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ABSTRACT: 
Convolutional neural networks (CNNs) have been applied to learn spatial features for high-resolution (HR) synthetic aperture radar 
(SAR) image classification. However, there has been little work on integrating the unique statistical distributions of SAR images 
which can reveal physical properties of terrain objects, into CNNs in a supervised feature learning framework. To address this 
problem, a novel end-to-end supervised classification method is proposed for HR SAR images by considering both spatial context 
and statistical features. First, to extract more effective spatial features from SAR images, a new deep spatial context encoder network 
(DSCEN) is proposed, which is a lightweight structure and can be effectively trained with a small number of samples. Meanwhile, to 
enhance the diversity of statistics, the nonstationary joint statistical model (NS-JSM) is adopted to form the global statistical features. 
Specifically, SAR images are transformed into the Gabor wavelet domain and the produced multi-subbands magnitudes and phases 
are modeled by the log-normal and uniform distribution. The covariance matrix is further utilized to capture the inter-scale and intra-
scale nonstationary correlation between the statistical subbands and make the joint statistical features more compact and 
distinguishable. Considering complementary advantages, a feature fusion network (Fusion-Net) base on group compression and 
smooth normalization is constructed to embed the statistical features into the spatial features and optimize the fusion feature 
representation. As a result, our model can learn the discriminative features and improve the final classification performance. 
Experiments on four HR SAR images validate the superiority of the proposed method over other related algorithms. 
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1. INTRODUCTION 

Synthetic aperture radar (SAR) imaging system has the 
ability to observe the earth surface without the constraints of 
illumination and cloud coverage (Moreira et al., 2013). It has 
become a very significant source of ground information in the 
field of modern remote sensing. SAR land cover classification is 
an important step in a variety of SAR image interpretations and 
applications, such as agricultural monitoring, urban planning, 
and damage assessment. (Rossi et al., 2015; M. Satake et al., 
2013). With the development of new generation SAR sensors, 
e.g., TerraSAR-X (Breit et al., 2009), Gaofen-3 (Gu et al., 
2015), and airborne SAR, large amounts of high-resolution (HR) 
SAR images have become available. Although the HR SAR 
image can provide sufficient detailed information of ground 
objects, it also presents more complex backscattering and 
spatial layout hard to deal with. Thus, pushing toward the novel 
HR SAR classification methods is urgently needed. 

For the SAR image classification, effective feature extraction 
or feature learning is essential. In most cases, the discriminant 
ability of the features determines the quality of SAR image 
classification. The dominant discrimination of single-polarized 
SAR images is the amplitude or intensity information. Therefore, 
mining effective feature representations from the spatial context 
of a pixel plays a crucial role in the classification decision. 
According to the current research trend of feature extraction, the 
mainstream methods for SAR image classification can be 
roughly categorized as data-driven deep learning methods and 
scattering-based statistical analysis methods. 

To depict the content of SAR images, most traditional 
methods rely on extracting intensity (Esch et al., 2011) and 
texture information (Dumitru et al., 2013). Some work also 
focuses on designing more discriminant handcrafted feature 
descriptors for SAR images, such as SAR histogram of oriented 
gradients (SAR-HOG) features (Song et al., 2016) and covari-

ance of textural features (CoTF) (Guan et al., 2019). Compared 
to traditional methods, many studies have been proved the 
ability of deep neural networks (DNN) (Bengio et al., 2013) to 
automatically extract discriminative features of SAR images and 
achieve remarkable results with limited labeled data. Geng et al. 
(2018) proposed a deep supervised and contractive neural 
network (DSCNN) whose inputs are the combination of GLCM, 
Gabor, and HOG features for high-level feature learning. Zhao 
et al. (2017) proposed a discriminant DBN (DisDBN) for SAR 
image classification, which combined the ensemble learning 
with a deep belief network in an unsupervised manner. Chen et 
al. (2016) proposed an all-convolutional network (A-ConvNet) 
for SAR target recognition, which removes the fully connected 
layer and adds a dropout layer to prevent over-fitting. Fu et al. 
(2018) presented to use a deep residual network (ResNet) and 
introduced the dropout layer into the building block to alleviate 
overfitting caused by limited SAR data. A greedy hierarchical 
convolutional neural network (GHCNN) is developed to realize 
an efficient patch-based classification for single-polarized SAR 
images (Sun et al., 2020). In general, deepening the network can 
improve the expressive ability of features. However, training a 
very deep network can be difficult given the scarcity of SAR 
labeled data. Transfer learning becomes a common choice for 
applying deeper networks. Huang et al. (2021) proposed to 
transfer the pre-trained ResNet-18 model from NWPU-
RESISC45 dataset to solve the large-scale HR SAR dataset 
classification. In (Zhang et al., 2021), a modified VGGNet 
(MVGG-Net) that transfers pre-training parameters from the 
ImageNet dataset is proposed for extracting deep features of 
SAR amplitude images. Besides, there are some attempts to use 
statistical methods to encode CNN features to improve the 
classification accuracy. Liu et al. (2020) proposed a statistical 
CNN (SCNN) for SAR land-cover classification, which 
characterizes the distributions of CNN features by the mean and 
variance statistics. Liang et al. (2021) integrated the covariance-



 

based second-order statistics of CNN features, verifying that 
high-order statistics can improve the ability of CNN to 
distinguish various SAR land covers. 

Due to the unique character of the coherent speckle, the 
statistical properties of SAR images also provide valuable 
information. The parametric approach is to postulate a given 
mathematical distribution for the statistical modeling, which has 
been intensively studied for SAR feature extraction due to 
simplicity and applicability (Li et al., 2011). Some non-
Gaussian parametric models have been employed to extract 
statistical features of backscatters from different land covers, 
such as Rayleigh (Argenti et al., 2013), Gamma (Mart et al., 
2014), K (Jen et al., 1984), Log-normal (LN) (Trunk et al., 
1970), Weibull (Sekine et al., 1990), Fisher (Bombrun et al., 
2008), and generalized Gamma (Li et al., 2011), etc. As the 
resolution of SAR images increases, the emergence of 
heterogeneous regions makes the modeling of HR SAR images 
is still challenging. To accurately describe the statistical 
properties of HR SAR images, two extended types of methods 
have been proposed. One is to use the basic probability model 
combination to build a stronger model to describe the SAR 
statistical properties. Many mixed statistical models, such as the 
Gamma mixture model (Nicolas et al., 2002), generalized 
Gamma mixture model (Li et al., 2016), and lognormal mixture 
model (Zhou et al., 2015) have been proposed. These models 
are then used in a Bayesian framework such as Markov random 
fields (Song et al., 2017) to implement classification. The other 
is to extend SAR images to complex value domains through 
transform domain methods such as Gabor transform (Lee et al., 
1996), Wavelet transform (Zhange et al., 2012), and Contourlet 
transform (Golpardaz et al., 2020). By statistical modeling of 
multidimensional complex value subbands, the statistical 
features are more discriminant. Karine et al. (2017) used 
Weibull or Gamma distributions to model the dual-tree complex 
wavelet (DT-CWT) transform subbands of SAR images and 
stacked the statistical parameters obtained by each subband to 
form the statistical feature vectors. In (Karine et al. 2020), the 
author established the statistical dependence between DT-CWT 
subbands by introducing the Copula model (Sakji et al. 2009) 
and used the multivariate copula parameters constructed as the 
statistical features. Then, the above features are fed into a 
classifier such as the Softmax (Bridle et al. 1990) or the sparse 
representation (SC) (Wright et al. 2009) for classification. 

There are a few works (Zhang et al., 2021; He et al., 2020; 
Ai et al., 2019) that try to fuse multiple features to improve the 
classification accuracy for SAR images. They focus on the 
fusion of deep features and other primary features such as 
polarization features and wavelet features. The effectiveness of 
statistical properties of the SAR image was ignored in these 
methods. Also, because each part of these fusion methods is 
individually learned, thus it cannot benefit from end-to-end 
learning. Reichstein et al. (2019) indicated that it is necessary to 
integrate the physical model and data-driven learning models in 
multiple ways to provide theoretical constraints when learning 
models from remote sensing data. As a result, the objective of 
this paper is to explore and design a framework that combines 
deep learning and statistical modeling to further improve the 
performance of the algorithm for SAR image classification. 

To realize this goal, three important challenges remain. First, 
HR SAR images show complex structural and geometrical 
features, the above CNN models only use the single-scale 
convolution blocks that limit the scope of spatial information 
extraction. Transfer learning makes it easier for the deep model 
to learn the discriminative features from SAR images, but it 
ignores the inherent imaging mechanism differences between 
different datasets. In addition, traditional deep models such as 

VGGNet (Simonyan et al., 2014), and Resnet (He et al., 2016) 
contain a huge amount of parameters, which will increase the 
computational burden and memory consumption. More 
practical, the development of a more effective and efficient 
lightweight network is an inevitable requirement for intelligent 
SAR processing systems in the future. Second, through the 
statistical modeling of multiple wavelet sub-bands of the SAR 
image, and further establishing the dependence between the 
sub-bands, the expression ability of statistical features can be 
effectively improved. The common way is to use the coupla 
model to jointly model the dependence between multiple 
subband distributions. However, the coupla model usually 
needs to calculate a closed-form kullback-leibler divergence in 
the similarity measure. The parameter optimization process will 
be very time-consuming. Thus, another challenge is effectively 
designing a more efficient SAR global statistical feature 
representation scheme, and it can be effectively integrated with 
CNN features in linear space. Third, to fuse spatial and 
statistical features, the most direct way is to concatenate two 
types of features in a proportional weight parameter. However, 
the determination of the proportional parameter requires tedious 
experiments, which is difficult to put into practice. Hence, the 
third challenge is how to exploit the spatial and statistical 
information more effectively. 

To address the aforementioned challenges, we propose a 
novel two-stream spatial-statistical feature extraction, feature 
fusion, and classification framework for HR SAR image 
classification. The proposed framework contains the following 
three modules: a spatial feature extraction module, a statistical 
feature extraction module, and a feature fusion module. At first, 
inspired by convolutional block attention module (Woo et al., 
2018), group convolution (Huang et al., 2018), and dilated 
convolution (Yu et al., 2015), a new deep spatial context 
encoder network (DSCEN) is proposed to extract spatial 
features from SAR images with a small amount of labeled data. 
Second, inspired by the Marginal Distribution Covariance 
Model (MDCM) (Li et al., 2019), we introduce the covariance 
matrix to describe the multi-dimensional statistical properties of 
the wavelet subbands of the SAR image. This method can fully 
capture the high-order statistics of the SAR image and form a 
discriminant statistical feature descriptor. Finally, considering 
the complementarity of spatial and statistical features, a fusion 
network is proposed to fuse two types of features and the 
complete model is trained in an end-to-end manner. Compared 
with other SAR image classification methods, the proposed 
method can effectively combine the advantages of local spatial 
features and global statistical features, and the multi-feature 
information fusion in a unified training process can boost the 
robustness of the model for various land covers. The main 
contributions of this paper are listed as follows: 

1. A new deep spatial context encoder network (DSCEN) 
with a lightweight structure is proposed to extract spatial 
features from SAR images. Our DSCEN consists of the multi-
scale group convolution (MSGC) module and channel attention 
(CA) module. Specifically, the MSGC module can expand the 
scope of context information extraction in the spatial domain 
with few parameters. The CA module, located at the last layer 
of the network, is used to increase the interaction between high-
level feature channels. Consequently, the proposed DSCEN is 
able to capture multi-scale contextual information in higher 
performance and can be effectively trained with the limited 
SAR labeled data, resulting in a more competitive spatial 
feature representation. 

2. The nonstationary joint statistical model (NS-JSM) is first 
adopted to capture multidimensional scattering statistics in the 



 

Gabor wavelet domain of SAR image and form a more 
distinguishable global statistical feature. Specifically, the NS-
JSM uses different distributions to model the magnitudes and 
phases of Gabor wavelet subbands and then uses the covariance 
matrix to form the compact global statistical features for the 
mapped data in cumulative distribution function (CDF) space. 
The obtained statistical descriptor can not only capture 
statistical dependence and nonstationary correlation of SAR 
images that have not been explicitly considered by CNNs but 
also suppress the influence of noise.  

3. A feature fusion network (Fusion-Net) base on group 
compression and smooth normalization is constructed to fuse 
spatial and statistical features and optimize the fusional feature 
representation. The feature Fusion-Net not only utilizes the 
complementary information of spatial and statistical features but 
also merges the statistical information into the network to 
participate in end-to-end training. Therefore, the feature 
representation ability and classification performance of the 
entire model are improved. 

The rest of this article is organized as follows. Section 2 
reviews some related works on CNN and the statistical 
distribution of SAR images. Section 3 first introduces the deep 
spatial feature extraction based DSCEN, then presents the 
statistical feature extraction based NS-JSM, and further 
proposes the feature Fusion-Net model. The experiments and 
results are presented in Section 4. Finally, some concluding 
remarks are drawn in Section 5. 
 

2. RELATED WORK 

2.1 CNN for SAR image classification 

Compared with optical remote sensing images, single-
polarization SAR images contain only intensity or amplitude 
spectrum. The traditional SAR image classification method is 
usually to extract the patch centred on the pixel to assist the 
classification of the central pixel. Thus, extracting effective 
spatial context information of a pixel plays a vital role in the 
decision of the pixel classes. Thanks to the efficiency with local 
connections, shared weights, and shift-invariance, CNNs have 
been applied on SAR images to exploit the spatial features. 

Different from the optical remote sensing scene classification 
which directly takes the image as input, the pixels from the SAR 
image need to extract their local patches as the input of CNN to 
achieve pixel-level classification. Given a SAR image  i i N

I


 

with the size of m n , where m  and n  are the height and 
width of the spatial dimensions, respectively. =N m n  denotes 
the number of image pixels. , 1,...,ix i N  represents the gray 

value of the current pixel, , 1,...,iy i N  stands for the 

corresponding ground-truth label. First, all the labeled pixels 
together with their local patches iX  with the size of s s  are 

extracted to form the samples. Then, training, validation, and 
test samples are constructed for training and evaluate the CNN 
model. The basic components of the CNN model contain a 
convolutional layer, nonlinear activation layer, and pooling 
layer. Generally, we treat a combination of a convolutional, 
activation, and pooling layer as a convolution block. 
Specifically, the major operations performed in the 
convolutional block can be represented as 
 

                              1F F W bl l l lpool                        (1) 

 

where 1Fl  is the input feature map of the thl layer, Wl  and 

bl  are weights and bias of the thl  layer, respectively. The 

input features 0F  of the first layer of CNN are the sample patch 

iX . ( )   denotes the activation function, which can be sigmoid, 

tanh, or leaky ReLU (lReLU) (Maas et al. 2013). ( )pool   is the 
pooling operation for abstracting the feature maps. 

The successive convolutional blocks are stacked together can 
extract the high-level features. Then, the output feature maps 
are flattened into a 1-D vector, and a fully connected 
classification is performed. In the end, the softmax function is 
connected on the last layer to form the class conditional 
probability distributions of each sample, which is defined as 
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where iz  is the vectorized feature vector of the last layer, C  is 

the total number of classes. To optimize the CNN model, the 
cross-entropy loss function (Abeyruwan et al. 2016) is adopted 
as the learning objective, which is defined as 
 
                                      logi i

c

L c p   (3) 

 
The mini-batch gradient descent algorithm is used to 

optimize the parameters of CNNs. After the model completed 
the training, the label of the test sample can be selected 
according to on the maximum probability as 
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Due to the limited available training samples of SAR images, 

some optimization trick modules can be used to speed up the 
training procedure and prevent overfitting. Generally, Batch-
normalization (Ioffe et al. 2015) is connected to the 
convolutional layer to accelerate model convergence by 
preventing gradient vanishing. Data augmentation and dropout 
(Hinton et al. 2012) are used to prevent overfitting and further 
enhance network performance. 
 
2.2 Statistical Models for SAR images 

SAR is an active microwave imaging system that emits 
electromagnetic waves and receives the backscattered echo 
signals. Due to the coherent scattering processes at each pixel, 
the parametric scattering models of SAR images can be 
expressed as follows 
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where K  is the number of discrete scatterers, kA  and k  are 

the amplitude and phase of the -thk  scatterer, respectively. reX  

and imX are the decomposition of X  in its real and imaginary 

parts. With the Gaussian assumption of reX  and imX , the 

amplitude A  follows a Rayleigh distribution, and the intensity 
2=I A  has a negative exponential probability density function 

(pdf) (Argenti et al., 2013). In many practical cases, the 
statistical distribution of SAR images exhibits non-Gaussian 
behavior. Some prior hypothesis models such as Gamma, K 



 

distribution are proposed to fit the distribution of SAR data. 
Additionally, there are some empirical distribution models such 
as log-normal, Weibull, and Fisher distributions are obtained by 
experimental analysis on actual SAR images. Table 1 lists the 
PDF and CDF of some non-Gaussian statistical models. 

In SAR image segmentation or classification tasks, modeling 
only the amplitude or intensity of SAR images may not be 
enough for statistical features to have sufficient discriminant 
ability. To fully explore the statistical properties of the SAR 
image, a feasible way is to extend the SAR image to the wavelet 
domain to enhance the discriminative of the statistical features. 
In general, there is no specific statistical model for signals in the 
complex domain of SAR images. It is commonly accepted that 
the coefficients are highly non-Gaussian, exhibit heavy-tails 
(Kwitt et al., 2010). Note that parameter estimation is a key 
issue for the use of statistical models in SAR image processing. 
Accuracy of the model solution and complexity of the estima-
tion has a great impact on the results and their usage (Li et al., 
2011). Based on the above analysis, the combination of wavelet 
decomposition and simple pdfs mentioned above to capture the 
statistical properties of SAR images can not only improve the 
computational efficiency but also improve the discriminant 
ability, which may be a powerful and promising way. 
 

3. THE PROPOSED METHODS 

For effective HR SAR image classification, a novel end-to-
end feature Fusion-Net framework is proposed to make full use 
of the complementarity among spatial and statistical information. 
The proposed framework is illustrated in Fig. 1, which consists 
of the following three steps: (1) spatial feature extraction using 
the deep spatial context encoder network (DSCEN). (2) 
statistical feature extraction using the nonstationary joint 
statistical model (NS-JSM). (3) spatial-statistical feature fusion 
and classification using Fusion-Net. Relevant details of each 
part are introduced in the following subsections. 
 
3.1 Deep Spatial feature extraction 

Contextual information, which reflects the underlying spatial 
dependencies between the central pixel and its surroundings, is 
pivotal to identify SAR ground objects. Some classical CNNs, 
such as VGGNet [45], and ResNet [46], exploit spatial context 
features by successive stacking standard convolution blocks. 
However, both the size of the input patch and the complexity of 
CNN should be considered when applying deep CNNs to the 
SAR image processing task. On the one hand, these networks 

contain too many pooling layers, which will overly contract the 
feature space of the small SAR patch, thus affecting the 
classification accuracy. On the other hand, the limited SAR 
labeled data is not enough to support the fully supervised very 
deep CNN training. In addition, the computational burden and 
memory consumption of a large CNN model are often faced 
with many practical limitations. Based on the above analysis, a 
new lightweight DSCEN model is designed for the SAR feature 
extraction. In DSCEN, the multi-scale group convolutional 
block and channel attention block are utilized to generate spatial 
feature representation for the SAR image. As shown in Fig. 1, it 
consists of two components: (1) multi-scale group 
convolutional (MSGC) block, and (2) channel attention block. 

 
3.1.1 Multi-Scale Group Convolutional Block 

Generally, the deeper layers in CNNs contain the larger 
receptive field on the input image, which can learn more 
extensive spatial context features. Fig. 2(a) shows a standard 
convolutional block usually used in CNN, which is composed 
of two consecutive 3  3  convolutional layers. There are two 
imperfections that need attention. One is that a single standard 
convolution block has a constant receptive field, so it cannot 
extract multi-scale spatial structure information. The other is 
that as the number of feature channels increases, it will lead to a 
heavy-weight model. A direct way to stacks several standard 
convolutional blocks to enlarge the field of view. However, this 
will increase the complexity of the model. Also, Kwitt et al., 
(2010) points out that the actual receptive field of a single 
convolution block is much smaller than the theoretical size. 

To solve the above problem, we propose an MSGC block to 
take full advantage of local and surrounding context features. 
The dilate convolution and group convolution are applied to the 
MSGC block to make our models more effective and efficient. 
Fig. 2(b) presents the structure of the MSGC block. The top 
branch of the block is a standard 3  3  convolutional layer, 
which is used to perform dimension transformation and increase 
the nonlinearity. The bottom branch contains two different types 
of feature extractors to mine spatial information at different 
sizes. Among them, the 3  3  G-Conv layer is used to learn 
local detailed features, and the 3  3  DG-Conv layer is used to 
capture broader context features. Fig. 3 gives a comparison of 
the standard convolution, G-Conv and DG-Conv. From the top 
of Fig. 3, we can see the difference between the standard 
convolution kernel and the dilate convolution kernel. The main 
idea of dilated convolution is to insert zeros in convolutional 
kernels to increase the receptive field while reducing the para-
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meters. As shown at the bottom in Fig. 3, group convolution 
divides all R  channel inputs into G  groups, and each group 
corresponds to /R G  channels. In group convolution, there are 
no connections across the channels in different partitions, and it 
can be regarded as the structured sparse. Compared with 
standard convolution, group convolution can reduce the number 
of model parameters and may also achieve better performance. 
Besides, we further compress the number of feature channels to 
half of the input in both G-Conv and DG-Conv layers. A simple 
concatenation layer followed by the BN and lReLU operators is 
utilized to aggregate multi-scale features. Finally, the proposed 
MSCB block can achieve a significant performance boost while 
keeping the model complexity to a minimum. 
 
3.1.2 Channel Attention Block 

HR SAR images contain complex structural and geometrical 
information, which may lead to high intra-class variance and 
low inter-class difference. The commonly used CNNs consider 
that each channel feature maps in one layer have the same 
importance. Thus, it may not be able to highlight the importance 
of some salient feature maps, failing to distinguish complex 
scenes. Inspired by the attention mechanism (Woo et al., 2018), 
our goal is to enhance the feature representation power by 
channel attention (CA) block. The intuitive way is to add a CA 
block behind each convolution layer. However, it is expensive 
to perform an independent CA block on each convolutional 
layer. Based on insights about CNN properties from  (Zeiler et 
al., 2014), low-level features that were close to input extracts 
more local spatial information, and high-level features that were 
close to the classifier encode more semantic information. To 
this end, we apply the CA block in the last layer of DSCEN, 
which can pay more attention to the meaningful class-specific 
information for the current task efficiently. 

In the CA block, the global average and global max pooling 
operators are applied to aggregate spatial information of the 
input features. Then, two feature descriptors are fed into a 
shared multilayer perceptron (MLP) with one hidden layer 
(where the number of the hidden layer units is /FN re , re  is 
the reduction ratio) to capture the channel-wise dependencies. 
Finally, we merge the output feature vectors by using an 
element-wise addition and a sigmoid function. The obtained 
channel attention vector can be computed as 
 

             F F FcM sigm MLP AvgPool MLP MaxPool   (6) 

 
where sigm  denotes the sigmoid function, MLP  is a shared 
multilayer perceptron. The flowchart is shown in the channel 
attention block of Fig. 1. Finally, we can obtain the more 
discriminative output features by employing a scale layer to re-
weight the high-level features with the channel attention vector. 
It should also be noted that through end-to-end training, the 
network is capable of adaptive learning the weights of the 
feature maps, thereby focusing on important features and 
suppressing useless ones more efficiently.  
 
3.1.3 Network Architecture 

Based on the MSGC block and CA block, we construct the 
DSCEN model to extract the spatial features from the SAR 
image patch. As shown in Fig.1, the proposed DSCEN model 
contains four MSGC blocks and one CA block. The number of 
output channels of each MSGC block is 16, 32, 64, and 128, 
respectively. At the end of each MSGC block, a max-pooling 
layer is followed to abstract the feature maps. In addition, 
dropout is added after each pooling layer to prevent overfitting. 
Given an input image patch iX  centered on the pixel ix , whose 

spatial feature SpatialF  can be conducted multiple MSGC block-
based convolutions and one CA block-based recalibration in 
DSCEN. The formula for calculating the spatial feature SpatialF  
is described as follows 
 

      Spatial
4 3 2 1F c iM MSGC MSGC MSGC MSGC X     (7) 

 
where MSGC  represents a multi-scale group convolution 
operation. When the spatial feature representation is obtained, it 
can be imported to the feature fusion network for classification. 
 
3.2 Statistical feature extraction 

High-order scattering statistics of the SAR image provide 
much valuable information for data representation. However, 
CNN-based methods rarely consider and exploit the statistical 
properties of the SAR image. It is necessary to merge the 
statistical information into CNN to improve the feature 
representation. Due to the limitation of the lack of spectrum, we 
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Fig. 1. Framework of the proposed feature Fusion-Net for SAR image classification. 



 

extend the single-polarization HR SAR image to the Gabor 
wavelet domain to model it statistically and make the statistical 
feature more discriminative.  

Considering that the Gabor filter has scale and direction 
selection characteristics, it is compatible with the direction 
sensitivity of SAR images. Therefore, the Gabor filter is chosen 
to transform the SAR image into the complex wavelet domain. 
Given a SAR image I  and the Gabor filter ,u vG , the Gabor 

wavelet subbands can be computed as follows 
 
                                   , ,u v u vO z I z G z       (8) 

 
where   is the convolution operator,  1, 2z z z  denotes the 

coordinates in the spatial domain. 1,...,v V  and 1,...,u U  

represent the scale and direction. U  and V  are the number of 

scales and directions of Gabor filters, respectively.  ,u vO z  is 

the complex number result. Due to the phase of the wavelet is 
also important discriminant information, we extract the 
magnitude and phase of the Gabor wavelet simultaneously. 
Then, the magnitude  ,u vM z  and the phase  ,u vP z  of the 

Gabor filter output is computed as 
 

                     2 2

, , ,=u v u v u vM z Re O z Im O z   (9) 

                    , , ,arctanu v u v u vP z Im O z Re O z  (10) 

 
For the convenience of subsequent representation, the 

magnitude and phase subbands are vectorized and organized 
into the observation matrix n d

magM   and n d
phaM  , 

respectively. Each column of magM  or phaM  is the observations 

of the magnitude variable jm  or phase variable ja , 1,...,j d  . 

Here, each column corresponds to a subband. n  is the total 
number of the variable in a subband, and =   d U V  represents 
the number of subbands. 

For the observations of a subband, it is usually to make an 
underlying assumption based on a specific distribution and then 
compute the distribution parameters to build the feature vectors. 
Supposing the observations in -thj  column of magM  or phaM  

obey a certain marginal distribution which CDF is  jF r   and 

PDF is  jf r  . Then, we can use the observations of variables 

to estimate the distribution  j j jf r   and parameter j  by 

maximum likelihood or moments. Yu et al. (2010) concluded 
that non-Gaussian pdfs are suitable to model the statistical 
behavior of the magnitude of Gabor wavelet subbands. 
Considering simplicity and applicability, the log-normal 
distribution was used to fit the distribution of the magnitude 
subbands, and the uniform distribution is adopted to model the 
distribution of the phase subbands in our work. In addition, the 
effects of the different non-Gaussian distributions mentioned in 
Section 2 to model the Gabor magnitude subbands are validated 
in the experiments. 

Afterward, inspired by (Li et al., 2019), the observations of 
each column are projected to its corresponding CDF space by 

using CDF  j j jF r  . The CDF space of the amplitude 

subband can be expressed as n d
FM   
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  (11) 

 

Where, 1, 2, ,, , ,i i i n iF F F F     is the detailed CDF vector for 

each column. 
The most direct way is to construct the statistical descriptor 

by utilizing whole statistics. However, this strategy will lead to 
a very high-dimensional vector while ignoring the statistical 
dependence and nonstationary characteristics between subbands. 
To overcome this limit, the NS-JSM is used to describe these 
subbands statistics, which can form a more compact and robust 
statistical descriptor. To conveniently calculate the covariance 
matrix (CM), we change FM  into the following form, 

  1 2[ , , , ]
T

F F nM M Z Z Z   , where ,1 ,2 ,= , , ,
T

l l l l dZ F F F   , 

1,...,l n . Finally, the magnitude-based statistical feature can 

be represented by d d  CM of the subbands statistics 
 

                           
1

1
C

1

n
T

mag l l
l

Z Z
n

 


  
     (12) 

 
Where,   is the mean of the feature vectors   1,...,lZ l d， . 

Through the above calculation method, we can also obtain the 
CM C pha  corresponding to the phase-based statistical feature. 

There are two advantages of the NS-JSM: 1) Covariance 
matrix builds the dependence and nonstationarity between two 
different subbands, which can fuse complementary information 
coming from different subbands and form the more compact and 
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Fig. 2.  Illustration of (a) Standard convolutional block. (b) Multi-scale 
group convolutional block. (“G-Conv” represents the group 
convolution, “DG-Conv” represents the dilate group convolution, 
“FN” represents number of feature channels) 
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discriminative feature. 2) there is an average filter during 
covariance computation, which can further reduce the effect of 
speckle and noise. To form the final joint statistical descriptor 
based on magnitude and phase, we flatten and concatenate the 
two types of covariance features. Since the CM here is 
symmetric, we only use the upper triangular part of the 
magnitude CM and the lower triangular part of phase CM. 
Notably, the CM usually resides on the Riemannian manifold of 
the SPD matrix (Arsigny et al., 2007). Logarithmic 
transformation is applied in our work to map the covariance 
matrix to the linear space, and the final statistical feature 
descriptor of the SAR image patch can be expressed as 
 

                    Statistica oF l g C l| og C|mag pha
l triu tril     (13) 

 
where ||  denotes the operation of concatenating. The scheme of 
the global statistical feature extraction process is shown in Fig.1. 
 
3.3 Spatial-statistical feature Fusion-Net 

After obtaining the spatial and statistical features, it is 
important to effectively fuse them for classification. A 
commonly used method is to utilize a weighted strategy to fuse 
the two types of features. However, it required a large number 
of experiments to find the optimal weight parameter. Also, this 
strategy cannot benefit from end-to-end learning to obtain more 
robust performance. To utilize the complementary information 
between the two types of features, we propose to train a two-
layer perceptron feature fusion network (Fusion-Net) that can 
embed the statistical features into the spatial features in 
nonlinear feature space. In Fusion-Net, we use a sparsely 
connected network based on group convolution in the first layer 
for dimension reduction on the two features. Then, we adopt a 
fully connected network in the second layer to further fuse and 
optimize features so as to enhance feature discrimination. We 
define the fusion scheme as follows 
 

                 
  

 
2 1

Statistica
1

F onv( , F )

           || ( , F )

Fuse Spatial

l

sigm W sigm GC W

sigm GConv W




  (14) 

 

where 1W   and 1W   are the weights of the first sparsely 

connected layer, respectively. 2W   is the weights of the second 

fully connected layer. onvGC  denotes the group convolution. 
The proposed Fusion-Net has the following advantages: 1) Due 
to spatial and statistical features have high dimensions, the 
sparsely connected layer can achieve dimensional reduction 
with fewer parameters. It can also suppress useless information 
in each feature before fusion. 2) The sigmoid function as a 
smooth normalization mechanism can transform the features 
into a relatively consistent space. This choice can prevent either 
feature to become dominant, thus encouraging the contribution 
from both features. 3) Compared to the fully connected network, 
Fusion-Net has fewer parameters to learn complementary 
information, so it can further prevent overfitting. 

Finally, the fusional feature vectors directly input to the 
softmax function to generate the predicted labels. In the training 
stage, the cross-entropy loss is adopted as the objective function. 
The parameters of the proposed method are trained in an end-to-
end manner through iterative methods. Thus, the CNN-based 
spatial information and the global statistical information can 

interact during the training process, and the classification 
performance can be significantly improved. 

 
4. EXPERIMENT 

In this section, we evaluate the performance of the proposed 
method for HR SAR image classification. The data set 
description, detailed experimental setup, and experimental 
results with reasonable analysis are presented below. 

 
4.1 Description of the Datasets  

Four real HR SAR images obtained from different sensors 
were used to validate the effectiveness of the proposed method. 
These four data are high resolution and contain complicated 
structural and geometrical scene information. For each dataset, 
the ground truth images are generated by manual annotation 
according to the associated optical image, which can be found 
in Google Earth. The first HR SAR image was acquired by the 
TerraSAR-X satellite over the scene of Lillestroem, Norway, in 
2013. It has 2675 ×1450 pixels in size with an HH-polar 
imaging mode. The acquisition mode of the data is staring 
spotlight and the resolution of the image is 0.5m. This scene 
contains five kinds of ground objects: Water, residential, roads, 
woodland, and open land. The original image and the ground 
truth image are shown in Fig. 8(a) and Fig. 8(b). The dataset is 
available at http://www.intelligence-airbusds.com. 

The second data set was collected by the Chinese Gaofen-3 
satellite in Guangdong Province, China, in 2017. The image 
size is 2600 ×4500 pixels, and the spatial resolution is 0.75 m. 
The image is HH-polarization data with the sliding spotlight 
mode. This data consists of seven classes: Mountains, water, 
building, roads, woodland, and open land. The original image 
and the ground truth are shown in Fig. 9(a) and Fig. 9(b). 

The third data was from the area of Shaanxi province, China, 
collected by a Chinese airborne sensor in 2016. It was provided 
by the China Electronics Technology Group Corporation 
(CETC) Institute. This data has a size of 1800 × 3000 with a 
spatial resolution of 0.3 m. The image is HH-polarization data 
with spotlight mode. Seven classes are considered for the 
experiment: open land, roads, rivers, runway, woodland, 
residential, commercial. The original image and the ground 
truth image are shown in Fig. 10(a) and Fig. 10(b). 

The fourth data was acquired by an X-band F-SAR sensor of 
the German Aerospace Center in 1989. The data set was from 
the Bavaria region in Germany, whose spatial resolution is 0.67 
m. It contains 6187 ×4278 pixels and the polarization of the 
data is VV-polar mode. Four classes of interests were 
considered: water, residential, vegetation, and open land. The 
original image and the ground truth image are shown in Fig. 
11(a) and Fig. 11(b), respectively. The dataset is available at 
https://www.dlr.de. 
 
4.2 Experimental setup and evaluation metrics  

The proposed classification method consists of three parts: 
spatial feature extraction using DSCEN, statistical feature 
extraction using NS-JSM, spatial-statistical feature fusion, and 
classification using Fusion-Net. First, we set the public 
parameters and training strategies involved in model training. 
Then, the detailed parameter determination for each module is 
discussed in the subsequent part. During the training phase, the 
unique loss function is optimized by the Adam optimizer 
(Kingma et al., 2015) with a constant learning rate of 0.001. 
The mini-batch size is set to 100 and the number of epochs is 
set as 150. In our DSCEN, all the convolutional weights are 



 

initialized from Gaussian distributions with zero mean and a 
standard deviation of 0.01, and no bias term. Moreover, the 
dropout ratio is set to 0.2. 

To achieve pixel-based classification, training, validation, 
and test samples are necessary to be collected. In our 
experiment, all the labeled pixels together with their 
neighborhood patches are extracted to form the samples. The 
patch spatial size of 64  64  pixels was chosen as inputs. The 
input data is normalized in the range of 0-1 by max-min 
normalization. For each category, three hundred samples were 
randomly selected and divided into training and validation, 
accounting for 70% and 30%. Two forms of data augmentation 
including rotation and flipping were applied for training 
samples, which can increase the number of training samples to 
eight times the original. 

In the testing phase, the network weights of the minimum 
loss on the validation data were loaded for evaluating the test 
data. A stride greater than 1 was used to infer the test data to 
avoid excessive computational costs. The stride was set to 5 in 
our work. The obtained class probability map was then 
upsampled the original resolution with a negligible loss in the 
accuracy. Notably, the parameters determination and analysis of 
the TerraSAR-X SAR image are discussed in the subsequent 
ablation study. The same parameter settings were used to 
classify the other three images. The specific trend analysis of 
the other three HR SAR images is the same as the TerraSAR-X 
SAR image. Here, we hope to avoid parameter tuning for each 
dataset and apply the optimization model to other datasets. It 
can more effectively verify the generalization performance of 
the model while reducing time consumption for actual 
application scenarios. 

To reduce the influence of random initialization, each 
experiment was run five times independently. The overall 
accuracy (OA), average accuracy (AA), and Kappa coefficient 
(κ), and class-specific accuracy are used for evaluating the 
classification results. All experiments were conducted by 
MATLAB 2014a on the platform of a computer with I7 3.2-
GHz CPU and 32-GB memory. The whole deep CNN system 
was built by the MatConvNet library. 
 
4.3 Analysis of DSCEN 

In the proposed DSCEN, the feature number of the network, 
the depth of the network, the effect of the MSGC block, and the 
effect of the CA block were discussed in detail as follows. 
When analyzing the effect of a particular block, we vary this 
parameter whilst fixing all others. 
 
4.3.1 Effect of feature number of network  

In general, the feature number in CNN can determine the 
diversity of features. Too few feature channels in CNN may not 
express sufficient discriminability, and too many feature 
channels introduce overfitting and increase model complexity. 
First, the DSCEN depth is fixed as 4. Then, four networks were 
defined to test the effect of feature number by reducing or 
adding parameters of the convolutional layers. We follow 
roughly the rule that the feature number in a convolutional 
block is twice that of the previous block. These classification 
results are displayed in Table II. From this table, we can 
observe that model setting 16-32-64-128 obtained the best 
performance. The DSCEN with fewer parameters is limited on 
classification performance, while DSCEN with more parameters 
may not be sufficiently trained due to limited training samples. 
Therefore, the model setting 16-32-64-128 is select as the 
default setting of the DSCEN in our experiment. 
 

4.3.2 Effect of depth of DSCEN  
Deepen the network layers can extract the more abstract 

feature and improve classification performance. In DSCEN, the 
number of MSGC blocks determines the depth of the network. 
Since there is a pooling layer behind each MSGC block, the 
receptive field of DSCEN will become larger as the number of 
layers deepens, and the size of the feature map will be further 
compressed. Thus, we conducted experiments to test the effect 
of different depths by reducing or adding MSGC blocks. Fig. 4 
shows the classification accuracy produced by the DSCEN with 
different layers. It can be seen that the accuracy tends to 
increase gradually as the network deepens. When the network 
deepens to the fifth layer, the accuracy begins to decay. This is 
because the SAR image patch size is small, the feature space is 
overly contracted, and causes too much resolution loss, thus 
affecting the classification accuracy. The best performance can 
be achieved by setting the network depth to four, which we use 
as the default setting for the DSCEN in our experiments. 

 
4.3.3 Effect of MSGC block 

There are three important components in the MSGC block 
that need to be compared, namely multi-scale convolution dilate 
convolution, and group convolution. Therefore, we define seven 
convolutional blocks to evaluate the effectiveness of the MSGC 
block. Specifically, we fixed the network at four layers and only 
used different convolutional blocks instead of the MSGC block 
for comparison. We used M-1 to indicate that only a standard 
5  5  convolutional layer adopted in the block. The M-2 was 
used to denote that two standard 3  3  convolution layers 
were applied. We use a 3  3  compressed convolution layer 
and a 5  5  compressed convolution layer to replace the 
bottom convolution block in MSGC block, which is defined as 
M-3. The main difference between it and the MSGC block is 
that no dilate convolution and group convolution.is used. 
Further, a 3  3  dilate convolutional layer replaces the 5  5  
convolution layer in M-3 as M-4. It is similar to the MSGC 
block, but here the grouping coefficient G  is set to 1. M-5 to 
M-7 were constructed mainly to verify the performance of 
group convolution. The main difference is that they used 

Table 2 
Classification accuracy of different feature number. 

Feature number OA AA κ 

8-16-32-64 0.8786 0.8812 0.8312 

16-32-64-128 0.8900 0.8872 0.8462 

32-64-128-256 0.8811 0.8842 0.8345 

64-128-256-512 0.8808 0.8785 0.8338 
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Fig. 4. The classification accuracy of the DSCEN with different layers. 

 



 

grouping coefficients G  of 2, 4, and 8 in block, respectively. 
The experimental results are shown in Fig. 4. 

From Fig. 4, we can see that the M-6 MSGC block with 
grouping coefficient 4G   can obtain the best classification 
results. Compared with the standard M-1 and M-2 blocks, we 
can conclude that introduction of multi-scale convolution can 
achieve better performance, mainly because it expands the 
receptive field and captures more contextual information. Then, 
comparing the M-3 and M-4 models, it can be observed that the 
introduction of dilate convolution can basically keep the 
accuracy unchanged while reducing the number of parameters. 
In models M-5 to M-7, the parameter amount is further reduced 
and the classification performance is improved by introducing 
group convolution. This is because the sparse property of group 
convolution may reduce feature redundancy and improve the 
feature learning ability of the MSGC block. In summary, we use 
the M-6 module as the default setting of DSCEN. It can 
significantly improve the classification results whilst reducing 
the number of model parameters. 
 
4.3.4 Effect of CA block 

To assess the effectiveness of the CA block, we compare the 
performance of DSCEN without the CA block to the version 
with the CA block for different reduction ratios {1,4,16,re  

32,64,128} . The experimental results are reported in Table 4. 
Intuitively, we can see that adding the CA block can produce 
better accuracy than without CA blocks in DSCEN. This 
explicitly demonstrates that the CA block can boost the 
classification performance of our model. Moreover, the results 
in Table 4 show that the accuracy does not gradually increase as 
re  decreases. The reason is that excessive compression of 
global feature descriptors may not capture better feature 
channel-wise interaction relationships. For this experiment, the 
CA block with a reduction ratio =4re  can achieve the best 
performance, and we select it as the default setting for 
subsequent experiments 

4.4 Analysis of NS-JSM 

4.4.1 Effect of modeling of the Gabor wavelet subbands 
We tested the effect of statistical modeling of the Gabor 

wavelet subbands on the classification results. This section has 
different degrees of freedom such as the choice of scales and 
directions of Gabor filters and whether to use phase features. 
Here, we varied the scales and directions of Gabor filters to 
4  4 , 6  6 , 8  8 , 10  10 , and 12  12  to observe the 
classification results. Meanwhile, we used the symbols “NS-
JSM-M” to indicate that only the magnitude (where Log-
Normal distribution is used for magnitude modeling) of the 
Gabor wavelet subband is constructed for statistical features. 
Similarly, the symbol “NS-JSM-MP” represents that the 
magnitude and phase of Gabor subbands are used to construct 
the statistical features by the NS-JSM. Fig. 5 reports a 
comparison of different model settings on OA. As shown in Fig. 
5, the increasing of scales and directions generally leads to an 
improvement in the classification accuracy. It can be observed 
that stable accuracy appears when the number of scales and 
directions is set to 8. For more scales and directions, there will 
be almost no improvement in accuracy. Furthermore, we can see 
that combining phase information can further improve the 
recognition rate of statistical features, which has been ignored 
in many wavelet-based classification tasks.  
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Fig. 5. Effect of NS-JSM with different settings on the overall accuracy. 

 
Table 5 
Classification accuracy of different statistical models. 

Statistical  
models 

Type OA AA κ 

No 
Mag 0.7644 0.7775 0.6806 

Mag-Pha 0.8171 0.8220 0.7532 

Exponential 
Mag 0.8055 0.8202 0.7374 

Mag-Pha 0.8271 0.8339 0.7623 

Log-normal 
Mag 0.8086 0.8240 0.7389 

Mag-Pha 0.8286 0.8354 0.7643 

Nakagami 
Mag 0.8063 0.8210 0.7359 

Mag-Pha 0.8280 0.8346 0.7635 

Rayleigh 
Mag 0.8067 0.8198 0.7362 

Mag-Pha 0.8287 0.8348 0.7644 

Weibull 
Mag 0.8069 0.8226 0.7366 

Mag-Pha 0.8282 0.8350 0.7636 

Gamma 
Mag 0.8078 0.8232 0.7377 

Mag-Pha 0.8285 0.8353 0.7641 

 

Table 3 
Classification accuracy of different convolutional block. 

Model Size OA AA κ 

M-1 1115K 0.8596 0.8633 0.8057 

M-2 1311K 0.8683 0.8789 0.8177 

M-3 1857K 0.8845 0.8827 0.8388 

M-4 1177K 0.8817 0.8815 0.8351 

M-5 682K 0.8858 0.8866 0.8406 

M-6 650K 0.8900 0.8872 0.8462 

M-7 634K 0.8890 0.8867 0.8449 

 
Table 4 
Classification accuracy of different reduction ratio re  in CA block. 

CA block OA AA κ 

No-CA 0.8823 0.8814 0.8359 

CA( 1re  ) 0.8898 0.8866 0.8459 

CA( 4re  ) 0.8900 0.8872 0.8462 

CA( 16re  ) 0.8858 0.8850 0.8407 

CA( 32re  ) 0.8826 0.8846 0.8366 

CA( 64re  ) 0.8875 0.8859 0.8428 

CA( 128re  ) 0.8883 0.8867 0.8439 

 



 

4.4.2 Effect of different statistical models 
To verify the fitting ability of the statistical modeling, 

different statistical models mentioned in Section 2 were used to 
model the magnitude subbands of Gabor wavelets. Also, the 
uniform distribution is adopted to model the phase subbands. 
The comparison results are presented in Table 5, where we use 
the symbols "Mag" and "Mag-Pha" to represent only the 
amplitude modeling of the gabor subband and the amplitude 
and phase modeling of the gabor subband at the same time to 
construct statistical feature. From Table 5, we observed that by 
modeling the Gabor subbands, NS-JSM has an improvement of 
about 1.5% on accuracy compared to the non-modeling solution. 
This indicate that by projecting the sub-bands coefficients into 
the CDF space, the noise coefficients in the sub-band may be 
smoothed, so that the more robust performance can be obtained. 
In addition, we can see that phase information provide a very 
important contribution in this method. Further, the difference in 
accuracy of different statistical models is almost small, which 
may be because these non-Gaussian distribution models are too 
simple to better model different types of image patches. But 
these models can solve the parameters faster. A more complex 
statistical model such as the mixed statistical model is another 
choice, but parameter estimation prevents it from being 
efficiently applied to the NS-JSM. 

 
4.4.3  Feature Visualization and Analysis 

To illustrate the discriminative performance of the NS-JSM, 
we present the amplitude and phase covariance matrices 
corresponding to five different types of image patches from 
TerraSAR-X images in Fig. 6. It can be seen that the covariance 
features of different categories have different manifestations. 
Therefore, to a certain extent, the use of global statistical 
covariance features can distinguish the category attributes of 
different image patches. 
 
4.5 Analysis of Fusion-Net 

4.5.1 Effect of node number and activation of Fusion-Net  
To evaluate the performances of the proposed Fusion-Net, 

we conduct experiments to test the effect of different node 

numbers embedded in the neural network. To simplify the 
experiment, the number of nodes in the sparsely connected layer 
of the first layer and the number of nodes in the fully connected 
layer of the second layer in Fusion-Net are set to be equal. Then, 
we selected the number of nodes as 32, 64, 128, 256, and 512 
for comparison. The results in Table 6 show that setting the 
number of nodes to 128 can produce the best classification 
results. When the number of nodes is reduced, the feature 
representation ability of the converter and the fusion layer will 
be weakened. As the number of nodes increases, the accuracy 
does not increase further, but it increases the number of 
parameters. Therefore, considering the model complexity and 
classification accuracy, we set the number of nodes is set to 128 
in our experiment. 

In addition, to illustrate the effectiveness of smooth 
normalization, we test the classification performance of the 
sigmoid and ReLU activation in Fusion-Net. Table 7 shows the 
comparison of our experiments. It is clearly seen that sigmoid 
activation yield better classification results than ReLU 
activation. The possible reason is that the feature value range of 
ReLU is from zero to infinite. Thus, there may be some outliers 
that affect the performance of the fusional feature. The sigmoid 
activation, as a normalization mechanism, can transform the 
characteristics into a relatively consistent space with a range of 
zero to one. It can maintain more detailed information, so that 
the Fusion-Net can mine complementary information more 
effectively, thus improving classification accuracy. 

 
4.5.2 Comparison of different fusion schemes. 

To validate the proposed feature fusion scheme, we compare 
it with two other empirical fusion schemes including probability 
fusion and feature fusion. For probability fusion, we adopt the 
weight fusion to fuse the class probability maps of the DSCEN 
and the NS-JSM. The optimal weight is selected by trial and 
error. For feature fusion, we directly concatenate the output 
features of the DSCEN and the NS-JSM. Then, the fusion 
feature is fed into the softmax classifier for classification. Table 
8 shows the comparison of our experiments. From Table 8, we 
can see that our Fusion-Net has about 1% improvement in OA 
compared to the empirical fusion method. The results indicate 
that the proposed fusion scheme can effectively fuse the spatial 
and statistical features, and benefit from the end-to-end training 
manner, the prediction accuracy of the entire model can be 
further refined. 
 
4.5.3 Feature Visualization 

To further illustrate the ability of our Fusion-Net to extract 
complementary information between spatial and statistical 
features, Fig. 7 visualizes the distribution of three different 
features, which are spatial, statistical features, and fusion 

 
         (a)                   (b)                   (c)                   (d)                  (e) 

 
        (f)                   (g)                   (h)                   (i)                  (h) 

Fig. 6.  The proposed covariance matrix for different classes of the SAR 
image. The upper row is the CM based on the amplitude modeling of the 
Gabor subbands; the lower row is the CM based on the phase modeling 
of the Gabor subbands. (a)-(f) Waters. (b)-(g) Residential. (c)-(h) Wood 
land. (d)-(i) Open land. (e)-(h) Road. 

Table 6 
Classification accuracy of different hidden units in Fusion-Net. 

Hidden units OA AA κ 

32 0.9004 0.9047 0.8610 

64 0.9078 0.9032 0.8704 

128 0.9095 0.9055 0.8727 

256 0.9027 0.9039 0.8639 

512 0.9060 0.9025 0.8680 
 

Table 7 
Classification accuracy of different activation in Fusion-Net. 

Activation OA AA κ 

Sigmoid 0.9095 0.9055 0.8727 

ReLU 0.9038 0.9036 0.8651 

 
Table 8 
Comparison of different fusion schemes on classification accuracy. 

Schemes OA AA κ 

Prob-Fusion 0.8994 0.8969 0.8590 

Feature-Fusion 0.8955 0.8998 0.8541 

Fusion-Net 0.9095 0.9055 0.8727 

 



 

features, respectively. The distribution is generated by using the 
t-distributed stochastic neighbor embedding (t-SNE) (Van et al., 
2008) algorithm on 1000 patches (200 patches per category) 
randomly selected from the test data. It can be observed that the 
feature distribution of our fusion network has fewer overlaps 
than the other two types of features. For the output features of 
the Fusion-Net, the distance between different classes of 
features becomes larger. The results show that our Fusion-Net 
has the capacity to achieve even superior feature recognition 
compared with the single spatial or statistical feature. 
 
4.6 Experimental comparisons 

To demonstrate the superiority of the proposed method, we 
compare it with several related methods for HR SAR image 
classification. These comparison approaches are divided into 
three groups, including traditional feature extraction, statistical 
feature extraction, and feature extraction based on deep learning. 
The details of these comparisons are described as follows. 

Gabor (Dumitru et al., 2013): Gabor filters are implemented 
in eight scales and eight directions and the mean of the 
magnitude of responses is adopted as the feature. A 64-
dimensional feature vector was obtained for each SAR image 
patch. 

CoTF (Guan et al., 2019): Covariance matrix of the 
magnitude of Gabor filter responses is calculated. The matrix 
logarithm operation is applied to map the covariance matrix to 
the Euclidean space. The upper triangular part of the covariance 
matrix was used as the feature vector. 

Statistical Dictionary (SD) (Karine et al. 2017): For a fair 
comparison, the Gabor filter instead of DT-CWT is 
implemented on the SAR image. Then, the produced complex 
subbands magnitudes are modeled by the lognormal model. The 
obtained statistical parameters are concatenated to build a 
feature vector for each SAR sample. 

Statistical CNN (SCNN): Following the setting of Liu et al. 
(2020), SCNN contains three convolutional layers, and the 
feature numbers are 12, 32, and 64, respectively. Then, a global 
average pooling and a global variance pooling layer are applied 
to the output of the last convolutional layer to capture statistical 
features for classification. 

A-ConvNet: A-ConvNet consists of five convolutional layers, 
without FC layers being used. A dropout layer with a 
probability of 0.5 is added after the fourth convolutional layer 
to prevent overfitting. All parameters are set to the default 
values as in Chen et al. (2016). 

ResNet (Fu et al. 2018): An improved Resnet-18 network is 
used to process SAR images with limited labeled samples. The 
network architecture contains five residual blocks, and the 
number of channels is set to 16, 32, 64, 128, and 256 for each 

layer, respectively. Also, a dropout layer between two stacked 
convolution layers. This method is used to test the performance 
of very deep networks in HR SAR image classification. 

MVGG-Net (Zhang et al., 2021): Following the design 
architecture of VGG-Net, we migrated the first four convolution 
blocks of the original VGG, and added a fully connected layer 
containing 256 neurons to classify SAR images. This method is 
used to verify the performance of transfer learning and compare 
it to the proposed DSCEN model on the SAR image 
classification task. 

To ensure the fairness of comparison, the Softmax classifier 
is adopted to classify the extracted features by all the above 
algorithms. For the four SAR datasets from different sensors, 
the comparison method and the proposed method all adopted 
the same model structure and parameter setting as described in 
the above section, which can effectively verify the stability and 
generalization performance of the model. 

 
4.6.1 Results on the TerraSAR-X SAR image 

In this section, experiments are conducted on the TerraSAR-
X SAR image to compare the classification result with different 
methods. The compared classification results of AA, OA, and 
kappa coefficient are reported in Table 9. From Table 9, it can 
be seen that the proposed Fusion-Net achieves the highest 
accuracy among the comparison methods, and produces better 
classification results on most categories. The testing OA, AA 
and kappa of our approach can reach 90.95%, 90.55%, and 
0.8727, respectively. For traditional feature extraction methods, 
our statistical features based on the NS-JSM have obtained 
better classification accuracy than Gabor, CoTF, and SD. It 
indicates that our statistical features can effectively mine the 
scattering statistics of SAR image patches, making the formed 
descriptors more robust to various land covers. Compared with 
the two lightweight SCNN and A-ConvNet, our DSCEN has 
about a 4% improvement in classification accuracy, which 
proves that the proposed lightweight DSCEN can learn more 
effective discriminative feature representation. As for ResNet, 
we can see that its classification accuracy is the lowest among 
the deep learning methods. This is due to the limited SAR 
labeled data that makes it unable to be effectively trained. The 
classification accuracy of MVGG-Net is close to our DSCEN, 
which shows that transfer learning can make very deep 
networks work in SAR classification tasks with limited labeled 
data. However, the size of MVGG-NET parameters is 37M, 
which makes it bring more computational burden and occupy 
more memory. In addition, because the Fusion-Net combines 
the complementarity of spatial and statistical features, it further 
improves the classification accuracy. For heterogeneous areas 
such as residential and texture areas such as woodland and open 
land, the Fusion-Net has achieved an accuracy improvement of 
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Fig. 7. Visualization features of TerraSAR-X data by using t-SNE. (a) spatial features from DSCEN and (b) statistical features from NS-JSM (c) 
fusional features from Fusion-Net. 



 

about 2% to 4% compared to the DSCEN that uses a single type 
of feature classification. In summary, the Fusion-Net shows that 
the joint consideration of the spatial and statistical features can 
improve the performance of SAR image classification tasks. 

Fig. 8 depicts the classification result maps of each compared 
method on the TerraSAR-X image. As is shown in Fig. 8, the 
Gabor, CoTF, and SD produced serious misclassifications in the 
road area. Our statistical features show better recognition ability 
in open land and woodland areas than the other three traditional 
methods. This implies that our statistical features can suppress 
the influence of noise or shadows to a certain extent. Moreover, 
we can see that these deep learning-based methods can roughly 
identify all categories. But the classification map of our DSCEN 
has fewer isolated misclassification points, especially in 
residential and open land areas. Finally, compared with the 
ground truth, it can be concluded that the proposed Fusion-Net 
produces the optimal visual effect appearance. 

 
4.6.2 Results on the Gaofen-3 SAR image 

Classification results of each approach on the Gaofen-3 data 
are reported in Table 10. As can be observed, the testing OA, 
AA, and kappa of our approach are 92.25%, 93.88%, and 
0.8991, respectively. The proposed Fusion-Net yields the 
highest classification accuracies than other approaches, which 
proves the rationality of the joint consideration of spatial and 
statistical features. Comparing the Gabor and SD model, we can 
conclude that statistical modeling is more discriminative than 
calculating the mean of Gabor filter response. Further, by using 

our NS-JSM to describe the statistical properties of Gabor 
wavelet subbands of the SAR image, a better classification 
performance can be obtained than the other three traditional 
methods. Compared with SCNN, A-ConvNet, ResNet, and 
MVGG-Net, the proposed DSCEN performs better than these 
deep learning methods by 1% in terms of OA. Although the 
accuracy improvement is relatively small, it indicates the 
introduction of MSGC and CA blocks in DSCEN can further 
enhance the classification performance while greatly reducing 
the number of parameters. Notably, it can be observed that the 
classification accuracy of our statistical features on the Gaofen-
3 SAR data is even better than other deep learning-based 
methods, which implies that our NS-JSM can perform 
reasonably well with less training data. An interesting finding is 
that methods based on second-order statistics such as CoTF, 
SCNN, and our NS-JSM have achieved more than 90% 
classification accuracy in woodland, which proves that second-
order statistics can help improve the accuracy of objects with 
complex textures. Besides, it can be seen from the class-specific 
accuracy that statistical and spatial feature methods have their 
advantages in the identification of different objects. By using 
Fusion-Net to fuse the two types of features, it produces the best 
classification accuracy, which proves that it is necessary to 
combine statistical and spatial features to process SAR image 
classification. 

Fig. 9 shows the classification result maps of each compared 
method on the Gaofen-3 SAR image. Traditional classification 
methods including Gabor and SD contain more misclassified 

Table 9 
Classification performance of TerraSAR-X SAR image with different methods. 

Class Gabor CoTF SD SCNN 
A-

ConvNet 
ResNet 

MVGG-
Net 

NS-JSM DSCEN 
Fusion-

Net 
Waters 90.86 93.01 90.77 98.85 96.61 96.54 94.42 97.21 96.41 97.63 

Residential 78.95 86.06 75.78 85.97 89.36 83.51 88.51 83.93 90.94 92.69 
Woodland 73.62 83.12 76.76 84.90 87.83 84.28 92.22 84.71 88.89 92.14 
Open land 60.68 74.71 72.06 82.93 82.47 79.99 86.44 81.07 87.47 89.41 

Road 41.27 59.47 56.45 70.56 72.88 67.62 79.24 70.80 79.89 80.87 
OA 70.06 80.35 74.12 84.18 86.07 82.02 88.03 82.86 89.00 90.95 
AA 69.07 79.27 74.36 84.01 85.83 82.39 88.17 83.54 88.72 90.55 

100   59.91 73.02 65.17 78.14 80.67 75.36 83.34 76.43 84.62 87.27 
 

       
                           (a)                                                        (b)                                                     (c)                                                     (d) 

       
(e)                                                        (f)                                                     (g)                                                     (h) 

       
(i)                                                         (j)                                                     (k)                                                     (l) 

 Water  Residential  Woodland   Open land  Road 

Fig. 8.  Classification maps of TerraSAR-X SAR image with different methods. (a) Original SAR image. (b) Ground truth. (c) Gabor. (d) CoTF. (e) 
SD. (f) SCNN. (g) A-ConvNet. (h) ResNet. (i) MVGG-Net. (j) NS-JSM. (k) DSCEN. (l) Fusion-Net. 

 



 

points, especially in mountains and building areas. It can be 
seen that our statistical features have fewer misclassified pixels 
in the mountain area than CoTF. The possible reason is that our 
statistical features also introduce phase information, which is 
effective for identifying the irregularly textured mountains in 
Gaofen-3. In addition, our statistical method has better visual 
effects in buildings and woodland areas than other deep 
learning methods. On the contrary, our DSCEN method is better 
at extracting narrow road features and water and open land 
categories that contain homogeneous areas. Finally, compared 
with the ground truth, the proposed Fusion-Net can maintain 
the minimum noise classifications and has a better visual effect, 
which verifies the effectiveness of multi-feature fusion for 
improving SAR image classification. 

 
4.6.3 Results on the Airborne SAR image 

Classification results of each approach on the Airborne SAR 
data are shown in Table 11. As is shown in Table 11, the OA, 
AA, and kappa of our Fusion-Net model are 91.64%, 94.25%, 
and 0.7417, respectively. It is seen from the compared results 
that the proposed Fusion-Net achieves the highest classification 
accuracies. Airborne SAR data contains more categories, but 
there is a serious class imbalance, where open land occupies 
most of the pixels in the image. Therefore, it is the most 

challenging task to classify objects that show a narrow 
structural appearance and objects that show an extremely 
complex texture distribution. Compared with Gabor, CoTF, and 
SD, our statistical features have more than a 3.5% improvement 
in the kappa coefficient. This indicates that introducing 
statistical modeling and covariance matrix into the Gabor 
wavelet subbands of the SAR image can obtain more 
discriminative statistical features. Secondly, we can see that the 
deep learning-based methods increase the accuracy of the kappa 
coefficient by more than 4% compared with other traditional 
methods. The main reason is that the CNN model has the better 
representation ability for the narrow structure appearance such 
as roads, runways, and water areas. Apparently, our DSCEN 
model achieves the best results of a single type of feature on 
Airborne SAR data, which demonstrates the DSCEN has better 
adaptability when dealing with complex shapes and textures in 
different class objects. Finally, the proposed Fusion-Net can 
acquire the optimal classification accuracy compared with 
DSCEN and NS-JSM, which shows that accuracy can be further 
improved by embedding statistical features into deep spatial 
features. 

Comparisons of classification result maps on the Airborne 
SAR data are depicted in Fig. 10. As can be seen from Fig. 10, 
all methods based on traditional feature extraction cannot 

Table 10 
Classification performance of Gaofen-3 SAR image with different methods. 

Class Gabor CoTF SD SCNN 
A-

ConvNet 
ResNet 

MVGG-
Net 

NS-JSM DSCEN 
Fusion-

Net 
Mountain 58.83 83.08 66.48 86.14 86.37 87.34 88.29 87.23 89.27 89.71 

Water 92.73 91.40 91.96 94.61 96.44 94.59 95.15 92.67 96.45 96.36 
Building 67.87 88.81 73.75 81.78 78.56 80.56 82.25 86.94 82.78 89.62 

Roads 81.01 93.65 86.75 93.70 94.72 95.62 96.58 94.83 96.84 98.94 
Woodland 84.61 92.16 86.12 90.43 87.61 87.24 88.47 95.51 85.84 94.37 
Open land 73.42 81.14 74.81 90.25 92.65 90.29 91.29 89.52 94.56 94.29 

OA 74.13 87.89 78.01 87.77 87.15 87.35 88.46 89.67 89.10 92.25 
AA 76.42 88.37 79.98 89.48 89.39 89.27 90.34 91.11 90.96 93.88 

100   67.41 84.22 71.99 84.21 83.39 83.66 85.06 86.61 85.85 89.91 
 

    
                           (a)                                                        (b)                                                     (c)                                                      (d) 

    
(e)                                                        (f)                                                      (g)                                                      (h) 

     
 (i)                                                        (j)                                                      (k)                                                       (l) 

 Mountain  Water  Building   Roads  Woodland  Open land 

Fig. 9.  Classification maps of Gaofen-3 SAR image with different methods. (a) Original SAR image. (b) Ground truth. (c) Gabor. (d) CoTF. (e) SD. 
(f) SCNN. (g) A-ConvNet. (h) ResNet. (i) MVGG-Net. (j) NS-JSM. (k) DSCEN. (l) Fusion-Net. 

 



 

effectively identify the runway category. In addition, these 
methods have serious under-classification effects on woodland, 
roads, and waters. The main reason is that these traditional 
features pay more attention to extracting the features of SAR 
image patches from a global perspective, and therefore ignore 
the expression of local spatial structure relationships. On the 
contrary, the method based on deep learning has the advantage 
of learning the spatial local information of the image patches, 
and it has better feature representation ability in these narrow 
structural areas and complex urban areas. For the proposed 
Fusion-Net, it has smoother label consistency on the 
classification map than other methods, especially in commercial 
and open land areas. Besides, our Fusion-Net has better 
classification accuracy at the boundary of the category, so the 
performance of the visual appearance is further refined. 
 
4.6.4 Results on the F-SAR image 

To illustrate the effectiveness of the proposed Fusion-Net, 
the experiment was also conducted on the F-SAR image. Table 
12 shows the accuracy of per class, OA, AA, kappa coefficient 
with different methods. Obviously, the open space and 
vegetation scenes occupy most of the content in the image. 
These scenes are relatively regular and uniform. Hence, the OA 
of all comparison methods exceeds 90%. It can be seen that our 

statistical feature method improves the performance by 1%~2% 
in accuracy compared with the CoTF and SD. The Gabor 
method has the lowest classification accuracy in each category 
due to its insufficient feature discrimination ability. Meanwhile, 
the deep learning models can effectively identify all categories, 
but our DSCEN shows relatively better classification 
performance. This shows that the convolution module we 
designed can extract more discriminative features. In addition, 
we found that in residential areas that contain complex 
structural information, our statistical features have achieved 
better classification accuracy thanDSCEN, which is about a 4% 
improvement. Finally, by combining complementary 
information of spatial and statistical features, our Fusion-Net 
can obtain the best classification performance. An important 
conclusion is that although the appearance of various land 
covers in images from different sensors and different resolutions 
are inconsistent, both spatial and statistical features show their 
unique advantages in certain specific categories. This also 
proves that our proposed method is a more potent way to apply 
it to complex SAR image classification tasks. 

Fig. 11 shows the classification result maps by using 
different methods on the F-SAR image. First, it can be observed 
that Gabor, CoTF and SD methods have many isolated 
misclassified pixels in open land and vegetation areas. At the 

Table 11 
Classification performance of Airborne SAR image with different methods. 

Class Gabor CoTF SD SCNN 
A-

ConvNet 
ResNet 

MVGG
-Net 

NS-JSM DSCEN 
Fusion-

Net 
Open land 75.45 80.61 80.59 82.56 88.30 87.45 89.16 83.97 90.16 91.48 

Road 64.73 80.00 70.38 83.51 85.14 84.30 85.73 86.35 87.85 90.68 
Water 78.37 97.04 93.48 93.93 98.26 98.18 98.61 97.93 98.10 98.66 

Runway 95.10 96.28 95.96 98.75 99.34 99.57 98.95 99.31 98.66 99.63 
Woodland 72.70 88.00 78.44 86.63 86.85 87.25 88.00 87.40 90.17 88.51 
Residential 83.74 91.78 86.16 87.35 88.28 90.61 91.77 90.71 88.84 91.56 
Commercial 97.44 98.06 98.42 96.75 98.89 98.96 98.96 98.94 98.82 99.24 

OA 76.65 83.68 81.62 84.61 88.86 88.53 89.82 86.11 90.77 91.64 
AA 81.08 90.64 86.20 90.32 92.15 92.33 93.03 92.09 93.44 94.25 

100   61.04 71.59 67.83 79.92 79.39 78.83 81.10 75.24 82.73 84.17 
 

    
                           (a)                                                        (b)                                                     (c)                                                      (d) 

    
(e)                                                        (f)                                                      (g)                                                     (h) 

      
(i)                                                          (j)                                                      (k)                                                     (l) 

 Open land  Road  Water   Runway  Woodland  Residential  Commercial 

Fig. 10.  Classification maps of Airborne SAR image with different methods. (a) Original SAR image. (b) Groundtruth. (c) Gabor. (d) CoTF. (e) SD. 
(f) SCNN. (g) A-ConvNet. (h) ResNet. (i) MVGG-Net. (j) NS-JSM. (k) DSCEN. (l) Fusion-Net. 

 



 

same time, they did not fully detect the residential scenes in 
some small areas at the bottom of the image. For all deep 
learning-based methods, they have a small number of 
misclassified pixels in residential areas. Compared with other 
models, the proposed Fusion-Net produces the best visual 
effects, especially where the categories are adjacent, and the 
boundaries are clearer. Therefore, our proposed Fusion-Net can 
greatly improve labeling consistency for SAR image 
classification. 
 

5. CONCLUSIONS 

In this paper, a novel end-to-end Fusion-Net classification 
model is proposed for HR SAR images, which aims to embed 
the statistical features into deep spatial features objects in the 
end-to-end representation learning. In our model, the proposed 
DSCEN can extract multi-scale spatial features while keeping 
the fewer model parameters amounts. The NS-JSM can fully 
mine the statistical properties of the magnitudes and phases of 
the Gabor wavelet subbands of the SAR image, and form a 
more compact and robust statistical descriptor. The proposed 
Fusion-Net can take full advantage of the complementary 
information of spatial features and statistical features to make 
the entire classification model achieve a significant accuracy 
improvement. Experimental results on four SAR images 
demonstrate that the proposed Fusion-Net yields much higher 

accuracies and better visual appearance than other related 
approaches. 

In the future, data augmentation such as Mixup (Zhang et al., 
2017) or self-supervised learning such as contrastive learning 
(Chen et al., 2008) will be considered to enhance the feature 
representation ability of DSCEN. Besides, instead of using the 
empirical statistical models, we intend to consider adaptively 
modeling high-order scattering statistics by deep learning to 
increase the classification capabilities of statistical models. 
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Table 12 
Classification performance of F-SAR image with different methods 

Class Gabor CoTF SD SCNN 
A-

ConvNet 
ResNet 

MVGG-
Net 

NS-JSM DSCEN 
Fusion-

Net 
Water 94.13 97.71 94.44 96.32 95.18 95.52 93.82 98.00 96.33 98.20 

Residential 87.92 93.73 90.15 93.70 92.70 92.22 93.34 96.22 92.24 95.40 
Vegetation 87.75 94.84 92.01 96.08 93.50 95.14 95.39 94.58 97.55 97.78 
Open land 94.02 94.13 95.60 96.75 96.34 96.29 96.91 96.72 97.99 97.80 

OA 89.64 94.54 92.86 96.01 94.25 95.14 95.59 95.29 97.07 97.53 
AA 90.96 95.11 93.02 95.71 94.44 94.79 94.87 96.27 96.03 97.30 

100   82.19 90.34 87.57 92.97 90.03 91.48 92.26 91.71 94.77 95.59 
 

       
                (a)                                    (b)                                     (c)                                (d)                                  (e)                                  (f)            

      
                 (g)                                   (h)                                   (i)                                    (j)                                  (k)                                   (l) 

 Water  Residential  Vegetation  Open land 

Fig. 11.  Classification maps of F-SAR image with different methods. (a) Original SAR image. (b) Groundtruth. (c) Gabor. (d) CoTF. (e) SD. (f) 
SCNN. (g) A-ConvNet. (h) ResNet. (i) MVGG-Net. (j) NS-JSM. (k) DSCEN. (l) Fusion-Net. 
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