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Abstract— Pansharpening technique is used to merge the
original multispectral image (MS) with a high spatial resolution
panchromatic image (PAN). Due to its robustness, the multireso-
lution analysis (MRA) is an important part of pansharpening.
The scale regression model is effective for improving MRA.
However, the existing MRA based on scale regression results
into single-scale regression information, thus affecting the final
pansharpening result. To address this problem, in this work,
we propose a dual-scale regression-based MRA for pansharpen-
ing. First, we establish a scale regression-based model. Then, this
model is improved using a high-pass modulation (HPM) injection
scheme. Finally, the dual-scale information is added to the scale
regression to construct the dual-scale regression for obtaining the
final pansharpening result. We perform experiments using five
datasets. The results show that the proposed method obtains a
better pansharpening result as compared to various state-of-the-
art MRA methods. In addition, the quantitative and qualitative
analysis of the results shows that the proposed method achieves
appropriate spatial and spectral resolution fusion. Therefore,
it has a great potential in pansharpening technique.

Index Terms— Dual scale regression, multiresolution analysis
(MRA), multispectral image (MS), panchromatic image (PAN),
pansharpening.

Manuscript received September 21, 2021; revised November 18, 2021;
accepted November 26, 2021. Date of publication November 30, 2021; date
of current version February 21, 2022. This work was supported in part by the
National Natural Science Foundation of China under Grant 61801211; in part
by the Fundamental Research Funds for the Central Universities in the Nanjing
University of Aeronautics and Astronautics under Grant NZ2020009; in part
by the Open Project Program of Hubei Key Laboratory of Regional Devel-
opment and Environment Response Fundamental under Grant 2020(B)004;
in part by the Open Project Program of State Key Laboratory of Tropical
Oceanography, South China Sea Institute of Oceanology, Chinese Academy
of Sciences under Grant LTO2118; in part by the Foundation of Graduate
Innovation Center in the Nanjing University of Aeronautics and Astronautics
under Grant xcxjh20210405; in part by the Graduate Education and Teaching
Reform Research Project in the Nanjing University of Aeronautics and
Astronautics under Grant 2021YJXGG11; and in part by the Open Research
Project of Hubei Key Laboratory of Intelligent Geo-Information Processing
under Grant KLIGIP-2019A05. (Corresponding author: Peng Wang.)

Peng Wang is with the Key Laboratory of Radar Imaging and Microwave
Photonics, Ministry of Education, Nanjing University of Aeronautics and
Astronautics, Nanjing 210016, China, and also with the Hubei Key Laboratory
of Regional Development and Environment Response, Hubei University,
Hubei 430062, China (e-mail: pengwang-B614080003@hotmail.com).

Hongyu Yao and Gong Zhang are with the Key Laboratory of Radar
Imaging and Microwave Photonics, Ministry of Education, Nanjing University
of Aeronautics and Astronautics, Nanjing 210016, China.

Cai Li is with the State Key Laboratory of Tropical Oceanography,
South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou, Guangdong 510301, China.

Henry Leung is with the Department of Electrical and Computer Engineer-
ing, University of Calgary, Calgary, AB T2N 1N4, Canada.

Digital Object Identifier 10.1109/TGRS.2021.3131477

NOMENCLATURE

MS Multispectral image.
PAN Panchromatic image.
CS Component substitution.
MRA Multiresolution analysis.
HPM High-pass modulation.
MTF Modulation-transfer function.
GLP Generalized Laplacian pyramid.
PLR Low-resolution PAN image.
PHR High-resolution PAN image.
MLR

b Low-resolution MS image.
MHR

b High-/Low-resolution MS image.
M̂LR

b MLR
b interpolated to the size of PHR.

ERGAS Relative dimensionless global error in synthesis.
SAM Spectral angle mapper.
Q2n 2n bands is the Universal Image Quality Index.
Dλ Spectral distortion.
DS Spatial distortion.
QNR Quality no-reference.

I. INTRODUCTION

PHYSICAL limitations and processing capabilities of satel-
lite remote-sensing equipment hinder a single sensor from

collecting the remote sensing images with high spatial and
spectral resolutions simultaneously [1]. The MS images have
rich spectral information, but a continuous improvement in
the spectral resolution of MS images affects their spatial
resolution. Remote-sensing image processing has developed
many topics, such as super-resolution [2]–[4], feature extrac-
tion [5], cloud removal [6], and classification [7]. In addition,
the pansharpening technique [8]–[10] has been proposed to
improve the spatial resolution of an MS image using a high
spatial resolution PAN image. Pansharpening has important
applications in environmental monitoring, land and resource
use, precision agriculture, urban planning, military reconnais-
sance, and other key areas.

Currently, the common pansharpening methods can be
categorized into three types [11], [12], including compo-
nent CS, MRA, and deep learning [13]. The CS methods
include intensity-hue-saturation [14], principal component
analysis [15], Gram-Schmidt [16], and adaptive GS [17].
Although the CS methods usually have a simple physical
meaning and high-computational efficiency, the pansharpen-
ing results differ from the ideal output. Recently, the deep
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learning-based techniques have been applied to pansharpen-
ing, including pansharpening neural network [18]–[20] and
its complex variations in terms of network depth [21]–[23],
topology [24], [25], and fine-tuning [26], [27]. Although
the deep learning-based methods achieve better performance
as compared to the traditional machine learning methods,
such as CS- and MRA-based methods, the deep learning
usually requires a large amount of labeled training data to
achieve the desired performance. In addition to the above
three types, geostatistics-based technique is also an effective
solution to the pansharpening problem, such as area-to-point
regression kriging [28] and the information loss-guided image
fusion [29].

The MRA-based methods inject spatial information in
the MS images. Since the MRA methods do not require
the training data and are more effective in retaining the
spectral characteristics of the original MS image than
the CS, they have been relatively successful and popu-
lar for implementing pansharpening techniques [2]. The
MRA-based methods include the additive wavelet lumi-
nance proportional (AWLP) [30], smoothing filter based on
intensity modulation (SFIM) [31], and morphological filters
(MF) [32]. In addition, the GLP based on Gaussian filters
matches the MTF of an MS sensor (MTF-GLP) [33]. It is
notable that the MTF-GLP has been successfully applied
to the MRA. The MTF-GLP with a context-based decision
(MTF-GLP-CBD) [34], context-adaptive MTF-GLP-CBD (C-
MTF-GLP-CBD) [35], MTF-GLP with HPM (MTF-GLP-
HPM) [36], [37], MTF-GLP-HPM based on haze-corrected
version (MTF-GLP-HPM-H) [38], and MTF-GLP-HPM based
on post-processing (MTF-GLP-HPM-PP) [39] belong to MAR
based on the MTF-GLP technique. The scale regression model
is effective for improving the MRA and obtaining better
results. The scale regression model [40] is a mathematical
model that quantitatively describes the statistical relation-
ships. This indicates the influence and significant relationship
between the independent and dependent variables. Some of
the MRA methods are based on scale regression methods,
including the MTF-GLP based on full-scale regression (MTF-
GLP-REG-FS) [41] and MTF-GLP-HPM based on multivari-
ate linear regression (MTF-GLP-HPM-R) [42].

However, the existing MRA methods based on scale regres-
sion suffer from insufficient scale regression information,
which affects the pansharpening result. To overcome this
problem, in this work, we propose an MRA method based on
dual-scale regression for pansharpening method, namely MTF-
GLP-HPM-DS. The proposed method improves the accu-
racy of pansharpening and promotes wider application of
pansharpening. We aim to solve the issue of scale regres-
sion information based on MRA pansharpening. In the pro-
posed method, first, a scale regression-based MRA model
is designed. Then, this model is improved using the HPM
injection scheme. Finally, the dual-scale information, includ-
ing the fine-scale and coarse-scale information, are added
to the scale regression to obtain the final pansharpening result.
The experimental results show the superiority of the pro-
posed MTF-GLP-HPM-DS over various state-of-the-art MRA
methods.

The contributions of this article are summarized below.
1) The dual-scale regression model uses abundant scale

regression information, which improves the pansharp-
ening result.

2) In the dual-scale regression model, the fine-scale and
coarse-scale information are linked by a parameter that
can be adjusted to make the proposed method adap-
tive for different scenarios, unlike the existing MRA
methods.

3) We show that the dual-scale regression model is feasible
in terms of mathematical analysis and experiments.

The remaining of this article is organized as
follows.

The proposed method is described in Section II. The exper-
imental results and comparisons of the proposed method
with state-of-the-art methods are presented in Section III. The
discussion of the results is presented in Section IV. Finally,
the conclusion is drawn in Section V.

II. METHODOLOGY

A. Scale Regression-Based MRA Model

Let PHR be a high-resolution PAN image with a size of
M × N , where N and M represent the numbers of rows and
columns of the PAN image, respectively. The low-resolution
MS image MLR = �

MLR
�

b=1,...,B
has a size of M/S × N /S

and B spectral bands, where MLR
b represents the bth spectral

band and S denotes the ratio scale between PHR and MLR.
Furthermore, the superscript denotes the spatial resolution of
an image; i.e., LR and HR represent low and high resolutions,
respectively.

The MRA model is used in this article. First, MLR is inter-
polated to the size of PHR, producing M̂LR = �M̂LR

�
b=1,...,B

.
Then, the MTF-GLP [33] is used to obtain a low-pass ver-
sion of the LR-PAN image, i.e., PLR, from PHR. In this
work, we use the MTF filter for down-sampling. This fil-
ter is a Gaussian filter matched with the MTF of the MS
sensor [33]. Finally, the injection coefficients g are used
to control the difference in information injection, as shown
in (1), and the pansharpening result MHR = �MHR

�
b=1,...,B

is
obtained.

Based on [4], the MRA for the bth spectral band is equiv-
alent to expressions presented in (1)–(3)

MHR
b = M̂LR

b + gb
�

PHR − PLR
�

(1)

PLR = PHR ∗ h (2)

where, h denotes the MTF filter, gb denotes the injection
coefficients for the bth spectral band of an MS image, and
is defined as follows:

gb = cov
�

M̂LR
b , PLR

�
var
�

PLR
� (3)

where, cov(A, B) denotes the covariance of, and var(A)
denotes the sample variance of image A.
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Based on [4], another pansharpening-type CS is equivalent
to the expressions presented in (4)–(6)

MHR
b = M̂LR

b + gb
�

PHR − I LR� (4)

I LR =
B�

b=1

wb M̂LR
b (5)

gb = cov
�

M̂LR
b , I LR

�
var
�

I LR
� (6)

where {wb}b=1,...,B can be estimated by computing minimum
mean square error (MMSE). The intensity component I LR is a
function of the MS image. Therefore, the procedure between
MRA and CS is different.

In this work, a scale regression-based MRA model is
designed. In the proposed model, the full-scale regression [41]
is used to obtain the appropriate injection coefficients gb

iteratively. Based on [41], the assumption of scale invariance
is used to replace the low-resolution PLR with high-resolution
PHR. The high-resolution MS MHR

b and injection coefficients
gb are used to perform iterative operations. Therefore, (3) can
be rewritten as follows:

gi
b =

cov
�

MHR,i
b , PHR

�
var
�

PHR
� . (7)

The specific iterative operations are presented in
Algorithm 1. First, the initial injection coefficients g0

b
are obtained for MHR,0

b = M̂LR
b . Then, multiple iterations are

performed to obtain the injection coefficients gb. Finally, the
iterative process is stopped when the convergence is achieved.

Algorithm 1: Iterative Procedure

for i = 0, . . . , N − 1 do
- Injection coefficients calculation gi

b

gi
b =

cov
�

MHR,i
b , PHR

�
var
�

PHR
� .

- Using gi
b to fuse MS and PAN

MHR,i+1
b = M̂LR

b + gi
b

�
PHR − PLR

�
.

end

B. HPM Injection Scheme

The HPM injection scheme improves the MRA [34], [35],
so it is employed in this work to improve the performance of
an MRA model based on scale regression.

According to the HPM injection scheme, (1) can be rewrit-
ten as

MHR
b = M̂LR

b

PHR

PLR
. (8)

Now, we explain the process of adding the scale regression
to the HPM injection scheme. A digital MS or PAN image
NXR

s acquired by a sensor s is defined as a convolution of the

sensor spatial response and the total energy collected by the
sensor in its spectral band [43], [44] as

NXR
s (x, y) = δs + ks

	 +∞

−∞

	 +∞

−∞
Ss(x − α, y − β)

·

	 +∞

−∞
Es(α, β, λ)Rs(λ)dλ

�
dαdβ

= δs + ks SXR
s ∗ Ws (9)

where, the superscript XR either denotes HR or LR, δs repre-
sents an additive constant, and ks represents a multiplicative
constant. x and y denote the pixel coordinates.

The two constants are introduced to obtain the complete
digital range of the A/D converter; however, δs is usually
negligible. Furthermore, Ss denotes the spatial response of
sensor s, and Ws represents the integral over the frequency λ
of the at-sensor radiance Es(α, y, λ) weighted by the relative
spectral response Rs(λ) [45], and is obtained as

Ws =
	 +∞

−∞
Es(α, y, λ)dλ. (10)

Based on (8) and (9), M̂LR
b , PLR, and PHR are now

expressed as follows:
M̂LR

b = kb SLR
b ∗ Wb (11)

PLR = k p SLR
p ∗ Wp (12)

PHR = k p SHR
p ∗ Wp (13)

where, SLR
b , SLR

p , and SHR
p denote the spatial responses of

LR-MS, LR-PAN, and HR-PAN images, respectively; Wb and
Wp represent the total energies of MS and PAN images,
respectively; kb and k p denote the multiplicative constants.

Thus, the aim of pansharpening is to obtain a high-
resolution MS image MHR

b that has the spatial response HR-
PAN SHR

p and the total energy Wb. The target expression of
MHR

b is defined as

MHR
b = kb SHR

p ∗ Wb. (14)

Considering the HPM injection scheme, (11)–(13) are
substituted into (8), and MHR

b is obtained as follows:

MHR
b = �kbSLR

b ∗ Wb
�k p SHR

p ∗ Wp

k p SLR
p ∗ Wp

. (15)

This can be converted to the target expression, i.e., (14),
by appropriately setting the multiplication coefficients of M̂LR

b .
This indicates that the variables except M̂LR

b are different
from (15). Therefore, these variables are expressed using
an additional tilde to differentiate between the actual and
estimated variables.

Therefore, the modified equation is given as

M̃HR
b = M̂LR

b

P̃HR

P̃LR
= �kb SLR

b ∗ Wb
�k p S̃HR

p ∗ W̃p

k p S̃LR
p ∗ W̃p

. (16)

Now, the desired result is obtained by deriving the following
equalities. Since the spatial response of the HR-MS sensor
should be the same as that of the existing PAN camera, the
first equality is expressed as

S̃HR
p = SHR

p . (17)
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Furthermore, since the LR-PAN image PLR is constructed
by the MTF-GLP, which utilizes a filter to match the spatial
response of the LR-MS sensor, the second equality is defined
as follows:

S̃LR
p = SLR

b . (18)

Based on [42], the third equality is defined as

k pW̃p = kbWb. (19)

Thus, considering (11) and (12), we obtain (20)

P̃LR = k p S̃LR
p ∗ W̃p

= kb SLR
b ∗ Wb

= M̂LR
b . (20)

Similarly, considering (13) and (14), we obtain (21)

P̃HR = k p S̃HR
p ∗ W̃p

= kb SHR
p ∗ Wb

= MHR
b . (21)

Based on (20) and (21), a linear affine function is proposed
to solve MXR

b , and is mathematically expressed as

P̃XR = m PXR + n = MXR
b . (22)

Thus, the problem is transformed into the problem of finding
coefficients m and n to obtain MXR

b . In this work, the spectral
matching based on scale regression between the HR-PAN
image and HR-MS image is used to compute the coefficients
m and n [42] as follows:

m = cov
�

MHR
b , PHR

�
var
�

PHR
� (23)

n = E
�

MHR
b

�− cov
�

MHR
b , PHR

�
var
�

PHR
� E

�
PHR

�
(24)

where, E(X) represents the mean of image X .
Therefore, we rewrite (16) as follows:

MHR
b = M̂LR

b

P̃HR

P̃LR

= M̂LR
b

PHR − E
�

PHR
�+ E

�
MHR

b

�� cov(MHR
b ,PHR)

var(PHR)

PLR − E
�

PHR
�+ E

�
MHR

b

�� cov(MHR
b ,PHR)

var(PHR)

.

(25)

According to the definition of the injection coefficients gb

based on the scale regression in (7), (25) can be written as
follows:

MHR
b = M̂LR

b

PHR − E
�

PHR
�+ E

�
MHR

b

�
/gb

PLR − E
�

PHR
�+ E

�
MHR

b

�
/gb

. (26)

As presented in (26), the scale regression is successfully
added to HPM injection scheme.

C. Dual-Scale Regression Model

According to (7), the injection coefficients gb based on the
scale regression only consider the covariance of PHR at a fine
scale and MHR

b . Therefore, the scale regression information in
gb is single, which affects the performance of the proposed
MRA based on the scale regression model. To enrich the
scale information for scale regression and improve the final
pansharpening results, the dual-scale information is introduced
in the scale regression to construct the dual-scale regression.
In other words, the proposed dual-scale regression not only
considers the fine-scale information of the covariance between
PHR and MHR

b , but also the coarse-scale information of the
covariance between PLR and MHR

b . Thus, we obtain

gi
b = μ

cov
�

MHR,i
b , PHR

�
var
�

PHR
� + (1 − μ)

cov
�

MHR,i
b , PLR

�
var
�

PHR
� (27)

where, μ is adjusted to make the proposed method more
flexible in different scenarios. In this section, the final injection
coefficients are introduced to realize the dual-scale regression
iteratively. In addition, a closed-form solution of the iterative
process is adopted, so that the iterative method achieves a
considerable performance.

Now, we show that the dual-scale regression model is
iterative and convergent. Appendix A demonstrates that the
progress of the mathematical induction in detail. First, the
initial injection coefficients g0

b are obtained for MHR,0
b = M̂LR

b
and is defined as

g0
b = μ

cov
�

M̂LR
b , PHR

�
var
�

PHR
� + (1 − μ)

cov
�

M̂LR
b , PLR

�
var
�

PHR
� . (28)

Thus, the expression of gn−1
b is obtained as

gn−1
b =



μ

cov
�

M̂LR
b , PHR

�
var
�

PHR
� + (1 − μ)

cov
�

M̂LR
b , PLR

�
var
�

PHR
�

�

·
n−1�
i=0



1 − cov

�
PHR, PLR

�
var
�

PHR
�

�i

. (29)

Finally, to show that the dual-scale regression model is
iterative and convergent, mathematical induction is used to
obtain gn

b derived from gn−1
b in (30) as

gn
b =



μ

cov
�

M̂LR
b , PHR

�
var
�

PHR
� + (1 − μ)

cov
�

M̂LR
b , PLR

�
var
�

PHR
�

�

·
n�

i=0



1 − cov

�
PHR, PLR

�
var
�

PHR
�

�i

. (30)

Similarly, the iterative process used in the regression
requires a fixed point when n approaches infinity. Therefore,
g∞

b is defined as follows:
g∞

b = lim
n→∞ gn

b

=


μ

cov
�

M̂LR
b , PHR

�
var
�

PHR
� + (1 − μ)

cov
�

M̂LR
b , PLR

�
var
�

PHR
�

�

·
∞�

i=0



1 − cov

�
PHR, PLR

�
var
�

PHR
�

�i

. (31)
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Fig. 1. Flowchart of MTF-GLP-HPM-DS.

Particularly, due to the fact that

0 <

�����1 − cov
�

PHR, PLR
�

var
�

PHR
�

����� < 1. (32)

We have

g∞
b = μ

cov
�

M̂LR
b , PHR

�
cov
�

PHR, PLR
� + (1 − μ)

cov
�

M̂LR
b , PLR

�
cov
�

PHR, PLR
� . (33)

As presented in (33), g∞
b has a fixed value. Based

on (28)–(33), the proposed dual-scale regression model is
iterative and convergent. When gb reaches this fixed value, it
is assumed that the convergence is achieved, and the iterative
operations are stopped.

The process of the proposed MTF-GLP-HPM-DS is pre-
sented in Algorithm 2. The injection coefficients gb are
obtained after each iteration and substituted into (26) to
obtain the pansharpening result. When the iterative process
is stopped, the final pansharpening result is obtained. Fig. 1
shows the flowchart of MTF-GLP-HPM-DS pansharpening
method.

Algorithm 2: Proposed MTF-GLP-HPM-DS
Input: an LR-MS image and an HR-PAN image

1) Interpolate the LR-MS image to the size of the
HR-PAN image;

2) Obtain PLR using the HR-PAN image using the
MTF-GLP;

3) Calculate the gain coefficients gb using (27);

for i = 0, . . . , N − 1 do
- Calculate the injection coefficients gi

b as:

gi
b =μ

cov
�

MHR,i
b , PHR

�
cov
�

PLR, PHR
� +(1−μ)

cov
�

MHR,i
b , PLR

�
cov
�

PLR, PHR
�

- Use gi
b to fuse the MS and PAN as follows:

MHR,i+1
b = M̂LR

b

PHR − E
�

PHR
�+ E

�
MHR

b

�
/gi

b

PLR − E
�

PHR
�+ E

�
MHR

b

�
/gi

b

end
4) Stop the iterative process;

Output: MHR
b

III. EXPERIMENTS

A. Experimental Design

There are two types of quality assessments used to evaluate
pansharpening, namely, reduced resolution and full resolution.
Please note that the pansharpening results should satisfy two
metrics, including consistency and synthesis [2]. The consis-
tency shows that the pansharpening result once degraded at
the original MS resolution, should be spectrally similar to the
original MS image as much as possible. The synthesis requires
the pansharpening result to be similar to the image obtained by
the MS sensor. Meanwhile, the reduced resolution evaluation is
to reduce the resolution on the basis of the original MS image,
so that the original MS image can be used as the reference
image of the pansharpening result as they have the same size.

Reduced resolution assessment: We evaluate the synthesis
property of Wald’s protocol [46], [47], and the following
quality/distortion quantitative indices are used for performance
evaluation.

The relative dimensionless global error in synthesis
(ERGAS) [48] denotes a normalized dissimilarity index. It rep-
resents a global indicator of the multi-band distortion of
the pansharpening results. Generally, a low ERGAS value
indicates a high similarity between the pansharpening result
and the reference MS image.

The SAM [49] represents an absolute value of the spectral
angle between two-pixel vectors. When the pansharpening
result is spectrally identical to the reference image, SAM is
assumed to be ideal, i.e., zero.

Another (scalar) index of the pansharpening result with 2n

bands is called Q-index, denoted as Q2n [50]. Q2n ranges
between [0, 1], and its ideal value is 1.

Full-resolution assessment: The quality no-reference (QNR)
protocol is used to perform the quality evaluation for the
original resolution of the data [51] as follows:

QNR = (1 − Dλ)
ε(1 − DS)

θ (34)

where, Q(A, B) denotes the Q-index between A and B;
Dλ denotes the spectral distortion, which is calculated using
the original LR-MS image and the pansharpening result; DS

represents the spatial distortion, which combines the Q-index
between the original LR-MS image and the LR-PAN image
and the Q-index between the pansharpening result and the
HR-PAN image. The parameter p is typically set to 1. ε and
θ represent the weight coefficients. It is notable that higher
the QNR index, lower is the Dλ index. A lower DS index
indicates a better quality of pansharpening result. Therefore,
the maximum theoretical value of the QNR index is 1, when
both Dλ and DS are equal to zero.

The performance of the proposed MTF-GLP-HPM-DS
is compared with the state-of-the-art methods for MRA
including.

1) EXP: The MS image interpolation using a polynomial
kernel with 23 coefficients [2].

2) BT-H: The haze corrected version of the Brovey trans-
form [38].

3) C-GSA: Context-adaptive Gram-Schmidt [35].
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Fig. 2. Toulouse dataset. (a) Original MS image. (b) Original PAN image. (c) Reduced resolution MS image. (d) Reduced resolution PAN image.

TABLE I

PARAMETERS OF FIVE DATASETS

4) AWLP with revised statistical matching between PAN
and MS bands [30].

5) MTF-GLP: GLP with MTF-matched filter, unitary injec-
tion model, and revised statistical matching between the
PAN and MS bands [33].

6) MTF-GLP-REG-FS: GLP with MTF-matched filter with
a full-scale regression-based injection model [41].

7) MTF-GLP-CBD: GLP with MTF-matched filter and
regression-based injection model [34].

8) C-MTF-GLP-CBD: The context-based GLP with MTF-
matched filter and regression-based injection model
with local parameter estimation that exploits cluster-
ing [34], [35].

9) MF: A nonlinear decomposition scheme using MFs
based on half gradient [32].

10) MTF-GLP-HPM: GLP with MTF-matched filter with
HPM injection model and revised statistical matching
between the PAN and MS bands [36].

11) MTF-GLP-HPM-H: GLP with MTF-matched filter with
HPM injection model and haze correction [38].

12) MTF-GLP-HPM-R: GLP with MTF-matched filter and
HPM injection model with a preliminary regression-
based spectral matching phase [42].

13) MTF-GLP-HPM-PP: GLP with MTF-matched filter,
multiplicative injection model and post-processing [39].

Please note that all the compared methods use the pan-
sharpening toolbox available at http://openremotesensing.net/
knowledgebase / a - new-benchmark-based-on-recent-advances-
in-multispectral-pansharpening-revisiting-pansharpening-with-
classical-and-emerging-pansharpening-methods/.

In addition, to highlight the performance of the pro-
posed dual-scale regression, an MRA based on the scale
regression model and improved using the HPM injec-
tion scheme described in Sections II-A and II-B, namely

MTF-GLP-HPM-FS, is used as an additional comparative
method for evaluating the proposed MTF-GLP-HPM-DS. All
the experiments presented in this work are performed on a
Pentium (R) Dual-core Processor (2.20 GHz) using MATLAB
R2016 software.

B. Reduced Resolution

As presented in Table I, we use three datasets obtained by
different sensors for evaluating the reduced resolution [52].
In the reduced resolution experiments, the reduced resolution
input MS image and the reduced resolution input PAN image
are obtained by performing low-pass filtering at a spatial
resolution ratio of R = 4.

1) Toulouse Dataset: This dataset comprises images of
buildings in an urban area of Toulouse (France), which are
acquired by an aerial CNES platform. As shown in Fig. 2(a),
the original MS images have a size of 256 × 256 pixels, and
have four spectral bands, and a spatial resolution of 0.6 m.
We use these as the reference images. The original PAN
images are presented in Fig. 2(b). The size of each PAN image
is 1024 × 1024 pixels with a spatial resolution of 0.15 m.
As shown in Fig. 2(c) and (d), the reduced resolution MS
image with a size of 64 × 64 pixels and reduced resolution
PAN image with a size of 256 × 256 pixels are obtained by
down-sampling the original MS and PAN images using a low-
pass filter with a spatial resolution ratio of R = 4. Therefore,
the derived pansharpening result has a size of 256×256 pixels
and can be compared with the reference image. In this dataset,
μ = 0.05.

2) WorldView-3 Sensor Dataset: This dataset comprises
imagery of green vegetation in the rural area. The original
MS images have a size of 256 × 256 pixels, and have eight
spectral bands, and a spatial resolution of 1.24 m. These are
used as reference images. The original PAN images have a
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Fig. 3. WorldView-3 sensor dataset. (a) Original MS image. (b) Original PAN image. (c) Reduced resolution MS image. (d) Reduced resolution PAN image.

Fig. 4. IKONOS sensor dataset. (a) Original MS image. (b) Original PAN image. (c) Reduced resolution MS image. (d) Reduced resolution PAN image.

TABLE II

ASSESSMENT FOR THE TOULOUSE DATASET OF FIFTEEN

METHODS AT REDUCED RESOLUTION

size of 1024 × 1024 pixels and a spatial resolution of 0.31 m.
The spatial resolution ratio of R = 4 is used to produce
the reduced resolution MS and PAN images. The instances
of the WorldView-3 sensor dataset are shown in Fig. 3. The
parameter μ for this dataset is 0.95.

3) IKONOS Sensor Dataset: This dataset comprises the
images of water in suburban area. The original MS images
have a size of 256 × 256 pixels, and have four spectral bands,
and a spectral resolution of 4 m. These images are used as
the reference images. The original PAN image has a size
of 1024 × 1024 pixels and has a spatial resolution of 1 m.
Similarly, the reduced resolution MS and PAN images are
obtained using the spatial resolution ratio of R = 4. The
instances of the IKONOS sensor dataset are presented in
Fig. 4. The parameter μ for this dataset is 0.5.

To show the differences of pansharpened images better
in reduced resolution experiments, the SAM error maps of
the sub-areas which are framed in Figs. 2(a), 3(a), and 4(a).
The pansharpening results of the Toulouse dataset at reduced
resolution are shown in Fig. 5 and the SAM error maps are
shown in Fig. 6. It is evident that MTF-GLP-HPM-DS in

Fig. 5(o) is most similar to the reference image presented in
Fig. 2(a). There is the least error in Fig. 6(o). Three evaluation
indices at reduced resolution are presented in Table II, where
it can be seen that Q2n is equal to Q4 due to four spectral
bands in the Toulouse sensor dataset. The three evaluation
indices demonstrate that the proposed MTF-GLP-HPM-DS
has a better performance in terms of Wald’s protocol as
compared to the other methods. Although the SAM of MTF-
GLP-HPM-DS is not better than the best result, the values of
Q4 of the proposed method are closest to 1 as compared to
the other methods, while its ERGAS value is the lowest.

The WorldView-3 dataset is used to illustrate the perfor-
mance of the proposed method on MS images with eight
spectral bands. In this test, Q2n is equal to Q8. The visual per-
formance and quality assessment of 15 pansharpening results
for the WorldView-3 sensor dataset at a reduced resolution
are shown in Fig. 7, the SAM error maps in Fig. 8 and
Table III. The results show that the proposed MTF-GLP-HPM-
DS achieves the best performance in terms of both the visual
and index comparison.

The visual comparison and quality assessment of 15 pan-
sharpening results obtained using the IKONOS sensor dataset
at a reduced resolution are shown in Fig. 9, the SAM error
maps in Fig. 10 and Table IV. The results in Table IV show that
the proposed MTF-GLP-HPM-DS method obtains the highest
value in for Q4 and lowest value for SAM among all the
compared methods. Although the value of ERGAS for the
MTF-GLP-HPM-DS method is not the lowest, it is very close
to the best-obtained value of the MF method. This was because
a lower μ value brought a better Q-index and SAM value
but a worse ERGAS, so μ of 0.5 was used to balance the
performance. In general, the proposed method achieves the
best performance among all the compared methods.

C. Full Resolution

We evaluate two datasets under a full resolution [53], [54]
as shown in Table I.



5406319 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 5. Results of Toulouse dataset at reduced resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS. (g) MTF-GLP-
CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP. (n) MTF-GLP-HPM-FS.
(o) MTF-GLP-HPM-DS.

Fig. 6. Subareas of SAM maps for Toulouse dataset at reduced resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS.
(g) MTF-GLP-CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP.
(n) MTF-GLP-HPM-FS. (o) MTF-GLP-HPM-DS.

1) QuickBird Sensor Dataset: This dataset is acquired under
the water in a suburban area. In the full-resolution assessment,
the original MS images have a size of 256 × 256 pixels,

have four spectral bands, and a spectral resolution of 2.44 m,
as shown in Fig. 11(a). The original PAN images have a size
of 1024 × 1024 pixels and a spatial resolution of 0.61 m,
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Fig. 7. Results of WorldView-3 dataset at reduced resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS. (g) MTF-GLP-
CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP. (n) MTF-GLP-HPM-FS.
(o) MTF-GLP-HPM-DS.

Fig. 8. Subareas of SAM maps for WorldView-3 dataset at reduced resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS.
(g) MTF-GLP-CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP.
(n) MTF-GLP-HPM-FS. (o) MTF-GLP-HPM-DS.

as shown in Fig. 11(b). These images are directly used as the
input data. Therefore, the derived pansharpening result has a
size of 1024 × 1024 pixels. Here, the parameter μ is 0.05.

2) WorldView-2 Sensor Dataset: This dataset comprises the
images of buildings in an urban area. The original MS image
with a size of 256 × 256 pixels, eight spectral bands spectral,
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Fig. 9. Results of IKONOS sensor dataset at reduced resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS. (g) MTF-GLP-
CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP. (n) MTF-GLP-HPM-FS.
(o) MTF-GLP-HPM-DS.

Fig. 10. Subareas of SAM maps for IKONOS sensor dataset at reduced resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-
GLP-FS. (g) MTF-GLP-CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP.
(n) MTF-GLP-HPM-FS. (o) MTF-GLP-HPM-DS.

and a spectral resolution of 2 m is presented in Fig. 12(a). The
original PAN image with a size of 1024 × 1024 pixels and a

spatial resolution of 0.5 m is displayed in Fig. 12(b). For this
dataset, μ = 0.05.
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TABLE III

ASSESSMENT FOR THE WORLDVIEW-3 SENSOR DATASET
OF 15 METHODS AT REDUCED RESOLUTION

TABLE IV

ASSESSMENT FOR THE IKONOS SENSOR DATASET

OF 15 METHODS AT REDUCED RESOLUTION

Fig. 11. QuickBird sensor dataset. (a) original MS image. (b) original PAN
image.

Fig. 12. WorldView-2 sensor dataset. (a) original MS image. (b) original
PAN image.

Because there are no reference images in full res-
olution experiments, the subareas which are framed in
Figs. 11(a) and 12(a) are magnified in Figs. 14 and 16.

TABLE V

ASSESSMENT FOR THE QUICKBIRD SENSOR DATASET
OF 15 METHODS AT FULL RESOLUTION

TABLE VI

ASSESSMENT FOR THE WORLDVIEW-2 SENSOR DATASET
OF 15 METHODS AT FULL RESOLUTION

The visual results and evaluation indicators of the QuickBird
dataset obtained using the 15 pansharpening methods at a full
resolution are presented in Fig. 13, the subareas in Fig. 14 and
Table V. The experimental results show that the proposed
MTF-GLP-HPM-DS achieves the best performance among all
the compared methods. The MTF-GLP-HPM-DS method has
the smallest Dλ and DS , and the QNR is very close to 1.

The pansharpening results and evaluation indicators for the
WorldView-2 dataset [55] are shown in Fig. 15, the subareas
in Fig. 16 and Table VI. Similar to the results obtained using
the QuickBird sensor dataset at a full resolution, the proposed
MTF-GLP-HPM-DS obtains the lowest values for Dλ and DS

and the highest QNR value among all the compared methods.
These results confirm that the proposed method has a good
capability to process the urban scenario images. Based on the
overall results, the proposed MTF-GLP-HPM-DS is always
superior to the other state-of-the-art methods in terms of
both the reduced resolution assessment and the full-resolution
assessment.

IV. DISCUSSION

A. Spatial Resolution Ratio R

The different values of R indicate that the reduced resolution
MS with a different resolution is obtained. Therefore, this
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Fig. 13. Results of QuickBird sensor dataset at full resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS. (g) MTF-GLP-
CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP. (n) MTF-GLP-HPM-FS.
(o) MTF-GLP-HPM-DS.

Fig. 14. Subareas of QuickBird sensor dataset at full resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS. (g) MTF-GLP-
CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP. (n) MTF-GLP-HPM-FS.
(o) MTF-GLP-HPM-DS.

experiment evaluates the performance of the proposed MTF-
GLP-HPM-DS method for another spatial resolution ratio, i.e.,
R = 2, for MS on the Toulouse and IKONOS datasets.

In this experiment, the reduced resolution PAN image is
again obtained by down-sampling the original PAN image
using a low-pass filter with a spatial resolution ratio of
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Fig. 15. Results of WorldView-2 sensor dataset at full resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS. (g) MTF-GLP-
CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP. (n) MTF-GLP-HPM-FS.
(o) MTF-GLP-HPM-DS.

Fig. 16. Subareas of WorldView-2 sensor dataset at full resolution. (a) EXP. (b) BT-H. (c) C-GSA. (d) AWLP. (e) MTF-GLP. (f) MTF-GLP-FS. (g) MTF-GLP-
CBD. (h) C-MTF-GLP-CBD. (i) MF. (j) MTF-GLP-HPM. (k). MTF-GLP-HPM-R. (l) MTF-GLP-HPM-H. (m) MTF-GLP-HPM-PP. (n) MTF-GLP-HPM-FS.
(o) MTF-GLP-HPM-DS.

R = 4. The pansharpening result still has the same size
as the original reference image [56]. The three evaluation

indicators of the 15 methods at a reduced resolution are given
in Tables VII and VIII.
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Fig. 17. (a) ERGAS, (b) Q-index, and (c) SAM evaluating at different μ for Toulouse dataset at reduced resolution.

Fig. 18. (a) ERGAS, (b) Q-index, and (c) SAM evaluating at different μ for WorldView-3 sensor dataset at reduced resolution.

TABLE VII

ASSESSMENT FOR THE TOULOUSE DATASET OF
15 METHODS AT REDUCED RESOLUTION (R = 2)

Based on the results presented in Tables VII and VIII,
at R = 2, the proposed method shows a good performance on
both datasets among all the compared methods. Therefore, the
proposed method is suitable for MS with a different resolution.

B. Parameter μ

The parameter μ is introduced to balance the influence of
fine MHR

b , fine PHR, and coarse PLR on (22). Considering the
aforementioned experimental results for the reduced resolution
and full-resolution assessments, the parameter μ is vital for
the MTF-GLP-HPM-DS method and makes the proposed
method more flexible toward different sensors and imagery
as compared to the other MRA methods. In this experiment,
the impact of parameter μ is studied for different sensors and
images scenarios. The three datasets for reduced resolution

TABLE VIII

ASSESSMENT FOR THE IKONOS SENSOR DATASET OF
FIFTEEN METHODS AT REDUCED RESOLUTION (R = 2)

experiments include Toulouse dataset comprising buildings
in an urban area, WorldView-3 sensor dataset comprising
green vegetation in rural areas, and IKONOS sensor dataset
comprising water in a suburban area. The two datasets used for
full resolution experiments include QuickBird sensor dataset
comprising water in a suburban area and WorldView-2 sensor
dataset comprising buildings in an urban area. Therefore,
we vary the parameter μ in the range of [0.05, 0.95] with
a step size of 0.1 for three datasets used in reduced reso-
lution experiments and two datasets used in full resolution
experiments.

In the reduced resolution experiments, the ERGAS,
Q-index, and SAM of the proposed method on the three
datasets for R = 4 are shown in Figs. 17–19. As shown
in Figs. 17(a)–19(a), the ERGAS value for Toulouse dataset
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Fig. 19. (a) ERGAS, (b) Q-index, and (c) SAM evaluating at different μ for IKONOS sensor dataset at reduced resolution.

Fig. 20. (a) Dλ, (b) DS , and (c) QNR evaluating at different μ for QuickBird sensor dataset at full resolution.

increases with μ, while it decreases for WorldView-3 and
IKONOS sensor datasets. As shown in Figs. 17(b)–19(b),
the Q-index value for Toulouse dataset and IKONOS sensor
dataset decreases with μ, while it increases for WorldView-3
sensor dataset. As shown in Figs. 17(c)–19(c), the SAM
value for Toulouse dataset increases with μ while it decreases
for WorldView-3 sensor dataset and IKONOS sensor dataset.
Thus, as the value of μ increases, the values of ERGAS
and Q-index for Toulouse dataset became worse, but the
value of SAM is improved. As compared to the WorldView-3
sensor dataset, the changes are opposite. The change for
IKONOS sensor is not obvious as compared with the other two
datasets. Considering that the proposed method achieves the
best performance among all the methods, μ should be selected
appropriately which made several indicators of the proposed
method were better than those of the other 14 methods.

In the full resolution experiments, the values of Dλ, DS ,
and QNR for different μ on the two datasets are shown in
Figs. 20 and 21. As shown in Figs. 20 and 21, the value of
μ should be as low as possible. This is because the better
Q-index directly results in better Dλ, DS , and QNR according
to (34). Therefore, as the value of μ increases, the value of
Q-index worsens. Thus, μ is set to 0.05 for the two datasets at
full resolution to achieve good performance in terms of several
indicators.

C. ERGAS for Different R

For IKONOS dataset evaluation performed in previous
experiment, we conclude that a lower μ leads to a better
Q-index and SAM, but worsens the ERGAS. To further
illustrate this effect, we test the ERGAS maps for IKONOS
sensor dataset at R = 4 and R = 8. As shown in Fig. 22,

TABLE IX

PROCESSING TIME OF THE PREVIOUS DATASETS
OF 14 METHODS AT REDUCED RESOLUTION

whether R = 4 and R = 8, the ERGAS decreases with
an increase in μ. Thus, for two different R, the μ should
be higher to obtain better ERGAS. For IKONOS dataset
evaluation performed in previous experiment, the parameter
μ is set to 0.5 by balancing the other indices to obtain the
best pansharpening results.

D. Processing Time

The processing time is another important evaluation index
of the proposed method’s performance. The processing time of
the 14 pansharpening methods for the datasets at reduced and
full resolutions are presented in Tables IX and X, respectively.
As shown in Tables IX and X, although the execution time of
the proposed method is not the shortest, the processing time of
the proposed MTF-GLP-HPM-FS is relatively short as com-
pared with the other MTF-GLP-HPM methods. MTF-GLP-
HPM-DS method requires one more scale to consider than
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Fig. 21. (a) Dλ, (b) DS , and (c) QNR evaluating at different μ for WorldView-2 sensor dataset at full resolution.

Fig. 22. ERGAS maps for IKONOS sensor dataset. (a) R = 4. (b) R = 8.

TABLE X

PROCESSING TIME OF THE PREVIOUS DATASETS OF
FOURTEEN METHODS AT FULL RESOLUTION

MTF-GLP-HPM-FS; thus, the proposed MTF-GLP-HPM-DS
obtains an excellent result at the cost of a longer execution
time.

E. Limitations

In this work, we build a dual-scale estimation of the
HPM injection scheme model for regression based on MRA
pansharpening method. It is worth noting that the manual
adjustment of the parameter μ is accomplished based on many
experiments. This means that any change in parameter μ
requires us to modify the values and then again find the most
suitable μ, which requires us to perform plenty of experiments.
In addition, the accuracy of the parameters obtained by manual
adjustment is not too high. Moreover, the processing time

of the proposed method can be further improved using a
simplified model.

V. CONCLUSION

In this work, we propose an MRA method for pansharpening
based on dual-scale regression, which achieves a better pan-
sharpening result as compared to various state-of-the-art MRA
pansharpening methods. In the proposed method, an MRA
model based on the scale regression is established. Then,
this model is improved by adding the scale regression to the
HPM injection scheme. The fine-scale information and coarse-
scale information are integrated by the weight parameter and
added to the scale regression to construct dual-scale regres-
sion, generating the final pansharpening result. The proposed
method has two main advantages, including more scale infor-
mation (fine-scale and coarse-scale information) for the scale
regression and better adaptability toward different scenarios
obtained by adjusting the weight parameter. The experimental
results of the proposed method obtained using the two four-
band datasets (the QuickBird and IKONOS datasets) and
two eight-band datasets (the WorldView-2 and WorldView-3
datasets) demonstrate a good performance achieved within
an acceptable time. The experimental results show that the
performance of the proposed MTF-GLP-HPM-DS method is
better for both the reduced and full-resolution assessments as
compared to the other MRA methods.

In this work, an appropriate weight parameter μ is obtained
experimentally. However, manual adjustment of parameter μ
can be further improved, and the self-adaptability of this
parameter can be considered in the future.
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APPENDIX A

We show that the dual-scale regression model is iterative and
convergent step by step. First, the initial injection coefficients
g0

b are obtained for MHR,0
b = M̂LR

b and are defined as
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Thus, the expression of gn−1
b is obtained as
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Finally, to show that the dual-scale regression model is
iterative and convergent, mathematical induction is used to

obtain gn
b derived from gn−1

b in (30) as

gn
b = μ

cov
�

MHR,n
b , PHR

�
var
�

PHR
� + (1 − μ)
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�
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�
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�
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�
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�
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�
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·
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�
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�
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Similarly, the iterative process used in the regression
requires a fixed point when n approaches infinity. Therefore,
g∞

b is defined as follows:
g∞

b = lim
n→∞ gn

b

=


μ

cov
�

M̂LR
b , PHR

�
var
�

PHR
� + (1 − μ)

cov
�
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�
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�
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�
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·
∞�

i=0
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�
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�
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�
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�

�i

. (39)

Particularly, due to the fact that

0 <

�����1 − cov
�

PHR, PLR
�

var
�

PHR
�

����� < 1. (40)

We have

g∞
b =



μ

cov
�
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�
var
�
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�
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�
var
�
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�

· 1

1 −
�
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�
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μ
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�
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�
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�
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� + (1 − μ)
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�
var
�
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�
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· 1
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var(PHR)

= μ
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�
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b , PHR

�
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�
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� + (1 − μ)
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�

M̂LR
b , PLR

�
cov
�

PHR, PLR
� . (41)
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