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Abstract—In the present paper, a new microwave-radar-based 

technique for short-range detection and classification of multiple 

human and vehicle targets crossing a monitored area is proposed. 

This approach, which can find applications in both security and 

infrastructure surveillance, relies upon the processing of the 

scattered-field data acquired by low-cost off-the-shelf components, 

i.e., a 24 GHz Frequency Modulated Continuous Wave radar 

module and a Raspberry Pi mini-PC. The developed method is 

based on an ad-hoc processing chain to accomplish the automatic 

target recognition task, which consists of blocks performing 

clutter and leakage removal with an IIR filter, clustering with a 

DBSCAN approach, tracking using a Benedict-Bordner α-β filter, 

features extraction, and finally classification of targets by means 

of a �-Nearest Neighbor algorithm. The approach is validated in 

real experimental scenarios, showing its capabilities in correctly 

detecting multiple targets belonging to different classes (i.e., 

pedestrians, cars, motorcycles, and trucks). 

 
Index Terms—Frequency Modulated Continuous Wave 

(FMCW) radar data processing, radar imaging, electromagnetic 

scattering, machine learning. 

I.  INTRODUCTION 

N recent years there has been a growing interest in the 
development of reliable monitoring and surveillance devices, 

to be used in urban areas and near critical zones [1]–[4]. A 
significant push to the development of new systems is also 
given by the advancements in several applicative scenarios, 
such as subsurface prospection [5]–[7], non-destructive testing 
[8], [9], and transportation infrastructure monitoring [10]–[12]. 
In this framework, short-range radars [13], [14] are particularly 
interesting because of their robustness against adverse weather 
conditions and non-sensitivity to lighting conditions [15], [16], 
problems that can severely affect video-based devices [17]. In 
particular, the Frequency Modulated Continuous Wave 
(FMCW) radar technology has been widely adopted in the 
production of cost-effective and compact systems for several 
applications [18]–[28]. On the one hand, these radars do not 
suffer from the severe blind range issues that normally affect 
monostatic pulsed radars [29]. On the other hand, they are 

generally cheaper and can cover bigger areas than Light 
Detection and Ranging (LIDAR) and Long-Wave Infrared 
(LWIR) devices [16].  

On this background, several solutions have been developed 
[10], [15], [16], [30]–[45]. Often, the proposed approaches 
involve the use of Machine Learning methods (ML) [46], such 
as Support Vector Machines (SVM) or Deep Learning Neural 
Network (DLNN). However, the adoption of DLNNs usually 
rises issues because of the big amount of training samples that 
are needed [41]. Works based on Synthetic Aperture Radar 
(SAR) techniques [47] have been reported, too [10], [42]. 
Alternative methods for the classification of ground targets are 
based on the micro-Doppler signatures [44], [48]. Nevertheless, 
the extraction of a micro-Doppler signature usually requires a 
quite long illumination of the targets, with consequent practical 
issues in the presence of relatively fast targets like cars and 
motorcycles [40]. Despite the great advances in these fields, 
radar-based ground surveillance with Automatic Target 
Recognition (ATR) capability for single or simultaneous 
multiple targets still represents a quite challenging problem. 
Indeed, many of the methods reported in literature allow the 
presence of only a single target at a time in the monitored area 
and systems able to manage multiple targets simultaneously are 
usually limited to the estimation of the positions and velocities, 
without ATR capabilities. Finally, compact and low-cost 
systems are usually required, leading to further limitations in 
terms of computational resources and achievable radar 
resolutions. Consequently, there is the need of novel detection 
techniques, specifically tailored to low-end devices. 

In this framework, the present paper presents a new short-
range surveillance technique based on low-cost FMCW radar 
technology, aimed at overcoming the significant limitations in 
terms of resolution, acquisition speed and ambiguity that afflict 
this hardware platform. In particular, a novel ad-hoc processing 
chain able to perform the detection and classification of 
multiple non-cooperative targets in a cluttered environment has 
been specifically developed. Firstly, the stretch-processed radar 
frames are fed into a clutter and leakage removal IIR filter [30], 
which has been endowed with step-initialization [49] to 
enhance its transient response and remove potential ringing 
artifacts. This approach allows to obtain cleaner range-Doppler 
maps, improving the post-processing performance with respect 
to the simpler and commonly used background subtraction or 
single delay-line filter [50]. To isolate the contributions of each 
target on these maps, the Density-Based Spatial Clustering of 
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Applications with Noise (DBSCAN) method [51] is employed, 
which assigns a numerical tag to each detected cluster. 
However, the narrow Doppler unambiguous interval achievable 
by the employed low-cost radar module could cause clouds of 
points that lie across the Doppler unambiguous range limits to 
split, leading to erroneous clustering. To address such an issue, 
a novel geometrical transformation of the range-Doppler maps 
has been introduced, with the aim of wrapping such images 
along the Doppler axis to build the lateral surface of a cylinder. 
In this way, clusters eventually split are rejoined. This approach 
also allows to use the original core of the DBSCAN algorithm, 
without the need of further modifications. In this way, more 
expensive radar boards with extended Doppler unambiguous 
range are not needed. Since the DBSCAN is not designed to 
maintain a coherent association between the cluster tags among 
the various data frames sequentially acquired by the radar, the 
detected clusters are tracked using a Benedict-Bordner α-β filter 
[52] and a proper tracking scheme [13], [29], [53]. Since the 
tracking needs to be performed on the cylindrically wrapped 
maps, a set of ad-hoc nonlinear constraints on the state variables 
has been introduced to force the cluster centroids to remain on 
the surface of the cylinder. It is also worth highlighting that 
since the state space in which the tracker works is built upon the 
wrapped range-Doppler maps, the tracked variables are not 
anymore in the physical position-velocity space. However, 
since the only aim is to keep a coherent association of the cluster 
tags among the range-Doppler maps, this does not affect the 
recognition of the target types. From the tracked clusters, a set 
of ad-hoc statistical features related to the Doppler signatures 
and reflectivity of the targets are extracted, without resorting to 
micro-Doppler analysis. In particular, differently from other 
classification schemes, directional statistics estimators [54] are 
used to compute the features along the aliased Doppler axis. 
Indeed, these tools fit with the circular nature of the Doppler 
data more naturally than the classical statistical estimators. 
Moreover, the reflectivity-related feature is computed by using 
the whole tracked cluster assigned to a target on the range-
Doppler map, instead of considering only the peak amplitude 
that appears in the range profile as usually done [32], [39]. 
Indeed, when working on the range spectrum only, the different 
contributions from simultaneous multiple targets may overlap 
in the range profile, leading to an unreliable estimation of the 
reflectivity. In contrast, the clusters on the range-Doppler maps 
make possible to exploit the differences along both the range 
and Doppler dimensions, and so reduce the chances of mixing 
reflections from different targets. Multiple reflections by 
extended targets are however not taken into account. Finally, 
the features used for classification are based on the average and 
variance of the reflectivity through all the frames. 
Consequently, fluctuations deriving from translational and 
rotational motion of the targets are implicitly considered and 
embedded in the data. The classification among four classes 
(pedestrian, car, motorcycle, and truck) is provided by a 
properly tuned �-Nearest Neighbor (�-NN) algorithm [46] on 
the base of a relatively small dataset, not appropriate for 
adopting deep learning algorithms.  

The effectiveness of the approach has been assessed by using 

a prototype of measurement system realized with only off-the-
shelf components, to allow a reduction in the development cost 
and a faster reproducibility of the proposed setup. In particular, 
a Distance2Go radar module from Infineon [55], already 
equipped with transmitting (TX) and receiving (RX) patch 
antennas, provides the illumination of the monitored area and 
digitizes the electromagnetic echo returning from the targets, 
whereas a Raspberry Pi 3 Model B+ mini-PC collects the 
measurements gathered by the radar board and executes the 
processing chain. Since the computations are performed locally 
on a compact and low-power device, this application fulfills the 
edge computing paradigm [56].  

The paper is organized as follows. A detailed description of 
the developed algorithm for detection, tracking, and 
classification of the targets is provided in Section II. Section III 
reports the experimental validation in real operating scenarios. 
Finally, conclusions are drawn in Section IV. 

II. PROCESSING ALGORITHM 

As previously introduced, the developed approach relies 
upon the use of a FMCW radar, which produces a sequence of 
wideband chirp signals to illuminate the monitored area. At the 
transmitting (TX) antenna input terminals, the burst of �� up-
chirps can be expressed as [42], [57] 

����	
 = ��� 
 cos���	
� Π �	 − ��2 − �������� ��� !
"�#$  (1)

where ��� is the signal amplitude, ��	
 = 2%�&$	' + 0.5,	'-
 
is the up-chirp phase, �� is the duration of the single up-chirp, ����  is the Pulse Repetition Interval (PRI), 	' = 	 − ������  
(being 	' ∈ �0, ��� known as fast-time and �� slow-time index), &$ is the starting frequency, , = 0/�� is the sweep rate, 0 is the 
bandwidth of the sweep, and Π�χ
 evaluates to 1 when |χ| ≤1/2 and to 0 otherwise. Between a pair of adjacent up-chirps, a 
recovery time is usually placed (i.e., ���� > ��), during which 
the frequency synthesizer returns to the initial condition and the 
relative echo signal is neglected. The burst of chirps, known 
also as frame, lasts �7�� = ������, where CPI stands for 
Coherent Processing Interval. A proper interval is generally 
interposed to the next burst; the frame period �8  is then longer 

than �7�� . Fig. 1 exemplifies the structure of the signal. 
The backscattered wave, which is a delayed and attenuated 

copy of the transmitted one, is captured by a dedicated RX 
antenna and demodulated by an I/Q mixer returning an 
 

 
Fig. 1. Time-frequency representation of the transmitted signal. 
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Intermediate Frequency (IF) signal. Thereafter, this signal is 
sampled by an ADC and collected in a data matrix. Neglecting 
higher order and constant terms in the IF signal phase and the 
range-doppler coupling [29], [42], [50], the matrix representing 
a single data frame can be stated as follows [13] 9�:��', ��
 � ��:;<-=�8>?@"@ 8A"�?BCD
,�' � 0, … , �' � 1,   �� � 0, … , �� � 1 

(2)

where ��: ∝ �H�, with �H� strength of the received echo, �' is 
the sampling period, &I � �2JH/K$ is the Doppler shift, JH  is 
the radial velocity (JH 6 0 for departing targets), K$ � L/&$ is 
the wavelength, L being the speed of light, and &M � ,N$ 
(known as FMCW radar range equation [58]) is the beat 
frequency, with N$ � 2O$/L time-of-flight for the range O$ at the 
start of the chirp. The second term in the exponent of (2) is 
known as spatial Doppler [29]. For simplicity, this analysis 
assumes that a single point-like target is present. If multiple 
targets with several reflective points exist (extended targets are 
usually modeled with different point-like scatterers in this 
framework), then the mixer output will be the sum of the IF 
signals related to each point [2], [15], [38], [43]. It is worth 
remarking that, in principle, a matched filter could also be used 
to extract the target responses from the measured signal. 
However, the adopted low-cost FMCW board does not allow a 
direct access to the received echo, but it only provides samples 
of the deramped signal in (2). Consequently, a convolution with 
the matched signal cannot be performed. Instead, a Fourier-
based processing scheme has been adopted, as often done in 
short-range FMCW radars applications. 

The target identification method starts when the amplitude of 
the echo signal crosses a user-defined threshold (i.e., when one 
or more targets enter the monitored area). Initially, all the radar 
frames are collected until the event ends (i.e., the amplitude of 
the echo falls below the threshold). Each recorded frame passes 
through a clutter and leakage removal filter (detailed in Section 
II.A) before the check of the threshold crossing. Moreover, care 
is taken to discard events caused by scintillation in the echo 
signal and to avoid the premature stop of the recording when 
moving targets are still present [29], [53]. After all the frames 
are collected, they are processed by using the chain shown in 
Fig. 2. Details about the various blocks are provided below. 

 

 

Fig. 2. Processing chain for the surveillance radar device prototype. 

 

A. Clutter and leakage removal 

A Moving Target Indication (MTI) filtering technique [53] is 
firstly applied to cope with the RX-TX leakage [13] and the 

clutter caused by static objects [50]. In particular, an IIR filter 
[30] is employed in this work. The filtered frame can be 
expressed as follows P��', ��
 �9�:��', ��
 � 9�:��', �� � 1
 ( Q�P��', �� � 1
 

(3)

where Q� is a user-defined parameter (0 5 Q� R 1 to guarantee 
stability). It is interesting to highlight that for Q� � 0 the filter 
reduces to a standard single delay-line canceller [53]. It is worth 
noting that, in short-range radar system for monitoring 
applications, the issues related to the transient response of IIR 
filters are often neglected [30]. Indeed, from (3) it can be seen 
that P��', 0
 � 9�:��', 0
, i.e. the first demodulated chirp is not 
filtered and, entering the feedback of the filter, can negatively 
affect the transient response, inducing ringing effects on the 
range-Doppler maps [50], [53]. To mitigate this drawback, a 
step initialization technique [49] is used. Specifically, the state 
variable of the filter is initialized to �1 � Q�
 !9�:��', 0
, so 
that the output at �� � 0 is forced to zero and thus ringing is 
dumped. Due to this correction, the first filtered chirp of a frame 
is always a null vector, so it can be discarded, leading to an 
effective coherent processing interval �7��,S88 � ������� � 1
. 

B. Computation of the Range-Doppler maps 

After clutter and leakage removal has been performed, the 
range-Doppler maps are obtained as follows 

TUV�,V@WX�9�:
��YM , �YI
 �
ZI��A
 [ZH��C
 \P�V�
]HUV@WX^ ]IUV@WX_ ��YM , �YI
 

(4)

where P�V�
 is the filtered frame computed as in (3) with filter 

parameter Q�, ]HUV@WX
 and ]IUV@WX

 are Kaiser windows with 
shape factor Q'8  to be applied on the beat frequency and 

Doppler dimensions, respectively, whereas ZH��C

 and ZI��A


 
are the range-FFT and Doppler-FFT operators with preliminary 
zero-padding to achieve sequences of length �� and �I, 
respectively (�� and �I should be powers of two for optimal 
performance of the FFTs). The resulting spectrum along the 
beat frequency dimension has support ��1/2�', 1/2�'�, but, 
because of (2), only the interval �0,1/2�'� is retained (its bins 
are indexed by �YM in the following); this corresponds to the 
interval �0, �'L/40� on the range axis O obtained through the 
FMCW radar range equation. The spectrum along the Doppler 
axis has support ��1/2���� , 1/2�����, and the related bins will 
be indexed by �YI; this interval can be rescaled to ��L/4����&$, L/4����&$� for the radial velocity JH  through the 
Doppler shift relation. The windowing and the zero-padding are 
used to mitigate sidelobes [29], [52] and to obtain better 
interpolated maps [13], [47], respectively. It is worth remarking 
that when targets are present in the illuminated scene, clouds of 
points having high amplitude appear in the range-Doppler 
maps; custom features can be extracted from them and used to 
identify the target type, as discussed in the following. 

C. Density-based clustering 

When dealing with not point-like targets, they appear on the 
range-Doppler map as clouds of points. Therefore, it is 
necessary to apply a clustering method to associate these groups 
of points to the underlying real objects and so computing the 
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features to classify them coherently. The chosen method is the 
DBSCAN [51], which assigns a numerical tag to each detected 
cluster. This algorithm is particularly interesting because it does 
not require the knowledge of the number of clusters to be 
searched and it is potentially able to identify spurious 
aggregation of points as noise. This feature, together with the 
adoption of a tracking scheme, is also useful to remove ghost 
targets generated by multipath reflections. Indeed, the 
appearance of multipath reflections on the range-Doppler maps 
is hardly exploitable for classification, because of their strong 
dependance on a-priori unknown and barely predictable 
environmental factors, and they can be expected to act more as 
a flickering disturbance to be removed. 

However, this method cannot be applied directly to the 
range-Doppler maps. In fact, as indicated in Section III, the 
radar board adopted in this work has an unambiguous interval 
along the radial speed (Doppler) axis equal to ��JH,ab� , JH,ab��, where JH,ab� ≅ 5.4 km/h, which is quite 
limited. Consequently, every target whose Doppler spread 
extends beyond this interval will be affected by aliasing and it 
could be split on the range-Doppler map. This would lead the 
DBSCAN to identify more clusters than the number of actual 
targets. As an example, Fig. 3(a) shows this phenomenon on a 
range-Doppler map acquired in presence of a pair of 
pedestrians.  

To mitigate this issue without resorting to more expensive 
radar modules with extended Doppler unambiguous range, an 
ad-hoc solution is introduced. The range-Doppler map is 
wrapped along the Doppler axis to build the lateral surface of a 
cylinder, and this is embedded in a 3D Euclidean space. In this 
way, the spectrum eventually split at the Doppler unambiguous 
limits is rejoined. First, the indexes �YM and �YI  adopted in (4) 
for the original range-Doppler map are converted to range and 
radial velocity as follows  

O � �YM gML2, ,   JH � �YI gIL2&$  (5)

where gM and gI are the widths of the bins for the beat and 
Doppler frequencies, respectively. Thereafter, the following 
transformation of coordinates is introduced 

hii⃗ �O, JH
 �
⎣⎢
⎢⎢
⎢⎡JH,ab�% cos n% JH ( JH,ab�JH,ab� o
JH,ab�% sin n% JH ( JH,ab�JH,ab� o

O ⎦⎥
⎥⎥
⎥⎤ � u JHvJHvvO w (6)

Such a transformation maps the �O, JH�� coordinates of the 
original range-Doppler map to the variables �JHv , JHvv, O�� that 
define Cartesian coordinates restricted to the lateral surface of 
a cylinder. In particular, O varies along the height of the cylinder 
(i.e., the unambiguous range interval �0, �'L/40�), whereas JHv  
and JHvv are transversal coordinates restricted to the circular 
cross-section. Moreover, the following operator, performing a 
transformation in the opposite direction, is introduced 

h⃖ii�JHv , JHvv, O
 � y Oz JH,ab�% � JH,ab�{ � | OJH} (7)

where z ∈ �0,2%� is the polar angle corresponding to the point �JHv , JHvv��. Finally, the wrapped range-Doppler map can be 
formally stated as 

T~~UV�,V@WX�9�:
�JHv , JHvv , O
 �
TUV�,V@WX�9�:
 �[ 2,gML , 2&$gIL_� ⨀ h⃖ii�JHv , JHvv, O
� 

(8)

where ⨀ is the entry-wise product. Fig. 3(b) exemplifies this 
result starting from the split spectrum of Fig. 3(a). 

The DBSCAN is then fed with each single wrapped range-
Doppler map (8). By adopting this transformation and by 
endowing the DBSCAN algorithm with the canonical 3D 
Euclidean metric to measure the distance between points on the 
wrapped range-Doppler maps, it is possible to keep the original 
core of the method without further modifications. Only the 
points in which the maps have an amplitude equal or higher than 
the user-defined parameter 	ℎ�I are considered for the 
clustering and the following processing blocks. Further 
parameters of the DBSCAN method are the radius � of a sphere 
centered at a given point in which its neighbors are searched 
for, and the minimum number of points T that must be present 
in this sphere in order not to identify the central point as noise. 

The DBSCAN returns a tag for each point present in the 
thresholded and wrapped map, allowing the detection of ���� 
clusters; for each one, a centroid on the cylindrical surface is 

computed, whose coordinates are �JH,�v , JH,�vv , O���
, � � 1, … , ���� . 

 

 
 (a) (b) 

Fig. 3. (a) Range-Doppler map in the presence of a pair of pedestrians (the white 
curves indicate the portions of the split Doppler spread). (b) Map in (a) wrapped 
along the Doppler axis. 

 

D.  Benedict-Bordner smoothing 

The DBSCAN method cannot guarantee that the same cluster 
tag is assigned to the same underlying real target among 
consecutive range-Doppler maps. Therefore, it is necessary to 
apply a tracking method that allows maintaining the correct 
associations between them. In particular, the motion of the 
centroids of the clusters on the wrapped range-Doppler maps 
will be tracked. It is important to point out that a direct and 
accurate tracking of the target positions and velocities is not 
needed, since the final aim of the tracking is to just maintain the 
association between clusters and real targets among subsequent 
frames. The temporal sequence of associations between tags 
and centroids, together with the history of the related state 
vector (defined below), is referred to as a track, whose temporal 
extension corresponds to the presence of a target in the scene. 
It is worth noting that, as previously discussed, the narrow 
Doppler unambiguous range provided by the adopted low-end 
radar board may produce clusters split on the range-Doppler 
maps, thus not allowing an effective tracking. Consequently, 
the tracking algorithm has been modified to work on the 
wrapped maps defined in the previous section. 
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As it can be seen in (6), in this case the dynamics of the 
centroids are non-linear, since they are constrained to move on 
the lateral surface of a cylinder. However, the adoption of an 
approximated linear model, if properly parameterized and 
constrained [59], has been proven experimentally to achieve the 
needed performance, as will be shown in Section III. Moreover, 
this leads to a lower computational burden with respect to 
tracking methods designed to deal with non-linear models (e.g., 
Extended Kalman Filter [59]). Based on these considerations, 
the dynamical model chosen was the DWNA (Discrete White 
Noise Acceleration) [60], which can be written as ��� ( 1
 = ����
 + ����
 ���
 = ����
 

(9)

where � is the time index of the frame (corresponding to a 
wrapped range-Doppler map), ���
 = �JHv��
, JHvv��
, O��
�� 
is the measurement vector containing the position of the 
considered centroid (the index � of the corresponding cluster is 
dropped to simplify the notation), � is an acceleration modelled 
as white noise with zero mean value, ���
 =�JHv��
, P��� ��
, JHvv��
, P������
, O��
, PH��
��

 is the state vector, � = ��- 2⁄ , �, �- 2⁄ , �, �- 2⁄ , ��� (a normalized time step can 
be considered here, i.e. � = 1), and 

� = diag \1 �0 1^ , � = u1 0 0 0 0 00 0 1 0 0 00 0 0 0 1 0w (10)

To tackle with the non-linear motions of the clusters on the 
wrapped maps, it is also required that the centroid of a cluster, 
i.e., �JHv��
, JHvv��
, O��
��, strictly remains on the cylinder and, 

consequently, its velocity vector, i.e., �P��� ��
, P������
, PH��
��
 

is tangent to the lateral surface of the cylinder. Therefore, a set 
of ad-hoc constraints have been added, i.e.,  

� JHv��
JHvv��
O��
 � ∈ �, � P��� ��
P������
PH��
 � ∈ ���
, ∀� (11)

where � is the surface generated by wrapping the range-Doppler 
map and ���
 is the tangent space to this surface.  

Now that the dynamical model has been introduced, it is 
necessary to choose an appropriate smoothing filter. One of the 
most popular ones is the Kalman filter [59], but it has the 
disadvantage of requiring the knowledge of the noise that 
affects the system. Therefore, since the noise can vary even 
between different installation environments, an α-β filter, which 
does not require such information, was adopted [52]. In 
particular, differently from commonly-adopted approaches, the 
Benedict-Bordner version [52] of the α-β filter has been used. 
In this way, only the parameter � needs to be defined, being � = �-/�2 − �
, whereas the original α-β filter requires both � and � to be heuristically selected. The adopted filter is based 
on the following predictor-corrector scheme: 

 

• Prediction: the state in � is estimated by propagation of the 
corrected estimated state in � − 1 as  �Y��|� � 1
 = ����Y�� − 1|� � 1
� ����|� � 1
 = ��Y��|� � 1
 

(12)

where �Y��|� � 1
 and ����|� � 1
 are the estimated state 
and measurements in �, respectively, predicted on the base 

of the measurements available until � − 1, whereas �Y�� − 1|� � 1
 is the corrected estimated state on the base 
on the measurements available until � − 1. The operator ��⋅
 projects the state to enforce (11) [59]. 

• Correction: the estimated state achieved in the prediction 
stage is corrected on the base of ���
 as follows �Y��|�
 �� �Y��|� � 1
 + ¡����
 − ����|� � 1
�¢ 

(13)

where ¡ is a 6 × 3 matrix with value � in the positions �1,1
, �3,2
, �5,3
, value � in the positions �2,1
, �4,2
, �6,3
, and zero elsewhere. 
 

Finally, the operator � that enforce the constraints in (11) is 
formulated as 

�
⎩⎪
⎨
⎪⎧

⎣⎢
⎢⎢
⎢⎡ JHvP���JHvvP����OPH ⎦⎥

⎥⎥
⎥⎤

⎭⎪
⎬
⎪⎫ =

⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

Jab�% cos z­P��� − �P��� cos z­ + P���� sin z­� cos z­Jab�% sin z­P���� − �P��� cos z­ + P���� sin z­� sin z­OPH ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤
 (14)

where z­ is the polar angle identified by the unconstrained JHv  
and JHvv coordinates. Specifically, the operator � projects the 
unconstrained point �JHv , JHvv, O�� on the surface of the cylinder 
having radius Jab�/%, i.e., on the wrapped range-Doppler map. 
Moreover, the operator � removes the normal component from 

the unconstrained vector ® = �P��� , P���� , PH��
 by subtracting the 

quantity �® ⋅ ¯°± 
¯°± , where ¯°± = �cos z­ , sin z­ , 0� is the radial 
unit vector of the considered cylindrical coordinate system. 

E. Tracking scheme 

Beyond the state estimates, it is important to discover and 
delete tracks corresponding to false targets (namely, 
corresponding to spurious signals, such as the ones generated 
by multipath reflections), to follow flickering targets, and to 
understand when a new target enters the monitored area or an 
old one leaves it [13], [29], [53]. To this end, different schemes 
has been considered in the literature. Several advanced tracking 
schemes employing probabilistic models of association have 
also been recently proposed [29], [53]. However, such 
approaches require the a-priori knowledge of some probability 
distributions, e.g., those related to the errors of measure, which 
may be quite challenging to be determined since they can vary 
between different installations. Consequently, in the proposed 
approach a non-parametric method (which does not require the 
a-priori knowledge of any probability distributions) has been 
used for the association between detected centroids and tracks. 

In particular, the tracking scheme shown in Fig. 4 is used. 
Each track employs a data structure storing the history of the 
associations between the cluster tags and the centroids, among 
the temporally sorted collection of wrapped range-Doppler 
maps, and of the state variables smoothed by the Benedict-
Bordner filter (presented in the previous Section). Moreover, 
each track has two properties: �²; and J³�. The former counts 
the number of past frames from the creation of the track, 
whereas the latter counts the number of past frames in which 
the track was associated with a detected cluster centroid. 
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The steps of the scheme sketched in Fig. 4 can thus be 
summarized as follows: 

 

1. Creates an empty list of tracks. Initialize the frame counter TL � 1. 
2. Take the TLth wrapped range-Doppler map. 
3. Detect the centroids for each cluster in the current wrapped 

range-Doppler map. 
4. If the list of tracks is empty (e.g., it happens when TL � 1) 

then jump to the step 8. 
5. Assign the detected centroids to pre-existing tracks by 

means of a cost matrix [53], where each row corresponds 
to a pre-existing track, and each column is related to a 
detected centroid. This matrix is compiled associating to 
each track-centroid pair a cost given by the value of the 
Euclidean distance between the estimated position of the 
track (equation (12)) and the detected centroid. A 
parameter ´µb�S, which defines a limit for a detected 
centroid to be associated with a track, is also introduced. In 
particular, if the distance between the centroid previously 
assigned to the track and the actual one is higher than ´µb�S, then the cost is set (∞, preventing the association. 
Once the matrix is compiled, the assignment is performed 
as follows 
 

a. Select the ³·th element of the matrix with minimum 
cost. 

b. Assign the pre-existing track ³ to the detected centroid ·. 
c. Substitute all the costs in the row ³ and the column · 

with (∞. 
d. If there are no more finite costs in the matrix, then 

return the lists of the associations and of not assigned 
centroids and tracks. Otherwise, jump to step a. 

 

6. Update the tracks. In particular, for each track associated 
to a new centroid, correct its state with the detected 
centroid through (13), and increase the �²; and J³� 
counters of these tracks, i.e. �²; → �²; ( 1 and J³� →J³� ( 1. For each track not assigned to a new centroid, 
increase only its �²; counter.  

7. If a track is not associated to a centroid for �� consecutive 
frames, then consider its underlying target as departed from 
the monitored area and fill its related row in the next cost 
matrices with (∞ (in this way it will not be assigned to 
future detections). Delete the tracks for which J³�/�²; R	ℎ�, where 	ℎ� is a user-defined parameter. This operation 
attempts to discard false tracks associated to scintillation in 
the echo signal or multi-bounce reflections. 

8. For each centroid not associated with a pre-existing track, 
create a new track, initialize with the measured � ��JHv , JHvv, O�� the track state vector as � � �JHv , 0, JHvv, 0, O, 0��, 
create a new instance of the Benedict-Bordner filter for it, 
and finally set the �²; and J³� counters to zero. 

9. If other range-Doppler maps remain to be processed, then 
set TL → TL ( 1 and jump to step 2. Otherwise, delete the 
tracks that have been visible for less than 3 frames. This 
operation aims to delete the false tracks that could be 
instantiated when the last target in the scene exits passing 

very near to the radar, generating many spurious 
reflections. 

 

 
Fig. 4. Tracking scheme. 

 
It is worth noting that the MTI filter deletes the contributions 

given by any static object. However, if a target enters the 
scenario and stops during the crossing, the tracking algorithm 
is still able to keep its track, provided that the number of frames 
in which the target does not move is sufficiently low (i.e., if J³�/�²; ¹ 	ℎ�). If the number of frames in which the target is 
stopped is high (i.e., when J³�/�²; R 	ℎ�), the related track is 
discarded. Consequently, when the target restarts a new track is 
initialized. Such a situation can be mitigated by increasing the 
parameter 	ℎ�, so preventing a premature deletion of a track. 

Finally, it should be noted that the developed approach 
processes the echoes collected during the whole passage of the 
targets through the monitored area. Consequently, if one target 
is shadowed for some frames, the tracking method tries to 
estimate its movements on the wrapped range-Doppler map to 
not confuse its track with the ones belonging to other targets 
present in the monitored area. In this way, it is still possible to 
classify a target that was temporarily shadowed during its 
passage. 

F. Doppler and RCS signature extraction 

In this Subsection, the features used to characterize the 
targets for classification are outlined. At first, propaedeutic 
quantities regarding the reflectivity and the Doppler signature 
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of the targets are introduced. Thereafter, the composition of the 
feature vector for the classification is presented. 

1) Target reflectivity 

The target reflectivity can be expected to vary significantly 
among pedestrians, motorcycles, cars, and trucks [32], [39], 
hence it can be useful for classification. This information is 
provided by the Radar Cross Section (RCS) [39], [53], [61], 
which can be expressed using the radar equation as  

º � Q»O¼ ½H�½�� (15)

where Q» � �4%
-/�¾�S
 �m -� is a system constant (with ¾ 
and �S gain and effective area of the antennas, respectively), O 
is the target range in the far-field region, whereas ½�� and ½H� 
are the transmitted and received power, respectively.  

It is worth noting that, for classification purposes, an accurate 
estimation of the actual target RCS is not necessary, but it is 
sufficient to have an indicator related to such a parameter. In 
this view, noting that ½H�/½�� is proportional to |�H�|-/|���|-, 
the following quantity, which is related to the square root of º/Q», may be adopted for classification purposes [39] 

¿ = O- |�H�||���| (16)

Since ��: ∝ |�H�|, ¿ is usually directly estimated from the 
peak amplitude that appears in the range profile (given by a 
single range-FFT applied on the IF signal) [39]. However, this 
approach assumes the presence of a single target at a time. 
Indeed, when multiple targets are simultaneously present in the 
monitored area, their contributions may overlap in the range 
profile, leading to an unreliable estimation. Moreover, extended 
targets (e.g., trucks) are usually characterized by several 
dominating reflecting points, which may appear separated both 
in the range and Doppler dimensions. This information, which 
can strengthen the classification, is lost when considering only 
the major peak in the range-FFT.  

To overcome such issues, in this work a new RCS-related 
feature is defined starting directly from the range-Doppler map 
instead of using the single range profile. In particular, the 
following RCS-related quantity is used ¿ÀÁ,< =


 ⎣⎢
⎢⎡O�!.Â�' ÃÃTUV�,V@WXU9�:,<XU�YM,� , �YIX Ä&�- + &M,�-

&M,� ÃÃ⎦⎥
⎥⎤

-�Å,ÆA ,�Å,ÆC �"YA

"YA,�  

(17)

where ½Á,<I  is the set of Doppler bins contained in the cluster 

belonging to the ³th tracked target at the ·th frame, ½Á,<� ��YI
 is 
the set of range bins in which local peaks detected along the �YIth range profile occur (this range profile is delimited by the 
cluster limits), whereas O�, �YM,�, and &M,� are the range, the range 
bin and the beat frequency for the �th peak, respectively. The 
dependence on |���| existing in (16) has been neglected since 
it is only a system constant. Provided that the targets are 
separated at least in one dimension (range or Doppler), this 
indicator can be expected to be less altered by the presence of 
other targets with respect to the one proposed in [39]. 
Moreover, it considers the possibility to have several 
dominating scattering points for an extended target. The 

exponent of O in (17) has been empirically modified to account 
for the not free-space propagation, as suggested in [39]. The last 
multiplying fraction in (17) compensates for the non-flat 
transfer function of the analog IF amplifier (&� is the lower 
corner frequency) that is usually placed before the ADC. The 
dividing coefficient �' and the square inside the sum have been 
empirically inserted to better scale the values on the base of the 
results achieved by a preliminary test with the learning method 
discussed in the following. 

It is worth remarking that the reflectivity may be affected by 
the characteristics of the targets, especially for pedestrians. 
Specifically, in [62] an average reduction of 5 dBsm has been 
observed between a child and an adult in the range 23-28 GHz 
and considering the full range of the azimuthal angle. However, 
in our settings, the class of adult pedestrians is the one already 
showing the lower RCS, and, consequently, it is expected that 
children, having lower values, would be still classified as 
pedestrians. Moreover, the variability caused by different 
clothes is quite low and is expected to have a negligible impact: 
for an adult it has been found to be less than ±1 dBsm, 
especially when clothes are electrically thin and dry [62], [63]. 
Finally, concerning the posture, although the different poses 
during walk may introduce fluctuations in the RCS [63], such a 
behavior is implicitly taken into account in building the feature 
vector. Indeed, as detailed in Section II.F.3, all the frames (for 
which the pedestrians assume different poses) are considered. 

2) Doppler signature 

The Doppler signature has been widely adopted for ATR 
tasks [37], [38], [40], [64]–[66]. This parameter depends upon 
the radial velocities of the target scattering points. In particular, 
in this work, the spread that a target presents along the Doppler 
dimension is considered [38]. This spread is here estimated by 
computing the variance of the Doppler spectrum associated 
with a tracked cluster. Because of the already discussed aliasing 
phenomenon, the wrapped range-Doppler maps are considered 
again, and, because of the circular structure of this data, the 
variance is here computed by means of directional statistics 
[54]. In particular, the following estimator is used �Á,< = 1 − ´Á,< (18)

where �Á,< is the circular variance computed for the ³th tracked 

cluster at the ·th frame, ´Á,< = ÉÊÁ,<É/�Á,<°  with ÊÁ,< = ∑ ;<°Å,ÆÌ�Å,ÆÍ�#! , 

and zÁ,<�  are the �Á,<°  angular positions of the cluster points (on 
the wrapped map).  

3) Feature vector 

The feature vector for the ³th track is then defined as  

ÎÁ =
⎣⎢⎢
⎢⎢⎡

Ï��Á
var��Á
Ï�¿ÀÁ
var�¿ÀÁ
ÏUÉJÀH,ÁÉX⎦⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎢
⎢⎡ !�Á' ∑ �Á,<�Á'<#!!�Á' ! ∑ ��Á,< − Ï��Á
�-�Á'<#!!�Á' ∑ ¿ÀÁ,<�Á'<#!!�Á' ! ∑ �¿ÀÁ,< − Ï�¿ÀÁ
�-�Á'<#!ÏUÉJÀH,ÁÉX ⎦⎥⎥

⎥⎥⎥
⎥⎤
  (19)
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where Ï�⋅
 is the sample mean, var�⋅
 is the non-biased sample 
variance, JÀH,Á is the radial velocity (estimated by considering the 
range displacement of the centroid between frames), whereas �Á � Ò�Á,<Ó<#!�Á'

 and ¿ÀÁ � Ò¿ÀÁ,<Ó<#!�Á'
 are the sets of circular 

variances (18) and RCS-related estimations (17), respectively, 
in the frames where the ³th target is visible. It is worth noting 
that the angular dependence of the RCS and the fluctuations due 
to posture are implicitly considered in building the feature 
vector. Indeed, the feature vector contains the average and 
variance of the RCS-related function in (17), which is evaluated 
for each range-Doppler image gathered during the crossing of 
the targets in front of the radar. Since the targets usually exhibit 
both translational and rotational motion, the reflectivity data 
corresponding to different aspect angles and poses are 
collected. Moreover, although in some cases there could be a 
stronger/nearer target overwhelming the direct response of a 
weaker target (e.g., through secondary lobes), this is expected 
to last for a limited number of frames, and consequently the 
feature creation mechanism is expected to compensate it.  

As usually done in machine learning, the feature vector ÔÁ 
effectively adopted for classification is standardized, namely, 
the ·th feature for the ³th vector is obtained as follows 

ÕÁ,< � ÖÁ,< � Ö�<


× 11 � ∑ ]�-��#! ∑ ]� \Ö�,< � Ö�<
^-��#!
 

(20)

where ÖÁ,< is the ·th feature of ÎÁ defined in (19), � is the 
number of available observations, ]�  are weights used in 
presence of unbalanced reference set (with ∑ ]���#! � 1), and Ö�<
 � ∑ ]�Ö�,<��#!  is the weighted average of the ·th feature 
among all the reference set. 

G. k-NN classification 

The chosen classification method is the �-NN [46]. If the 
standardized reference set Ø �  Ô� ∈ ℝÚ¢�#!�  and the related 

labels Û � ÒÜ� ∈  1, … , Ý¢Ó�#!�
, with Ý number of classes, are 

available, the classification of a new standardized feature vector ÔY is done according to the following steps 
 

1. Compute the � distances between the reference set 
elements and ÔY through a previously selected metric. 

2. Select the � elements having the lowest distances. Collect 
the indexes of these vectors in the set Z�ÔY
. 

3. Assign to ÔY the class that maximizes the following posterior 
probability 

Þ�L|ÔY
 = ∑ ]�ß�L, Ô�
�∈Z�ÔY
∑ ]��∈Z�ÔY
  (21)

where ß�L, Ô�
 is a function that returns 1 if Ô� belongs to 
the class L, and 0 otherwise. 

 

As it can be seen, for each new observation, all the � 
distances need to be computed. However, in the problem at 
hand, the feature vector has a low dimensionality, and the 
cardinality of the reference set is limited (as shown in Section 
III). Therefore, latency remains low, also in the case of limited 
computational capabilities as in our case.  

III. EXPERIMENTAL VALIDATION 

In this Section, the prototype developed for assessing the 
performances of the approach is presented at first. Thereafter, 
the selection of several parameters belonging to the processing 
algorithm is discussed. Finally, experimental results involving 
single or simultaneous multiple targets are presented in detail. 

A. Measurement setup 

As anticipated in the Introduction, a preliminary radar 
surveillance device prototype has been developed. Such a 
system is composed by two main components (Fig. 5): 

 

• Infineon Distance2Go (D2G) board [55]. This FMCW 
radar board is endowed with an Infineon BGT24MTR11 
transceiver, an Infineon XMC4200 32-bit ARM Cortex-
M4 microcontroller, TX and RX antennas. These latter 
consist of two arrays, each one composed by eight 
rectangular patches (arranged in a 4¤2 grid), resulting in a 
gain of 12 dBi, and horizontal and vertical half-power 
beamwidths of 42° and 20°, respectively.  

• Raspberry Pi (RPi) 3 Model B+. This mini-PC 
communicates with the radar module by means of a COM 
port established through USB and it provides the power 
supply to the radar board with the same connection. The 
Raspberry can be powered by its own power supply or by 
a power bank.  
 

  
 (a) (b) 

Fig. 5. Radar surveillance device prototype. Frontal (a) and inner (b) view. 

 
The parameters of the transmitted burst of chirps are reported 

in Table I, whereas Fig. 1 qualitatively shows some of them on 
a time-frequency representation. As can be seen from Table I, 
the CPI is slightly lower than �8/4. This happens because the 
radar board has been set to operate with a duty-cycle close to 25%, keeping the board idle for 155.9 ms before the 
transmission of the next burst. This helps in lowering the power 
consumption and the temperature. With the adoption of the 
values listed in Table I, the radar characteristics reported in 
Table II are obtained (the ΔO value is theoretical and it is usually 
worst in practice because of the windowing and non-idealities 
in the systems [67]). This table also reports the range accuracy 
of the adopted radar module and the noise figure of the 
transceiver, both provided by the technical documentation [55]. 
During the experimental campaigns, the maximum ranges at 
which pedestrians, motorcycles, cars, and trucks were detected 
are 13.5 m, 13.1 m, 23.8 m, and 23.9 m, respectively, thus, at 
least in the considered cases, the aliasing phenomenon has not 
been observed along the range dimension.  
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Assuming an expected maximum target radial speed of ±30 km/h, a maximum displacement of about ±ΔO/2 can 
happen during the CPI; therefore, the target remains in the same 
range bin during this time interval and so range migration [29], 
[47] cannot occur. Because of the limited value of the maximum 
unambiguous radial velocity, the JH-axis of the range-Doppler 
maps reported in the following cannot be used to directly 
estimate the radial velocity because of the aliasing 
phenomenon, as discussed in the previous Sections. Assuming 
again the previous expected maximum radial speed of a target, 
the range-Doppler coupling phenomenon [29] can cause an 
error on the estimated range up to ±2ΔO. Regrettably, this error 
cannot be corrected a-posteriori, because of the Doppler 
aliasing inside the frame. In addition, the more advanced 
frequency modulations commonly used to delete this coupling 
[68], [69] are not available in the adopted low-cost radar 
module. However, it will be shown with the experimental 
results that a high accuracy in the classification of the targets 
can still be achieved. 

 
TABLE I 

FMCW PARAMETERS SET IN THE INFINEON DISTANCE2GO BOARD. 

Parameter Value Parameter Value �� 1.5 ms �� 21 0 200 MHz ���� 2.1 ms &$ 24.025 GHz �7�� 44.1 ms �' 64 �8 200 ms 

 
TABLE II 

RADAR CHARACTERISTICS. 

Parameter Expression Description Value ΔO 
L20 Range resolution 0.75 m 

Oab� 
�'L40  Maximum unambiguous range 24 m 

�! - 
Range accuracy up to 16 m 

(σ = 1 m-) 
±30 cm 

�!$ - 
Range accuracy up to 24 m 

(σ = 10 m-) 
±20 cm 

JH,ab� 
K$4���� Maximum unambiguous radial 

velocity 
5.4 km/h 

ΔJH 
K$2�7��,S88 Radial velocity resolution 0.5 km/h 

ê8 - Noise figure 12 dB 

 

B. Parameter selection for window functions and IIR filter 

In order to select proper values for Q'8  and Q�, the passages 

of four different targets (a pedestrian, a motorcycle, a car, and 
a truck) in the experimental area have been recorded with the 
developed surveillance radar device. The collected data have 
been filtered and Fourier-transformed with Q� and Q'8  varied in 

the intervals �0,0.9� and �0,5�, respectively. Zero-padding with �� = 512 and �I = 256 is considered. The quality of the maps 
for each case is thus evaluated by means of the target-to-clutter 
ratio (TCR) [70] defined as follows 

�Ý´UQ� , Q'8X = Ï? [ëTUV�,V@WXU9�:,"Xë- , � = 1, … �8_
Ï7 [ëTUV�,V@WXU9�:,"Xë- , � = 1, … �8_ (22)

where 9�:," is the collection of samples for the �th frame, and �8 is the number of available frames. The operator Ï?�⋅
 

computes the average on the regions of the input maps occupied 
by the target, whereas the operator Ï7�⋅
 acts on the remaining 
areas. Thereafter, the following performance index is computed 

�Ýì́UQ� , Q'8X = 14 
 �Ýì́�UQ� , Q'8X�  (23)

where �Ýì́� is the function defined in (22) computed for one of 
the four recorded targets and normalized in �0,1�. The resulting �Ýì́ is shown in Fig. 6; the higher value of this performance 
index happens for Q� = 0.5 and Q'8 = 3, which will be used 

for the following tests.  
It is interesting to highlight that the performance index 

obtained with this combination of parameters is 16.5% higher 
than the best achievable with the simpler and common single 
delay-line canceller (corresponding to Q� = 0). Moreover, this 
kind of filter does not need the selection of an updating period 
for the estimate of the clutter [50]. 

 

 
Fig. 6. Performance index �Ýì́ for varying IIR parameter Q� and shape factor Q'8. The red dot indicates the position of the maximum value. 

 

C. Hyperparameter selection for k-NN 

Free hyperparameters of the �-NN method are the number of 
neighbors � and the metric adopted to measure the distance 
between points in the data space. These must be selected to 
provide a good generalization capability. To this end, the 
hyperparameters have been selected through a full grid search 
with 3-fold cross-validation evaluated on a dataset made of 182 
observations. This latter has been built by recording several 
events involving single targets; this collection includes 88 cars, 
31 pedestrians, 7 trucks, and 56 motorcycles. The target 
signatures on the range-Doppler maps are not clustered and 
tracked before computing the feature vectors, but they are 
simply thresholded with the parameter 	ℎ�I; this is done to 
make the learning process independent from the clustering and 
tracking parameters. The grid on which the optimal 
hyperparameters are searched is given by the cartesian product 
of the range �1,50� for the number of neighbors � and the set of 
metrics {Euclidean, Manhattan, Chebyshev}. The obtained 
optimal parameters are � = 13 and Euclidean distance. This 
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13-NN with Euclidean distance and reference dataset given by 
the 182 observations has been embedded in the processing 
chain of the developed surveillance radar prototype and used in 
the experimental trials reported in the following. 

It is interesting to visualize the reference dataset to see how 
its points are spatially organized. Since the feature vectors have 
five components, a lower dimensional space for the 
visualization is adopted, given by the first three principal 
components L!, L-, and Lí of the dataset [46], which explain 
nearly the 95% of the dataset variability. Fig. 7 shows the 
reference dataset projected on each couple of the three selected 
principal components. Clearly, except for pedestrians, the 
classes of points representing cars, trucks, and motorcycles 
appear severely overlapped. Therefore, it is difficult to expect a 
perfect separability of the classes. 

 

   
 (a) (b) 

 
 (c) 

Fig. 7. Reference dataset projected on the (a) first and second, (b) first and third, 
(c) second and third principal components. 

 

D.  Experimental validation 

This Section reports the results obtained by applying the 
proposed approach in two real operational scenarios. First, the 
capabilities of the system on situations involving single targets 
have been assessed. Finally, more challenging events involving 
the simultaneous presence of multiple targets will be evaluated. 

Fig. 8 shows a picture of the monitored area used for the first 
experimental tests. As can be seen, there are several static 
metallic objects in the considered scenario, which are expected 
to generate sensible components of static clutter and multi-
bounce reflections. It is worth noting that the radar is positioned 
in such a way that the road is contained in the main beam of the 
antenna. Consequently, the persistence of moving objects inside 
the footprints of the secondary lobes of the antennas is reduced 
(and contributions given by static objects are removed by the 
clutter and leakage removal block). Moreover, the tracking 
block should remove the related spurious and intermitting 
reflections. Nevertheless, this experimental setup can be 
considered quite challenging for radar applications. Table III 
reports the values of the parameters of the processing algorithm 
described in Section II. These have been empirically selected 

on the basis of preliminary tests (not reported for sake of 
brevity). In particular, the parameter 	ℎ�I has been initially set 
using radar frames acquired in absence of moving targets, to get 
the contributions of the background scene only spuriously 
returned by the IIR filter. The maximum amplitude for each 
frame is then computed and a first estimation of 	ℎ�I is 
obtained by averaging the maxima from the whole set of 
frames. However, the obtained value is often too low and can 
lead to an excessive number of points over threshold in the 
range-Doppler maps, which overload the following clustering 
and tracking block. Therefore, an empirical correction is 
applied to 	ℎ�I by observing a few examples of moving targets. 
It is worth noting that it has been chosen to not adopt a Constant 
False Alarm Rate (CFAR) methods to automatically determine 
this threshold since these algorithms may degrade the range 
resolution [53], which is already quite low in the adopted low-
cost board, and the adopted simple thresholding strategy 
already allows to obtain good classification performances. 

 
TABLE III 

PARAMETERS VALUES SET IN THE PROCESSING ALGORITHM. 

Parameter Value Parameter Value Q� 0.5 � 0.19 	ℎ�I 2 ´µb�S 6 Q'8 3 �� 7 � 1.9 � 13 T 80 NN metric Euclidean 	ℎ� 0.25 �� , �I 512,256 

 

 
Fig. 8. View of the first monitored area used for the experimental validation.  

 

1) Single targets 

A test set of 20 single targets is considered here. It is made 
of 5 cars, 5 pedestrians, 5 motorcycles, and 5 trucks. Table IV 
reports the results in the form of a confusion matrix, showing a 
90% overall accuracy in the recognition of the targets. 
Reducing the problem to a pedestrian/vehicle classification, and 
considering FMCW devices with recognition method tested in 
single-target scenarios only [32], [35], [37]–[39], [48], 
classification rates ranging from 75% to 97% were reported. 
Therefore, it can be concluded that the developed approach 
achieves a quite good accuracy, also considering that a higher-
end hardware is often adopted in the cited works and that the 
capability to manage multiple targets simultaneously implies a 
performance trade-off. 
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The previous test has been repeated by removing one class 
from the �-NN reference dataset to study the behavior of the 
proposed approach when dealing with unknown targets. The 
test set is the same as before, thus allowing to simulate the 
presence of targets belonging to an unexpected class. Table V 
reports the confusion matrix obtained by removing the trucks 
from the reference set (the resulting optimal hyperparameters 
for the k-NN algorithm are � � 4 and the Euclidean distance). 
As expected, the unknown target is mislabeled. However, all 
trucks have been classified as cars, which can be considered the 
most similar class among the three remaining ones in the 
reference dataset. 

 
TABLE IV 

CONFUSION MATRIX FOR SINGLE TARGETS (PED = PEDESTRIAN, TRU = TRUCK, 
MOT = MOTORCYCLE). 

 
True 

Car Ped Tru Mot 

P
re

d
. 

Car 4 0 0 0 
Ped 0 5 0 1 
Tru 1 0 5 0 
Mot 0 0 0 4 

 
TABLE V 

CONFUSION MATRIX FOR SINGLE TARGETS (PED = PEDESTRIAN, TRU = TRUCK, 
MOT = MOTORCYCLE). TRUCKS REMOVED FROM THE REFERENCE SET. 

 
True 

Car Ped Tru Mot 

P
re

d
. 

Car 5 0 5 0 
Ped 0 5 0 1 
Tru 0 0 0 0 
Mot 0 0 0 4 

 

2) Multiple targets 

The collection of measurements for testing the capability of 
the system to manage a multi-target scenario includes 40 
events, which involve a total of 45 pedestrians, 26 motorcycles, 
20 cars, and 3 trucks. Table VI reports the resulting confusion 
matrix. The number of targets correctly classified is 73 on 94 
total objects, resulting in an overall accuracy near to 80%. Such 
a result is comparable with those recently reported in [41] for 
automotive applications, where an accuracy of 85% has been 
achieved. However, it should be noted that in [41] different 
classes are considered, multiple high-end radars are employed, 
and bigger datasets have been adopted. It is important to note 
that the employed radar board is not able to provide azimuthal 
positions of the targets, since only a single receiving channel is 
available [16]. This can lead to situations in which two or more 
targets appear on the range-Doppler map as a single cloud of 
points (e.g., when two targets have the same radial velocity and 
range with respect to the radar, even if they are far away each 
other), and so there is no possibility for the method to 
distinguish between them. Almost all the missed targets are 
related to such cases. However, if these situations last only a 
limited number of frames, the tracking block can remedy it by 
storing different tracks for each real targets, thus allowing 
separated classifications, as shown in the following.  

Finally, the higher error rate happens for the cars, especially 
when they are confused with motorcycles. This is probably due 
to the partial overlapping of the classes of points for cars and 

motorcycles in the reference dataset, as already previously 
reported in Fig. 7. In the following sub-sections, a deeper 
insight on the behavior of the proposed algorithm for three 
meaningful multi-target events is provided.  

As done for the single-target case, the output of the system 
has been analyzed also after the removal of the trucks from the 
reference set, and the related confusion matrix is reported in 
Table VII. As can be seen, except for the truck class, the 
performance is quite similar to the previous case, whereas two 
of the three trucks are recognized as cars. 

 
TABLE VI 

CONFUSION MATRIX FOR MULTI-TARGET EVENTS (PED = PEDESTRIAN, TRU = 

TRUCK, MOT = MOTORCYCLE). 

 
True 

Car Ped Tru Mot 

P
re

d
. 

Car 11 0 0 0 
Ped 0 35 0 1 
Tru 2 0 3 0 
Mot 6 3 0 24 

 missed 1 7 0 1 

 
TABLE VII 

CONFUSION MATRIX FOR MULTI-TARGET EVENTS (PED = PEDESTRIAN, TRU = 

TRUCK, MOT = MOTORCYCLE). TRUCKS REMOVED FROM THE REFERENCE SET. 

 
True 

Car Ped Tru Mot 

P
re

d
. 

Car 12 0 2 1 
Ped 0 35 1 0 
Tru 0 0 0 0 
Mot 7 3 0 24 

 missed 1 7 0 1 

 

a) Test 1 

This first test event involves two pedestrians and a car. 
Initially, only a single pedestrian appears in the scene, and it is 
moving toward the radar, but in a short time a second pedestrian 
enters the scene moving away from the device. After that, the 
pedestrians intersect and the approaching pedestrian exits the 
radar beam, and a departing car also appears. The output of the 
processing chain up to the tracking block is illustrated in Fig. 
9(a)-(f), where the identified clusters are shown on the range-
Doppler maps with different colors to distinguish between the 
corresponding tracks. In the same figures the identification 
number of each track is reported, too. The approaching 
pedestrian (ID 1) is shown in Fig. 9(a). When also the departing 
pedestrian appears in the radar beam, they are indistinct on the 
range-Doppler map, as can be seen in Fig. 9(b), but as soon as 
they get a sufficient separation along the range and Doppler 
dimensions, the algorithm assigns a distinct cluster and track 
(ID 3) to the second pedestrian (Fig. 9(c)). After that the 
approaching pedestrian (ID 1) leaves the scene, the car enters 
it, but, because the several reflections generated by its metallic 
structures spread over the map, initially it is not distinguished 
from the pedestrian cluster (Fig. 9(d)). However, after 5 frames 
(corresponding to 1 s), the clusters belonging to the two targets 
are separated and a proper track (ID 5) is assigned to the car 
(Fig. 9(e)). Finally, Fig. 9(f) shows the departing pedestrian (ID 
3) and car (ID 5) moving away. Therefore, the algorithm has 
been able to coherently follow the real targets that appeared in 
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the scene, also correctly solving the situations in which the 
targets were not immediately distinguishable on the map.  

For completeness, the estimated range and radial velocity of 
each cluster (considered as a point target) in the reported frames 
are superimposed on the images in Fig. 9. In particular, the 
estimated range Õ is directly obtained from the state vector (see 
Section II.D), whereas the radial velocity JÀH is estimated by 
considering the displacement between two consecutive frames 
(when a new track born, it has no previous estimated range, thus 
its radial velocity is indicated as “Not Available”). Indeed, the 
radial velocity information available from the range-Doppler 
maps are affected by ambiguity, and thus may be different from 
the actual ones. Moreover, the state variables related to the 
velocity in the tracking method are defined on the wrapped 
range-Doppler maps and therefore they do not directly provide 
the radial velocity. It is also worth remarking that a high range 
and velocity accuracy is not needed, since the purpose of the 
tracking block is to just maintain the association between the 
cluster tags on the range-Doppler maps and the targets. 

The output of the classifier block is reported in Table VIII. 
The same table reports the estimated average radial velocities 
(derived from the tracking results) and the direction of each 
target (identified with the same numbers adopted in the legends 
of Fig. 9). All the target types are correctly predicted, and the 
average radial speeds and directions are compatible with the 
observed targets.  

 

     
 (a) (b) 

     
 (c) (d) 

     
 (e) (f) 

Fig. 9. Tracked clusters on range-Doppler maps in temporal order. (a) 
Approaching pedestrian (ID 1), (b) indistinct pedestrians, (c) pedestrians (ID 1 
and 3) after intersecting, (d) indistinct pedestrian and car, (e) pedestrian (ID 3) 
and car (ID 5) after intersecting, and (f) departing pedestrian (ID 3) and car (ID 
5). The legend shows the identification number of each track. The estimated 
ranges and radial velocities of the centroids are superimposed on the images. 

 

TABLE VIII 
TRUE AND PREDICTED CLASSES FOR EACH TRACKED TARGET, ALONG WITH 

ESTIMATED AVERAGE RADIAL SPEED AND DIRECTION.  

n. ID True class Predicted class Av. radial speed Direction 

1 Pedestrian Pedestrian -3.6 km/h Approaching 
3 Pedestrian Pedestrian 2.3 km/h Departing 
5 Car Car 17.5 km/h Departing 

 

b) Test 2 

A pedestrian and a truck are present in the second test case. 
Both targets move toward the device and the truck is the first to 
exit the illuminated scene. Initially, only the truck (ID 1) is 
detected (Fig. 10(a)), because the pedestrian, that has generally 
the lowest RCS among the considered types of targets, is still 
quite far. When the pedestrian reaches a range of about 10 m, 
it is detected, and a track (ID 2) is assigned to it (Fig. 10(b)). 
Fig. 10(b) and Fig. 10(c) show that the large metallic body of a 
truck usually exhibits several reflection points that spread on 
the range-Doppler map. Once the truck exits the illuminated 
scene, only the approaching pedestrian (ID 2) is followed (Fig. 
10(d)). 

Table IX reports the results of the classification, along with 
the estimated average radial velocities and the directions of 
each track. Again, the target types, the average radial speeds, 
and the directions are correctly estimated. 

 
 

     
 (a) (b) 

     
 (c) (d) 

Fig. 10. Tracked clusters on range-Doppler maps in temporal order. (a) 
Approaching truck (ID 1), (b), (c) separated pedestrian (ID 2) and truck (ID 1), 
and (d) approaching pedestrian (ID 2). The legend shows the identification 
number of each track. The estimated ranges and radial velocities of the centroids 
are superimposed on the images. 

 
TABLE IX 

TRUE AND PREDICTED CLASSES FOR EACH TRACKED TARGET, ALONG WITH 

ESTIMATED AVERAGE RADIAL SPEED AND DIRECTION. 

n. ID True class Predicted class Av. radial speed Direction 

1 Truck Truck -7.1 km/h Approaching 
2 Pedestrian Pedestrian -2.8 km/h Approaching 
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c) Test 3 

A pedestrian and a motorcycle are involved in the third test 
event. The two targets move in opposite directions, with the 
pedestrian, which is the first to enters the radar beam, walking 
toward the radar and the motorcycle that is departing at a quite 
high speed. Fig. 11(a) shows the approaching pedestrian (ID 1). 
When the motorcycle enters the monitored zone, it is located in 
an area of the range-Doppler map that does not allow to 
distinguish the two clouds of points (Fig. 11(b)), but after only 
two frames the two targets get a sufficient separation to be 
correctly clustered and tracked (Fig. 11(c)). Near the end of the 
event, Fig. 11(d) illustrates the approaching pedestrian (ID 1) 
and the departing motorcycle (ID 2) moving away from each 
other. Again, the processing has been able to correctly solve a 
situation in which the two targets were not immediately 
distinguishable on the map. Table X reports the correct 
recognition of the target types and of their movements. 
Concerning computational times, the processing of the 20 
frames recorded for the current event required about 0.9 s on 
the Raspberry Pi 3B+ embedded PC used in the prototype.  
 

     
 (a) (b) 

     
 (c) (d) 

Fig. 11. Tracked clusters on range-Doppler maps in temporal order. (a) 
Approaching pedestrian (ID 1), (b) indistinct pedestrian and motorcycle, (c) 
after intersection of pedestrian (ID 1) and motorcycle (ID 2), and (d) 
approaching pedestrian (ID 1) and departing motorcycle (ID 2). The legend 
shows the identification number of each track. The estimated ranges and radial 
velocities of the centroids are superimposed on the images. 

 
TABLE X 

TRUE AND PREDICTED CLASS FOR EACH TRACKED TARGET, ALONG WITH 

ESTIMATED AVERAGE RADIAL SPEED AND DIRECTION. 

n. ID True class Predicted class Av. radial speed Direction 

1 Pedestrian Pedestrian -7.6 km/h Approaching 
2 Motorcycle Motorcycle 27.4 km/h Departing 

 

3) Validation in a different scenario 

In order to assess the capabilities of the developed approach 
to be reused in a different scenario, a second monitored area has 
been considered. In this new case, the radar is positioned on the 
side of a different road. Moreover, the radar looks down the 
road from a higher position than in the previous situation. 

Consequently, side obstacles and clutter are different. The 
relative positions between the targets and the radar are also 
different from the previous scenario. The reference dataset used 
for the �-NN is the same employed in the previous Sections. 
Moreover, the values of the parameters reported in Table III 
have not been changed. 

To provide a further insight on the performance of the 
developed radar setup, the probabilities of detection of a target 
before the tracking block (i.e., using the output of DBSCAN for 
each frame) have been computed considering all the available 
measured frames, and resulted equal to 70% (pedestrians), 84% 
(motorcycles), 88% (cars), and 92% (trucks). It is interesting to 
note that such quantities grow with the increase of the 
magnitudes of the RCS for the considered classes, as expected 
since a stronger signal is on average received. It is however 
worth remarking that at this point classification is not yet 
performed, and the subsequent tracking and classification 
blocks can affect the final detection probabilities. 

To test the classification capabilities, a test set of 28 single 
targets (7 cars, 7 pedestrians, 7 motorcycles, and 7 trucks) is 
considered for the single-target case. Table XI reports the 
resulting confusion matrix, showing an overall accuracy near to 
80%. For the multi-target case, 46 events have been processed, 
involving a total of 57 pedestrians, 14 motorcycles, 22 cars, and 
9 trucks. The confusion matrix reported in Table XII shows an 
overall accuracy of 73% approximately. As can be seen, the 
proposed technique presents good generalization capabilities, 
which allows reusing the calibration data at least when the 
considered scenarios have an overall similar structure. 
However, it is expected that a recalibration would be required 
if the radar positioning or the type of scenario became 
significantly different than those used in the calibration. 

 
TABLE XI 

CONFUSION MATRIX FOR SINGLE TARGETS (PED = PEDESTRIAN, TRU = TRUCK, 
MOT = MOTORCYCLE). SECOND SCENARIO. 

 
True 

Car Ped Tru Mot 

P
re

d
. 

Car 5 0 2 0 
Ped 0 6 0 0 
Tru 1 0 4 0 
Mot 1 1 1 7 

 
TABLE XII 

CONFUSION MATRIX FOR MULTI-TARGET EVENTS (PED = PEDESTRIAN, TRU = 

TRUCK, MOT = MOTORCYCLE). SECOND SCENARIO. 

 
True 

Car Ped Tru Mot 

P
re

d
. 

Car 18 0 2 0 
Ped 0 38 0 0 
Tru 1 0 6 0 
Mot 2 9 1 12 

 Missed 1 10 0 2 

 

IV. CONCLUSIONS 

In the present paper, a novel short-range surveillance 
technique based on low-cost FMCW radar technology has been 
presented. The data processing method is based on an ad-hoc 
chain composed by several blocks, which perform clutter and 
leakage removal by means of an IIR filter (endowed with step 
initialization), clustering with the DBSCAN algorithm applied 
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on wrapped range-Doppler maps, tracking of clusters with a 
Benedict-Bordner α-β filter, features extraction, and finally 
classification by means of a �-NN classifier. A prototype of the 
system, equipped with a low-cost Distance2Go radar module 
from Infineon and a Raspberry Pi 3 Model B+ mini-PC, has 
been assembled and used to experimentally test the developed 
procedure in real operating environments. The obtained results 
show that the developed technique, although relying on data 
provided by low-cost components with limited radar resolutions 
and computational capabilities, can effectively recognize the 
targets, even in complex situations involving multiple 
simultaneous objects with different velocities and moving 
directions. Moreover, the system can be reused in different 
scenarios without the need of performing again a calibration of 
the method parameters, provided that the new configuration is 
not too different from the one used to create the reference 
dataset. Further developments will be aimed at including more 
advanced processing blocks, e.g., tracking schemes based on 
probabilistic models of associations. Moreover, the integration 
of enhanced radar boards, e.g., able to provide the azimuthal 
positions of the targets through directions of arrival estimations 
or working at higher frequencies, will be also pursued to 
increase the classification capabilities especially in the presence 
of multiple targets with small distances. 
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