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Abstract— Cloud detection is of great significance for the
subsequent analysis and application of remote-sensing images,
and it is a critical part of remote-sensing image preprocessing.
In this article, we propose a cloud detection method using con-
volutional neural networks based on cascaded feature attention
and channel attention (CFCA-Net). The CFCA-Net uses cascaded
feature attention module (CFAM) to enhance the attention of the
network toward important color feature and texture feature. The
CFAM cascaded the color feature attention and texture feature
attention module in the encoder. The CFAN-Net also uses channel
attention to highlight the important information in the channel
dimensions. The attention module is based on multi-scale features
and uses dilated convolution with different dilation rates to obtain
information about multiple receptive fields. Moreover, a loss
function combined quadtree and binary cross-entropy (BCE) was
also introduced to make the network focus on the edge of cloud
area. We validated our CFCA-Net on the Gaofen-1 wide field-
of-view (WFV) imagery dataset. The experimental results show
that the CFCA-Net performs well under different scenarios, and
its overall accuracy reaches 97.55%. Moreover, subjective cloud
detection results also prove the effectiveness of our algorithm.

Index Terms— Attention mechanism, cascaded feature atten-
tion, channel attention, cloud detection, loss function, quadtree
segmentation.

I. INTRODUCTION

W ITH the development of satellite remote-sensing
technology, a large number of high-resolution

remote-sensing images have been used widely in marine
pollution monitoring, urban planning, agricultural monitoring,
and other fields. However, the occlusion of clouds is inevitable
in satellite images, as the clouds cover more than 60% of the
earth’s surface area [1]. Most satellite sensors cannot penetrate
the clouds, and the cloud occlusion in remote-sensing images
affects the extraction and application of remote-sensing image
data significantly. Therefore, cloud detection, as an important
step of remote-sensing image preprocessing, is crucial in
various application fields of remote-sensing image.
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Over the years, researchers have studied much about cloud
detection methods. It is known that the traditional cloud
detection method relies on the physical characteristics of
the cloud and sets the threshold based on it. The cloud
detection method based on physical characteristics studies
mainly the reflectivity of clouds in different bands and the
relationship between them (such as the ratio of reflectance
between two bands, etc.). Using the difference between the
physical characteristics of the cloud area and the non-cloud
area, a better detection effect can be achieved by setting
thresholds for the specific physical characteristics. In 1993,
Rowssow and Garder [2] set thresholds in the near-infrared
and visible light bands and proposed an International Satellite
Cloud Climatology Project (ISCPP) cloud detection algorithm.
Targeting the Landsat-7 remote-sensing data, Irish et al. [3]
proposed an automatic cloud cover assessment (ACCA) algo-
rithm. This method uses the multi-spectral and thermal infrared
band reflection characteristics of the Landsat7 remote-sensing
data to obtain cloud masks and non-cloud masks. This method
is improved and also used in Gaofen-1 satellite imagery [4].
These methods use only a part of the band information about
the remote-sensing data. The F-mask considers almost all the
band information, conducts several physical tests, builds a
probability model to calculate the cloud probability of each
pixel, and can dynamically calculate the suitable threshold
[5]–[7]. Chen et al. [8] used F-mask to integrate spectral
information and contextual semantic information to improve
the detection accuracy of Landsat images. The multi-feature
combined (MFC) algorithm uses the relationship between the
reflectivity and waveband of the GF-1 remote-sensing image
and uses the aggregate and texture features to improve the
inspection results to generate the final cloud mask [9].

Some remote-sensing images contain less band information,
such as the Gaofen-1 satellite image which has only four
bands of information. For such an image, the color and
texture features are generally extracted to process the image.
An and Shi [10] designed a cloud detection algorithm based
on the least square method. This algorithm utilizes the color
features, local statistical features, texture features, and struc-
tural features of the image. Liu et al. [11] applied a graphic
model combined with color features for cloud segmentation.
Li et al. [12] used support vector machines (SVMs) [13] to
distinguish features, including brightness features, texture fea-
tures, and average gray-level co-occurrence matrix (GLCM)
[14], [15]. Shi et al. [16] used scale-invariant feature transform
(SIFT) [17] and RGB features as the key features to evaluate
whether a super-pixel [18] is a cloud. These methods extract
the brightness, texture, and other variable features of image
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pixels to obtain the cloud masks. However, these methods are
not robust to images of extraordinary underlying surfaces (such
as ice and snow).

In recent years, neural network methods have been used
widely in the field of image processing and have achieved good
results in object detection, classification, and segmentation.
Remote-sensing image cloud detection tasks are categorized
under semantic segmentation. The deep learning methods for
cloud detection can avoid manually designing features and
dig out more potential features. Key and Barry [19] took
the lead in applying neural networks to cloud detection in
remote-sensing images. Bankert [20] and Jianhua [21] used
artificial neural networks and probabilistic neural networks,
respectively, for Advanced Very High Resolution Radiome-
ter (AVHRR) cloud detection. These two models have a great
detection effect on thin clouds and thick clouds and have
good stability in complex scenes. In deep learning methods,
multi-scale features are widely used. Xie et al. [22] performed
super-pixel segmentation on the remote-sensing image to
be detected, used a convolutional neural network to extract
multi-scale features from the super-pixel, and divided the
pixels into cloud pixels and non-cloud pixels. Ji et al. [23]
used cascaded convolutional neural networks to integrate cloud
detection and cloud removal frameworks and used multi-scale
aggregation to detect clouds and shows. Luotamo et al. [24]
used multi-scale information and cascaded two CNN mod-
els to deal with undersampled and full-resolution images.
Jeppesen et al. [25] suggested a cloud detection deep learning
model for remote-sensing images based on the convolutional
neural network model. Segal-Rozenhaimer et al. [26] proposed
a domain-adaptive method based on CNN. This method can
better adapt to different satellite platforms in the prediction
step without the need to train each platform separately, which
improves the robustness of multiple remote-sensing platform
predictions. The deep learning methods can also handle sit-
uations such as missing information, no clouds labels, and
so on. SAGAN used a semi-supervised algorithm to achieve
cloud detection, requiring only a small number of image-level
tags [27]. For thumbnails with missing resolution and spectral
information, CDnet used feature pyramid module (FPM) and
boundary refinement (BR) block to effectively extract cloud
masks [28]. CDnetV2 had further improved the detection
results of images with coexisting clouds and snow [29]. The
main advantage of deep learning is the diversity of feature
learning and the ability to learn in-deep features. The deep
convolutional neural network can extract various features such
as spatial features and spectral features.

However, most methods pay more attention to regional accu-
racy and less to boundary quality, which lead to the blurred
boundary in the detection results [30]. In cloud boundaries and
thin cloud areas, cloud information and underlying surface
information are mixed. Due to the complexity and diversity
of the underlying surface, it is very difficult to detect the
boundaries and thin cloud areas accurately. In the face of this
situation, it is unrealistic to only rely on increasing the width
and depth of the network to solve it.

We have done a lot of research on cloud detection.
We first consider using the multiple features of ground objects.

We found that the texture difference between cloud and ground
objects is very obvious, which is very effective for improv-
ing the accuracy of cloud detection. The multi-scale image
decomposition based on the domain transform filter were used
to extract the texture features of ground objects [31]. Then,
we combined the color and texture features of remote-sensing
images to design cloud detection methods [32]. Compared
to the traditional algorithms, the deep learning method has
significantly improved the detection performance. We noticed
the development of deep learning and used convolutional
neural networks for cloud detection. We designed a Gabor
transform layer in the encoder–decoder network to extract
texture features [33]. This network also combined with the
attention module and achieved a good cloud detection effect. In
the AUDI-Net [34], we proposed the Up-Down block and used
wavelet transform, which significantly improves the density of
thin cloud detection. However, the Up-Down block takes up
a lot of parameters and calculations. In [35], we studied the
lightweight network and achieved great performance with a
smaller amount of parameters.

Through previous research, we found that color and texture
features are very effective in cloud detection. The effective
extraction and utilization of these features can often improve
the performance of cloud detection. It has achieved good
detection results on public dataset and also has a lighter
network structure compared with addition input, up and down
block implant network (ADUI-Net).

We have proposed a network for cloud detection, which
contains cascaded feature attention module and channel atten-
tion module, named CFCA-Net. The CFCA-Net is built
on the encoder–decoder structure. It has achieved good
detection results on public dataset, it also achieved good
detection results on thin cloud and the boundary of the
cloud. And also has a lighter network structure compared
with ADUI-Net. Our contributions include the following three
parts.

1) We designed a cascaded feature attention mod-
ule (CFAM) to enhance the useful spatial information
of the multi-scale feature maps and suppress invalid
information. This module extracts color features and
texture features giving better results in remote-sensing
images with fewer bands. We used dark channel prior
to assisting the extract color feature, and nonsubsam-
pled contourlet transform (NSCT) to assist the extract
texture feature.

2) We sketched a channel attention module on the decoder
to carry out the screening of characteristic channels.
Our channel attention module uses dilated convolution
with different dilation rates to obtain information about
multiple receptive fields.

3) We designed a loss function based on quadtree segmen-
tation. This loss function pays attention to the part of
the detection results that has large edge changes and is
difficult to distinguish. The similar points in the entire
large area are finally replaced with single values, which
reduce the proportion of the simple samples in the loss
function compared to using all points to iterate the loss
function.
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II. BACKGROUND

A. Encoder–Decoder Structure

In the field of semantic segmentation, the encoder–decoder
structure is widely used and has achieved great results. The
fully convolutional network (FCN) [36] introduced an end-
to-end fully convolutional neural network structure for seman-
tic segmentation. Unet [37] introduced skip connection and
achieved good results. SegNet [38] applied the pooling layer
result from the encoder to the decoder that introduced more
encoding information.

DeepLab series proposed atrous spatial pyramid pool-
ing (ASPP), which combines information at different
scales [39]–[42]. DeepLabV3+ introduces a decoding module
based on DeepLabV3, which further integrates the low-level
features with the high-level features and improves the accuracy
of the segmentation boundary.

B. Dilated Convolution

In order to expand the receptive field, there are usually
two methods, one is to increase the size of the convolution
kernel, and the other is to use a pooling operation. The
pooling layer is an important structure in deep learning that
can further extract abstract features and expand the receptive
field. However, the large convolution kernel will increase
the amount of calculation, and the pooling operation will
inevitably reduce the resolution and cause the loss of detailed
information. Dilated convolutions proposed to use dilated
convolution to avoid the decrease in resolution and proposed
a “context module” to aggregate multi-scale information [43].
Dilated convolution is realized by inserting spaces between the
elements of the convolution kernel. This method of increasing
the receptive field has a good effect while connecting multiple
dilated convolutions [44]. The DeepLab series uses dilated
convolutions, among which DeepLabv2 and DeepLabv3 study
the effectiveness of dilated convolution in parallel and series
for extracting multi-scale information [39]–[42].

C. Attention Mechanism

The attention mechanism resulted from human visual cogni-
tive science. Scientists discovered that when humans perform
visual tasks such as reading and observation, they pay more
attention to the detailed information of the target area and
suppress other useless data. The attention mechanism in deep
learning is similar to this mechanism. The basic idea is to make
the model focus on the important features and ignore those
that are not important. The results of attention are generally
displayed in the form of probability maps or probability feature
vectors. Squeeze-and-excitation networks (SE-Nets), proposed
by Hu et al. [45], use the SE module to realize the weight
learning of feature maps of different channels. Woo et al.
[46] proposed convolutional block attention module (CBAM)
that combines spatial and channel attention. The attention
mechanism is very effective in target detection [47], [48],
image segmentation [49]–[51], super-resolution [52], [53], and
other fields which can improve the effectiveness of the model.

D. Nonsubsampled Contourlet Transform

Da Cunha et al. [54] proposed the NSCT. NSCT not only
has the multi-resolution and time-frequency local characteris-
tics of the wavelet transform, but also has multi-directivity
and anisotropy, which can well represent the texture, edge
direction, and other information in the image. The NSCT is a
transformation based on the non-subsampled pyramid (NSP)
and the non-subsampled direction filter bank (NSDFB). First,
the NSP decomposes the input image in a tower shape
and decomposes it into two parts, high-pass and low-pass.
Then, the NSPFB decomposes the high-frequency sub-band
into multiple directional sub-bands, and the low-frequency
part continues to decompose as above. The NSP uses
a translation-invariant filter structure to achieve the filter
function.

Using NSCT to extract the texture information of the image
for segmentation is conducive to improving the performance
of image segmentation [55], [56].

III. METHOD

A. Overview

We use the encoder–decoder structure as the framework
of the cloud detection network model and introduce the
attention mechanism. The backbone of the CFCA-Net is
similar to the existing encoder–decoder network models. The
overall network framework of the CFCA-Net, in this article,
is composed of two parts: encoder and decoder. The encoder
encodes the entire input image, expands the number of feature
map channels of the image gradually, and obtains features of
different scales through the pooling structure. Each step of the
encoding end comprises two consecutive convolutional layers
and a maximum pooling with size of 2 × 2. Each convolutional
layer uses a convolution operation with a kernel size of 3 × 3
and ReLU linear correction unit. The maximum pooling is
used to down-sample the feature map; in each down-sampling
step, the number of feature channels will be doubled. Contrary
to the encoding side, the decoding side is needed to restore
the feature map to the size of the input image. Hence, each
step of the decoder includes up-sampling and convolution with
kernel sizes of 3 × 3. To make up for the loss of information
in the sampling process, the feature map of the corresponding
scale at the encoder is connected to the decoder through skip
connection, and the feature information is shared with the
decoder. Finally, we used 1 × 1 convolution and Sigmoid
activation function to get the final prediction result.

Table I shows the structure of basic encoder–decoder net-
work of CFCA-Net. In the table, (×2) means that there are
two layers with the same structure.

The ground objects in the remote-sensing image are com-
plicated, and too many invalid features affect the performance
of the cloud detection model. The introduction of the atten-
tion module can enable the network to learn the compelling
features of the cloud region, reduce the learning of invalid
features such as ground objects, and improve the effectiveness
of feature extraction and the accuracy of the cloud detection
model. We used the CFAM in the encoder to emphasize the
color, texture, and other related features of the cloud area while
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Fig. 1. Structure of CFCA-Net.

TABLE I

STRUCTURE OF BASIC ENCODER–DECODER NETWORK

ignoring the invalid features of the non-cloud area. As shown
in Fig. 1, we used the cascaded attention module at each
scale of the encoder to form continuous multi-scale cascaded

feature attention. In this way, the information loss caused
by down-sampling can be effectively compensated, and the
feature map of the next level can be guided to make it pay
more attention to the color features and texture features to
preserve the features of the cloud area.

On the decoder, after multiple convolutions and pooling
operations, a multi-channel feature map containing complex
information is generated. The feature map of each channel is
a component extracted from the original image that contains
different feature information. Some channels contain more
features that can highlight the cloud area, while some do
not. The channel attention mechanism is a good feature map
screening mechanism. The channel attention mechanism is
often to mine the correlation of data from itself [45], [46],
[57]. However, according to the characteristics of the cloud
detection encoder–decoder network in this article, we sketched
a channel attention module that uses the feature map of
the encoder to guide the feature map of the decoder. As
shown in Fig. 1, because of the symmetrical structure of the
encoder–decoder network, it is necessary to perform multiple
up-sampling operations on the network at the decoder. In the
process of up-sampling, the number of feature map channels
decreases gradually. Hence, we used the channel attention
module before the up-sampling process of the decoder to retain
the channels that can highlight the features of the cloud area
in the feature map.
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The overall performance of the model is affected by both the
network structure and the design of loss function [58], [59].
A proper loss function can make the model converge faster
during the training process, and the obtained model also has
a more reliable prediction performance. Therefore, choosing
a suitable loss function is also extremely important for the
development of the model. In the semantic segmentation of
the ordinary images, the cross-entropy loss function and Adam
optimization algorithm are used to train the model to achieve
better results [60], [61].

In remote-sensing images, cloud areas and non-cloud areas
often occupy a large portion which is easier to identify.
However, the boundary between the two is mostly thin clouds,
extremely difficult to detect. Therefore, for cloud detection
networks, we hope that the network can be more accurate in
the edge detection of cloud and non-cloud areas. Quadtree
image segmentation is used widely in image processing appli-
cations to locate regions of interest [62]. The cloud mask of the
cloud detection network is a result of pixel-level binarization.
This article designs a selective guided loss function for the
quadtree classification. Through quadtree segmentation of the
cloud mask, we determine which parts are more heterogeneous
than other parts, and let the loss function focus on the edges
that are difficult to distinguish. In the network training process,
we adopt a combination of the cross-entropy loss function
and quadtree loss, so that the loss function can focus on the
indistinguishable parts of the edge, while also considering the
overall prediction results.

B. Cascaded Feature Attention
The traditional cloud detection methods extract several

texture features and color features to improve the performance
of cloud detection. Compared to the conventional cloud detec-
tion methods, deep-learning-based cloud detection methods
generate functions that map the input data to predicted cloud
masks by using statistical analysis of the training set. The
cloud detection method based on deep learning does not rely
on prior knowledge but autonomously learns relevant features
through the network. This process relies on a large number
of training datasets and enormous computing power support.
If we can guide and add prior to the network training, we can
make the network’s feature learning ability stronger. We used
traditional methods to extract the color and detail texture
features of the cloud layer and generated attention weights to
add to the cloud detection network. It would help the network
to pay more attention to these features and enhance the ability
of feature learning.

In this section, we explain the cascaded attention module
in detail. As shown in Fig. 2, the cascaded attention module
contains two sub-modules, the color feature map attention
module and the detail texture feature map attention module.

1) Color Feature Attention: The color feature is one of the
most significant visual features of an image, and the color
feature has a strong correlation with the scene displayed.
In addition, the color feature has a small effect on the size,
direction, and viewing angle of the image itself; hence, it is
more robust. He et al. [63] found that for most distant
images, there will always be some pixels (called dark channel

Fig. 2. Structure of cascaded feature attention module (CFAM).

pixels) that contain a very low pixel value in the three-color
channel components. It can be seen from Fig. 3 that the
cloud area of the dark channel image is still bright, while
the non-cloud area is very dark, similar to the ground truth.
Upon extraction of the original image from the dark channel
feature, the attention feature map is extracted through the
color feature map attention module. This is because the clouds
generally have a higher reflectivity in the visible light band.
Therefore, we extracted the dark channel features of the image
and constructed the color feature map attention module. The
dark channel extraction method is shown as follows:

fdark(x, y) = min
c∈[r,g,b] f (x, y, c). (1)

In the above formula, fdark(x, y) is the dark channel image.
And f (x, y, c) is the original remote-sensing image, which
has three visible bands.

The structure of the attention module of the color feature
map is given in Fig. 4, which can be expressed as follows:

fC−Dilated = D
rate∈{1,3,5}

{C[A( fC), M( fC )]} (2)

fC−Att = Conv{C[ fC−Dilated]} (3)

fC−OUT = Conv{Conv{Sigmoid{ fC−Att} × fE } + fE }. (4)

First, the dark channel feature map fC is compressed in the
channel dimension, and the average pooling and maximum
pooling are performed, respectively, in the channel dimen-
sion, and the maximum and average values on the channel
are extracted. Next, three dilated convolutions with different
dilated rates are connected in parallel to further extract color
features. By using dilated convolution, the receptive field
can be increased without reducing the image resolution and
increasing the amount of calculation. Different receptive fields
are concatenated in the channel dimension, and after the
convolution and Sigmoid activation, feature fusion is realized,
and the attention weight of the color feature map fC−Att is
obtained. We used the attention weight obtained from the color
feature map to guide the encoder. Multiplying the feature map
pixel by pixel with the feature map at the encoder fE and
fC−Att , we obtained a feature map with assigned weights. For
the module to maintain the original encoding end information,
the feature map after the attention weight assigned is subjected
to convolution learning and then added to the original encoding
end feature map and convolved to obtain the output of the
attention module fC−OUT.

2) Texture Feature Attention: The texture feature describes
the surface properties of a scene corresponding to the image.
It is expressed by the gray-scale spatial distribution of the
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Fig. 3. Comparison of (a) original image, (b) ground truth, and (c) dark channel image.

Fig. 4. Structure of color feature attention module. The feature map with color gradient in the figure indicates that it is weighted by attention, and the deeper
color indicates the part that needs pay more attention.

pixels and their surrounding spatial neighborhoods, reflecting
the slowly changing or periodically changing surface structure
organization and arrangement properties of the surface of
the object. High-resolution remote-sensing satellite images
show rich and detailed information due to their high res-
olution. As most of the particles that make up the cloud
layer are similar and have uniform radiation characteristics,
the cloud area in the remote-sensing image is generally
smooth, with small gray value changes, strong continuity, and
similar texture characteristics. However, the texture details
are more obvious because of the complex distribution of
the ground features. In remote-sensing images, texture infor-
mation is an important feature for identifying the cloud
and non-cloud areas. Therefore, the effective extraction of
the remote-sensing image texture features is conducive to
the distinction between cloud and non-cloud areas in cloud
detection.

The NSCT helps to maintain the edge information and
contour structure of the image. In the cloud detection of
remote-sensing image, the NSCT can extract the edge con-
tour of the cloud area. The attention mechanism using the

NSCT extracted texture features that can help the network
identify cloud areas and non-cloud areas. Simultaneously,
it can enhance the detection accuracy of the edge of the cloud
area and improve the detection performance. In this article,
we use NSCT to perform a two-level decomposition, and set
the sub-band decomposition coefficients of each level as 2 and
4, respectively, as shown in Fig. 5.

It can be seen from Fig. 6 that the cloud area is very smooth,
while the texture characteristics of the non-cloud area are
obvious. The texture characteristics of the cloud and non-cloud
areas are very different. After a detailed texture feature is
extracted by the NSCT, the attention feature map is extracted
through the attention module of the detailed texture feature
map. The structure of the detailed texture feature attention
module is shown in Fig. 7, which can be expressed by the
following equations:

fC−Dilated = D
rate∈{1,3,5}

{C[A( fT ), M( fT )]} (5)

fT −Att = Sigmoid{Conv{C[ fC−Dilated]}} (6)

fT −OUT = Conv{Conv{ fT −Att × fC−OUT} − fC−OUT}. (7)
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Fig. 5. Structure of NSCT. The sub-band decomposition coefficients of level one is 2, and of level two is 4.

Fig. 6. Result of an image after dark channel extract and NSCT. (a) Original image. (b) Extracted dark channel image and dark channel image after NSCT.
(c) Level-1 direction-1. (d) Level-1 direction-2.

Fig. 7. Structure of texture feature attention module. The feature map with color gradient in the figure indicates that it is weighted by attention, and the
deeper color indicates the part that needs pay more attention.

The attention of the detailed texture feature map is similar
to the attention of the color feature map that extracts attention
from space. We implement a structure similar to that of the

attention module of the color feature map. The extraction
of the attention weight of the detail texture is consistent
with the attention module of the color feature map, which
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Fig. 8. Structure of channel attention module.

uses dilated convolution with different dilated rates and also
uses the Sigmoid as activation function. We use the attention
weight obtained from the detailed texture feature map to guide
the encoder. We then perform a pixel-by-pixel multiplication
operation with fT −Att and the feature map fC−OUT at the
encoder to obtain the feature map with attention weights. Since
the cloud area is relatively smooth and the texture features
are similar, the texture features of the non-cloud area are
richer, and hence, the texture attention is more focused on
the texture feature of the non-cloud. To make the network pay
more attention to the characteristics of the cloud region, the
feature map, after the attention weight is assigned, is subjected
to convolutional learning and then subtracted from the feature
map of the original encoding end to obtain detailed texture
difference information. The attention module output fT −OUT

is obtained after the convolution output.

C. Channel Attention Module

In the encoder, the original image is subjected to operations
such as convolution and pooling to generate a multi-channel
feature map containing a variety of complex information. Each
channel is a component extracted from the original image and
contains variety feature information. Some channels contain
more information, which highlights the characteristics of the
cloud area. This information is helpful for the network to seg-
ment the cloud area from the image and is the key information
for the network to complete the segmentation task. However,
in the decoding process, at the decoding end, the feature maps
of these channels are regarded as equally important, causing a
certain degree of useless information interference. We employ
the channel attention mechanism to filter these irrelevant
feature channels. For clouds with different sizes, different
receptive fields are required. Large cloud areas require larger
receptive fields to obtain richer semantic information, while
small cloud areas should use smaller receptive fields. In order
to deal with the cloud areas with different size, we use parallel
dilated convolutions to obtain different receptive fields and
capture multiscale information.

The structure of the channel attention module is presented
in Fig. 8, which can be expressed by the following formulas:

f A−Dilated = D
rate=1

( fE ) + D
rate=3

( fE ) + D
rate=5

( fE ) (8)

fCh−Att = MLP{Mp( f A−Dilated), Ap( f A−Dilated)} (9)

fCh−OUT = Sigmoid{ fCh−Att} × fD . (10)

First, the feature maps of the encoding end are, respectively,
subject to the dilated convolution with the dilated rate of
{1, 3, 5} and the feature maps of different receptive fields are
obtained. The corresponding elements of the feature maps
of different receptive fields are added together for feature
fusion. Then, global average pooling and global maximum
pooling are performed on the fused feature maps to obtain
global information on each channel. The vector generated after
using global maximum pooling and global average pooling
has the extracted high-level features. Using these two pooling
methods, models can obtain relatively rich information. The
information of these two vectors is transformed, and feature is
extracted using a fully connected layer, and after the addition,
the Sigmoid function is used for normalization to obtain
the channel attention weight. We use the attention weights
generated by the feature map of the code segment, containing
the shallow features, to guide the feature map of the decoder.
The weight extracted by the encoder is multiplied with the
feature map of the decoding end to obtain the reconstructed
feature map.

D. Quadtree-Binary (QTB) Loss Function

Binary cross-entropy (BCE) is usually used as the loss
function in binary classification tasks. The formula of BCE
is as follows:

LBCE = − 1

wh

w∑

i=1

h∑

j=1

(
yi, j log y �

i, j + (
1 − yi, j

)
log

(
1 − y �

i, j

))
.

(11)

The output of the network is normalized to 0–1 by the
sigmoid function. The pixels can be regarded as positive
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samples if the probability value exceeds 0.5. In cloud detec-
tion, the cloud pixels can be regarded as positive samples and
non-cloud pixels as negative samples.

In the cloud detection task, it is found that the large cloud
or large non-cloud areas are simple samples and are easier
to detect. For cloud detection, we hope that the network
focuses more on the edge of the cloud and non-cloud areas
because these areas are difficult to detect and often have a
greater impact on detection performance. The prediction value
of cloud pixels in these areas is about 0.5, which is the
challenge of the cloud detection task. Using BCE function
cannot converge to the optimal in a large number of simple
samples.

Based on this, we design quadtree loss. We introduce
the quadtree structure into the loss function and refine the
segmentation sub-region on the real cloud mask. The same
eigenvalues are classified into the same category after the
quadtree segmentation of the whole image is completed. Sim-
ilarly, the probability value of the prediction image is divided
into sub-regions according to the quadtree segmentation result
of the cloud mask. The formula of quadtree loss is given as

LQTk
= − 1

wkhk

wk∑

i=1

hk∑

j=1

(
yi, j log y �

i, j +
(
1−yi, j

)
log

(
1−y �

i, j

))

(12)

LQT = 1

M

M∑

k=1

LQTk
. (13)

This formula of the LQTk
suggests that after the quadtree

segmentation of the cloud mask, BCE is done for each
region, which represents the local detection accuracy between
prediction result and ground truth. These local regions are
obtained by the quadtree segmentation, and the k denotes kth
sub-regions. The LQT is the quadtree loss. M is the number of
sub-regions divided by quadtree, that is, the size of the set is
obtained by quadtree. This means that after the BCE of each
region is finished, the average of all regions is calculated.

Fig. 9 is a simple example of calculating the quadtree loss.
We first perform the quadtree segment on the mask to obtain
segmented blocks. Then calculate the cross-entropy for each
segmented block. Finally calculate the average of all blocks.
There are 16 pixels in the original image, calculated according
to the BCE. After using the quadtree loss, the final result only
needs to average the value of ten points.

The advantage of the quadtree loss is to focus the attention
of loss function on the parts with large edge changes and
is difficult to distinguish. Thus, compared with iterating the
loss function with all points, the proportion of simple samples
in the loss function is reduced. The application of quadtree
classification selective guidance loss function can enhance
the network performance effectively by drawing the network
attention to the samples that are difficult to detect.

Fig. 10 shows quadtree segmentation results of ground truth.
It can be seen from the results that the large cloud and
non-cloud areas are divided into large blocks, while the edge
area is densely distributed with many small blocks. Therefore,
when calculating the quadtree loss, the proportion of these
edge region samples in the loss function will increase.

Fig. 9. Simple example of calculating the quadtree loss.

TABLE II

GAOFEN-1 SPECTRAL BANDS

We use BCE and quadtree loss at the same time to make
the network have better convergence performance and improve
the effect of edge detection at the same time. The final loss
function is named quadtree-binary (QTB) loss; the formula is
as follows:

Lquadtree−binary = γ1 ∗ LBCE + γ2 ∗ LQT (14)

where γ1 and γ2, respectively, represent the weight of LBCE

and LQT and can be adjusted for different data. The final
loss function will automatically adjust the influence of the
samples with different degrees of difficulty. At the same time,
the integration of the entire region is equivalent to adjusting the
proportion of this type of samples, and it optimizes the prob-
lem of inter-class competition caused by the uneven proportion
among samples.

IV. DATASET AND EVALUATION METRICS

A. Dataset

The dataset used in the experiment is obtained from the
Gaofen-1 satellite. The satellite was launched in 2013 and
is equipped with two panchromatic cameras and four spec-
troscopic cameras. It can achieve an imaging width of more
than 800 km with a resolution of 16 m. The cloud detec-
tion algorithm based on Gaofen-1 data is challenging as the
wide-field of a camera carried by Gaofen-1 consists of three
visible light bands and near-infrared bands. Employing limited
spectral information to achieve better segmentation results is
very challenging and meaningful research.

We utilize the GF-1 wide field of view (WFV) dataset
provided by Li et al. [9]. This set of data includes 108 images
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Fig. 10. Quadtree segmentation results of ground truth. (a) Ground truth, (b) blocks after quadtree segmentation, and (c) quadtree segmentation results
(ground truth).

collected from all over the world. The dataset covers differ-
ent geomorphic environments, including urban, barren, snow,
vegetation, and water. The resolution of the image in the
dataset is 16 m, and there are four bands of information of
R, G, B, and NIR. Table II shows the bands and resolution of
Gaofen-1. The dimensions of each image are approximately
17 000 × 16 000 × 4. We selected 86 scenes as the training
set for the experiment and the rest as the test set.

To remove the black area around the scene, all images are
rotated and cut to 11 264 × 11 264 as the black area does not
contain any remote-sensing information and is not helpful for
feature extraction. Due to the limitation of hardware resources,
each scene is cut into 512 × 512 × 4 small pictures. In the
end, 41 624 pictures were used for training, and 10 648 pictures
were used for testing.

B. Evaluation Metrics

To evaluate the algorithm objectively, we use OA [64],
Precision [65], Recall [66], F1-Score [25], Kappa [67], and
FAR [64], [68] to evaluate the results. These metrics are
calculated by

OA = TP + TN

TP + TN + FP + FN
(15)

Precision = TP

TP + FP
(16)

Recall = TP

TP + FN
(17)

F1_score = 2 × Precision × Recall

Precision + Recall
(18)

kappa = pa − pe

1 − pe
(19)

pa = (TP + TN)

(TP + TN + FP + FN)
(20)

pe = (P ∗ (TP + FP) + N ∗ (FN + TN))

(P + N)2 (21)

FAR = FP

TN + FP
. (22)

Here, TP denotes the correct prediction of cloud pixels, TN
denotes the number of non-cloud pixels correctly identified as

non-cloud pixels, FN and FP represent the incorrect detecting
results, FP denotes the false positive outcomes, and FN denotes
the false negative outcomes. P and N denote the number of
cloud pixels and non-cloud pixels, respectively. In order to
avoid a situation where the denominator is 0, we add a very
small number � = e−10 to the term where the denominator
may be 0.

These metrics are calculated based on each large picture of
11 246 × 11 246, and the final result is obtained by averaging
all large pictures in the test sample.

C. Implementation Details
In this study, all the experiments were programmed and

implemented on Ubuntu 16.04. The implementation of the
models is based on Python 3.6 and employing Keras 2.2.4 and
TensorFlow 1.12 deep learning framework. The models are
trained and evaluated on NVIDIA GEFORCE RTX 2080 Ti.
The network uses the Adam optimization algorithm with a
learning set to 0.00001 in training stage. For the BGR-NIR
images, the batch size is set to 2, and the number of iterations
is 30. The value of pixels was normalized between 0 and 1.
In QTB loss function, γ1 = 0.9 and γ2 = 0.1, and these values
are obtained through experimental testing.

V. EXPERIMENTAL RESULT AND DISCUSSION

A. Evaluation of CFAM

We performed a series of experiments to verify the effec-
tiveness of the CFAM. We used different combinations of
the color feature attention module and the texture feature
attention module for training and testing. In order to verify
the performance of CFAM, we cascaded the color feature
attention module and texture feature attention module to
form the final cascaded feature attention network (CFAN).
In order to verify the effectiveness of color feature extraction,
we added color feature attention to the encoder and then the
attention weight was added to the coding network through
concatenate in channel dimension. This network is called the
color feature network (CFN). Then, we used texture feature
attention in the coding network to design texture feature
network (TFN). The structure of TFN is similar to CFN.
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TABLE III

QUANTITATIVE COMPARISON OF U-NET, CFN, TFN, AND CFAN

The difference is that the texture feature attention module is
used to replace the color feature attention module. We trained
and tested three networks, CFN, TFN, and CFAN, and com-
pared the results with the basic encoder–decoder network
U-Net [37]. The performance of these networks is given
in Table III.

As shown in Table III, the color feature attention module
and the texture feature attention module improve the perfor-
mance of the network significantly. Specifically, the texture
feature attention module has improved the OA and Precision.
The OA has reached 97.22%, and Precision has increased
by 4.24% compared to U-Net. In addition, F1-Score, Kappa,
and FAR have also been improved. In other words, the main
function of the texture feature attention module is to improve
the detection accuracy of cloud pixels.

As for color feature attention module, the results show
that the Recall has been improved significantly. This means
that CFN can better identify cloud pixels in cloud pixels and
non-cloud pixels correctly. This is due to the color feature
extraction based on the dark channel prior.

In the CFAN, we used both the color feature attention
module and texture feature attention module. The CFAN shows
better performance as compared to the CFN and TFN in
general. Its OA has increased to 97.35%, and F1-Score has
improved to 91.53%. Kappa also has reached to 87.31%. This
shows that cascaded the color feature attention module and
the texture attention module has a better effect, compared with
using a single module. A large number of experiments have
also proved that the proposed CFAN shows high stability.

Therefore, it can be considered that the CFAM has shown
excellent performance in the cloud detection of remote-sensing
images by extracting color and texture features.

B. Evaluation of CA

The channel attention module is used to classify useless
channel information and useful information. We used channel
attention to assist in the interpretation of information at the
decoder, so we added the channel attention module before
the up-sampling of the decoder. The network was marked as
CA-Net. We used BCE as the loss function of the network.
We compared the performance of CA-Net with U-Net.

Moreover, we compared the network performance under
different CA modules. At the decoding end, we had a total of
five feature layers, which needed to go through four times of
up-sampling and channel reduction. We controlled the number
of CA modules as {1, 2, 3, 4}. The results are mentioned
in Table IV.

TABLE IV

QUANTITATIVE COMPARISON OF CA-NET WITH DIFFERENT
NUMBERS OF CA MODULE

The results proved that the model performs better as the
number of channel attention module increases. When the CA
modules are used before all up-sampling, the OA of the
network reaches 97.31%, and the F1-Score reaches 90.17%. At
the same time, FAR remains at a low level. This indicates that
our proposed CA module can assist the decoder to interpret
the information.

C. Evaluation of CFCA-Net
The CFCA-Net is based on the encoder–decoder structure,

constructing the Dark&NSCT subnet on the encoder, using the
multi-scale CFAM, and adding the channel attention module
on the decoding end. The Dark&NSCT subnet extracts the
color and texture features and injects the CFAM to the encoder
to pay more attention to color and texture features. The
channel attention module strengthens the fusion of the channel
dimension information at the decoder. The QTB loss function
and the BCE loss are also compared.

To verify the performance of the proposed CFCA-Net,
we compared our algorithm with other centralized algorithms,
including SegNet [38], DeepLab v3+ [42], RS-Net [25], and
our previously proposed ADUI-Net [34].

1) Analysis of CFCA-Net: Fig. 11 shows the detection
results of this method and comparison algorithm in different
land-cover scenarios. We selected five representative scenes:
urban, water, barren, snow, and vegetation. From the area
marked by the red box in the figure, it can be seen that
our algorithm shows better thin cloud detection performance.
In the scene in the first column, a thin cloud on the left side
of the image is seen, which looks such as a mountain range.
Our algorithm detected this area.

In the water scene in the second column, there is a thin cloud
at the top of the picture, visually indistinguishable from the
underlying water. It can be seen that the comparison algorithms
have different degrees of missed detection; ADUI-Net is over-
detected, and our algorithm has a better detection performance.

In the snow scene presented in the fourth column, there are
a large number of thin cloud areas, and only ADUI-Net and
the method in this article have detected those thin cloud areas.
The thin clouds do not completely cover the background of the
ground objects, so they are easily confused with the underlying
surface, and the detection is extremely difficult. It thus reflects
the strong, thin cloud and edge detection performance of our
algorithm.

Especially in the third scene and the last scene, we can
see a thin cloud in the area marked by the blue frame in the
RGB image. Due to the contrast of colors on the underlying
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Fig. 11. Visual comparisons of the detection results. (a) Input images, (b) ground truth, and detection results obtained by (c) SegNet, (d) DeepLabv3+,
(e) RS-Net, (f) ADUI-Net, and (g) our CFCA-Net.
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Fig. 12. Comparison of detection result obtained by BCE loss and QTB loss. (a) Original image, (b) ground truth, and results from (c) BCE loss, and
(d) QTB loss. In (c) and (d), the cyan pixel indicates the pixel (TP) that is correctly detected as a cloud, the black pixel indicates the pixel that correctly
detects the non-cloud (TN), and the yellow pixel indicates that the non-cloud pixel is incorrectly detected as a cloud pixel (FP), the purple pixel indicates that
the cloud pixel is incorrectly detected as a non-cloud pixel (FN).

TABLE V

QUANTITATIVE COMPARISON WITH OTHER METHODS ON

THE TESTING SET

surface, it is difficult to distinguish the boundary of the cloud,
even with the naked eye. Our algorithm detected the thin
cloud area correctly. Compared with ADUI-Net, the detection
performance of thin clouds has been further improved owing
to the use of NSCT and quadtree binary loss in this method.

The metrics performance of these networks are described
in Table V. It can be found that after using QTB loss, the OA
is increased by 0.1% and the Precision is increased by 0.61%
compared with BCE. This shows that QTB loss can effectively
improve the accuracy of cloud detection models.

2) Analysis of QTB Loss: Fig. 12 shows the detection results
obtained by QTB loss and BCE loss. As shown in Fig. 12(1c),

it can be seen that BCE loss has a lot of false detections
in the edge area. Compared with Fig. 12(1a), it can be
seen that the edge of the cloud is blurry. Especially in the
lower left corner, the boundary between the edge and the
underlying surface is not clear. After training with the QTB
loss, it can be seen from Fig. 12(1d) that the false detection
of the edge has decreased. Most of the edges have good
detection results, although there still a small range of false
detections at some edges. This means that QTB loss can
improve the cloud detection effect in the edge area. In the
case of thin cloud, as shown in Fig. 12(2a), the underlying
surface information is mixed with the cloud, and it is difficult
to distinguish. The model trained with BCE loss failed to
detect this cloud area, as shown in Fig. 12(2c). The model
trained with QTB loss detected this thin cloud. As shown
in Fig. 12(2d), although there are still false detection at the
edge of the thin cloud, the main part of the cloud is correctly
detected.

Fig. 13 shows the convergence during the training.
As shown in Fig. 13, the convergence speed of QTB loss in
the first few epochs is significantly higher than that of BCE
loss, and the final OA is also higher than that of BCE loss.
Therefore, we can conclude that QTB loss can improve the
detection effect of thin clouds and edges and improve the
convergence speed.

We also compared the cloud detection results in various sce-
narios, as mentioned in Table VI. From these results, we can
see that the proposed algorithm has a better performance in
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Fig. 13. Comparison of the convergence speed of loss between BCE loss and QTB loss. The basic network is CFCA-Net.

Fig. 14. Comparison of parameters with other methods.

most scenarios, and the performance of some scenarios is
slightly worse than ADUI-Net. However, the overall perfor-
mance on the entire test set is better than ADUI-Net.

At the same time, because the ADUI-Net uses Up-Down
blocks with numerous parameters, the network has a huge
number of parameters and calculations. To evaluate the
complexity of the network, we counted the parameters and
floating-point calculations of the model, as shown in Table VII
and Fig. 14. The parameters of RS-Net and SegNet are small,
but due to the simple model, the detection performance is
not outstanding. DeepLab v3+ used ASPP, and therefore
the parameters are relatively large. However, the detection
performance is not good, which shows that merely increasing
the complexity of the network cannot improve the performance
of cloud detection. ADUI-Net designed the Up-Down block
and wavelet transform to extract the texture characteristics of
the cloud according to the characteristics of the cloud, showing
high detection performance. Because the Up block and the

Down block perform a large number of convolution operations
on the feature map to extract features, this makes the amount
of network parameters increase rapidly. Our CFCA-Net also
use texture features, but our cascaded attention module uses
less convolution to effectively extract color and texture fea-
tures. Therefore, while our method achieves higher detection
performance, the amount of parameters and complexity are
still at a relatively low level. It can be seen that when our
algorithm achieves the same or even better performance than
ADUI-Net, while the parameter amount is only 30% of the
latter. Therefore, we can conclude that our method is advanced
compared with other cloud detection methods.

VI. CONCLUSION

With the development of deep learning theory, the convolu-
tion neural network, based on deep learning, has been used in
remote-sensing image cloud detection research and achieved
great results. Especially for the remote-sensing images with
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TABLE VI

EVALUATION METRICS COMPARISON IN AREAS OF BARREN, VEGETATION, SNOW, WATER, AND URBAN FOR OUR METHODS WITH OTHER METHODS

TABLE VII

COMPARISON OF PARAMETERS WITH OTHER METHODS

few spectral segments, the cloud detection method based on
deep learning can extract more useful information from limited
spectral segments with more advantages than traditional meth-
ods. However, feature extraction using convolutional neural
network carries redundant information. This information does
not help in the detection of cloud region and leads to false
detection affecting the performance of the network. In view

of the large difference of color and texture features between
the cloud region and underlying surface, this article proposes
a cascade feature attention module to extract the color and
texture features of cloud region. This article also designs a
channel attention module to remove the redundant information
and retain useful information. Moreover, this article optimizes
the loss function to improve the performance of edge detection.

For GF-1 WFV image, the multi-scale cascade feature
attention module and multi-scale channel attention model,
proposed in this article, significantly improve the detection
accuracy of thin cloud. To further evaluate the effectiveness of
the proposed algorithm, we compared SegNet, DeepLabV3+,
RS-Net, and ADUI-Net. Our algorithm shows better perfor-
mance. Experimental results show the excellent performance
of the proposed algorithm. On the Gaofen-1 WFV dataset,
the overall accuracy of our method reached 97.55%. Subjec-
tive cloud detection results also proved the effectiveness of
our algorithm.
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