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Aridity Thresholds Determine the Relationships
Between Ecosystem Functioning and Remotely

Sensed Indicators Across Patagonia
Yanchuang Zhao , Emilio Guirado, Juan J. Gaitán, and Fernando T. Maestre

Abstract— Emerging evidence suggests that ecosystem
responses to increases in atmospheric aridity, a hallmark
of climate change, exhibit multiple thresholds across global
drylands. However, it is not clear whether aridity thresholds exist
in the relationships between ecosystem functions and remotely
sensed indicators (RSIs). Assessing this is important because
these empirical relationships underpin the statistical models
commonly used to estimate ecosystem functioning across large
spatial scales, which typically uses data from RSI. We evaluated
how the relationships between nutrient cycling index (NCI;
a proxy of ecosystem functioning) measured in situ and RSI
[albedo and normalized difference vegetation index (NDVI)]
change along with a wide aridity (1 – [precipitation/potential
evapotranspiration]) gradient in Patagonia (Argentina). For
doing so, we used field-based NCI data from 235 ecosystems
that were surveyed twice (2008–2013 and 2014–2018). Three
aridity thresholds were identified when evaluating the RSI–NCI
relationships. The first threshold was found around aridity
values ranging from 0.44 to 0.60, while the second and third
were concentrated around aridity values of 0.69 and 0.82,
respectively. These results indicate that RSI–NCI relationships
changed drastically along aridity gradients, and these thresholds
should be considered when evaluating ecosystem functions using
RSI. In addition, we also found that the relationships between
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NCI and albedos were not significant around aridity values
of 0.82. These results were consistent across sampling dates.
Our findings imply that empirical models of the RSI–NCI
relationship employing only albedos/reflectance as inputs are
not reliable under the most arid conditions and can be used
to improve the effectiveness of the use of RSI to monitor
and predict changes in ecosystem functioning across large
environmental gradients in drylands.

Index Terms— Aridity threshold, ecosystem function, narrow-
band albedo, remote sensing.

I. INTRODUCTION

DRYLANDS, defined as areas with an aridity index
(i.e., the ratio of mean annual precipitation to mean

annual potential evapotranspiration) below 0.65 [1], represent
∼41% of the earth’s land surface [2] and host ∼38% of the
world’s population [3]. These areas are highly vulnerable to
climate change [4] and land degradation driven by human
activities [2]. Ecosystem attributes, such as vegetation structure
and soil nutrient contents, and processes, such as productivity
and nutrient cycling, are commonly used and/or suggested
to assess ecosystem health [5], [6] and identify the onset of
desertification [7]–[9], which is one of the main environmental
issues facing drylands worldwide [2], [10]–[12]. Therefore,
the monitoring of these ecosystem features is commonly
highlighted as a key approach to combat land degradation and
desertification [2], [13].

Assessing ecosystem structure and functioning using
ground-based soil [14] and vegetation [5], [15] indicators
is usually time-consuming, labor-intensive, expensive, and
difficult to implement across large regions [14], [16], [17].
This is particularly true in remote areas with difficult access
or where it is unsafe to conduct fieldwork, as is the case of
many dryland regions worldwide. Remote sensing is almost
the only realistic way to collect data and develop proxies of
ecosystem structure and functioning safely and cost-effectively
across large regions [18], [19]. Remotely sensed vegetation
indices (VIs), such as the normalized difference vegeta-
tion index (NDVI), have been used to monitor ecosystem
functioning in drylands worldwide at multiple scales, from
local [20]–[22] to regional [23]–[25] and global [26], [27]
scales. Remotely sensed albedo (defined as the ratio of
upwelling to downwelling radiative flux at the surface)
is another commonly used indicator to monitor dryland
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degradation due to its close relationship with land surface
changes [28]–[32]. Zhao et al. [26] found significant correla-
tions between broadband albedo metrics and ecosystem multi-
functionality (i.e., a proxy of the capacity of the ecosystem to
provide multiple functions simultaneously) in global drylands.
Narrowband albedo/reflectance metrics have also been used to
predict and map soil organic carbon (a proxy of soil fertility
that is a critical determinant of multiple ecosystem processes
and services [33], [34]) based on spaceborne, airborne plat-
forms, and unmanned aerial systems [35]–[37].

Emerging evidence suggests that abrupt changes in multi-
ple functional and structural ecosystem attributes, including
albedo, vegetation cover, productivity, and soil organic carbon
and nitrogen, occur when aridity increases beyond particu-
lar thresholds [39]. However, it is unknown whether these
thresholds exist in the relationships between remotely sensed
indicators (RSIs) and ground-based indicators of ecosys-
tem functioning, which underpins the statistical models
(e.g., regression models, random forests, and support vector
machine) commonly used to estimate ecosystem function-
ing at large spatial scales by employing RSI as predic-
tors [23], [35]–[38]. Addressing this issue is important because
if such thresholds exist; they should be incorporated into these
relationships to make them more robust and increase their
predictive ability across the wide aridity gradients found across
drylands worldwide. Here, we evaluated how the relationships
between nutrient cycling index (NCI; a proxy of ecosystem
functioning) measured in situ and RSI (albedo and NDVI)
change along a wide aridity gradient in Patagonia (Argentina).
As thresholds have been found when evaluating the relation-
ships between aridity and both RSI and proxies of ecosystem
functioning measured in situ in drylands [39], we hypothesized
that aridity thresholds exist in the relationships between NCI
and RSI.

II. MATERIALS AND METHODS

A. Study Area

We used, for this study, 235 field sites from MARAS
(Spanish acronym for “Environmental Monitoring for Arid
and Semi-Arid Regions” [17]), a network of field sites located
across Patagonia, in southern Argentina (see Fig. 1). All these
sites were surveyed twice during the 2008–2018 period. Field
data were gathered from 50 × 30 m plots with <10% slope
in homogeneous areas of natural vegetation (see [17] for full
details of the field survey). Aridisols and Entisols, with loam-
sandy and sandy textures [40], are dominant soils across the
study area. Vegetation is dominated by grasslands, shrub-grass
steppes, shrublands, and semideserts. Average annual precip-
itation and temperature across the surveyed sites vary from
100 to 750 mm and from −4.5 ◦C to 16 ◦C, respectively [17].

B. Ecosystem Functions and Vegetation Cover Measured
in the Field

Nutrient cycling is an essential ecosystem function that
supports key ecosystem services, including food and fuel pro-
duction and climate regulation [3]. To quantify it, we obtained
from all the field sites studied the NCI of Tongway and

Fig. 1. Distribution of the 235 field sites used in this study across Argentinean
Patagonia.

Hindley [5], which is an indicator of how efficiently organic
matter is cycled back into the soil. Studies conducted both
in Patagonia [41] and in other drylands from Australia [42],
Spain [43], [44], South Africa [45], Iran [46], Morocco [47],
and Tunisia [48] have found strong correlations between
NCI and quantitative measurements of soil variables related
to microbial activity and nutrient cycling, such as soil pH,
total soil N and P, soil organic carbon, soil respiration, and
phosphatase and b-glucosidase activities.

At each plot, multiple indicators related to vegetation and
soil conditions were measured in three 50-m-long transects ori-
ented in the main resource flow direction (see [17] and [49]).
Perennial vegetation cover along the transect was quantified
using the point-intercept method [50]. The NCI was assessed
at each plot by evaluating multiple soil surface features (total
soil cover, aerial canopy cover of perennial grasses and shrubs,
litter cover, origin and degree of decomposition, and soil
surface roughness) as described by Oliva et al. [4], [17].
See [17] and [49] for additional details on the field sampling
and [5] for additional details on the process of calculating NCI.
Fieldwork was conducted during the growing season (Septem-
ber to February) twice: between the years 2008 and 2013 (first
evaluation) and between 2014 and 2018 (second evaluation).
The mean time difference between both evaluations at each
site was 6.0 + 1.4 years.

C. Remotely Sensed Indicators Used

We quantified the white-sky albedo (WSA) and NDVI
of all the field sites surveyed using remote sensing. WSA
is defined as the fraction of incident radiation that is
reflected by a surface obtained from the condition that only
isotropic illumination exists [51]. It is determined purely
by the land surface reflective properties and is indepen-
dent of atmospheric conditions and solar zenith angle [52].
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We derived WSA at seven narrow bands (hereafter referred
to as B1_WSA, B2_WSA, …, B7_WSA, respectively) from
MODIS MCD43A3 BRDF/Albedo Model Parameters Product
(Collection 6 [52]); the spectral range for each WSA band
(B1-B7) is the following wavelength in nm: B1 = 620–670,
B2 = 841–876, B3 = 459–479, B4 = 545–565, B5 =
1230–1250, B6 = 1628–1652, and B7 = 2105–2155.
The algorithm used for the retrieval of this product was
the RossThick-LiSparse-Reciprocal (Ross-Li) Bidirectional
Reflectance Distribution Function (BRDF) model [53], [54],
which uses multiple cloud-cleared land surface reflectance
data over 16 days as inputs [52]. The product provides seven
narrowband WSA bands daily since the year 2000 with a reso-
lution of 500 m [52]. We used the Google Earth Engine (GEE)
cloud computing platform for extracting WSA values on the
field sampling date for the 235 sites. WSA quality/reliability is
indicated by flags of 0 (Processed, good quality), 1 (Processed,
see other QA), and 255 (Fill Value). To avoid using data with
poor quality, WSA with flags of 1 and 255 were replaced by
that with a flag of 0 around the field survey dates (∼11% of
the albedo data used were replaced). Finally, we calculated
NDVI as [55]

NDVI = B2_WSA − B1_WSA

B2_WSA + B1_WSA
(1)

where B1_WSA and B2_WSA are WSAs at red and near-
infrared bands of MODIS, respectively.

D. Assessing Aridity Conditions

We used the aridity index, defined as precipitation/potential
evapotranspiration [1], to depict the degree of dryness the dry-
lands evaluated. We obtained aridity data for all the surveyed
sites from the Global Aridity Index and Potential Evapotran-
spiration Climate Database v2 [56], which is modeled from the
WorldClim global climate data [57]. This database provides
averaged aridity index values for the period 1970–2000 with a
spatial resolution of 30 arc-seconds (∼1 km at the equator)
and is widely used in ecological studies [39], [58]–[60].
To facilitate the interpretation of our results, 1-AI was used to
characterize the degree of aridity of the studied sites [39].

E. Ecosystem Functions and Vegetation Cover Measured in
the Field

To explore whether the RSI–NCI relationship responds
to aridity in a nonlinear way, we first fit the responses of
both RSI and NCI to aridity using four linear and nonlinear
models (linear, quadratic polynomial, logistic, and logarithm)
according to the following equations:

f (X) = a X + b (2)

f (X) = a X2 + bX + c (3)

f (X) = d

1 + ce−aX+b
(4)

f (X) = a × ln(X) + b (5)

where f (X) is the dependent variable, i.e., NCI, X is the
independent variable, i.e., albedos/NDVI, and a, b, c, and d are
parameters to be fit. This step is necessary because nonlinear

responses of RSI and NCI to aridity can indicate that aridity
thresholds may exit in RSI and NCI and their relationships.

Then, we explored how the RSI–NCI relationship changes
in response to aridity across our study area. For doing so, all
the four models were fit to the RSI–NCI relationship using
a moving window with a size of 50 sites along the aridity
gradient. We performed 200 bootstrap samplings for each
fitting and identified the best model using three hierarchical
rules [61].

1) The parameter a in (2)–(5) needs to be significant
(P ≤ 0.05) in the four models.

2) For those models where a was significant, we selected
the best models using the Akaike information criteria
(AICs 62]), where a lower AIC value represents a better
model.

3) There are no differences in performance between two or
more models if they showed a difference in AIC values
lower than 2 [62]. When this happened, we selected
the simplest model as the best by the priority: linear >
logarithm > quadratic > logistic.

We found that the linear model was the best model fitting
the RSI–NCI relationship in the moving windows along aridity
evaluated (see Section III-B). Therefore, we used the Spear-
man correlation coefficient as the metric to quantify changes in
the RSI–NCI relationship across the range of aridity conditions
found in our study area. We selected the Spearman correlation
because not all the variables were normally distributed in
our study. All the analyses presented in this section were
done by using MATLAB 9.1.0 (The Mathworks, Natick,
MA, USA).

F. Detecting Thresholds in the Response of RSI–NCI
Relationship to Aridity

A visual examination of the data showed that the Spear-
man correlation coefficient between RSI and NCI responded
apparently in a nonlinear way to changes in aridity (see
Section III-C). Thus, we further used segmented regression
to explore the presence of aridity thresholds in the NCI–RSI
relationship. Segmented regression can depict the relationships
between response and explanatory variables by two or more
straight lines connected at unknown values, which are usually
referred to as threshold points [63]. The location of the
threshold point is determined by the least-squares method [64],
which can minimize the total error from each segment. We fit
the response of Spearman correlation coefficients between RSI
and NCI to aridity using a segmented regression with three
thresholds. We set three thresholds because: 1) this is the
number of thresholds revealed by Berdugo et al. [39] for global
drylands and 2) the AIC obtained from fitting a model with
three thresholds had a smaller value than the AIC values of
models with one/two thresholds (see Table S1 in the Sup-
plementary Material). We performed 200 bootstrap samplings
before fitting the data using the segmented regression, and the
median of 200 bootstrapped thresholds was employed as the
final threshold. The segmented package from R software [63]
was used to implement the segmented regressions.
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TABLE I

AIC OF THE MODELS FITTING THE RESPONSES OF RSIS AND NCI TO ARIDITY. B1_WSA, …, B7_WSA ARE WSAS AT BAND1, …, BAND7 OF MODIS,
RESPECTIVELY. THE VALUES WITH GRAY BACKGROUND REPRESENT THE MODEL FIT WAS NOT SIGNIFICANT, WHICH WILL NOT BE USED FOR

COMPARISON. VALUES IN BOLD INDICATE THE BEST MODEL FIT IN EACH CASE

III. RESULTS

A. Responses of RSI and NCI to Aridity

According to the AIC (see Table I) and the significance of
coefficient a (see Table S2 in the Supplementary Material) of
the models, the quadratic polynomial model was best for fitting
the response of B1_WSA, B3_WSA, B4_WSA, B5_WSA,
NDVI, and NCI to aridity during the first sampling date
(see Table I and Fig. 2). The linear model, however, was a
better fit to the relationships between B2_WSA and B7_WSA
and aridity (see Table I and Fig 2). None of the models
tested significantly fit the response of B6_WSA to aridity (see
Table I). Similar results were obtained when analyzing data
from the second sampling date, except that the best model was
quadratic polynomial for the response of B7_WSA to aridity
(see Table I and Table S2 and Fig. S1 in the Supplementary
Material).

B. Characteristics of the RSI–NCI Relationship

For the models fitting the relationships between visible albe-
dos (BI_WSA, B3_WSA, and B4_WSA) and NCI, the coef-
ficient a in the linear and logarithm models was significant
(p < 0.5) at most aridity levels except around 0.8 [see
Fig. 3(a)–(f)]. The a values obtained from quadratic poly-
nomial and logistic models exhibited significance at small
portions of the aridity range evaluated. For the models fitting
the relationship between NDVI and NCI, a in the linear and
logarithm model was significant at almost all aridity levels for
both sampling dates. These results indicated that the linear
and logarithmic models were better than quadratic polyno-
mial and logistic models to fit the RSI–NCI relationships
in the moving window along the aridity gradient evaluated.
We further compared the AIC values obtained from linear
and logarithmic models in each moving window. The absolute
value difference was lower than 2 (see Fig. S3 in the Sup-
plementary Material), which indicated that the performance
of the two models was similar. Considering that the linear
model is simpler and easier to interpret, we selected this
model as a suitable one to describe RSI–NCI relationships
along the aridity gradient evaluated. For the coefficient a in

the models fitting the relationships between infrared albedos
(B2_WSA, B5_WSA, B6_WSA, and B7_WSA) and NCI, they
were all not significant at most aridity levels (see Fig. S2 in the
Supplementary Material). Therefore, we excluded the infrared
albedos in further analyses of our data.

C. Aridity Thresholds Identified in the Relationships
Between RSI and NCI

The response of the linear relationships between RSI and
NCI, quantified using the Spearman correlation coefficient,
to changes in aridity was apparently nonlinear at both sampling
dates (see Fig. 4). The use of segmented regression revealed
the presence of three aridity thresholds in the relationships
between RSI and NCI (see Fig. 4). The slopes and intercepts
both showed significant differences before and after each
threshold (p-value <0.01 using a Mann–Whitney U test). The
first threshold exhibited a wide range, as it was found at aridity
values from 0.44 to 0.60; the second and third thresholds were
found around aridity values of 0.69 and 0.82, respectively
(see Fig. 4). The relationships between NCI and the visible
albedos were not significant around the third aridity threshold
(i.e., 0.82).

IV. DISCUSSION

A. Models Fitting the RSI–NCI Relationships

Our results showed that both RSI (B1_WSA, B3_WSA,
B4_WSA, B5_WSA, and NDVI) and NCI showed nonlinear
responses to aridity at both sampling dates. This is consistent
with a recent report showing that multiple functional and
structural ecosystem attributes exhibited nonlinear responses
to aridity across global drylands [39]. The nonlinear responses
indicated that aridity thresholds may exist in B1_WSA,
B3_WSA, B4_WSA, B5_WSA, NDVI, NCI, and, most impor-
tantly, in their relationships, a response not reported before.

We also found that the linear model was the best model
fitting the RSI–NCI relationship at most aridity levels. This
agrees with results from recent research reporting that albedo
metrics derived from MODIS had a significant linear relation-
ship with multifunctionality indices related to carbon, nitrogen,
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Fig. 2. Responses of RSIs and NCI to aridity using data from the first sampling date (2008–2013). Colored solid lines represent the fit by the best model.
The responses of B1_WSA, B3_WSA, B4_WSA, B5_WSA, NDVI, and NCI to aridity are fit by the quadratic polynomial model, and those for B2_WSA
and B7_WSA are fit by the linear model. B1_WSA, …, B7_WSA are WSAs at band1, …, band7 of MODIS, respectively. See Fig. S1 in the Supplementary
Material for results from the second sampling date (2014–2018).

and phosphorus cycling in global drylands [26]. NDVI has
been commonly used as the surrogation of the ecosystem
functions due to its close relationship with above-ground
net primary productivity [65]–[67]. In addition, both visible
albedos and NDVI have been found to be correlated with
vegetation cover [21], which has been reported to be a key
driver of ecosystem function across Patagonian drylands [68].
Therefore, it is not surprising that linear models properly fit

the relationships of visible albedos and NDVI with NCI at
most of the aridity levels evaluated. However, the models
fitting the relationships between infrared albedos and NCI
were not significant at most aridity levels (see Fig. S2 in the
Supplementary Material). This result also agrees with previous
findings showing nonsignificant correlations between infrared
albedo and surrogates of carbon and nutrient cycling across
global drylands [26].
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Fig. 3. p-values of the parameter a in the models fit between RSIs and NCI along the aridity gradient evaluated. The linear (red line) and logarithm (blue line)
models almost overlapped because they had a very similar performance. The black dash lines indicate a p-value of 0.05. T1 and T2 represent data from the
first and second sampling dates, respectively. B1_WSA, B3_WSA, and B4_WSA are WSAs at band1, band3, and band4 of MODIS, respectively.

B. Aridity Thresholds Should Be Considered When
Employing Remotely Sensed Indicators to
Evaluate Ecosystem Functions

It has been reported that aridity thresholds exist in var-
ious ecosystem processes in drylands [39], [69], [70]. Our
results demonstrated that three aridity thresholds existed in the

relationships (quantified by the Spearman correlation coeffi-
cients) between RSI (e.g., visible albedo and NDVI) and NCI.
The first aridity thresholds exhibited a wide range from 0.44 to
around 0.60, which covers the threshold value of 0.54 identi-
fied by Berdugo et al. [39] for multiple vegetation attributes
(photosynthesis and leaf nutrient content) across global dry-
lands. The second and third thresholds were around the aridity
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Fig. 4. Aridity thresholds identified in the correlations between RSIs and NCI. Colored solid lines represent the linear fits at both sides of each threshold.
The black dashed lines indicate the significance level of correlation coefficients (p < 0.05). T1 and T2 represent data from the first and second sampling
dates, respectively. B1_WSA, B3_WSA, and B4_WSA are WSAs at band1, band3, and band4 of MODIS, respectively.

of 0.69 and 0.82, respectively. These thresholds are consistent
with the results of other studies exploring the response of
ecosystem properties to aridity in drylands. For example,
soil fertility, plant nitrogen content, and biotic interactions
show sharp declines at aridity values around 0.7 [39]; plant
cover, albedo, vegetation spatial patterns, nitrogen turnover
rates, and mechanisms driving the structure of plant com-
munities all show sharp changes at aridity values around
0.8 [33], [39], [69].

The presence of these three aridity thresholds indicates that
the RSI–NCI relationships change drastically along the aridity
gradient observed in Patagonian drylands. Therefore, we sug-
gest that these nonlinearities determined by aridity should be
incorporated when evaluating the relationships between RSI
and surrogates of ecosystem functioning measured in situ.
Our results show that both linear and nonlinear relationships
between NCI and the albedo metrics used were not significant
around aridity value of 0.82. This indicates empirical models
(e.g., random forests models and partial least-squares regres-
sion) employing only albedos/reflectance as predictors, such as
those reported by Vågen et al. [35], Vaudour et al. [71], and
Castaldi et al. [72], should be revised in regions with similar
aridity level.

The mean time difference between the twice sampling
dates was about six years. Both RSI and NCI had high
temporal relative changes in some filed sites (see Fig. S4 in
the Supplementary Material). However, the three aridity
thresholds, particularly the second and third ones, exiting
in RSI–NCI relationship were similar in the two dates.
This further indicates that the aridity thresholds that we

found from spatial gradients were maintained during the time
frame evaluated, something that adds robustness to the results
observed.

V. CONCLUSION

To explore whether aridity thresholds exist in the rela-
tionships between ecosystem functioning and RSI, we linked
NDVI and seven narrowband albedos derived from MODIS
to NCI using field data from 235 sites located in Patagonia,
Argentina, covering a wide aridity gradient. We found both
RSI and NCI responded nonlinearly to aridity. We further
employed four linear and nonlinear models to fit the RSI–NCI
relationships in a moving window along the aridity gradient
evaluated and found that the linear model was optimal at
most aridity levels. By using segmented regressions, we finally
identified three aridity thresholds existing in the RSI–NCI
relationships, which indicates that these relationships change
drastically along the aridity gradient evaluated. Particularly,
relationships between NCI and albedos were all not significant
around the threshold of 0.82, which implies that empirical
models employing only albedos/reflectance as inputs could be
disputed in regions with high aridity. It is important to note
that our results were maintained regardless of the sampling
date considered. Our findings indicate that aridity thresholds
should be considered when assessing ecosystem functioning
using RSIs and are useful for improving the effectiveness
of their use to monitor and predict changes in ecosystem
functioning across large environmental gradients, such as those
found across Patagonia.
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