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Abstract— In this study, the potential of raw samples of digi-
tized echo waveforms collected by full-waveform (FW) terrestrial
laser scanning (TLS) for point cloud classification is investigated.
Two different TLS systems are employed, both equipped with
a waveform digitizer for access to the raw waveform and
online waveform processing which assigns calibrated waveform
attributes to each point measurement. Point cloud classification
based on samples of the raw single-peak echo waveform is
compared with point cloud classification based on the cali-
brated online waveform attributes. A deep convolutional neural
network (DCNN) is designed for the supervised classification.
Random forest classifier is used as a benchmark to evaluate
the performance of the proposed DCNN model. In addition,
feature importance and temporal stability of the raw waveform
samples versus the calibrated waveform attributes for point cloud
classification are reported. Classification results are evaluated at
two study sites, a built environment on a university campus and
a coastal wetland environment. Results show that direct classi-
fication of the raw waveform samples outperforms classification
based on the set of waveform attributes at both study sites.
Results also show that the contribution of the range, as the
only geometric attribute in the raw waveform feature vector,
significantly increases the classification performance. Finally,
the performance of the DCNN for filtering ground points to
generate a digital terrain model (DTM) based on classification
of the raw waveform samples is assessed and compared to a
DTM generated from a progressive morphological filter and to
real-time kinematic (RTK) GNSS survey data.

Index Terms— Deep learning, full-waveform analysis (FWA),
light detection and ranging (lidar), machine learning, point cloud
classification, remote sensing (RS).

I. INTRODUCTION

CONVENTIONAL terrestrial and airborne laser scan-
ning (ALS) systems based on the Time-of-Flight (ToF)
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measurement principle, which are characterized as analog
discrete return light detection and ranging (lidar) systems,
have long been used for topographic mapping and other
remote-sensing (RS) applications. For each emitted laser pulse,
echo detection and time-of-arrival (TOA) estimation of the
backscattered laser pulse are performed in real-time by analog
devices. In discrete return systems, The estimation of the
TOA is highly affected by range walk, i.e., the amplitude of
echo pulse detected by the receiver frontend [1]. The analog
estimators may yield significant range errors or completely fail
in accurately detecting multiple targets along the laser transmit
path, depending on the temporal separation between consecu-
tive targets with respect to the emitted laser pulsewidth [2].

In contrast to discrete return systems, in echo-digitizing
lidar systems, the complete return signal from the reflecting
target is sampled at high rate and recorded in a digital form
prior to performing the target detection [3]. Small footprint
full-waveform (FW) ALS systems have been developed in
the past few decades [4]. More recently, terrestrial, mobile,
and unmanned airborne lidar systems with the capability of
recording FW data are also becoming more readily available.
Echo pulse attributes, such as amplitude and width, derived
from the waveform signal backscattered from a reflecting
object are shown to be useful for classification of lidar data
collected over natural and built environments [5], [6].

However, extracting the fundamental properties of the
returned waveform, such as the number of relevant peaks and
parameters describing the shape of each detected echo in the
waveform signal is a challenging task in signal processing [4].
Moreover, the echo pulse attributes need to be discriminative
enough to be exploited as relevant features in the feature vector
of the target for efficient classification. Depending on the
employed FW lidar system for collecting waveform data, and
the required accuracy to extract waveform attributes, different
techniques have been developed for waveform decomposition
and modeling [4], [7]. By carrying out a radiometric calibra-
tion procedure on waveform data, more relevant features can
also be introduced to the feature vector of the target to improve
the overall accuracy of the classification task [3], [5].

In some lidar systems, especially terrestrial laser scan-
ning (TLS) systems, the system response model is usually
unknown or too complex for modeling and decomposing
the waveform using typical parametric functions, such as
the well-known generalized Gaussian function [2]. To take
the advantage of the capability of FW TLS systems in
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digitizing and recording the return signal for classification
tasks, an intensive calibration procedure for approximating
the actual system response model seems inevitable [2], [8].
This approximated model will later be used as the basic
template for waveform decomposition and modeling which
can be accomplished, almost in real time, by an internal FW
processing unit in some lidar systems [8], [9].

Due to the fact that digitized waveform samples are the
fundamental source of data for modeling the waveform and
extracting echo parameters, samples of the raw echo waveform
may have the potential to be directly employed as waveform
features representing physical characteristics of the illuminated
target. One advantage of this approach is that conventional
FW analysis (FWA) techniques are not required for extract-
ing common waveform attributes. Therefore, uncertainties in
evaluating the echo parameters due to the low capacity of the
parametric functions for fitting to the echoes are eliminated.
In addition, due to the lower sampling rate of the digitizer
(usually 2 ns) and higher nonlinear system response in TLS
systems, with respect to FW ALS systems, common FWA
techniques are not usually applicable in a FW TLS system for
the full dynamic range of the lidar system [2], [8].

II. BACKGROUND

A FW lidar system is capable of digitizing and recording
the complete temporal energy profile of the backscattered laser
signal from the reflecting target, where the “waveform” is the
term that refers to the shape of the echo signal [3]. In com-
parison to discrete-return lidar systems, the data collected by
FW lidar systems contain additional information about the
physical and spatial properties of the illuminated target in
the footprint of the laser beam [4]. Specifically, in critical
target situations where the target location with respect to the
nearby targets or its spatial distribution along the travel path
of the laser pulse causes uncertainty in range determination or
target identification, analyzing the additional information may
help to partly resolve those ambiguities [10]. This additional
information is typically derived from detection and modeling
of each individual echo within the digitized waveform signal.
Two of the most important echo attributes include echo pulse
amplitude, which is related to the radiometric characteristics
of the target, and pulsewidth, which is a measure of the
target-laser beam configuration and/or surface roughness at
scales comparable to the laser wavelength [11]. These echo
attributes and their derivatives, including the reflectance and
geometry of the target with respect to the laser beam, such
as the backscatter cross section and backscattering coefficient,
have been widely used as relevant waveform features for target
classification or segmentation [12], [13].

Analyzing the waveform, which encapsulates both radio-
metric and geometric properties of the illuminated target,
is usually accomplished in an offline (or post-processing)
mode using a pre-defined FWA technique [4]. Some lidar
systems, however, such as Riegl VZ-Line TLS systems, offer
an online waveform processing approach [2]. In this approach,
the analysis of the returned waveform is carried out in real
time, where the actual system response, derived from an
intensive system calibration procedure accomplished by the

lidar manufacturer, is exploited for waveform decomposition
and modeling [2]. This is due to the fact that the tremendous
dynamic range of the TLS system usually leads to a large
degree of nonlinearity in the characteristics (e.g., scale) of
the system response. However, by providing the raw digitized
waveform data, Riegl VZ-Line scanners offer the enduser the
flexibility to apply more in-depth and advanced analysis on
the raw waveform data to achieve satisfactory results.

A. Waveform Features for Classification

The development of FW lidar systems and the advance-
ment in FWA algorithms have brought interest to explore
the suitability of features derived from digitized returned
waveform signals for lidar data classification [13]–[16].
FW lidar data classification has been met through different
approaches. Some work focus only on the geometric prop-
erties of targets and explores the most relevant geometric
features describing different targets for classification. This
approach emphasizes the improvement in geometric repre-
sentation of the measured target for classification purposes.
Improvements in the geometric representation of the target will
help to better discriminate different targets in the classification
procedure [17]–[19]. Other studies explore the combination of
basic waveform features, such as the echo width and (uncal-
ibrated) amplitude, with some calibrated attributes, such as
the backscatter cross section or backscattering coefficient,
derived from the echo waveform in the feature vector of the
target [12]–[14], [20]. Some geometric features related to the
targets in lidar data, such as elevation differences and surface
normal, and features related to the position of a detected echo
in the waveform or coefficients describing the deviation of
the echo pulse from the ideal transmitted pulse may also
be considered to enhance the classification performance [13],
[21], [22]. The potential of parameters related to the structure
of the waveform, such as the rise time to the first echo,
ratio between tree canopy and ground energy, total waveform
energy, and height of median energy have also been explored
for airborne lidar data classification [23], [24].

Although the benefits of FW lidar data are particularly
profound for forestry and vegetation segmentation due to its
ability to provide accurate and detailed information about
the vertical structure of the vegetated area and the terrain
elevation underneath [25], [26], FWA has also been found
advantageous for the challenging task of classification of
natural and built objects in developed environments. Addi-
tional information about the reflecting properties of natural
and built structures and their spatial distribution, encoded in
the waveform data, have been shown to be relevant for land
cover mapping and target classification in urban and natural
areas [15], [21], [25], [27], [28]. However, in complex areas,
the basic waveform features become less discriminative for
a multiclass classification task [5], [13]. Nevertheless, some
research studies have developed FWA techniques to derive
more accurate basic features as well as some advanced features
from the backscattered signal [12]. Studies have shown that
employing basic and advanced waveform features along with
careful radiometric calibration of the data improves multiclass
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classification in urban areas [12], [13], [29]. Furthermore,
adding features such as the total number of echoes within
each waveform and the position of the echo in the waveform
together with some geometric and/or spectral features derived
from the lidar system or integrated sensors such as multi-
spectral or hyperspectral cameras can significantly increase
the accuracy of the multiclass classification of lidar data over
complex environments [5], [22], [30], [31].

B. Objectives of This Work

This article seeks to investigate the utility of the samples of
digitized raw waveform for multiclass classification of targets
within built and natural environments. Classification perfor-
mance is evaluated at two study sites: a university campus and
a coastal wetland. Natural and made-made targets found in the
selected study sites are classified through direct classification
of the corresponding backscattered waveforms. The FW TLS
systems employed in this study are equipped with online
waveform processing capability and a waveform digitizer,
which provides the enduser with digitized raw waveform for
advanced post-acquisition analysis.

The hypothesis in this study is that the relevant waveform
features for classification, either derived from the online
waveform processing or in an offline mode using the post-
processing FWA, are not always available. Moreover, in either
case, samples of the digitized waveform are the primary source
for waveform modeling and feature extraction. Thus, this
study aims to investigate the potential of the raw samples
of digitized single-peak echo waveforms for target classifi-
cation. In this work, feature vectors containing samples of the
raw digitized waveform are referred to as offline waveform
feature (attribute) vectors. Spatial information-related neigh-
boring targets are not included in the proposed classification
approach. Due to the high correlation between the target’s
distance and the received optical energy by the lidar system,
the range to the target is the only geometric feature which
is included in the feature vector of the illuminated target.
However, for the sake of completeness, the discriminative
capability of samples of the waveform for multiclass clas-
sification in the absence of the range attribute will also be
reported.

The potential of digitized raw waveform samples is com-
pared with the capability of calibrated waveform features,
derived from the online waveform processing, for target clas-
sification. The calibrated waveform features are referred to as
the online waveform features throughout this article. Due to
the importance of single-peak echo waveforms in representing
geophysical characteristics of targets, where the calibrated
parameters directly relate to the spatial and radiometric prop-
erties of the illuminated target, only waveform samples related
to single-peak echo waveforms are considered for waveform
classification and feature analysis. In addition, as it has been
explained in Section V, the majority of waveform data col-
lected at each study site is single-peak echo waveforms. For
the sake of fairness in the comparative analysis, only the online
waveform attributes related to single-return measurements are
considered for classification.

At the built environment (campus) study site, online and
offline waveform attributes in the feature vectors are analyzed
for classification using FW TLS datasets collected at two
different points in time. Each individual dataset includes mul-
tiple scan positions within the same environment. Employing
these datasets is crucial for investigating the robustness of the
suggested point cloud classification approach. First, by having
multiple scan positions within one dataset, the training and
testing of the classifier can be carried out on two separately
collected datasets. Second, collecting FW TLS data from
multiple scan positions significantly decreases the correlations
between a certain target category and some properties of
the measured waveform that are highly correlated with the
TLS-target geometric configuration, such as the range to
the target. Finally, two waveform datasets collected at two
different points in time from the same study area makes it
possible to perform a temporal stability analysis on both online
and offline waveform feature vectors.

At the natural environment (wetland) study site, classifica-
tion is performed using a different FW TLS system than that
used in the built environment, but manufactured by the same
company. This TLS is also equipped with online waveform
processing and a waveform digitizer. This study site provides
an additional evaluation of the robustness of the raw waveform
classification approach within natural terrain and based on a
different TLS system.

The main contributions of this article are as follows.

1) Classification performance on raw waveform data is
compared with classification based on online waveform
attributes (features) derived from a calibrated lookup
table (LUT) provided by the TLS system manufacturer.

2) A deep convolutional neural network (DCNN) archi-
tecture is developed and employed for the multiclass
classification task, where the offline (raw waveform
data) and online waveform feature vectors related to
each target are used as input to the DCNN model.
Furthermore, the classification performance of the
DCNN model is compared with that from a ran-
dom forest (RF) model and important features in
both online and offline waveform feature vectors are
reported.

3) Temporal stability of the offline versus online waveform
features for classification is investigated through eval-
uating the classification performance on two datasets
collected at two different points in time.

4) Task evaluation of the DCNN for filtering ground points
to generate a digital terrain model (DTM) of the wetland
surface based on online and offline waveform feature
vectors is performed.

The remainder of this article is organized as follows:
Section III describes online and offline FWA. Section IV
introduces the study sites and collected FW TLS data. The
methodology employed for FW TLS data classification and
evaluation based on raw and online waveform attributes is
presented in Section V. Results are presented and discussed in
Section VI. Finally, Section VII concludes with some future
work considerations.
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III. FWA APPROACHES

A. Offline FWA

Offline FWA, which is usually employed in FW ALS
systems is a post-processing approach to detect pulses and
related attributes, e.g., amplitude, and width from the digitized
echo signal. Those echo pulse attributes can later be used
to derive some information about the scattering characteris-
tics of the illuminated targets. Different approaches proposed
to extract the target backscattering properties encoded in
the digitized waveform can be broadly categorized into two
main approaches: 1) deconvolution-based methods [7] and
2) methods based on fitting the digitized echo waveform
with basic parametric functions [3]. With the assumption that
the system response can be described and modeled with an
ideal Gaussian function, which is usually true in FW ALS
systems with limited dynamic range, Gaussian decomposition
and modeling has become a widely accepted FWA approach in
FW ALS systems [3], [21], [25]. However, applying Gaussian
decomposition and modeling on FW data collected from FW
TLS systems, with a large dynamic range, usually leads to
unsatisfactory results [8].

B. Online FW Processing

Since 2008, Riegl Laser Measurement Systems, GmbH,
Horn, Austria, has developed a line of lidar systems, com-
monly called V-Line, based on pulsed ToF technology with
real-time echo digitization and online waveform processing
capabilities [9]. Indeed, Riegl V-Line lidar systems combine
the advantages of analog detection systems, in which lidar sur-
vey results are provided without the need for post-processing,
with those of airborne echo digitizing lidar systems [1].
In contrast to FW ALS systems, in which digitized returned
waveforms are stored during flight for FWA in an offline or
post-processing mode, the lack of computational power in TLS
systems for real-time processing has led Riegl to implement
online waveform processing for V-Line scanners including
VZ-Line TLS products [1].

As opposed to FW ALS systems in which an ideal
Gaussian pulse, usually, closely approximates the sensor’s
system response, the Riegl VZ-Line systems exploit the
actual sensor’s system response derived from an intensive
calibration procedure performed by the manufacturer [2].
This actual system waveform is employed for the wave-
form decomposition and derivation of physical observables
describing the scattering properties of the target, such as the
target’s laser cross section or calibrated relative reflectance,
within an automatic procedure called online waveform
processing [2], [8]. In this approach, the nonlinear scale
characteristics of the system response are perfectly captured
by the calibrated sensor’s system response, resulting in the
utmost accuracy and precision in the echo decomposition
and reconstruction [2], [8]. In addition to calibrated relative
reflectance, the online waveform processing in VZ-Line TLS
systems provides calibrated amplitude and pulse deviation for
each detected echo signal.

1) Calibrated Amplitude: The amplitude of the optical echo
signal detected in the receiver depends on a number of factors
including system-related factors, such as emitted laser pulse
and the receiver aperture, and target-related factors, such as
target’s laser radar cross section which is a function of the
target’s reflectance in the laser’s wavelength, target’s size, and
the directivity of the target’s reflection [9]. By means of a pre-
cise calibration procedure during manufacturing, the amplitude
of every detected pulse is given relative to the amplitude of
an echo signal at the detection threshold of the lidar system
as [9]

AdB = 10 × log

(
Pecho

PDL

)
(1)

where AdB is amplitude in decibel, Pecho is the optical input
power, and PDL is the minimum detectable input power. The
logarithmic measure, given above, covers the wide dynamic
range of the employed TLS system. However, the amplitude
of the echo signal, detected by the receiver, is highly corre-
lated with the range value making it difficult to discriminate
different targets based purely on their amplitude readings for
target classification.

2) Calibrated Relative Reflectance: The target reflectance
is a physical target property, which refers to the fraction of
the incident laser’s optical power that is reflected by the target
at the laser wavelength. However, the reflected optical power
measured at the receiver is highly correlated with the target
range. The calibrated relative reflectance is defined as the ratio
of the absolute amplitude of the target to the amplitude of a
target of known reflectance at the same range, orthonormal
to the laser beam and with a size larger than the laser
footprint [9]. The target of the known reflectance is usually
a white diffuse target with the reflectance of about 100%.
This quantity relates the echo intensity to the target reflectance
independent of the range to the target. The Riegl VZ-Line TLS
systems take also the directivity of the target reflectance into
account, making the relative reflectance comparable with the
normalized laser radar cross section. The relative reflectance
in dB, ρrel, measured by the lidar system is evaluated as [9]

ρrel = AdB − AdB,Ref(R) (2)

where AdB is the calibrated amplitude and AdB,Ref(R) is the
calibrated amplitude of the reference target at range R.

3) Pulse Deviation: Online waveform processing in
VZ-Line systems provides information about the pulse shape
figure, where the shape of the echo pulse is compared with
the expected (and undistorted) pulse shape for each individual
echo pulse. In fact, pulse deviation represents the devia-
tion of the returned pulse from the actual system response
already evaluated and stored in the instrument [1]. The stored
calibrated system response model, which encompasses the
entire dynamic range of the TLS system, captures a large
portion of systematic changes in the echo shape as a function
of range, enabling accurate fits to the waveform [8], [9].
However, even the ideal echo signal, backscattered from an
extended flat target orthonormal to the laser beam, still shows
discrepancies with the stored system response [9]. This devi-
ation especially increases for overlapping echoes, returning
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Fig. 1. Co-registered TLS point cloud of the campus. Side view is colored gray by reflectance. (Left) Top view is color-coded by height. Circles show six
TLS positions in the October survey. White circles represent two TLS positions for the July survey.

Fig. 2. Georeferenced point cloud collected from the coastal wetland, color-coded based on ellipsoidal height. The gray and small white circles represent
the TLS positions and collected RTK GNSS points, respectively. The orthoimage on the right shows the land cover of the study site.

from targets located at a distance smaller than the multitarget
resolution (MTR) distance (for example, 0.8 m in the Riegl
VZ-400 TLS systems), and for broadened echoes returning
from slanted targets [9]. The pulse deviation is given as [9]

δ =
N∑

i=1

∣∣si − pi

∣∣ (3)

where N is the number of samples in the digitized echo
signal with digital number (DN) value si , and pi is the
DN corresponding to the sample from the equivalent system
response.

IV. STUDY SITES AND DATA

A. Study Sites

To perform this experiment on a built environment, part of
the campus of Texas A&M University-Corpus Christi, TX,
USA, was selected. The campus area includes natural and
man-made structures such as palm trees, grass fields, asphalt
roads, and buildings, which are used as target categories for
classification. To evaluate the potential of the raw waveforms
to discriminate tree canopy from grass fields, the tree category
is divided into two separate subclasses (trunk and canopy)
in the classification process, described further below. Fig. 1
illustrates the campus study site with the area of 94 600 m2

displayed in two different views of the co-registered point
cloud dataset collected by the Riegl VZ-400 FW TLS system
at two different points in time.

The second study site, Mustang Island Wetland Observatory
(MUI), is part of a coastal wetland located on a barrier island

along the southern portion of the Texas Gulf Coast, USA,
bounded by Corpus Christi Bay to the west and the Gulf of
Mexico to the east. Two prominent target categories in the
selected coastal wetland are vegetated land cover and tidal
flat areas. Tidal flat areas are bare-earth sediment surfaces,
usually devoid of vegetation, and alternately submerged and
exposed to the air by changing tide and water levels. In this
study, tidal flat areas include exposed, lower lying, and tidal
inundated wetland surface areas as well as exposed, upland
and periodically inundated wetland surface areas within zones
of vegetation cover. The vegetated areas include densely
vegetated areas and areas with sparse vegetation cover. Some
other target categories found in this study site include a dirt
road and power lines. Thus, tidal flat, vegetation, road, and
power lines are used for multiclass classification of this natural
environment. Fig. 2 illustrates the coastal wetland study site
with the area of 185 430 m2 visualized with a georeferenced
point cloud collected at 8 different scan positions with a Riegl
VZ-2000i FW TLS.

It should be emphasized that, in each study site, targets with
dominant observations have been considered for classification.
Because the main purpose of this work is to assess the quality
of information carried by the raw echo waveform without
waveform modeling and calibration, main target categories
describing the majority of the built study site in campus area
are examined. In coastal wetland, however, due to the need
for discriminating terrain points from above-ground objects for
modeling the wetland topography, the exposed terrain surface
and dominant vertical structures found in the study area, i.e.,
vegetated areas, and power lines are classified. Although there
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TABLE I

TECHNICAL SPECIFICATIONS OF THE RIEGL VZ-400 AND VZ-2000I

Fig. 3. Single-peak digitized echo waveforms with 2-ns spacing measured by (a) Riegl VZ-400 and (b) Riegl VZ-2000i TLS generated from laser pulse
returns from extended targets with similar reflectance values.

might be different vegetation types, classifying vegetation type
is not the main purpose of this work. Thus, all vegetation types
are classified under the same category.

B. FW TLS Data

The Riegl VZ-400 and VZ-2000i FW TLS systems were
employed for collecting data from the campus and wetland
study sites, respectively. Specifications of both lidar systems
are given in Table I. These TLS systems not only perform
online waveform processing, but also digitize and record the
entire echo waveform at a sampling rate of 500 MHz or
one sample per 2 ns. Fig. 3 illustrates single-peak digitized
echo waveforms recorded by the Riegl VZ-400 and VZ-2000i
from extended targets with the same reflectance values of
about −3.2 dB derived from the online waveform processing.
According to the figure, the Riegl VZ-400 TLS system records
16 samples related to the echo waveform while the Riegl
VZ-2000i TLS system records 24 samples. Both cases are for
an extended target perpendicular to the path of the emitted
laser beam. However, both systems use the same digitization
rate; the time separation between two consecutive samples in
each individual waveform is 2 ns.

1) Campus Study Site: Two separate FW TLS surveys,
performed at two different times using a Riegl VZ-400 TLS
system, over the selected campus area have been considered
for FW data classification. The first TLS survey was carried
out on July 14, 2020, at two different scan positions. The
second survey was carried out on October 31, 2020, at six
scan positions, where two of those scan positions were located

at the same TLS positions and heights used to acquire data on
July 14. The average temperature and humidity during data
collection on July 14 are 37 ◦C and 78% and on October 31 are
20 ◦C and 55%, respectively.

In Fig. 1, the side view shows a TLS point cloud colored
by calibrated relative reflectance values, while the top view
represents the same point cloud data color-coded according
to height. Circles in Fig. 1 show the scan positions in the
collected datasets on October 31, where the two white circles
show the TLS positions in common with the TLS survey
conducted on July 14. The dataset collected on October 31 is
used for training and testing the classifier. Having several scan
positions for the October dataset is crucial for the robustness of
the suggested classification approach. First, by having multiple
scan positions within the study area, instances for training and
testing the underlying classifier can be chosen from separate
scan positions or a combination of them. Second, collect-
ing FW TLS data from multiple scan positions significantly
decreases the correlations between the shape of the return
waveform and the geometric configuration of the target with
respect to the TLS system. Furthermore, the trained classifier
on the October dataset is also used to classify the dataset
collected on July 14, which enables analysis of the temporal
stability of online and offline waveform feature vectors for
classification.

For both TLS surveys, point cloud/waveform data were
collected at each scan position in panoramic mode with a 360◦
horizontal field-of-view (FOV) and 100◦ (from −40◦ to +60◦)
vertical FOV using the scanner’s high-speed acquisition mode
with FW recording turned on. The pulse repetition rate (PRR)
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was set to 300 kHz, corresponding to 122 000 measurements
per second, and the minimum step angle was set to 0.0024◦
equivalent to 4-mm point spacing at 100 m.

Registration and fine alignment of individual scan positions
into a cohesive point cloud was performed with Riegl RiSCAN
PRO, version 2.12.1, software package, using the multista-
tion adjustment (MSA) plugin. MSA results reported by the
RiSCAN PRO software show the final horizontal and vertical
accuracy of TLS scan co-registration are 0.006 and 0.004 m,
respectively, with angular precision better than 0.004◦ for all
angular parameters. Registered point cloud data from both
TLS surveys was locally referenced within a project oriented
coordinate system.

2) Wetland Study Site: The TLS survey of the wetland
study area was conducted on February 23, 2021, at eight
different scan positions using the Riegl VZ-2000i FW TLS
with an integrated real-time kinematic (RTK) GNSS receiver.
The average temperature and humidity during data acquisition
in the coastal wetland area are 24 ◦C and 56%, respectively.
Fig. 2 illustrates the TLS locations on wetland study site using
gray circles on the georeferenced point cloud color-coded
based on ellipsoid height. The orthoimage given in Fig. 2
shows the land cover within the wetland study site. Point
cloud and digitized waveform data were collected at each scan
position in panoramic mode with a 360◦ horizontal FOV and
100◦ (from −40◦ to +60◦) vertical FOV using the scanner’s
high-speed acquisition mode. The PRR was set to 600 kHz,
corresponding to 250 000 measurements per second, and the
minimum stepping angle was set to 0.0024◦.

The scan positions were co-registered using the same
procedure described above for the campus study site and
georeferenced based on the VZ-2000i’s integrated RTK GNSS
receiver, which received corrections from the Texas Depart-
ment of Transportation (TxDOT) real-time network (RTN)
during data acquisition. This approach provided absolute posi-
tional accuracy down to a few centimeters. Spatial referencing
was set to the North American Datum of 1983 (NAD83),
National Adjustment 2011, State Plane Coordinate System,
Texas South Zone for the horizontal point cloud coordinates.
Vertical coordinates were referenced to the NAD83 ellipsoid.
Georeferencing of the TLS data at the wetland site was
necessary for assessment of waveform classified ground point
data for DTM generation and comparison to RTK survey data,
described further below.

C. RTK GNSS Control Points on Coastal Wetland

A network of 132 RTK GNSS points was collected on the
bare-earth surface in the coastal wetland study site using an
Altus NR3 (Septentrio) RTK GNSS rover with cellular-based
corrections provided by the TxDOT RTN (see Fig. 2). Coordi-
nates at each sample point were computed from a 10-s obser-
vation average at 1-Hz sample rate. Ellipsoidal height (vertical)
accuracy using this procedure is estimated to be within 2.7 cm
(1 σ ). All RTK data were collected in the same reference frame
as the TLS survey.

These RTK points serve as ground truth (i.e., vertical control
points) for evaluating DTMs generated from the offline and

online waveform classified point cloud data explained later in
this article. RTK points were distributed throughout the study
area, collected on surfaces within vegetated and exposed land
cover. From the total set of collected control points, 30 points
represent hard surfaces, including tidal flats and dirt road areas,
and the remaining 102 points characterize vegetated areas,
including both densely vegetated areas and areas with sparse
vegetation. RTK GNSS points collected on hard surfaces are
used to evaluate the vertical accuracy of the TLS data.

V. METHODOLOGY

For the purposes of this work, a filtering procedure must
first be implemented on all collected TLS datasets to extract
single return points derived from online waveform processing
and corresponding single-peak echo waveforms. In addition,
for a multiclass supervised classification task, an appropriate
number of ground-truth instances need to be generated for both
study sites.

A. Single-Peak Echo Waveforms

The Riegl RiSCAN PRO, version 2.12.1 software package
was used for visualizing, filtering, and exporting the point
cloud derived from the online waveform processing with
selected attributes. Riegl also provides a software toolkit
called RiWaveLib library for advanced research and analysis
purposes on the raw waveform data acquired by the Riegl
VZ-Line scanners. The digitized echo waveform correspond-
ing to a selected point in the point cloud is accessible through
the timestamp attribute assigned to that point, derived from
the online waveform processing.

The point cloud data collected from each scan position
is filtered to include points related to the single-peak echo
waveforms. Such filtering is necessary because the radiometric
calibration of the lidar instrument and the resulting relative
reflectance are valid for extended targets. In other words,
radiometric calibration in a lidar system assumes that the
received intensity values are from a single target with a size
larger than the footprint of the laser beam. Moreover, due to
the higher variations in the echo shape caused by the influence
of central obscuration for targets measured at a close range to
the scanner [32], [33], especially up to 9 m [8], the single-peak
echo waveforms and corresponding points in the point cloud
data, at both study sites, are also filtered to exclude data
points collected at distances less than 9 m from the TLS
instrument. The net result of the filtering procedure is the
exclusion of about 8% and 15% of the waveforms collected
from the campus and coastal wetland study sites, respectively.

The point attributes exported from the Riegl RiSCAN PRO
software include the 3-D coordinates, range to the scanner,
calibrated amplitude, calibrated relative reflectance, and pulse
deviation. For the sake of simplicity, amplitude and reflectance
are used rather than calibrated amplitude and calibrated rel-
ative reflectance, respectively, in the remaining sections of
this article. The 3-D coordinates are not included in the
classification process but they are employed for visualization
purposes.
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TABLE II

TOTAL NUMBER OF GROUND-TRUTH INSTANCES GENERATED FROM THE TWO COLLECTED DATASETS OVER THE CAMPUS STUDY AREA. FOR EACH
DATASET, THE NUMBER OF GROUND-TRUTH INSTANCES RANDOMLY SAMPLED FOR TRAINING AND TESTING IS GIVEN

TABLE III

TOTAL NUMBER OF GROUND-TRUTH INSTANCES GENERATED FROM THE COLLECTED DATASET OVER THE COASTAL WETLAND STUDY AREA. FOR

EACH DATASET, THE NUMBER OF GROUND-TRUTH INSTANCES RANDOMLY SAMPLED FOR TRAINING AND TESTING IS GIVEN

To explore recorded waveform data, computer programs
were developed using the software library RiWAVELib, and
compiled with Microsoft Visual C++ on Windows platform.
Examining the single-peak echo waveforms acquired by the
Riegl VZ-400 TLS system shows that more than 98% of
waveforms contain 16 or 24 samples (DNs). The same exam-
ination on the single-peak echo waveforms collected by the
Riegl VZ-2000i TLS system shows that more than 97% of
the single-echo echo waveforms contains 24 or 32 samples.
Echo waveforms with more than 24 samples recorded by
the Riegl VZ-400 or waveforms with more than 32 samples
measured by the the Riegl VZ-2000i usually belong to highly
inclined surfaces in the path of the laser beam or are a
consequence of merged echoes from targets spaced closer
than the target separation resolution of the lidar sensor. Thus,
to avoid including those waveforms in classification procedure,
those waveforms are filtered out from the related dataset.

B. Ground Truth for Classification

Ground-truth instances were generated from the data col-
lected at all scan positions in each study site by careful
inspection of the acquired point cloud and manual selection
of points related to the desired target.

1) Campus Study Site: The total number of ground-truth
points and corresponding waveform instances generated from
the filtered dataset collected by the Riegl VZ-400 TLS over the
campus study site in October and July are given in Table II.
From the total number of points in the filtered October dataset,
1 000 000 ground-truth points with online waveform features
and corresponding waveforms were randomly selected for
training the classifier, where each target category participates
in training the classifier with 200 000 random point and
waveform instances. The number of randomly selected points
and related waveforms from the October dataset, used for
testing the classification performance is given in Table II. It is
worth noting that the training and testing sets do not include

shared instances. Table II also reports the number of points and
corresponding waveform instances for testing the classifier on
the July dataset after training using the October dataset.

2) Wetland Study Site: Ground-truth instances generated
from the filtered dataset collected by the Riegl VZ-2000i TLS
system over the coastal wetland area are given in Table III.
It summarizes the total number of generated ground-truth
points and corresponding waveforms, and the number of
instances that belong to each target category, for training and
testing of the underlying classifier. According to the table, for
each target category, 200 000 point and waveform instances
were randomly selected from the total number of generated
ground-truth instances.

C. Online Versus Offline Waveform Feature Vectors

For both TLS systems used in this study, the online wave-
form feature vector related to each individual single-return
point instance includes the range to the scanner, ampli-
tude, reflectance, and pulse deviation. The corresponding
single-peak offline waveform feature vectors, however, have
different lengths for each TLS system. The offline waveform
feature vector includes the range value and a series of 24 DNs
for the waveforms measured by the Riegl VZ-400 TLS sys-
tem, while for the VZ-2000i TLS systems the feature vector
includes 32 DNs and range value. The missing elements
in offline waveform feature vectors constructed on digitized
waveforms with the length shorter than 24 and 32 samples
measured by Riegl VZ-400 TLS and Riegl VZ-2000i TLS,
respectively, are filled by the DN representing the value of the
last sample of the measured waveform. It should be recalled
that no pre-processing step, such as waveform modeling using
parametric functions for extracting typical waveform features,
has been applied on digitized echo waveform. As mentioned
earlier, the range value is the only geometric attribute which
is included in both online and offline feature vectors. It is
assumed that the dependency of the intensity to the range from
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Fig. 4. Proposed DCNN architecture for FW TLS data classification.

the target, which is resolved during radiometric calibration of
the echo waveform signals, can be partially captured by the
classification algorithm when the classifier is trained on feature
vectors including the range attribute. However, for the sake of
completeness, the same feature vectors excluding the range
attribute are also used for training and validating the same
classifiers.

D. DCNN Architecture for FW TLS Data Classification

DCNN architectures have significantly outperformed almost
all traditional machine learning (ML) approaches for classifi-
cation and segmentation tasks in an end-to-end manner [34].
Although a large number of DCNN architectures have been
developed for 3-D point cloud classification and segmentation,
the potential of a DCNN architecture has not yet been fully
explored, to the best of the author’s knowledge, for 3-D point
cloud classification based on the raw waveform samples or
waveform-derived attributes through a FWA technique, related
to each individual point in the point cloud [28], [34], [35].
Moreover, most of recently proposed DCNN architectures for
point cloud classification try to explore features describing
the geometric relationship of a 3-D point with other points in
both a local and a global extent for point cloud classification
or segmentation [34]. This is not the case in our experiment,
where points are classified based only on their raw waveform
samples or calibrated waveform-derived attributes.

The proposed DCNN architecture for FW TLS data classifi-
cation, developed as part of this study, is shown in Fig. 4. The
input to the network is a matrix of data of size N × M , where
N is the number of input instances that are simultaneously
fed to the network for classification and M is the number
of elements in the input vector. For example, for the offline
waveform feature vector classification over campus study
site, the input vector includes M = 25 elements, in which
24 elements represent 24 samples of the digitized waveform
measured by the Riegl VZ-400 FW TLS system and the
remaining element represents the recorded range to the target.
In the case that the online waveform feature vectors are fed
to the network for classification, M is equal to 4, where the
first three elements represent three online waveform attributes
(i.e., amplitude, reflectance, and pulse deviation) related to the
measured target and the range value.

According to Fig. 4, the first block of the proposed DCNN
architecture takes the input data and computes the local
features for each input vector using three 1-D convolutional
kernels of size 1 × 1 with batch normalization. Each convolu-
tional layer is then followed by a nonlinear activation function,
such as ReLU:

f (x) ≈ ReLU(Wx + b) (4)

where x is the input vector or the feature vector computed
in an earlier convolutional layer, W is the learnable weight
parameters, and b is bias parameter.

Local features derived in the first convolutional block are
fed into a max pooling layer to extract global features from the
input feature vectors. As a symmetric function, max pooling
layer produces the same output feature vector without any
dependence on the order of the input data. The second part
of the network concatenates the input vector with both the
local and global feature vectors and the resulting vector is
fed to the second set of convolutional layers, where three 1-D
kernels of size 1 × 1 with batch normalization and the ReLU
activation function is applied on each individual input feature
vector. To solve the classification of the input data, the feature
vector resulting from the last convolutional layer is fed into the
classifier defined on top of the DCNN architecture, where the
class probability is calculated for each individual input vector
by the softmax layer as

pi = eyi

∑C
j=1 ey j

(5)

where pi is the class probability of the class i with output
value of yi and C is the total number of classes.

Furthermore, due to the fact that collected FW TLS data
may include severe imbalanced instances in different classes,
the DCNN model uses the weighted categorical cross-entropy
loss for training. The loss function can be formulated as

LCE =
N∑

n=1

C∑
c=1

Wctn,c log
(
Yn,c

)
(6)

where, LCE is the categorical cross-entropy loss, tn,c is the
ground-truth value in one-hot vector representation, and Yn,c

is the value showing the predicted probability of class c for
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the input vector n. Wc is the weight for class c, which can be
defined as

Wc = 1

ln
(
1.2 + a

b

) (7)

where a is the number of the instances of the same target
category and b is the total number of instances in all target
categories.

In this classification experiment on FW TLS data, the first
set of convolutional layers include 256, 512, and 1024 filters,
ending with a bottleneck layer of dimension 1024. Also, the
second set of the convolutional layers include three sets of
1024, 512, and 256 filters, ending with a bottleneck layer of
dimension 256. To train the DCNN model, the learning rate
α was set to 0.001, and Adam optimizer [36] was chosen
for updating weights during training. Two exponential decay
rate parameters in the Adam optimizer β1 and β2, were set to
0.9, and 0.999, respectively. ε parameter in the optimization
algorithm was set to 1 × 10−7 to avoid any division by zero.
The experiment was carried out with 300 epochs on Google
Colab, Google’s free cloud service, with one Intel(R) Xeon(R)
CPU 2.30 GHz and one high-performance Tesla K 80 GPU,
having 2496 CUDA cores and 12-GB GDDR5 VRAM.

E. Random Forest for FW TLS Data Classification

To compare the performance of the proposed DCNN archi-
tecture for FW lidar data classification with a traditional
ML-based classification approach, a random forest (RF) clas-
sifier is employed. The RF algorithm is an ensemble ML tech-
nique which uses a large number of tree-like classifiers in the
ensemble and achieves a classification accuracy comparable
to boosting technique. RF is a very robust classifier against
overfitting the training data and does not require any assump-
tions about the distribution of the data. Furthermore, due to its
ability to handle big, unbalanced, and high-dimensional data,
it is one of the most popular ML techniques for supervised
classification of RS data, including hyperspectral imagery and
lidar data [22], [37]. In addition, the RF classifier estimates
the importance of each feature in the feature vector of the
training instances. This capability can be exploited to find the
most discriminative features in both online and offline feature
vectors.

Although RF classifier is not sensitive to the user-defined
values for hyperparameters, in this study, the grid search
method along with the fivefold cross-validation (CV) tech-
nique was employed to find the best settings for the hyper-
parameters. The trained classifier is then used to evaluate the
classification performance on two separate test sets given in
Table II. The best hyperparameter settings found for efficiently
training the RF classifier over the campus dataset include
500 trees with a maximum depth of 20 for online waveform
feature vectors and 1000 trees with a maximum depth of 50 for
offline waveform feature vectors. The maximum number of
features for splitting a node, minimum number of samples
required for splitting a node, and minimum number of samples
required in a leaf are 2, 2, and 2, respectively, for training the
RF classifier with both online and offline waveform feature

vectors. In addition, both RF classifiers use the bootstrap
technique for sampling data points during training and testing.

F. Point Cloud Filtering for DTM Generation

Discrimination between the ground and above-ground tar-
gets is one of the most interesting, yet challenging topics in the
applications of lidar data, including TLS, for generating accu-
rate an DTM in natural environments. In this work, classified
TLS point cloud data collected at the coastal wetland study
site are used to filter ground points from above-ground objects
and subsequently generate a DTM of the wetland ground
surface. To do so, the point cloud data classified by the online
and offline waveform features using the proposed DCNN
classifier are simply filtered according to their predicted label.
The resulting filtered datasets include points related to the
tidal flat and dirt road areas within the study site, which are
collectively called hard surface areas for the purposes herein.
Those datasets are later used to generate the DTM model.

To evaluate the accuracy of the DTM generated from
DCNN-based classification, a baseline ground point set is
generated using the well-known progressive morphological
filter (PMF) proposed by Zhang et al. [38]. The accuracy of
the PMF filtering result is evaluated by computing the vertical
distance from a triangulated irregular network (TIN) model
generated from the PMF classified ground point set to the
RTK GNSS points. The PMF DTM is then used to evaluate
the accuracy of the DCNN-based classification of hard surface
points, and subsequent DTM, based on online and offline
waveform features.

VI. RESULTS AND DISCUSSION

A. Built Environment Classification Using Online Waveform
Features From the October Test Set

Fig. 5 visualizes the distribution of online waveform features
for each target category from the online waveform feature
vectors of the October dataset and Table IV summarizes some
statistics related to these features. It is worth noting that for
better visualization of the feature distributions given in Fig. 5,
the upper bound of the X-axis in each plot is limited to the
feature value that covers the distribution of 99.5% of the data.

For almost all target categories shown in Fig. 5, the distrib-
ution of each feature has overlap with features in other target
categories. This usually leads to high interclass similarity for
underlying target categories and consequently a decrease in
classification performance. Referring to the figure, the range
distribution plot shows a large overlap for all target categories.
This plot simply shows that no specific target can be correctly
classified based solely on its range from the scanner. The
distributions for calibrated amplitude also show high overlap
for different target categories. However, the asphalt and grass
classes show narrower amplitude distributions than the other
targets. Building and tree trunk classes show the largest
overlap in their amplitude distribution. In addition, asphalt and
tree canopy show the largest overlap in amplitude distributions.

It should be noted that the amplitude feature given by the
online waveform processing is not calibrated with respect to
the range in comparison to relative reflectance, and as such,
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TABLE IV

SUMMARY OF STATISTICS FOR ONLINE WAVEFORM FEATURES IN THE TRAINING DATASET. EACH COLUMN GIVES THE MINIMUM, MAXIMUM, MEAN,
AND STANDARD DEVIATION OF THE RELATED FEATURE FOR THE UNDERLYING TARGET

Fig. 5. Distribution of the online waveform features for different targets in
the training dataset.

the amplitude feature shows wider distributions and higher
overlaps for almost all target categories. The plot representing
the distribution of pulse shape, also, shows large overlap areas
for different targets. Distributions of relative reflectance show
the highest separability among different target categories with
respect to the other online waveform features. That is expected
due to the careful radiometric calibration of the TLS system
by the manufacturer. However, different targets still show con-
siderable overlap for reflectance values. The most noticeable
overlaps are between asphalt and tree canopy classes and also
between tree trunk and building classes. Furthermore, except
for the relative reflectance, the other online waveform features
represent multimodal distributions.

Distributions of the reflectance attribute and its mean val-
ues for each individual target category, given in Fig. 5 and
Table IV, respectively, show its important role in separating
asphalt and tree canopy from the building and tree trunk
classes. It also helps to discriminate grass from all other target
categories. Referring to the statistics reported in Table IV,
mean reflectance shows comparable values between asphalt
and tree canopy classes and also between building and tree
trunk classes, making this feature less discriminative for
instances in those target categories. Furthermore, pulse devia-
tion is a more discriminative feature than calibrated amplitude.
Referring to Fig. 5 and Table IV, pulse deviation shows higher
mean and standard deviation for grass and tree canopy than
other classes due to the spatial distribution of those targets in
the path of the laser beam, making it a relatively strong feature
for discriminating those classes from the others.

Fig. 6. Feature importance from RF classifier trained on online waveform
feature vectors.

Fig. 6 illustrates the importance of each feature in the
online waveform feature vectors, from the October training
set, reported by the RF classifier. Using a boxplot to show
feature importance also gives visual information about the
distribution of features in the feature vector. As predicted
earlier, the relative reflectance has the highest importance for
classification based on the online waveform feature vector.
The lower importance of the amplitude with respect to the
range is partly due to the fact that the pulse amplitude is not
compensated for range.

Amplitude has the lowest discriminative capability in this
classification experiment. However, the amplitude’s mean and
standard deviation given in Table IV and its density distri-
bution plot shown in Fig. 5, shows a degree of power for
separating asphalt and tree canopy from grass instances.

The classification results for the online waveform feature
vectors from the October test set, including and excluding
the range attribute, using the RF classifier and the proposed
DCNN-based classifier are given in Tables V and VI, respec-
tively. Each table summarizes the performance of the under-
lying classifier using the confusion matrix, precision, recall,
and F1-score for each individual target category. Furthermore,
the weighted average of those metrics has also been reported,
where the average metrics take into account the imbalance
of the test set. According to Tables V and VI, the overall
classification accuracy reported from the RF classifier is com-
parable with that from DCNN model. In addition, excluding
the range attribute from the online waveform feature vectors
caused a decrease in the overall accuracy of about 3% for
both classifiers. Both classifiers show similar performance in
discriminating different target categories based on their online
waveform features.
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TABLE V

RF-BASED CLASSIFICATION PERFORMANCE FOR ONLINE WAVEFORM FEATURES FROM THE OCTOBER TEST SET. THE VALUES ABOVE AND BELOW THE
HORIZONTAL LINES SHOW THE RESULTS FOR ONLINE FEATURE VECTORS INCLUDING AND EXCLUDING THE RANGE VALUES, RESPECTIVELY

TABLE VI

DCNN-BASED CLASSIFICATION PERFORMANCE FOR ONLINE WAVEFORM FEATURES FROM THE OCTOBER TEST SET. THE VALUES ABOVE

AND BELOW THE HORIZONTAL LINES SHOW THE RESULTS FOR ONLINE FEATURE VECTORS INCLUDING AND
EXCLUDING THE RANGE VALUES, RESPECTIVELY

Misclassified instances resulting from the classification of
online waveform feature vectors, including and excluding the
range attribute, follow the same pattern in Tables V and VI.
According to the F1-score values, both classifiers show the
highest performance on building and tree trunk categories.
However, they show a lower skill in detecting tree canopy
instances. According to the confusion matrices given in
Tables V and VI, tree canopy has the highest rate of misclas-
sified instances with asphalt. This observation was predictable
by referring to the reflectance distribution plot given in Fig. 5,
where reflectance distributions for the asphalt and tree canopy
classes shows the largest overlap. Buildings, on the other
hand, shows the highest misclassified instances with tree trunk,
which was, also, predictable by examining the plots in Fig. 5.
In addition, referring to the confusion matrices, the grass
category has about 25% misclassified instances which are
distributed among other target categories.

It is worth noting that the significant difference between
precision and recall for asphalt in both classifiers, given in
Tables V and VI, shows that despite the relatively large

number of misclassified instances of asphalt in other classes,
notably tree canopy and grass, both classifiers are still able to
correctly detect a large portion of asphalt returns. Conversely,
the relatively higher precision than recall for tree canopy
class derived from both classification methods shows that the
underlying classifier is more skillful in detecting instances that
do not belong to the tree canopy than detecting instances that
do actually belong to that class. The above classification results
are consistent with the information retrieved from the feature
distribution and feature importance plots given in Figs. 5 and 6,
respectively.

B. Built Environment Classification Using Offline Waveform
Features From the October Test Set

Fig. 7 illustrates the feature importance plot reported by
the RF classifier for training based on the offline waveform
feature vectors related to the targets measured for the campus
study site. S1 to S24 in horizontal axis of the plot show
sample indices for the measured waveforms. According to the
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Fig. 7. Feature importance from the RF classifier trained using offline waveform feature vectors.

TABLE VII

RF-BASED CLASSIFICATION PERFORMANCE FOR OFFLINE WAVEFORM FEATURES FROM THE OCTOBER TEST SET. THE VALUES ABOVE AND BELOW THE

HORIZONTAL LINES SHOW THE RESULTS FOR ONLINE FEATURE VECTORS INCLUDING AND EXCLUDING THE RANGE VALUES, RESPECTIVELY

plot, the range to the target has the highest importance for
classification. This was predictable due to the high correlation
between the intensity (amplitude) of the echo signal and the
range to the target. Referring to Fig. 7, it is interesting to
note that waveform samples related to the rise time and fall
time of the return waveform, which usually happen around
samples S2 and S6, respectively, in the single-peak echo
waveforms measured by the Riegl VZ-400 TLS system, are
more important than other samples. Furthermore, according to
the plot, samples representing the rise time and fall-time of
the signal are almost equally important, with samples closely
representing the amplitude of the echo waveform. Analyzing
the DNs for all recorded waveforms indicates that the peak of
the echo signal usually occurs somewhere between the S4 and
S6 samples. This observation confirms the importance of rise
time and fall time of the echo waveform for classification
in [24], where the authors highlight the importance of those
features in the waveform feature vector for discriminating
different tree types.

According to Fig. 7, waveform samples S1–S8 follow a sym-
metric distribution with a limited range of outliers, whereas
the majority of samples related to the falling tail of the
waveform, S9–S24 follow asymmetric, positively skewed distri-
butions with a larger range of outliers, which makes them less
important features for efficiently training the classifier. In other

words, samples related to the falling tail of the waveform carry
less discriminative information for target classification.

The classification results for the offline waveform feature
vectors from the October test set, including and excluding
range, using the RF classified and the proposed DCNN-based
classifier are given in Tables VII and VIII, respectively.
According to those tables and considering Tables V and VI,
which shows classification results of the online waveform fea-
ture vectors, the overall classification accuracy on the offline
waveform feature vectors is 3% higher than that for the online
waveform feature vectors, when the RF classifier is used for
classification. However, the classification results on the offline
waveform feature vectors using the DCNN-based classifier
show a noticeable improvement of 10% in overall accuracy
relative to the RF and DCNN-based classification performance
using online waveform feature vectors. In addition, referring
to Table VII, excluding range from the offline waveform
feature vector reduces the performance of the RF by 13%,
while this reduction, according to Table VIII, is about 7% for
classification based on the DCNN model.

Comparing Tables VII and VIII (offline waveform features)
with Tables V and VI (online waveform features) shows
a relatively similar pattern for misclassified class instances.
Moreover, exploring the classification performance of the
DCNN for each individual target category using online and
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TABLE VIII

DCNN-BASED CLASSIFICATION PERFORMANCE FOR OFFLINE WAVEFORM FEATURES FROM THE OCTOBER TEST SET. THE VALUES
ABOVE AND BELOW THE HORIZONTAL LINES SHOW THE RESULTS FOR ONLINE FEATURE VECTORS

INCLUDING AND EXCLUDING THE RANGE VALUES, RESPECTIVELY

TABLE IX

DCNN-BASED CLASSIFICATION PERFORMANCE FOR THE JULY TEST SET. THE VALUES ABOVE AND BELOW THE HORIZONTAL LINES
SHOW THE RESULTS FOR OFFLINE AND ONLINE FEATURE VECTOR CLASSIFICATION, RESPECTIVELY

offline waveform feature vectors as reported in Tables VI
and VIII, respectively, shows that classification based on the
samples of the raw waveform significantly improves classifi-
cation performance across almost all classes. One reason for
this improvement might be due to the capability of DCNN
models in exploring and discovering a hierarchy of compli-
cated features from input data which are more discriminative
than input attributes to the classifier.

Interestingly, the RF and DCNN-based classification results
for the tree trunk category shown in Tables V and VI
(online waveform features) when compared to results shown
in Tables VII and VIII (offline waveform features) reveals
that higher classification performance can be achieved for
this target category using the online waveform features
rather than the raw waveform samples. Referring to the
reflectance distribution plot given in Fig. 5, this may be
due to the relatively narrow distribution of the calibrated
reflectance attribute related to tree trunks that may help the
underlying classifier more effectively detect instances in that
category.

C. Built Environment Classification Using Online/Offline
Waveform Features From the July Test Set

The classification results for both online and offline
waveform feature vectors from the July test set using the
DCNN-based classifier is given in Table IX. According to
the table the overall accuracy of the classification on offline
waveform features is 15% higher than that for the online
waveform features.

Considering the F1-scores given in Table IX and comparing
those values with equivalent values given in Tables VI and VIII
confirm that discrepancies in the raw waveforms collected
at two different points in time from the same targets have
relatively less impact on the classification performance than
differences in the online waveform attributes related to similar
targets. The drop in the classification performance over natural
targets can be partly due to the impact of seasonal changes on
some properties of those targets, where, for example, green
and dry grass or tree canopy represent changing backscattering
properties. Moreover, atmospheric attenuation factors on the
laser energy, such as the humidity index, air pressure, and



PASHAEI et al.: TERRESTRIAL LIDAR DATA CLASSIFICATION 5702319

Fig. 8. Qualification of DCNN-based classification on October test data acquired over the campus study area. Also, five sample areas in classified data,
related to five target categories, have been magnified for better visualization of misclassified points. (a) Online waveform. (b) Offline waveform.

TABLE X

DCNN-BASED CLASSIFICATION PERFORMANCE ON THE COASTAL WETLAND AREA. THE VALUES ABOVE AND BELOW THE HORIZONTAL LINES SHOW

THE RESULTS FOR OFFLINE AND ONLINE FEATURE VECTOR CLASSIFICATION, RESPECTIVELY

temperature, related to each collected dataset may contribute
to the related echo waveforms and subsequently derived online
waveform attributes, resulting in different misclassification
rates in one dataset relative to the other.

Finally, Fig. 8 illustrates the qualification of the classifi-
cation performance achieved based on the proposed DCNN
architecture for both the online and offline waveform data
from the October test set. According to the figure, it is clear
that the misclassified building and tree trunk instances in
the online waveform classification are higher than the offline
waveform classification. Also, the higher rate of misclassified
instances for asphalt and tree canopy in the online waveform
classification can be seen in Fig. 8.

D. Natural Environment Classification

The performance of the proposed DCNN-based classifier on
both online and offline waveform feature vectors derived from

the TLS survey over the coastal wetland study site is given
in Table X. According to the table, the overall accuracy of
the multiclass classification for the coastal wetland using the
proposed DCNN model on offline waveform feature vectors
is 13% higher than that for the online waveform feature
vectors. The F1-score reported in Table X, shows that the
classification performance on online and offline feature vectors
related to both tidal flat and vegetation are more comparable
than the performance for the road and power line classes.
The calibrated reflectance feature in the tidal flat areas and
vegetation areas shows that this online waveform attribute can
easily discriminate a large number of instances belonging to
those categories. The higher performance of the classification
based on the raw waveform samples relative to the online
waveform attributes is more noticeable for the road and power
line categories. The road class at this study site is comprised
of dirt and sediment, similar in composition to the upland less
submerged parts of the tidal flat area, making these two areas



5702319 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 9. Qualification of the classification over the study area using online and
offline waveform feature vectors. (a) Online waveform. (b) Offline waveform.

challenging for classification. As observed in Table X, classi-
fication of the road based on the offline waveform features
had a significantly higher classification accuracy compared
to classification of the road based on the online waveform
features (92% F1-score versus 36%, respectively). According
to the confusion matrix results there are large number of
misclassified instances with other target categories for online
waveform features. Although instances related to the tidal flat
and road show very close calibrated reflectance values in their
online waveform feature vectors, results suggest that samples
of the raw waveform significantly improved discrimination
of those two target categories, perhaps due to differences in
surface roughness. The qualitative results of the DCNN-based
classification for both the online and offline waveform feature
vectors are given in Fig. 9.

E. Terrain Surface Modeling for the Coastal Wetland Study
Site

The classified points based on both online and offline wave-
form features are used to approximate terrain models (DTMs)
for the coastal wetland study site. Classified points are filtered
based on their predicted labels from the proposed DCNN
classifier, where the ground points refer to the set of points
predicted as road or tidal flat areas. Recall the tidal flat class

TABLE XI

STATISTICS OF VERTICAL ERROR (M) BETWEEN RIEGL VZ-2000I TLS
MEASUREMENTS AND RTK GNSS POINTS COLLECTED

ON HARD SURFACES AND VEGETATED SURFACES

BEFORE AND AFTER APPLYING PMF

Fig. 10. Scatterplot of RTK GNSS ellipsoid heights versus TLS ellipsoid
heights on hard surfaces and vegetated surfaces (Left) before and (Right) after
applying PMF.

includes exposed, lower lying and tidal inundated wetland sur-
face areas and upland, periodically inundated wetland surface
areas in proximity to sparse or dense vegetation. To evaluate
the fidelity of DTMs generated from the DCNN-based filtering
result with online and offline waveform features, a classified
set of ground points output from the PMF filter applied to the
original TLS point cloud is used.

The vertical differences between the RTK GNSS points
collected on the exposed wetland/tidal flat surfaces and road
surfaces, here called hard surfaces for brevity, and a local TIN
model constructed from the original TLS points shows a bias
of +0.009 m, which is in the range of the vertical accuracy
of the RTK GNSS survey method employed. Table XI reports
vertical accuracy statistics for the TLS data relative to the
RTK GNSS points collected over hard surfaces and vegetated
surfaces, both dense and sparsely vegetated, before and after
applying PMF filtering. In addition, the scatterplot for the RTK
GNSS ellipsoid heights compared to the TLS measured ellip-
soid heights on hard surfaces and vegetated surfaces before
and after applying PMF filtering are shown in Fig. 10. The
goodness-of-fit or coefficient of determination, r2, is 0.95 for
regression lines related to the hard surfaces in both plots.
Whereas, the r2 coefficient is 0.81 and 0.92 for the regression
lines representing the height difference over vegetated surfaces
before and after applying PMF, respectively.

The statistics given in Table XI and plot in Fig. 10, clearly
show that the vegetated areas can cause a significant bias in the
process of modeling the terrain surface, as expected. Moreover,
statistics and regression plots given in Table XI and Fig. 10,
respectively, show the high performance of the PMF algorithm
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TABLE XII

STATISTICS OF VERTICAL DISTANCE (M) BETWEEN TIN SURFACE
CONSTRUCTED ON TERRAIN POINTS DERIVED FROM PMF AND

CLASSIFIED TERRAIN POINTS, INCLUDING TIDAL FLAT AND

ROAD, DERIVED FROM DCNN-BASED CLASSIFICATION ON

OFFLINE AND ONLINE WAVEFORM FEATURE VECTORS

Fig. 11. Differential DTMs computed by subtracting the DCNN-based DTM,
computed from online and offline waveform features, from the PMF-based
DTM. (a) DTMOnline − DTMPMF. (b) DTMOffline − DTMPMF.

in filtering the above-ground targets and identifying the ground
points in the vegetated areas. This justifies the use of the
PMF filtering solution as a representative ground point set
for evaluating performance of the DCNN-based classification
of hard surfaces (tidal flat areas and road areas) using online
and offline waveform feature vectors.

Table XII summarizes statistics related to the vertical dis-
tance between a TIN surface model constructed from the PMF
ground point set, using LAStools (rapidlasso GmbH) point
cloud processing software, and the classified point set on hard
surfaces resulting from the DCNN-based classification of both
the online and offline waveform feature vectors. According
to the table, predicted tidal flat and road points from offline
waveform features can model the terrain surface with the

uncertainty of about one order of magnitude lower than that
from predicted points based on the online waveform features.

Fig. 11 shows the differences between a DTM generated
from the PMF ground point set and DTMs generated from
the DCNN-based classified points on hard surfaces, including
tidal flat and road areas, using online and offline waveform fea-
ture vectors. All DTMs have been generated using LAStools
software with a given step size (resolution) of 0.1 m in both
X- and Y -directions. The DTM generated from the offline
waveform classification result more closely approximates the
DTM generated from the PMF ground point set for both
densely vegetated areas, in the middle and upper part of the
figure, and sparse vegetation areas on the left and right side
of the figure. According to Fig. 11, the range of uncertainty
in terrain height on classified tidal flat and road resulted from
the online waveform features is significantly higher than that
from the offline waveform features. The main reason for the
higher vertical uncertainty for classified points from the online
waveform features relative to the offline waveform features is
the higher rate of misclassified instances of vegetation with
tidal flat in the classification based on the online waveform
features which results in lower precision value for the tidal
flat category. Also, the larger rate of misclassification between
tidal flat and vegetation instances in online waveform classifi-
cation caused a higher vertical uncertainty over the vegetated
areas.

VII. CONCLUSION

In this study, the potential of the raw samples of TLS
single-peak echo waveforms versus calibrated waveform fea-
tures from online waveform processing, were explored for
point cloud classification within built and natural environ-
ments. FW data were collected by the Riegl VZ-Line FW TLS
systems in multiple scan positions in each study area, where in
addition to the 3D coordinates for each measurement, the cali-
brated waveform features, from the online waveform process-
ing, and equivalent digitized waveform data were recorded.
Also, a DCNN-based classifier was proposed for both online
and offline waveform feature vector classification, where its
performance was compared with the performance achieved
based on RF classification on the same datasets, and feature
importance in each feature vector (online versus offline) was
reported. This experiment showed that the samples of the
digitized waveform can be more discriminative for certain
target classes than the limited number of calibrated waveform
features from online waveform processing, which resulted
in higher overall classification performance. Furthermore, the
classification performance on two separate test sets confirms
that the offline waveform feature vectors are more stable than
the online waveform feature vectors over time.

Results for the selected wetland environment showed that
the classification based on samples of the raw waveform out-
performs that on the calibrated waveform features. In addition,
a filtering procedure to discriminate terrain points based on
the predicted label for TLS measurements is more accurate
when the classified dataset derived from a raw waveform
classification rather than classifying using calibrated waveform
features.



5702319 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

The approach for FW TLS data classification based on the
raw waveform samples proposed in this work is adaptable to
FW airborne lidar and other modalities. The approach is espe-
cially useful when the lidar system response for modeling the
waveform is complicated or unknown. It is also advantageous
where, due to a low sampling rate of the digitizer such as
is common in FW TLS systems, accurate modeling of the
waveform signal may not be practically feasible.

Some limitations related to the proposed point cloud classi-
fication approach should be kept in mind. This approach uses
only single-peak echo waveforms for classification. Moreover,
the proposed DCNN model has a relatively simple architecture
for feature encoding. In addition, to have a more accurate
assessment on the potential of the proposed classification
approach, it should be evaluated on more complex built and
natural environments with more target categories. Substantial
variations of the returned waveforms and consequently the
derived cross section (calibrated reflectance) values over dis-
tances shorter than range resolution, as an inherent limitation
of any lidar system (TLS or ALS), should also be considered
when interpreting the lidar data or classification performance
over complex environments.

As future work, combining online and offline waveform
attributes in a more advanced DCNN-based architecture may
be explored to more effectively investigate waveform feature
space for higher classification performance. Classification of
multi-echo waveforms may also be considered as future work.
The capability of the proposed classification approach will also
be assessed on more complex built and natural environments
with more sophisticated target categories. In addition, the pro-
posed raw waveform classification approach can be employed
for advanced target identification and filtering procedures in
complex environments where the inclusion of geometric infor-
mation to the feature vector of each individual measurement
can boost the performance of the FW lidar data analysis.
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