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Abstract—Today, more and more velocity observations are
available online or on-demand. However, this amount of data
is complex to analyze since velocity observations span different
temporal baselines. Velocities obtained from a small temporal
baseline are close to the derivative of the displacement but are
more likely to be contaminated by noise. Velocities obtained from
a long temporal baseline approximate the mean velocity between
two dates but can be affected by temporal decorrelation. Having
short and long temporal baselines provides a data redundancy
that needs to be properly considered. In this article, we propose
a method that aims to extract short-term velocity time series
with a regular temporal sampling from all available displacement
observations. The proposed method relies on a temporal inversion
based on an improved temporal closure of the displacement
observation network. Two criteria are proposed to determine
the optimal temporal sampling to study short-term variations.
To take the unequal data uncertainty into account, the temporal
inversion is done by an Iterative Reweighted Least Square using
a well-established weighting function, without preprocessing.
The proposed method results in velocity time series with an
optimal temporal sampling, an improved temporal coverage,
reduced uncertainty and no redundancy. The studied area is
the Kyagar glacier, in the North of the Karakoram range which
is characterized by strong velocity variations originated from a
glacier surge and additional seasonal variability.

Index Terms—time series, velocity, displacement, glacier, ex-
traction, fusion, short-term variations, temporal closure network,
homogenization, inversion

I. INTRODUCTION

VElocity maps are necessary to precisely monitor ice
dynamics, to infer sub-glacial processes and/or ocean

forcing, and to derive other products such as mass-balance or
strain rates when the amount of data is sufficient. Nowadays,
many ice velocity observations derived from pairs of satellite
images are available online [1]–[3] or on-demand [4]. This
amount of data is complex to analyze since the velocity obser-
vations span different temporal baselines. Velocities covering
small temporal baselines are close to the temporal derivative
of the displacement, whereas long temporal baseline velocities
approximate the mean velocity over the considered period.
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Blanc, B.P. 80439, 74944 Annecy le Vieux Cedex FRANCE (e-mail:
laurane.charrier@univ-smb.fr; yajing.yan@univ-smb.fr; silvan.leinss@univ-
smb.fr; emmanuel.trouve@univ-smb.fr).
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Moreover, the uncertainty of velocity measurements differs.
In the case of small temporal baselines, the noise of velocity
can be larger than the velocity magnitude due to the small
displacement magnitude, while in the case of long temporal
baselines, the uncertainty mainly results from the surface
changes between image acquisitions, which induces temporal
decorrelation.

This is why some authors performed velocity data analysis
by picking small or long temporal baselines measurements
depending on their interest (e.g. small temporal baselines for
intra-annual or long temporal baselines for inter-annual stud-
ies)[5], [6]. This process implies having enough reliable data,
which cannot always be possible, especially in mountain areas.
Therefore, other authors suggested integrating a regression
function to fit displacement measurements [7] which requires a
priori knowledge or assumptions on the displacement behavior.

In this paper, we propose a temporal inversion approach
based on the temporal closure of the displacement observa-
tion network. The idea is inspired by the Small BAseline
Subset (SBAS) approach [8]–[10], originally developed for
Interferometric Synthetic-Aperture Radar (InSAR) time series.
The SBAS approach uses interferograms produced by image
pairs spanning small temporal and geometrical baselines to
minimize temporal and geometrical decorrelation. Later, this
approach has been applied to offset-tracking displacement
measurements of SAR images [11]–[13] and optical images
[14]. The SBAS approach has mostly been applied to retrieve
common reference time series, i.e., series of displacements
computed between a reference date and other dates. However,
this approach can be adapted to time series of displacements
between consecutive dates, here called leap frog time series
similar to [15]. The latter is especially interesting for fast
decorrelating targets such as glaciers.

In most papers deploying SBAS like approaches [8]–[14],
[16], authors performed a preprocessing to select the data
and to reject outliers before the inversion. They included only
data with a quality of the correlation for offset-tracking [11]–
[14] and coherence for InSAR [8]–[10] larger than a given
threshold. However, this preprocessing requires that a reliable
data quality indicator is available and threshold values are
properly defined. Still, taking the data uncertainty into account
universally remains an open issue.

Another important issue concerns the appropriate tempo-
ral baseline of the leap frog time series, namely temporal
sampling in this article. Given the coverage frequency of 12
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days of the Sentinel-1 A/B satellites over the Himalayas, the
temporal sampling can be multiples of 12 days. Depending
on the data quality, the displacement behavior, and the re-
search objective, the question arises if there exists an optimal
temporal sampling? If so, how can we determine this optimal
temporal sampling? Furthermore, when the chosen temporal
sampling is different from the satellite coverage frequency, it
happens that some available displacement measurements (i.e.
whose start date or end date are not contained in the leap frog
time series dates) are useless because of the lack of direct
link in the temporal closure formulation. What can be done
to make use of as many as possible available displacement
measurements regardless of their temporal baselines? To the
best of our knowledge, these issues have not yet been reported
in the literature.

In this article, we aim to extract, from all available displace-
ment observations, leap frog velocity time series of appropriate
temporal sampling with less noise and complete temporal
coverage. Main efforts are devoted to the aforementioned
open issues. First, an improvement of the classical temporal
closure formulation is proposed to make use of as many as
possible of the available displacement measurements. Second,
the temporal sampling length is jointly analyzed with the
signal-to-noise ratio of the retrieved velocity time series. To
discuss what can be the optimal temporal sampling, two
criteria are defined: the Root Mean Square Error (RMSE)
on stable ground and the Velocity Vector Coherence (VVC)
on moving areas. Finally, data quality is taken into account
using an Iterative Reweighted Least Square (IRLS) and a
well-established weighting function, without the need of a
preliminary selection of data. The proposed method is applied
to the Kyagar glacier, in the North of the Karakoram range.

II. STUDY AREA AND DATA

The study area is the Kyagar (Keyajir) glacier, a polythermal
glacier that showed repeated glacier surges in the past. It is sit-
uated in the North of the Karakoram range, in the Hindukusch-
Karakorum-Himalaya-Mountain chain. The terminus of Kya-
gar is located at 4750 m.a.s.l., whereas its accumulation part
extends upwards to almost 7000 m.a.s.l. The total area covered
by the glacier is about 100 km2. Three upper glacier tributaries
converge to form an 8 km long and 1.5 km wide glacier
tongue covered by huge ice pinnacles [17]. Besides, the glacier
sometimes dams the river of the Upper Shaksgam Valley,
forming an ice-dammed lake. The lake impounded behind this
ice dam is known to fill and empty repeatedly [18]–[20]. The
drainage of the lake is sometimes responsible for Glacier Lake
Outburst Floods (GLOF). The latest GLOF was observed on
August 10, 2018, with a flood discharge of 1570 m3/s [19]. A
surge of this glacier has happened from May 2014 to March
2016, leading to another GLOF in July 2015. According to
[21], velocities have appeared to evolve in a manner consistent
with a hydrologically controlled surged mechanism.

The considered data-set contains displacement observations
computed from Sentinel-1 ortho-rectified ascending images
acquired between October 14, 2014, and June 30, 2020, on
the Kyagar glacier. The displacements are generated by cross

Fig. 1. Available velocity observations. The x-axis is the central date of the
velocity observations and y-axis their temporal baseline. On the x and y-axis,
the center of each bin is 12 days apart. The values are 0 (when no velocity
observation was measured for the corresponding central date and temporal
baseline) or 1.

correlation with a correlation window size of 64x64 pixels
[21]. The horizontal posting of velocity maps is 200 m. The
temporal baselines range from 12 to 192 days. A quality
indicator is given by averaging four factors: 1) The value of the
Normalized Cross-Correlation (NCC) peak, 2) A measure of
the shape of this peak (equal to 1 if there is a clear maximum
and to 0 if there are multiple side maxima), 3) A measure
which analyzes how broad the NCC peak is (if the peak is
sharp, this factor will be equal to 1 while multiple scattered
peaks will reduce the value by the 1/average distance of the
peaks) 4) A measure of the distance between the NCC peak
calculated in the low and in the high-frequency components
of the spectrum (equal to 1 if both show the same location).

It is worth mentioning that Sentinel-1 frequency coverage
was not constant over the considered region from 2014 to
2020. In particular, between October 9, 2015 and July 7, 2017,
the time interval between two images was 24 days instead of
12 days, as shown in Figure 1.

III. METHOD

A. Improved temporal closure of displacement observation
network

The proposed method is applied on a pixel-by-pixel basis
on the set of n displacement observations dti,tj . Each dis-
placement dti,tj have a temporal baseline tj − ti between the
acquisition times ti and tj . This temporal baseline is a multiple
of the satellite coverage frequency ∆t. The key principle
relies on making use of the redundancy of the displacement
observation network to build a leap frog displacement time
series which respects the temporal closure constraint. It uses
all the available displacement observations to obtain leap frog
displacement time series with a constant temporal sampling
∆τ . ∆τ is a multiples of ∆t and can be chosen by the end-
user.
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Fig. 2. a) Illustration of the classical temporal closure of the displacement
observation network b) Illustration of the improved temporal closure of
the displacement observation network. The vector Y corresponds to the
displacement observations. The vector X stands for the leap frog displacement
time series. A is the design matrix linked X and Y in the classical temporal
closure. A′ and B are the design matrix linking X and Y in the improved
temporal closure.

The classical temporal closure formulation is Y = AX
where the vector Y contains all n displacements observation,
X represents the vector of p output displacements d̂tk,tk+∆τ ,
and A is a design matrix of dimension n× p linking X with
Y . With this design, a part of the displacement observations
dti,tj in Y can be directly linked to a sum of displacements
d̂tk,tk+∆τ from X . These linear equations are represented by
rows of A. For instance, in Figure 2, the third row establishes
the link between the displacement observation dt0,t4 and the
leap frog time series displacements d̂t0,t2 and d̂t2,t4 : dt0,t4 =
d̂t0,t2 + d̂t2,t4 . However, if one of the date ti or tj of the
displacement observation is not included in the list of dates of
the leap frog time series T = [t0, t1∗∆τ , t2∗∆τ , ..., tp∗∆τ ] (with
t0 the first date of acquisition inside the data-set), no direct
relation can be established with the classical formulation.
Hence, this displacement observation cannot be used resulting
in a row of zeros in A. For example, in Figure 2a), three
displacement observations are not used: dt0,t1 , dt1,t2 and
dt1,t4 because t1 is not contained in T = [t0, t2, t4]. The
corresponding rows contain only 0. Some information is lost.

Therefore, we propose an improved temporal closure for-
mulation by adding a design matrix B that permits to replace
the rows in A containing only zeros by linking the leap frog
displacements dtk,tk+∆τ with combinations of observation
displacements dti,tj . It makes it possible to link as many
as possible of the available displacement observations in Y

with the displacements in X . The new system is BY = A′X
where B is a design matrix of dimension n′ × n and A′ is
the design matrix of dimension n′× p, with n′ the number of
displacement combinations as specified below. For example,
in the Figure 2a), there is no relation between dt0,t1 and the
leap frog displacements, because the date t1 is not contained
in T. However, it can be established that dt0,t1 +dt1,t2 = d̂t0,t2
as illustrated in Figure 2b). In this way, solving the equation
BY = A′X leads to compute the minimized square distance
between the displacements d̂t0,t2 inferred from all possible
temporal closures.

The matrices A′ and B are designed so that each row of
the resulting system BY = A′X represents a linear equation
linking a displacement observation dti,tj , or a combination
of displacement observations, with a sum of leap frog dis-
placements d̂tk,tk+∆τ . The following four cases need to be
considered:

1) If the dates ti and tj are included in T , the linear
equation is:
dti,tj =

∑j−∆τ
k=i d̂tk,tk+∆τ

.
Hence, the row in B contains only a 1 on the diagonal
and the row in A′ is simply filled with 1 to describe
the sum of the corresponding leap frog displacements.
This is equivalent to the classical method.

2) If ti is not in T, one of the following cases is done,
with µ the smallest integer to obtain a displacement
combination matching the leap frog displacements:

a) add the smallest preceeding displacement dti−µ,ti :
dti−µ,ti + dti,tj =

∑j−∆τ
k=i−µ d̂tk,tk+∆τ

b) subtract the smallest displacement starting at ti,
dti,ti+µ from dti,tj :
dti,tj − dti,ti+µ =

∑j−∆τ
k=i+µ d̂tk,tk+∆τ

3) If tj not in T, one of the following cases is done:

a) add the smallest consecutive displacement dtj ,tj+µ :
dti,tj + dtj ,tj+µ =

∑j+µ−∆τ
k=i d̂tk,tk+∆τ

b) subtract the smallest displacement ending at tj ,
dtj−µ,tj from dti,tj :
dti,tj − dtj−µ,tj =

∑j−µ−∆τ
k=i d̂tk,tk+∆τ

4) If ti and tj not in T: both 2) and 3) are done

Applying the above cases to each of the n observed dis-
placement results in n rows of equation where A′ and B are
filled in consequence with 1, -1 and 0. As we want to use
every generated combination only once, redundant rows are
removed. So, the number of rows in A′ is n′ <= n.

B. Iterative Reweighted Least Square inversion

To solve the equation BY = A′X on each pixel, an Iterative
Reweighted Least Square (IRLS) approach is proposed. A
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regularization term on the discrete derivative of the leap frog
velocities can be added as done in [14] assuming that ice
velocities have a low temporal variability on a short time scale
(i.e. with a small temporal sampling length). Therefore, the
cost function to minimize is defined as:

arg min(||W (A′X −BY )||2 + λ||ΓX||2) (1)

where W is a n′ × n′ matrix standing for the weight given
to each value in BY , λ is a scaling constant and Γ is a p ×
p matrix representing the discrete derivative operator of the
velocities. The diagonal element of Γ are Γk,k = 1/∆τ and
the element above the diagonal are Γk,k+1 = −1/∆τ with
∆τ the temporal sampling.

The scaling constant λ should be small enough to affect
only values in X weakly constrained by the inversion [14].
This is the case when a value in X is related to only few
displacement observations in the temporal closure network or
when disconnected data subsets exist [10], [14]. This value is
set to 1 for the considered data-set.

The solution is given by the equation (2). A Singular Value
Decomposition (SVD) can also be used if the system is ill-
posed (i.e. when the rank of A is lower than p) [8]:

X̂ = (ATWA+ λΓTΓ)−1ATWBY (2)

The proposed approach includes several iterations.

1) First iteration: A first Weighted Least Square (WLS)
inversion is performed. The weight W in equations (1) and
(2) is initialized as W 0, a diagonal matrix of dimension n′ ×
n′. W 0 contains the weights applied to each combination of
displacement observations in BY . For the considered data-
set, W 0 is set according to the error propagation in BY . The
errors of the elements of Y are approximated by the inverse,
element wise, of the quality indicator vector Q. The errors
are then propagated by multiplication with |B|, where | · |
indicates the absolute values, element-wise, of B. The weight
W 0 is then set to the inverse, element wise, of the propagation
errors, i.e., W 0 = 1

|B| 1
Q

. Note, that if no data quality indicator

is available, W 0 can be initialized with the identity matrix.

2) Next iterations: Then, another least-square inversion is
performed.

Since the data quality is often not accurately known,
the residual of the first inversion provides complementary
information on the consistency of the input displacement
observations. It can be further used to refine the weight matrix
W . The classical way consists of defining the weight as the
inverse of the residual [14]. Here, a down-weight function
inspired from [22] is used to be more robust to outliers.

First, internally-studentized residuals at iteration u are de-
fined as:

Zu =
Ru

σ
√

1−Hu
(3)

where Ru is the residual vector of dimension n′ (the difference
between the reconstructed displacement observations
computed with A′X and the original combinations of

displacement observations BY ), Hu the leverages vector (of
dimension n′), i.e. the diagonal elements of the hat matrix
A(ATWA + λΓTΓ)−1ATW , ·· the element wise division

and σ =

√∑n′

i=1
Ru

2
i

(n′−p) the standard deviation of residuals.

Then, the diagonal elements of the weight at iteration u
denoted Wu = diag (Wu

1,1, ...,W
u
m,m, ..,W

u
n′,n′) are updated

as follow:

Wu
m,m = ψ

(
1

W 0
m,m

Zum, c

)
(4)

where ψ, the Tukey’s biweight function, which is a common
down-weight function [22] robust to large outliers, is:

ψ(z, c) =

{
[1− (z/c)2]2, |z| < c

0, |z| > c
(5)

where c is a tuning constant which is usually set to 4.685,
producing 95% efficiency at a normal distribution [23].

Then, the Weighted Least Square inversion described in this
section (section III-B2) is further iterated by updating W with
the result from the previous iteration. The algorithm stops
when mean(|X̂i − X̂i−1|) < δ where X̂i corresponds to the
results of a given iteration and X̂i−1 the results of the previous
one. δ is a predefined threshold much smaller than the tracking
accuracy of the displacements, here set to 0.001 m.

Finally, each displacement in X̂ is divided by the temporal
sampling ∆τ to obtain leap frog velocity time series in m/d.

On the one hand, this method tends to down-weight outliers
which will have larger internally studentized-residuals and
smaller weights. On the other hand, the regularization term
helps to filter out unrealistic values when the inversion is
weakly constrained by the observations.

C. Uncertainty propagation

The uncertainty of the resulting time series can be obtained
theoretically by propagation through the inversion. The un-
certainty is assumed to be random and independent for each
displacement, hence the probability theory lead to propagate
the diagonal covariance matrix of the error of displacement
observations [22], [24] as:

ΣX̂ = σ2
0N
−1ATWBΣBT (N−1ATW )T (6)

with ΣX̂ the covariance-matrix of the error of the leap frog
time series obtained with the improved temporal closure of the
displacements. W is the vector which contains the weights
obtained at the last iteration of the IRLS. N is equal to
ATWA + λΓTΓ. Σ is the a-priori covariance-matrix of the
error of displacement observations. If the a-priori covariance-
matrix of the error of displacement observations is sufficiently
representative of the real covariance matrix, σ2

0 is equal to
1. Otherwise, σ2

0 , estimated in equation 7, scales the a-priori
covariance-matrix of the error of displacement observations
taking into account the values of the residuals.

σ2
0 =

RTWR

n′eff − p
(7)
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with n′eff the number of effective observations after outlier
removal based on the biweight function [22].

IV. TEMPORAL ANALYSIS

A. Time series with different temporal samplings

Several temporal samplings could be chosen as output:
1∆t, 2∆t, 3∆t, ... with ∆t the satellite coverage frequency,
here of 12 days. The performance of the proposed approach
using these different short-temporal samplings is assessed by
computing two metrics for stable ground and fast-moving areas
respectively.

On the stable ground, velocities should have a zero value.
Therefore, the Root Mean Square Error (RMSE) of the veloc-
ity magnitude on the stable ground is computed:

RMSE = mean(i,j)∈ω1

√√√√ 1

N + 1

N∑
t=0

‖~V (i, j, t)‖
2

(8)

where ~V (i, j, t) stands for the velocity vector at time t and
pixel (i, j), N + 1 is the number of velocity data at pixel
(i, j) over the considered period, ω1 corresponds to ice-free
areas defined according to the Randolph Inventory V6.0 [25].

On glaciers, the flow direction on a point can be assumed to
be roughly stable in time. Therefore, the temporal coherence
of the flow direction is computed using the Velocity Vector
Coherence (VVC) metric [26], [27] defined as:

VVC = mean(i,j)∈ω2

∥∥∥∥∥
N∑
t=0

~V (i, j, t)

‖~V (i, j, t)‖

∥∥∥∥∥ (9)

where ω2 corresponds to the glacier parts where the magnitude
of the mean velocity observations is higher than 0.2 m/d.

Fig. 3. Comparison of the VVC in moving areas where magnitude of the
mean velocity observations is higher than 0.2 m/d and of the RMSE on stable
ground for different temporal sampling. The RMSE is performed on ice-free
areas according to the Randolph Inventory V6.0 [25].

Figure 3 shows that for each temporal sampling and base-
line, the VVC is higher, and the RMSE is lower for the leap
frog velocity time series. This means that the inversion helps to

increase the coherence of the velocity vectors and to reduce
the uncertainty. Indeed, the RMSE on stable ground, which
can be a proxy of the uncertainty, is decreased by 0.04 m/d,
i.e. 22% for 12-days temporal baselines to 0.12 m/d, i.e. 67%
for 36-day temporal baselines.

Second, one can observe on the Figure 4 that even in the
period where no velocities were measured with a temporal
baseline of 12 and 36 days (grey rectangle in Figure 4), the
IRLS inversion was able to retrieve 12 and 36 days velocities
by using all the other velocity observations.

Therefore, the proposed method leads to reduced uncertainty
and increased temporal coverage for any temporal sampling
chosen as output.

B. Time series with an optimal temporal sampling to study
short-term variations

But how to choose the length of this temporal sampling?
Figure 3 highlights that the longer is the temporal sampling,
the higher is the VVC, and the lower is the RMSE. This
implies that the noise decreases and the coherence increases
when the temporal sampling increases, as illustrated in Figure
4. The longer is the temporal sampling, the smoother is the
leap frog time series, i.e., there is less noise but also less
temporal resolution. Therefore, to study short-term variations
of velocity, there is a need to find a compromise between
the noise level of the velocity and the displacement behavior
details as also emphasized in [4]. This means that velocities
computed with the shortest temporal sampling (here 12 or 24
days) are not always the most appropriate to study short-term
variations of velocities.

The VVC and the RMSE could be useful criteria to find
the optimal temporal baseline and sampling. For the velocity
observations (in red in Figure 3), the VVC seems to converge
to 0.94 for a temporal baseline of 48 days. There is no further
improvement with a longer temporal baseline. For 48-days
velocity observations, the RMSE on the stable ground is 0.15
m/d. However, the observed velocity magnitude after 2017 is
between 0.1 and 0.25 m/d for the point presented in Figure
4 which means that the uncertainty is larger than 50% of the
observed values after 2017. After inversion (in blue in Figure
3), the VVC reaches an asymptote for a temporal sampling of
36 days. The corresponding RMSE is 0.06 m/d. In conclusion,
the VVC and RMSE can be used to select an optimal tempo-
ral/baseline. Moreover, the proposed inversion method allows
the end-user selecting a smaller optimal temporal baseline with
less uncertainty.

C. Internally studentized-residual

During the different iterations of the IRLS, the displacement
observations are weighted by a combination of an a priori
indicator of the data quality described in Section II and the
internally studentized-residuals described in equation (3). In
most cases, both weight indicators are consistent. However,
the internally studentized residual provides complementary
information which are of particular interest when the quality
indicator is biased. Figure 5 shows that two encircled points
have a data quality indicator around 0.4 in the original velocity
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Fig. 4. Leap frog time series with different temporal sampling, compared with velocity observations of the same temporal baselines over a point situated near
the Kyagar terminus at the coordinates (N35.67,E77.17). The blue and pink dots represent the central date of each leap frog velocity and velocity observation
respectively. The blue and pink lines stand for the temporal baseline of each velocity observation and the temporal sampling of each leap frog velocity. The
grey rectangle corresponds to the period where the Sentinel-1 images were acquired every 24 days instead of 12.

Fig. 5. Weights used for the inversion of velocities with a temporal sampling of 12 days on the point of coordinates (N35.67,E77.17). For visualization, the
central date of each velocity observation data is represented only with a dot. On the left, the original velocity observations are colored with a priori data
quality described in Section II. On the right, it is colored with internally studentized-residual computed after the last iteration of the IRLS. Two points with
the data quality indicator higher than 0.4 but appearing to be outliers in the trend are encircled in black.

observations though these points stand out from the trend and
are surrounded by lower quality data. These points appear
to be outliers but still have relatively good data quality
indicators. On the other hand, these two encircled points have
the same internally-studentized residual as the surrounding
points, which corresponds better to the reality after detailed
inspection. The internally-studentized residuals rely on the
difference between the displacement observations and the
Least Square solution whereas the data quality indicator relies
on the properties of the cross correlation function. Therefore,
the internally-studentized residuals is a reliable way to account
for data uncertainty. Note, however, that special attention

still should be paid to internally-studentized residual values
resulting from a weakly constrained IRLS, i.e., where a few
displacement observations are available in the displacement
observation network.

V. SPATIAL ANALYSIS

A. Mean of velocity magnitude

The mean of velocity observation magnitudes with a tempo-
ral baseline of 36 days is compared with the mean of velocity
time series magnitudes with a temporal sampling of 36 days.

Figure 6 highlights that the velocity magnitudes are on
average 0.09 m/d higher after inversion than before over the



7

Fig. 6. Mean of velocity magnitude from October 14, 2014 to June 30, 2020 on each pixel for a temporal baseline and sampling of 36 days, before inversion
on the left and after inversion on the middle. The sub-figure on the right highlights the difference between the mean velocity magnitude after and before
inversion. The area A, corresponding to the glacier tongue, and the area B, corresponding to the lower part of the western tributaries are

encircled for analysis.

glacier tongue (zone A) from 2014 to 2020. This represents
an increase of 24% of the observed mean. This increase may
be due to the lack of 36-day temporal baselines velocity ob-
servations in 2016 (cf. Figure 1). Therefore, the same analysis
is carried on data sets from January 7, 2017 to June 30, 2020.
The increase in velocity is found to be 7% after inversion for
this period. Hence, the lack of 36-day temporal baselines in
2016, a year where the mean of velocity magnitude is higher
than the average, explains the underestimation of the mean
velocity magnitude before inversion. This analysis highlights
the importance of the temporal coverage of the velocity data
to derive mean velocities.

B. Spatio-temporal variations of short-term velocities

The variation of the velocity magnitude is illustrated, in
Figure 7, along with a longitudinal profile that goes from the
upper part of the western tributary to the glacier tongue as
represented in black in Figure 8. Over the glacier tongue,
the main surge phase is visible from November 01, 2014,
to August 16, 2015, consistently with observations on the
temporal profile presented in Figure 4. The maximum of the
36-day velocity magnitudes is around 2 m/d in November
2014. Then, the velocity magnitudes decrease during the
winter to reach roughly 1.3 m/d in April 2015. This is
followed by an acceleration from May to July 2015, where the
velocity magnitudes rise to about 1.7 m/d. After July 11, 2015,
velocity magnitudes abruptly drop to 0.8 m/d. This observation
coincides with the lake drainage and the associated glacier
lake outburst flood [21]. This velocity temporal evolution is
in agreement with [21]. Accordingly, the abrupt changes in
velocity are successfully captured by the proposed method.

During the winter, the velocity magnitudes keep declining
over the glacier tongue to reach 0.5 m/d in April 2016. From
2016 to 2020, the velocity magnitudes appear to increase

from March/April to June/July and drop from June/July to
March/April (see also Figure 4). This shows the ability of
the proposed method to retrieve a seasonal variability even
though velocities have small magnitude (lower than 0.3 m/d
from 2016 to 2020).

Besides, in the lower part of the western tributary (zone B in
Figure 6, 7 and 8), the mean of velocity observation magnitude
ranges from 0.1 to 10 m/d (cf. Figure 7). Such high velocities
seem not realistic, considering the low surface slope between
2 and 5° (cf. Figure 8). The mean data quality indicator of
the velocity observations is about 0.1 in this zone. The noise
in these velocity observations is due to a smooth surface
covered by snow where features are hardly distinguishable.
However, the leap frog velocity time series contains more
values lower than 2 m/d according to Figure 7. Moreover, the
difference between mean velocity magnitudes after and before
inversion is about -1.5 m/d in zone B as illustrated in Figure
6. The velocities after inversion are more consistent with the
slope. Hence, the proposed method appears to decrease the
noise even in areas where a few good quality displacement
observations are available.

Finally, Figure 7 also highlights the interest of the method
for providing a time series with a complete temporal coverage
at a regular temporal sampling.

VI. CONCLUSION

The described method allows for extraction of velocity time
series with a regular and optimal temporal sampling using all
available observations. The resulting time series have fewer
gaps, no redundancy, and a complete temporal coverage. It
relies on the temporal closure of the displacement observation
network.

First, an improvement of the classical temporal closure
formulation is proposed. The latter usually build time series
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Fig. 7. Color-encoded matrix of velocity magnitude according to the central date of the velocity and the distance along a longitudinal profile represented
in black in Figure 8. This longitudinal profile goes from the upper part of the western tributary to the glacier tongue. On the left, the color-encoded matrix
stands for velocity observations with 36-days temporal baseline overlapping the 36-days sampling from the leap frog time series represented on the right. On
the right, the color-encoded matrix represents leap frog velocity time series with a temporal sampling of 36 days.

with a temporal sampling equal to the satellite coverage
frequency. However, since velocities are obtained through
division of displacement by the temporal baseline, velocities
obtained from a small temporal baseline can be significantly
contaminated by noise. A new formulation of the temporal
closure is proposed to obtain leap frog time series with a
temporal sampling larger than the satellite coverage frequency
from all available displacement observations. When a displace-
ment observation can not be included in the classical temporal
closure formulation because its start date or end date does not
match the dates of the leap frog time series, a combination
of displacement observations is used. Thereby, the proposed
method enables building time series at a user-defined temporal
sampling from all available displacement observations.

Second, the appropriate length of this temporal sampling
to study short-term variations is discussed. Two criteria, the
RMSE on stable ground and the VVC on moving areas, are
proposed to analyze the signal-to-noise ratio of velocity time
series with different temporal samplings.

Third, the data uncertainty is taken into account without
the need for a preliminary data selection. Because the latter
requires a reliable data quality indicator and a well-defined
threshold value, in this article, an Iterative Reweighted Least
Square is performed using the Tukey’s biweight function. The
internally-studentized residual resulting from this inversion is
proposed as a proxy for the uncertainty.

Finally, the interest of the method is shown for mean
velocities analysis. Since the resulting time series contain no
more gaps and redundancy, each period has the same weight
in the mean velocity computation.

A following up work will be to apply this method to other
regions and data-set. This method could also be adapted to the
case of landslide or slowslip displacements.
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