98 33.12± 4.41
C3 76.11± 9.73 86.12± 8.26 62.08± 8.98 55.65± 12.92 76.1± 9.16 44.63± 6.07
C4 96.17± 4.01 92.3± 7.54 93.48± 6.45 78.13± 20.28 87.3± 7.99 48.96± 12.01
C5 88.84± 9.09 88.47± 8.83 88.55± 8.04 83.8± 10.94 80.8± 6.47 70.82± 10.22
C6 94.54± 10.67 93.43± 8.9 86.43± 8.34 90.06± 8.05 86.02± 13.87 68.49± 10.61
C7 100.0± 0.0 100.0± 0.0 100.0± 0.0 98.1± 2.46 100.0± 0.0 83.33± 15.27
C8 100.0± 0.0 100.0± 0.0 97.62± 4.47 68.3± 16.46 99.62± 0.71 56.28± 9.54
C9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 89.23± 12.67

C10 88.05± 7.41 89.97± 7.04 76.29± 11.93 61.06± 17.8 79.19± 8.29 45.67± 10.66
C11 87.53± 6.94 82.07± 10.0 61.55± 9.07 48.35± 13.16 64.08± 12.69 38.08± 7.69
C12 86.64± 12.78 93.16± 10.15 79.68± 7.3 57.59± 25.11 68.45± 12.47 40.39± 11.65
C13 99.49± 0.0 99.49± 0.0 99.19± 0.9 99.49± 0.0 98.59± 1.52 90.86± 4.36
C14 97.02± 8.58 94.42± 8.77 95.86± 5.15 76.92± 23.07 82.22± 7.23 60.51± 16.01
C15 94.51± 9.39 94.64± 9.29 92.32± 9.22 41.42± 13.57 86.15± 7.41 31.77± 7.52
C16 93.72± 1.74 93.72± 1.74 99.19± 2.57 95.23± 6.79 97.09± 4.04 85.58± 10.11
OA 86.75± 2.31 86.93± 2.79 77.88± 4.07 60.7± 6.92 75.77± 4.65 47.84± 3.29

Kappa 84.96± 2.6 85.19± 3.12 75.14± 4.51 56.16± 7.59 72.84± 5.06 42.07± 3.6
AA 91.67± 1.31 92.27± 1.11 87.8± 2.27 74.28± 4.98 85.65± 2.77 59.99± 3.48

University of Pavia
CLASS MGL PMGL LCMR [9] EPF [16] IFRF [7] SVM [5]

C1 76.23± 8.91 78.42± 6.35 79.92± 9.14 76.0± 11.24 53.47± 9.97 62.63± 8.75
C2 92.53± 7.9 96.12± 5.36 81.38± 11.88 59.17± 10.17 78.64± 6.42 55.55± 8.96
C3 87.5± 10.43 90.19± 8.26 83.98± 10.72 60.88± 13.2 55.76± 10.56 55.05± 9.57
C4 84.03± 7.83 84.76± 6.85 93.72± 4.43 86.49± 5.0 65.45± 16.27 88.46± 5.49
C5 93.27± 6.35 93.68± 5.89 97.2± 7.54 96.76± 10.23 99.13± 0.62 96.63± 8.49
C6 94.94± 6.51 98.23± 2.63 84.82± 8.41 63.46± 13.17 83.4± 7.23 57.34± 9.54
C7 96.02± 1.84 99.46± 0.26 85.15± 12.58 94.32± 9.97 77.41± 14.24 86.22± 8.86
C8 82.41± 19.95 90.71± 5.06 71.03± 9.2 74.57± 15.13 71.8± 10.57 64.32± 10.18
C9 92.96± 3.37 95.9± 2.03 94.46± 2.06 99.78± 0.56 50.54± 10.7 99.66± 0.58
OA 88.7± 3.56 92.08± 2.48 82.58± 5.74 68.81± 4.31 72.63± 3.09 63.15± 3.64

Kappa 85.3± 4.44 89.61± 3.11 77.77± 6.74 61.27± 4.75 64.86± 3.7 54.59± 3.77
AA 88.87± 2.35 91.94± 1.6 85.74± 2.64 79.05± 4.05 70.62± 2.78 73.98± 2.75

Salinas
CLASS MGL PMGL LCMR [9] EPF [16] IFRF [7] SVM [5]

C1 100.0± 0.0 100.0± 0.0 99.89± 0.21 99.77± 0.5 98.23± 5.61 97.85± 1.26
C2 100.0± 0.0 100.0± 0.0 89.79± 5.67 99.74± 0.4 96.36± 4.47 98.14± 1.42
C3 100.0± 0.0 100.0± 0.0 98.55± 2.5 86.26± 19.94 99.97± 0.08 81.24± 18.02
C4 94.18± 5.92 94.17± 8.91 100.0± 0.0 99.88± 0.13 98.61± 2.63 99.15± 0.59
C5 93.28± 4.31 94.72± 0.0 96.53± 0.69 97.62± 1.81 92.43± 5.1 96.07± 2.37
C6 99.59± 0.07 99.59± 0.06 99.02± 0.99 99.51± 0.79 99.53± 0.65 98.02± 2.1
C7 99.89± 0.06 100.0± 0.0 97.9± 2.15 99.79± 0.07 98.82± 3.33 98.57± 0.93
C8 98.45± 0.71 97.46± 1.84 85.58± 5.54 64.96± 18.35 85.93± 7.01 57.35± 11.09
C9 100.0± 0.0 100.0± 0.0 92.23± 9.51 99.49± 0.61 99.94± 0.15 98.23± 0.91

C10 89.47± 7.41 90.37± 5.68 97.44± 1.37 89.24± 9.66 97.16± 3.84 80.48± 9.14
C11 95.57± 5.16 97.67± 0.85 99.91± 0.08 97.15± 2.03 96.03± 3.32 87.51± 3.7
C12 97.59± 0.31 97.59± 0.31 99.23± 2.38 100.0± 0.0 98.3± 1.45 96.18± 3.08
C13 97.67± 0.62 97.48± 0.36 98.26± 0.85 98.92± 0.38 95.73± 5.84 98.22± 0.6
C14 92.91± 4.8 94.65± 2.95 93.13± 5.84 95.3± 1.66 96.32± 3.28 88.86± 2.69
C15 96.32± 1.28 98.23± 0.97 82.71± 7.54 71.74± 21.97 93.98± 3.76 59.05± 12.78
C16 100.0± 0.0 100.0± 0.0 91.23± 7.49 94.71± 4.17 98.12± 3.02 92.33± 4.68
OA 97.67± 0.48 97.93± 0.45 91.99± 1.34 87.14± 3.22 94.89± 1.7 81.98± 1.54

Kappa 97.41± 0.54 97.7± 0.5 91.1± 1.49 85.73± 3.57 94.32± 1.89 80.01± 1.69
AA 97.18± 0.69 97.62± 0.65 95.09± 1.01 93.38± 2.24 96.59± 0.85 89.2± 1.5
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Fig. 4. Indian Pines: (a) Colour composite, (b) Ground truth, (c)-(h) classification maps produced using 7 labelled samples per class.

(a) Colour (b) GT (c) MGL (d) PMGL (e) LCMR (f) EPF (g) IFRF (h) SVM

Fig. 5. Pavia University: (a) Colour composite, (b) Ground truth, (c)-(h) classification maps produced using 7 labelled samples per class.

(a) Colour (b) GT (c) MGL (d) PMGL (e) LCMR (f) EPF (g) IFRF (h) SVM

Fig. 6. Salinas: (a) Colour composite, (b) Ground truth, (c)-(h) classification maps produced using 7 labelled samples per class.
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