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Regularized Covariance Estimation for Polarization

Radar Detection in Compound Gaussian Sea Clutter
Lei Xie, Zishu He, Jun Tong, Tianle Liu, Jun Li and Jiangtao Xi

Abstract—This paper investigates regularized estimation of
Kronecker-structured covariance matrices (CM) for polarization
radar in sea clutter scenarios where the data are assumed to
follow the complex, elliptically symmetric (CES) distributions
with a Kronecker-structured CM. To obtain a well-conditioned
estimate of the CM, we add penalty terms of Kullback-Leibler di-
vergence to the negative log-likelihood function of the associated
complex angular Gaussian (CAG) distribution. This is shown
to be equivalent to regularizing Tyler’s fixed-point equations
by shrinkage. A sufficient condition that the solution exists is
discussed. An iterative algorithm is applied to solve the resulting
fixed-point iterations and its convergence is proved. In order to
solve the critical problem of tuning the shrinkage factors, we
then introduce two methods by exploiting oracle approximating
shrinkage (OAS) and cross-validation (CV). The proposed esti-
mator, referred to as the robust shrinkage Kronecker estimator
(RSKE), is shown to achieve better performance compared
with several existing methods when the training samples are
limited. Simulations are conducted for validating the RSKE and
demonstrating its high performance by using the IPIX 1998 real
sea data.

Index Terms—Cross validation, polarization detection, sea
clutter, shrinkage estimation, covariance matrix estimation, Kro-
necker product structure.

I. INTRODUCTION

TARGET detection in the different scenarios (embracing

land, space, atmosphere and seas) is a fundamental

problem in radar [1]–[7]. However, the presence of clutter

poses significant challenges, especially in the sea scenario

where the heterogeneity of clutter is particularly significant.

Therefore, the sea clutter suppression is a recurrent topic for

target detection [8]–[11].

Polarization refers to the orientation of the electric and

magnetic fields in the plane perpendicular to the direction of

wave propagation. Multiple polarization states of a signal can

provide more information of a target. The resulting polariza-

tion diversity has proven to be a useful tool for radar detection

in the presence of clutter, especially when discrimination via

Doppler frequency is not possible [4], [12]–[18]. In polariza-

tion array radar, the steering vector can be expressed as the
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Kronecker product of a polarization component and a space-

time component.

Covariance matrix (CM) estimation is at the core of the

target detection [19]–[24]. The most common CM estimator

is the sample covariance matrix (SCM), which is the maximum

likelihood estimator (MLE) of the CM for Gaussian data.

However, the Gaussian model does not fit the real sea clutter

well due to its heavy tail. Instead, the compound-Gaussian

(CG) distributions, which is a subclass of the complex ellip-

tically symmetric (CES) distributions [25], have been widely

used in modeling the sea clutter returns in radar applications

[26]–[29]. The SCM suffers poor performance for data with

outliers or heavily-tailed distributions due to the lack of

robustness. To tackle the heavily tailed data, one class of

approaches is to censor the training samples with the aim to

exclude outliers from the CM estimation [30]–[36]. Another

class of methods is based on robustification. In particular, for

CES distributions, various robust CM estimators based on the

M-estimator have been developed and characterized [37]–[43].

With such estimators, outlying training samples are usually

given small weights when an estimate of the CM is produced.

The SCM also requires an abundant number of samples to

achieve satisfactory performance. Many modern applications

involve high-dimensional variables whose statistical charac-

teristics remain stationary over a short observation period,

where the large sample support assumption does not hold.

Regularization provides an effective strategy to improve the

CM estimation for addressing the challenge of training short-

age. In particular, a class of linear shrinkage algorithms have

been introduced [44]–[47] and their integration into robust

CM estimators for CES-distributed data have been investigated

in the recent works [48]–[52]. These algorithms estimate the

CM by shrinking an estimate of the CM Σ̂ toward a better-

conditioned target matrix T. There can be various choices for

Σ̂ and T. For example, one can choose Σ̂ as the SCM and

Tyler’s estimator [39] for Gaussian and non-Gaussian data,

respectively. Moreover, different types of target matrices T can

be used, including the identity and diagonal targets. The linear

shrinkage estimators can reduce the requirement of samples

and provide positive-definite CM estimates. The choice of

shrinkage factors is a fundamental problem for shrinkage

estimators. Various criteria and methods have been studied.

In particular, Ledoit and Wolf (LW) propose an approach that

asymptotically minimizes the mean squared error (MSE) [45].

Then [47] improves the LW approach using the Rao-Blackwell

theorem and designs the Rao-Blackwell Ledoit and Wolf

(RBLW) estimator. The oracle approximating shrinkage (OAS)

method is proposed in [47]. Both estimators have closed-
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form expressions and are easily computed. The problem of

determining the shrinkage factors can also be cast as a model

selection problem and thus generic model selection techniques

such as cross-validation (CV) [53] can be applied. The main

challenges faced by CV include the choice of the cost function

and the heavy computational cost in its direct implementation.

Some efforts are made in [54], [55] to address these challenges

for linear shrinkage estimators with unstructured CM.

Due to the independence between space-time domain and

polarization domain, the polarization-space-time CM also has

the Kronecker structure [18], [56]–[58]. Exploiting this struc-

tural knowledge about the CM can also significantly reduce

the number of unknown parameters and improve its high

estimation accuracy under limited training data [59]–[67].

Particularly, [59] proposes a robust estimator for Kronecker-

structured CM and proves that a globally optimal solution can

be found, [60] proposes a majorization minimization (MM)

solution to the Kronecker maximum likelihood estimator

(KMLE), and [68] introduces the maximum likelihood (ML)

estimation of Kronecker-structured CM with the presence of

Gaussian clutter. An extension of KMLE is also studied for

compound Gaussian clutter with inverse Gamma-distributed

texture and Kronecker normalized sample covariance matrix

(KNSCM) is proposed in [69] to estimate the CM. Although

both KMLE and KNSCM provide considerable performance

with abundant samples, they still noticeably suffer from per-

formance degradation when the samples are limited.

A. Contributions

In this paper, we consider the estimation of Kronecker-

structured CM for polarized sea clutter data under low sample

supports. In order to improve the performance in this case,

we introduce the Kullback-Leibler divergence penalty to the

negative log-likelihood function for the CM estimation. We

then derive a robust shrinkage Kronecker estimator (RSKE)

that aims to achieve well-conditioned1 and highly accurate CM

estimates. With RSKE, the structural knowledge is exploited

together with robustification and regularization techniques.

Based on the findings of the previous studies in [25], [48],

[50], [54], [71], [72] and others, we investigate the existence of

RSKE, its iterative solver and convergence, and also the choice

of the shrinkage factors. We then study the performance of

the RSKE for the polarization-space-time adaptive processing

(PSTAP) in radar applications. The contributions of this paper

can be summarized as follows:

1) We propose to apply robust shrinkage Kronecker esti-

mator (RSKE) to polarization radar detection in com-

pound Gaussian sea clutter. We show that the RSKE

can be interpreted as the minimizer of a negative log-

likelihood function penalized by the Kullback-Leibler

divergence. Based on this, the condition for the existence

of RSKE is established under some mild assumptions,

which provides insights to the relationship between the

dimensionality, sample size and shrinkage factors.

1For a positive-definite, Hermitian matrix, the condition number is de-
fined as the ratio of its maximum and minimum eigenvalues [70]. A well-
conditioned matrix indicates that its condition number is small.

2) We study an iterative solver involving two fixed-point

equations to find RSKE and prove its convergence.

Following the majorization-minimization framework, we

prove the monotonic decrease of the penalized log-

likelihood function over iterations. We show that, with

fixed shrinkage factors and arbitrary positive-definite

initial estimates, the iterative solver converges.

3) We address the critical challenge of shrinkage factor

choice in order to exploit the potential of RSKE. We in-

troduce data-driven methods that automatically tune the

linear shrinkage factors, based on oracle approximating

shrinkage (OAS) and cross-validation (CV). The OAS

method adopts a minimum MSE (MMSE) criterion and

plug-in estimates of the oracle shrinkage factors. For the

CV methods, we start with a quadratic loss for leave-

one-out CV (LOOCV) and derive analytical solutions

of the shrinkage factors which can approach the perfor-

mance of the oracle solutions that minimize the MSE

of CM estimation. The complexities of these different

methods are analyzed. It is found that the analytical CV

solutions successfully address the key challenge of high

computational complexity of general applications of CV,

and the resulting RSKE has a complexity similar to that

of the KMLE.

B. Organization

The remainder of this paper is organized as follows. Section

II introduces the signal model, the RSKE as well as its

existence and iterative solution. Section III gives the choices

of the shrinkage factors. Section IV presents simulation results

to show the performance of CM estimation. Finally, Section

V gives the conclusions.

II. ROBUST SHRINKAGE KRONECKER ESTIMATOR (RSKE)

In this section, we introduce the robust shrinkage estimator

for Kronecker-structured covariance matrices. We first discuss

the motivation, then give the condition for its existence,

and finally introduce the iterative solver and its convergence

property.

A. Signal Model

Consider a pulsed Doppler radar deploying a uniform linear

array (ULA) of Ns antennas, each of which can measure

electromagnetic wave in Np polarization channels [56], [69],

[73]. A burst of Nt identical pulses at a constant pulse

repetition frequency (PRF) of fr are transmitted during the

coherent processing interval (CPI). The received signals of all

the polarization channels at each sensor in the cell under test

(CUT) are down-converted to baseband or to an intermediate

frequency in all the pulses at each sensor. They are then

processed by the corresponding matched filters and sampled

and stacked into an N -dimensional vector y ∈ C
N×1, where

N = NpNtNs. Let yl, l = 1, 2, · · · , L, be L independent,

identically distributed (i.i.d) signal-free secondary data, arising

from adjacent range cells.

Radar detection is a binary hypothesis testing problem,

where hypotheses H0 and H1 correspond to target absence
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and presence, respectively. We first ignore noise in the received

signal, which approximates the case of high clutter-to-noise-

ratio (CNR). The received signal can then be approximately

modeled as [69], [74]



H0 : y = c0
yl = cl, l = 1, 2, · · · , L

H1 : y = αs+ c0
yl = cl, l = 1, 2, · · · , L

(1)

where α denotes the complex amplitude of the target signal,

s denotes the steering vector of target, and {cl} denote the

clutter returns in the CUT and adjacent cells. In sea clutter

scenarios, experimental trials have shown a good fitting of the

compound Gaussian model to the heterogeneous clutter mea-

surements [27], [29]. The received clutter can then be modeled

using a positive texture and a Gaussian vector referred to as

the speckle, i.e., {
c0 =

√
τ0u0 ∈ CN×1,

cl =
√
τlul ∈ CN×1,

(2)

where τl is the texture and ul the speckle component. We

assume E(τl) < ∞, ∀l, so that the CM of cl exists, where

E(·) denotes the mathematical expectation. We assume that

all the clutter patches are associated with the same terrain

and thus ul are zero-mean and i.i.d with a shared covariance

matrix R, i.e., ul ∼ CN (0,R). For conciseness, we here drop

the subscript l of ul while discussing its covariance matrix R

below.

The clutter signal for a polarimetric radar can be expressed

as the sum of Nc clutter patches in the same range cell, i.e.,

u =

Nc∑

i=1

a(i)c ⊗ p(i)
c ∈ C

N×1, (3)

where a
(i)
c ∈ CNsNt×1 and p

(i)
c ∈ CNp×1 denote the space-

time steering vector and polarization scattering vector of

the ith clutter patch, respectively. Similarly, the polarization-

space-time steering vector of the target can be written as

s = at ⊗ pt, where at denotes the target space-time steering

vector which depends on the direction and velocity of the

target.

Following [75], we assume that Np = 3 and p
(i)
c consists

of three complex elements: HH, VV, and HV, i.e.,

p(i)
c =

[
p
(i)
c,hh, p

(i)
c,vv, p

(i)
c,hv

]T
, (4)

where (·)T denotes the transpose. Furthermore, we assume

p
(i)
c follows a complex Gaussian distribution with zero mean

and covariance matrix [69], [75]

E

(
p(i)
c

(
p(i)
c

)H)
= εi




1 ρc
√
γc 0

(ρc)
∗ √

γc γc 0
0 0 δc


 , (5)

with (·)H denoting the conjugate transpose, εi = E

(∣∣∣p(i)c,hh

∣∣∣
2
)

,

δc =
E

(∣∣∣p(i)
c,hv

∣∣∣
2
)

E

(∣∣∣p(i)
c,hh

∣∣∣
2
) , γc =

E

(
|p(i)

c,vv|2
)

E

(∣∣∣p(i)
c,hh

∣∣∣
2
) and ρc =

E

(
p
(i)
c,hh(p

(i)
c,vv)

∗
)

[
E

(∣∣∣p(i)
c,hh

∣∣∣
2
)
E

(∣∣∣p(i)
c,vv

∣∣∣
2
)]1/2 .

The space-time steering vector is expressed as

a(i)c = ad (fd,i)⊗ as (fs,i) ∈ C
NsNt×1, (6)

where fd,i = (2va/λfr) cos(φi) denotes the normalized

Doppler frequency, fs,i = (d/λ) cos(φi) the normalized spa-

tial frequency, d the inter-element spacing, va the velocity

of the platform, λ the radar wavelength, φi the direction of

ith clutter patch with respect to the array, ⊗ the Kronecker

product, and

ad (fd,i) =
[
1, ej2πfd,i , · · · , ej2π(Nt−1)fd,i

]T
∈ C

Nt×1,

as (fs,i) =
[
1, ej2πfs,i , · · · , ej2π(Ns−1)fs,i

]T
∈ C

Ns×1,

(7)

are the temporal and spatial steering vectors, respectively.

The covariance matrix of u can be given as [69]

R = E
(
uuH

)
= Rst ⊗Rp ∈ C

N×N , (8)

where the space-time and polarization covariance matrices are

respectively defined as

Rst ,
Nc∑

i=1

εiα
(i)
c

(
α(i)
c

)H
∈ C

NsNt×NsNt , (9)

and

Rp ,




1 ρc
√
γc 0

(ρc)
∗ √γc γc 0
0 0 δc


 ∈ C

3×3. (10)

B. Kronecker Maximum Likelihood Estimator

The CES distributions have been widely employed for

modeling radar clutter and many previous experiments have

shown that they fit the measured clutter well [25]–[29], [43].

Therefore, following these studies and as will also be demon-

strated in Section IV, we assume that the sea clutter yl follows

the CES distribution. The probability density function (p.d.f.)

of yl is of the form

p(yl) = CN,g det(R)−1g
(
yH
l R

−1yl

)
, (11)

where g(·) denotes the density generator and CN,g a normal-

izing constant. Note that R is also known as the scatter matrix

[25], [43].

The normalized samples {xl =
yl

‖yl‖
}Ll=1, which belong to

a complex unit N -dimensional sphere, follows the complex

angular Gaussian (CAG) distribution [25], [43]. The joint

distribution function of {xl}Ll=1 is expressed as [25]

p({xl}) =
L∏

l=1

p(xl) ∝ det(R)−L

L∏

l=1

(
xH
l R

−1xl

)−N
, (12)

where det(·) denotes the determinant. After omitting some

additive constants and scaling, the negative log-likelihood

function of such a joint distribution is given by

L0

(
R̂st , R̂p

)
= log det

(
R̂st ⊗ R̂p

)

+
N

L

L∑

l=1

logyH
l

(
R̂st ⊗ R̂p

)−1

yl,
(13)
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where R̂st ∈ S
Nst

++, R̂p ∈ S
Np

++, and we have used the

fact that log(yH
l R̂

−1yl) − log(xH
l R̂

−1xl) = log(||yl||2) is

irrelevant to R̂ = R̂st ⊗ R̂p in the likelihood function. The

above cost function L0(R̂st , R̂p) is non-convex in the classical

definitions but is jointly g-convex (geodesic-convex) [59] with

respect to R̂st and R̂p. Minimizing this cost function produces

the KMLE [60], [72]. In the low-sample-support cases, the

solution of KMLE can suffer from significant errors and ill-

conditioning. For many applications such as beamforming

and spectral estimation [76]–[82], the inverse of the CM

estimate is required. Inverting an erroneous, ill-conditioned

CM estimate can bring enormous errors. This motivates the

design of accurate, well-conditioned CM estimators.

C. Regularization via KL Divergence Penalty

In this subsection, we introduce a penalized estimator that

promotes well-conditioned estimates of the sub-CMs Rst

and Rp. We adopt penalty terms of the Kullback-Leibler

divergence for Gaussian distributions [83], i.e.,

DKL (X,Y) = Tr
(
XY−1

)
− log det

(
XY−1

)
−N,

where X,Y ∈ SN++. As shown in [84], the KL divergence

DKL (X, IN ) can effectively constrain the condition number

of X. We thus add the penalty terms αstDKL(R̂
−1
st

, INst
) and

αpDKL(R̂
−1
p , INp) to the negative log-likelihood function in

(13) to promote well-conditioned estimates R̂st and R̂p, where

αst =
Npρst

1−ρst

and αp =
Nstρp

1−ρp
with ρst ∈ [0, 1) and ρp ∈

[0, 1). Ignoring some additive constants which are irrelevant

to R̂st and R̂p, the penalized negative log-likelihood function

is obtained as

L
(
R̂st , R̂p

)
=

Np

1− ρst
log det(R̂st ) +

Nst

1− ρp
log det(R̂p)

+
N

L

L∑

l=1

log yH
l

(
R̂st ⊗ R̂p

)−1

yl +
Npρst
1− ρst

Tr
(
R̂−1

st

)

+
Nstρp
1− ρp

Tr
(
R̂−1

p

)
,

(14)

which reduces to L0(R̂st , R̂p) in (13) when ρst = ρp = 0.

By adding the penalty terms which are convex, the ob-

tained objective function is also g-convex w.r.t. R̂st and

R̂p. This guarantees that all local minimizers of L(R̂st , R̂p)
are also globally optimal, following [59, Proposition 1].

Minimizing the penalized log-likelihood function by setting

∂L(R̂st , R̂p)/∂R̂st = 0 and ∂L(R̂st , R̂p)/∂R̂p = 0 yields

the fixed-point equations

R̂st = (1− ρst)
Nst

L

L∑

l=1

YH
l R̂

−1
p Yl

yH
l

(
R̂−1

st
⊗ R̂−1

p

)
yl

+ ρstINst
,

(15a)

R̂p = (1− ρp)
Np

L

L∑

l=1

YlR̂
−1
st

YH
l

yH
l

(
R̂−1

st
⊗ R̂−1

p

)
yl

+ ρpINp .

(15b)

In the above, we have defined

Yl = unvecNpNst
(yl)

,




y
(1)
l y

(Np+1)
l · · · y

(Np(Nst−1)+1)
l

y
(2)
l y

(Np+2)
l · · · y

(Np(Nst−1)+2)
l

...
...

. . .
...

y
(Np)
l y

(2Np)
l · · · y

(Np(Nst−1)+Np)
l



∈ C

Np×Nst ,

(16)

where y
(i)
l denotes the ith entry of yl and unvecNpNst

(·)
reshapes a vector into a Np × Nst matrix as shown above.

Therefore, the solution to (15), if exists, can be interpreted as

the minimizer of the penalized negative log-likelihood function

(14). These fixed-point equations interestingly have the same

form as the linear shrinkage estimators for unstructured CM

[45], [47]–[51]. Following these work, we refer to the resultant

CM estimator as the robust shrinkage Kronecker estimator

(RSKE), with shrinkage factors ρst and ρp. The KMLE

[60] can be obtained as a special case of RSKE by letting

ρst = ρp = 0.

It should be noted that in [72], estimators that exploit

robustification and shrinkage for the unstructured CM and

robust estimators for the Kronecker-structured CM have been

studied via the geodesic convexity. The KL divergence penalty

has also been exploited in [50] for robust estimation of

unstructured CM. We here extend these studies to the estima-

tion of Kronecker-structured CM by simultaneously exploiting

robustification and shrinkage.

D. Existence of RSKE

In this subsection, we examine the conditions under which

the RSKE exists. When ρst and ρp are small, it is possible

that the cost function (14) tends to −∞ on the boundary of

the set S
Nst

++ and S
Np

++, i.e., (14) becomes unbounded below

and there is no solution to the fix-point equations of (15). The

existence of the shrinkage Tyler’s estimator for unstructured

CM has been studied in [50], where the relationship between

the shrinkage factors, sample size, and dimensionality is

revealed. By establishing the condition under which the cost

function tends to +∞ on the boundary of the set of positive-

definite, Hermitian matrix, the minimum shrinkage factor for

the existence of the CM estimator is obtained [50]. This

result, however, can not directly determine the conditions of

the two shrinkage factors affecting each other. In this work,

we follow [50, Theorem 3] and its proof to study the RSKE.

We first construct auxiliary functions by which the penalized

negative log-likelihood function (14) can be lowerbounded.

The two auxiliary functions have a similar form as (15) in

[50]. Thus, using the same treatment of [50], we can examine

the conditions for the auxiliary functions tending to +∞ at the

boundary. Based on the results, we can obtain the following

sufficient condition for the existence of a solution to the

RSKE:

Proposition 1: The cost function (14) has a finite lower

bound over the set of positive-definite R̂st and R̂p, i.e., a

solution to (15) exists if the following conditions are satisfied:
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(1) None of rj,l and ci,l is an all-zero vector, where rj,l ∈
C

Nst×1 denotes the jth row of Yl and ci,l ∈ C
Np×1

denotes the ith column of Yl;

(2) There exist β1 ∈ [0, 1], β2 ∈ [0, 1] with β1 + β2 = 1
such that for any proper subspace Sst ⊂ CNst×1 and

Sp ⊂ CNp×1 in the space of length-Nst and -Np vectors,

respectively,

PLNp (Sst ) <
(LNp + αstL) dim(Sst )− β2LN

β1LN
,

(17a)

PLNst
(Sp) <

(LNst + αpL) dim(Sp)− β1LN

β2LN
,

(17b)

where PLNp(Sst ) ,
∑Np

j=1

∑L
l=1 1rj,l∈Sst

LNp
, PLNst

(Sp) ,
∑Nst

i=1

∑L
l=1 1ci,l∈Sp

LNst

, 1x denotes the indicator function.

Proof : See Appendix A.

In general, the above conditions require that the number of

samples to be sufficiently large, and the samples are evenly

spread out in the whole space.

Corollary 1: If the samples are evenly spread out in

the whole space, such that PLNp(Sst ) ≤ dim(Sst )
min(Nst ,LNp)

=
dim(Sst) max(Nst ,LNp)

LN
and PLNst

(Sp) ≤ dim(Sp)max(Np,LNst)
LN

,

then Condition (2) in Proposition 1 is equivalent to

ρst > 1− LNp

β1 max(Nst , LNp) + β2LN
, (18a)

ρp > 1− LNst

β2 max(Np, LNst) + β1LN
. (18b)

Proof : Let dim(Sst ) , dst . Recall that αst =
Npρst

1−ρst

and

αp =
Nstρp

1−ρp
. The condition (17a) is satisfied when

dst max(Nst , LNp)

LN
<

LNpdst

1−ρst

− β2LN

β1LN
. (19)

Rearranging (19), one has ρst > 1 − LNp

β1 max(Nst ,LNp)+
β2LN
dst

for arbitrary dst = 1, · · · , Nst − 1, i.e.,

ρst > max
dst

(
1− LNp

β1 max(Nst , LNp) +
β2LN
dst

)

= 1− LNp

β1 max(Nst , LNp) + β2LN
,

which is exactly (18a). Similarly, we have (18b).

Remark 1: Condition (2) in Corollary 1 shows the relation-

ship between the shrinkage factors, the number of samples

L, and the dimension of the sub-CMs Nst and Np. In

general, a larger shrinkage factor ρst is required when L
decreases or Nst increases. Moreover, Condition (2) can be

easily checked. For example, when β1 = 1 and β2 = 0,

ρst > max(1 − LNp

max(Nst ,LNp)
, 0) and ρp > max(1 − 1

Np
, 0).

When Np = 1, N = Nst , the Kronecker-structured CM

reduces to an unstructured one. Then Condition (2) becomes

ρst > 1− L
max(N,L) and ρp > 0. When L ≥ N , the condition is

ρst ∈ (0, 1). When L < N , the condition is ρst ∈ (1− L
N
, 1),

which agrees with the result in [49], [50] for the case of

unstructured CM.

E. Iterative Solver and Its Convergence

Similarly to [48]–[51], we solve (15) by applying the

process below, which involves two fixed-point iterations:

R̂
(k+1)
st

(ρst ) = (1− ρst )Ĉ
(k+1)
st

+ ρstINst
, (20a)

R̂(k+1)
p (ρp) = (1 − ρp)Ĉ

(k+1)
p + ρpINp , (20b)

where

Ĉ
(k+1)
st

=
Nst

L

L∑

l=1

YH
l

(
R̂

(k)
p

)−1

Yl

yH
l

(
R̂

(k)
st

⊗ R̂
(k)
p

)−1

yl

, (21a)

Ĉ(k+1)
p =

Np

L

L∑

l=1

Yl

(
R̂

(k)
st

)(−1)

YH
l

yH
l

(
R̂

(k)
st

⊗ R̂
(k)
p

)−1

yl

, (21b)

and R̂
(k)
st

and R̂
(k)
p denote the estimates of the sub-CMs at the

kth iteration. In this paper, we choose the initial CM estimates

as R̂
(0)
st

= INst
and R̂

(0)
p = INp for simplicity.

It is useful to examine the convergence property of the

above iterative estimator which generalizes Tyler’s estimator

[39] and its shrinkage extension [48], [50], [51] to the case

of Kronecker-structured CM. The works [39], [48], [50], [51]

assume unstructured CM and thus their solutions can be char-

acterized by a single fixed-point equation. The convergence of

the iterative process for Tyler’s estimator is proved in [39]

by examining the fixed-point iterations. For the shrinkage

extension of Tyler’s estimator, the convergence is proved in

[48] by applying the concave Perron-Frobenius theory, in [50]

by applying the majorization-minimization theorem, and in

[51] by applying the monotone bounded convergence theorem.

For the Kronecker-structured CM, though the case of the

KMLE has been studied in [59], in this work we incorporate

shrinkage into the estimator and the convergence has not been

analyzed earlier to the authors’ best knowledge. Exploiting

the majorization-minimization framework [85], we have the

following proposition that establishes the converging property

of the fixed-point iterations in (20).

Proposition 2: The fixed-point iterations in (20) converge

to the solution of (15) for arbitrary positive-definite initial

matrices R̂
(0)
st

and R̂
(0)
p when the conditions in Proposition

1 are satisfied.

Proof : See Appendix B.

Remark 2: The iterations in (20) can be terminated by using

a distance metric

D(R̂(k+1), R̂(k)) =

∥∥∥∥∥
R̂(k+1)

Tr(R̂(k+1))
− R̂(k)

Tr(R̂(k))

∥∥∥∥∥, (22)

where R̂(k) = R̂
(k)
st

⊗ R̂
(k)
p and ‖ · ‖ denotes the Frobenius

norm. This metric measures the variation of the solution over
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iterations. Then a stopping criterion can be set to terminate

the iterations when

D(R̂(k+1), R̂(k)) < δ (23)

or k > Kmax is met, where δ denotes a preset threshold and

Kmax the maximum number of iterations allowed.

III. CHOICE OF THE SHRINKAGE FACTORS

The performance of the RSKE depends highly on the choice

of the shrinkage factors ρst and ρp. In practice, however, the

optimal shrinkage factors are unavailable since the true CM

is unknown. In this section, we propose two different choices,

based on oracle approximating shrinkage (OAS) and leave-

one-out cross validation (LOOCV), respectively, to provide

solutions with different performance and complexity.

A. The KOAS Method

In [48], an OAS strategy for choosing the shrinkage factor

for unstructured CM is derived by exploiting the MMSE

criterion and plug-in estimates. We can extend this strategy

to the RSKE. The choice of the two shrinkage factors will be

decoupled into separate problems to enable a low-complexity

solution. Following [48], we begin by assuming that the true

CM Rst and Rp are already “known”. Then, we choose the

shrinkage factors (ρst , ρp) that achieve the MMSE of the

covariance matrix estimates as

min
ρst

E

{∥∥∥R̂st −Rst

∥∥∥
2
}

s.t. R̂st = (1− ρst )Cst + ρstINst
,

(24)

and

min
ρp

E

{∥∥∥R̂p −Rp

∥∥∥
2
}

s.t. R̂p = (1− ρp)Cp + ρpINp ,

(25)

where E{·} denotes the mathematical expectation and

Cst ,
N

LNp

L∑

l=1

YH
l R

−1
p Yl

yH
l (Rst ⊗Rp)

−1
yl

,

Cp ,
N

LNst

L∑

l=1

YlR
−1
st

YH
l

yH
l (Rst ⊗Rp)

−1
yl

.

(26)

The following proposition extends the OAS solution of [48]

to the Kronecker-structured CM.

Proposition 3: The shrinkage factors that achieve the MMSE

are given as (27a) and (27b) in the following page.

Proof : See Appendix C.

In practice, Rst and Rp in (27) are unknown. Similarly to

[48], we propose to replace them by their trace-normalized

estimates R̃st and R̃p, such as the KNSCM [69] and KMLE

[60]. We will show the performance of the resulting shrinkage

factors (ρst,KOAS, ρp,KOAS), referred to as the Kronecker OAS

(KOAS) choice, in Section IV. Note that, if Nst = 1 or

Np = 1, the Kronecker-structured CM reduces to the unstruc-

tured CM and (27) agrees with (17) in [48]. If ρst,KOAS < 0 is

produced, we then truncate it to ρst,KOAS = 0. If ρst,KOAS ≥ 1,

we simply set the covariance matrix estimate to be the shrink-

age target matrix. The treatments are similar for ρp,KOAS < 0
and ρp,KOAS ≥ 1 and also the LOOCV-based choices of the

shrinkage factors to be introduced in the next subsection.

B. The LOOCV Method

We next provide an alternative for choosing the shrinkage

factors based on LOOCV. In order to achieve good perfor-

mance and complexity tradeoff, the cost for LOOCV must

be carefully chosen. In this work, we extend the quadratic

cost used in [54] to obtain a data-driven, analytical solution.

Note that [54] considers unstructured CM for Gaussian data,

whereas this paper considers Kronecker-structured CM estima-

tion with elliptically distributed data for which iterative solvers

are required.

Let Σst and Σp be two positive-definite, Hermitian matri-

ces. Define the following cost function

Jst (Σst ) = E

(
‖Σst − Sst‖2

)
, (28a)

Jp (Σp) = E

(
‖Σp − Sp‖2

)
, (28b)

where the expectation is with respect to Y = unvecNpNst
(y),

Sst ,
NstY

HR−1
p Y

yH (Rst ⊗Rp)
−1

y
,Sp ,

NpYR−1
st

YH

yH
(
R−1

st
⊗R−1

p

)
y
.

(29)

Proposition 4: The expectation of Sst and Sp are respec-

tively given as E (Sst ) = Rst and E (Sp) = Rp, and

Jst (Σst ) and Jp (Σp) are minimized by Σst = Rst and

Σp = Rp, respectively.

Proof : See Appendix D.

Inspired by Proposition 4, we aim to estimate the cost

function in (28) and then minimize it over the shrinkage

factors. This may be achieved using different strategies, e.g.,

[45]. In this paper, we apply the LOOCV strategy [53]

to estimate Jst (Σst) and Jp (Σp) and minimize them to

determine the shrinkage factors. With the standard LOOCV,

the samples Y are repeatedly split into two sets. For the lth
split, the samples in the training set Yl (with the lth sample

yl omitted from Y) are used for producing shrinkage CM

estimates {Σst ,Σp} and the remaining sample yl is used for

constructing {Sst ,Sp} to estimate Jst (Σst ) and Jp (Σp). The

standard LOOCV process requires the iterative estimator to be

applied for L times for each pair of candidate shrinkage factors

(ρst , ρp), which can lead to significant complexity, especially

when grid search of (ρst , ρp) is conducted. In order to address

this complexity challenge, we propose an alternative solution

by using proxy estimators so that closed-form expressions can

be found for the optimized shrinkage factors.

Similarly to KOAS, we first assume that the covariance

matrices are “known” and consider estimates of the covariance

matrices from the samples Yl = {Yj , j 6= l} as

R̂
(l)
st
(ρst ) = (1− ρst )Ĉ

(l)
st

+ ρstINst
, (30a)
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ρ⋆st =
Tr2(Rst)− 1

Nst
Tr
(
R2

st

)
(
Tr2(Rst) +

(
1− 2Tr(Rst)

Nst

)
(LN + L)

)
+
(
NpL+ L−1

Nst

)
Tr (R2

st)
, (27a)

ρ⋆p =
Tr2(Rp)− 1

Np
Tr
(
R2

p

)
(
Tr2(Rp) +

(
1− 2Tr(Rp)

Np

)
(LN + L)

)
+
(
NstL+ L−1

Np

)
Tr
(
R2

p

) . (27b)

R̂(l)
p (ρp) = (1 − ρp)Ĉ

(l)
p + ρpINp , (30b)

where

Ĉ
(l)
st

=
Nst

L− 1

∑

j 6=l

YH
j R

−1
p Yj

yH
j (Rst ⊗Rp)

−1
yj

, (31a)

Ĉ(l)
p =

Np

L− 1

∑

j 6=l

YjR
−1
st

YH
j

yH
j (Rst ⊗Rp)

−1
yj

. (31b)

Following [54], we adopt the quadratic cost functions below:

Jst,CV

(
R̂st

)
=

1

L

L∑

l=1

∥∥∥R̂(l)
st
(ρst )− Ŝ

(l)
st

∥∥∥
2

, (32a)

Jp,CV

(
R̂p

)
=

1

L

L∑

l=1

∥∥∥R̂(l)
p (ρp)− Ŝ(l)

p

∥∥∥
2

, (32b)

where

Ŝ
(l)
st

=
NstY

H
l R

−1
p Yl

yH
l (Rst ⊗Rp)

−1
yl

, (33a)

Ŝ(l)
p =

NpYlR
−1
st

YH
l

yH
l (Rst ⊗Rp)

−1
yl

. (33b)

Substituting (30a) into (32a), the cost function can be rewritten

as

Jst,CV (ρst ) =
1

L

L∑

l=1

∥∥∥(1 − ρst)Ĉ
(l)
st

+ ρstINst
− Ŝ

(l)
st

∥∥∥
2

.

(34)

We treat Jst,CV (ρst ) as a proxy of Jst (Σst ) and choose the

shrinkage factor ρst as the minimizer of (34) as:

ρst,CV =

Re

(
L∑

l=1

Tr
[(

INst
− Ĉ

(l)
st

)(
Ŝ
(l)
st

− Ĉ
(l)
st

)])

L∑
l=1

Tr

[(
INst

− Ĉ
(l)
st

)2] . (35)

Similarly, we choose ρp as

ρp,CV =

Re

(
L∑

l=1

Tr
[(

INp − Ĉ
(l)
p

)(
Ŝ
(l)
p − Ĉ

(l)
p

)])

L∑
l=1

Tr

[(
INp − Ĉ

(l)
p

)2] . (36)

Alternative expressions can be derived for (35) and (36) to

reduce the computational costs. Let

Ĉst =
Nst

L

L∑

l=1

YH
l R

−1
p Yl

yH
l (Rst ⊗Rp)

−1
yl

. (37)

Recalling (31a) and (33a), we have

Ĉ
(l)
st

=
L

L− 1
Ĉst −

1

L− 1
Ŝ
(l)
st
, LĈst =

L∑

l=1

Ĉ
(l)
st

=
L∑

l=1

Ŝ
(l)
st
.

(38)

Note that Ĉst , Ĉ
(l)
st

, Ŝ
(l)
st

and INst
are all Hermitian matrices.

By using (38), we have

L∑

l=1

Tr
(
Ĉ

(l)
st
Ŝ
(l)
st

)
=

L2

L− 1
Tr
(
Ĉ2

st

)
−

L∑
l=1

Tr
(
(Ŝ

(l)
st
)2
)

L− 1
,

(39a)

L∑

l=1

Tr
(
(Ĉ

(l)
st
)2
)
=

L2(L− 2)

(L − 1)2
Tr
(
Ĉ2

st

)
+

L∑
l=1

Tr
(
(Ŝ

(l)
st
)2
)

(L− 1)2
.

(39b)

Substituting (39) into (35), we obtain (41a) on the next page

to quickly evaluate the shrinkage factors ρst,CV. Similarly, we

can obtain (41b) there for ρp,CV, where

Ĉp =
Np

L

L∑

l=1

YjR
−1
st

YH
j

yH
j (Rst ⊗Rp)

−1
yj

. (40)

The shrinkage factors determined by (41) still require the

true CM Rst and Rp to be known to compute (37), (40), and

(33). Similarly to KOAS, we propose to substitute them by

their trace-normalized estimates R̃st and R̃p. We refer to the

resultant solutions as the CV choice.

Remark 3: The proposed methods exhibit different com-

plexities. If the shrinkage factors are given, the computa-

tional complexity of the iterative process in (20) is about

O(Nit(N
3
st
+N3

p +L(NstN
2
p +N2

st
Np)), where Nit denotes

the number of iterations, and we have used the identities (A⊗
B)−1 = A−1 ⊗ B−1 and (BT ⊗ A)vec(X) = vec(AXB).
All the shrinkage factors proposed are given in closed forms

without the need of grid search. Their complexities are sum-

marized below, where only the highest order of the complexity

is counted.

• KOAS: The computational complexity of (27) mainly

arises from the computation of Tr(R̃2
st
) and Tr(R̃2

p),

which is O(N2
st
+ N2

p ) when the plug-in CMs R̃st and

R̃p are known.

• CV: Given R̃st and R̃p, (41) can be evaluated at a

complexity of O(N3
st
+N3

p + L(N2
st
Np +NstN

2
p )).
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ρst,CV =

− L
(L−1)2Tr

(
Ĉ2

st

)
+ 1

(L−1)2

L∑
l=1

Tr
(
(Ŝ

(l)
st
)2
)

Nst − 2Tr
(
Ĉst

)
+ L(L−2)

(L−1)2 Tr
(
Ĉ2

st

)
+ 1

L(L−1)2

L∑
l=1

Tr
(
(Ŝ

(l)
st
)2
)
.

(41a)

ρp,CV =

− L
(L−1)2Tr

(
Ĉ2

p

)
+ 1

(L−1)2

L∑
l=1

Tr
(
(Ŝ

(l)
p )2

)

Np − 2Tr
(
Ĉp

)
+ L(L−2)

(L−1)2 Tr
(
Ĉ2

p

)
+ 1

L(L−1)2

L∑
l=1

Tr
(
(Ŝ

(l)
p )2

)
.

(41b)
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Fig. 1: The overview of IPIX 1998 data set.

It can be seen that, ignoring the cost for finding the plug-

in CMs, the complexity of finding the shrinkage factors is

dominated by that of iteratively updating the CMs in (20).

IV. SIMULATION RESULTS

In this section, we show the performance of the proposed

RSKE estimators. We compare the proposed estimators with

the following CM estimators: KMLE [60], [69], and KNSCM

[69]. We will then demonstrate the superiority of our proposed

methods over these existing methods with the true data and

generated simulation data.

A. Target detection

In this subsection, we show simulation results to demon-

strate the performance of the RSKE for the polarization target

detection in the context of real heterogeneous sea clutter data.

Ice Multiparameter Imaging X-Band (IPIX) 1998 is collected

using the McMaster IPIX radar with one single antenna from

Grimsby, Canada [86]. One data set that we use is IPIX 1998

file “19980223 171533”. In Fig. 1, we show the normalized

logarithmic amplitude of the clutter in this file. Key parameters

of the data set include the carrier frequency 9.39GHz, PRF

1000Hz, pulse length 20ns and range resolution 3m. We refer

the reader to the official website [86] for more details. From

Fig. 1, we can see that there are many strong scattering points

whose echo amplitude is significantly large. This indicates that

the data fit the compound Gaussian distribution better due to

its heavy tail in contrast to the Gaussian one.

In order to illustrate this, we use the compound Gaussian

distribution to fit the probability density function of the

TABLE I: Fitting error

Distribution Error (×10−4)

Gaussian 12.1012

Weibull 9.5881

IG-CG 3.0916

K 2.4125

amplitude of the sea clutter in file “19980223 171533” and

“19980226 215015” under different polarization. Note that

the data correspond to different temperatures, wind directions,

wind speeds, wave heights, wave periods, precipitation, etc.

The curves for fitting the amplitude using three types of CG

distribution (including the Weibull, inverse Gamma-compound

Gaussian (IG-CG) and K distributions) are plotted in Fig. 2.

From Fig. 2, we can see that the real sea clutter data have

a heavier tail than the Gaussian model. The fitting errors2

for the VV data of “19980223 171533” are given in Table

I, which demonstrates that the fitting error of the Gaussian

distribution is larger than that of the CG distributions. This

shows the suitability of the CG model for fitting the real sea

clutter. Note that under different sea states, the different types

of CG distribution may provide different accuracies for fitting

the clutter data. However, the CG model always fits the data

better than the Gaussian one. Meanwhile, the proposed RSKE

is effective for various CG data, regardless of the specific type.

To assess the detection performance, we consider the well

known normalized matched filter (NMF) detector [51], i.e.,

Λ =

∣∣∣sHR̂−1y

∣∣∣
2

(
sHR̂−1s

)(
yHR̂−1y

)
H1

≷
H0

δ. (42)

Recall that s denotes the steering vector of desired signal, R̂

denotes the estimated CM, y denotes the received echo, and

δ denotes the detection threshold.

In order to obtain δ, we first implement 100/Pfa Monte-

Carlo trials to ensure a preassigned value of the probability of

false alarm Pfa. In this section, we set Ns = 1, Nt = 8, L =
8. The normalized Doppler frequency of the target is 0.25 and

its azimuth and elevation angles are 0◦ and 3.6◦, respectively.

We use three different polarization channels, i.e., HH, HV and

2The fitting error is defined as the mean square error (MSE) between the
empirical p.d.f. of the real data and fitting distributions.
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Fig. 2: Fitting the real sea clutter by Weibull, IG-CG and K distributions with different polarization. (a) HH in 19980223 171533;

(b) VH in 19980223 171533; (c) VV in 19980223 171533; (d) HH in 19980226 215015; (e) VH in 19980226 215015; (f)

VV in 19980226 215015.
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Fig. 3: Detection performance versus the SCR. (a) Pfa = 10−2; (b) Pfa = 10−4.

VV. Note that the SCR is computed as SCR =
σ2
s

σ2
c

, where σ2
s

and σ2
c are the power of the target and clutter, respectively.

Fig. 3 shows the detection performance for the NMF versus

the input SCR. For each abscissa, 10000 Monte-Carlo exper-

iments are performed. It is seen that the proposed methods

can achieve the best detection performance among several

estimators under different Pfa. For example, when the SCR is

−10 dB, the detection probability with the proposed estimators

is about 62% while that with KMLE and KNSCM are 49% and

31%, respectively. This shows that the RSKE is effective for

the target detection application with a similar computational

complexity as that of the KMLE.

B. CM Estimation Accuracy

In order to evaluate the CM estimation accuracy, we use

the following normalized mean-square error (NMSE) as the

performance metric [87]:

NMSE ,
E

{∥∥∥R̂/Tr(R̂)−R/Tr (R)
∥∥∥
2
}

‖R/Tr (R)‖2
.

(43)

Since the true CM of the real data is unknown, we use syn-

thetic data here. Considering the model in Sec. II, the samples

are generated according to yl =
√
τlul + nl, l = 1, 2, · · · , L,

where ul is generated by (3) and nl denotes the additive

white Gaussian noise. Then the corresponding true CM is

given by (8). According to Fig. 2, the sea clutter fits the
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Fig. 4: NMSE versus the number of samples L. (a) ν = 1; (b) ν = 10;

TABLE II: Shrinkage coefficient

Algorithm ρst ρp

RSKE, KOAS(KNSCM) 0.0344 0.2732

RSKE, KOAS(KMLE) 0.0293 0.2556

RSKE, CV(KNSCM) 0.0583 0.3379

RSKE, CV(KMLE) 0.0363 0.3541

RSKE, Oracle 0 0.4

CG distribution well. Therefore, we assume that the texture τl
follows a Gamma distribution [75] of shape parameter ν and

scale parameter 1/ν, i.e., τl ∼ Γ(ν, 1/ν), ul ∼ CN (0,R). The

generated samples {yl} follow a zero-mean CES distribution.

The estimated sub-CMs R̂
(k)
st

and R̂
(k)
p in (21) are initialized

as identity matrices for simplicity but other initialization can

produce similar results.

Here we set Ns = 1, Nt = 8, Np = 3. The polarization pa-

rameters in (10) are set as ρc = 0.89, γc = 0.61 and δc = 0.16.

Other radar parameters include the carrier frequency 1.2 GHz,

wavelength 0.25 m, PRF 2000 Hz, platform velocity 125 m/s

and CNR 30 dB. In the rest of this section, for terminating

the iterations, we choose the threshold δ in (23) as 10−3

and Kmax = 15. For the RSKE, in addition to the KOAS

and CV choices of the shrinkage factors, the oracle choice of

the shrinkage factors is also considered, which minimizes the

NMSE defined in (43) at each iteration under the assumption

that the true CM is known.
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Fig. 5: NMSE versus the space-time number.

Fig. 4 shows the NMSE performance under different num-

bers of samples L. For each abscissa, 2000 Monte-Carlo

experiments are performed. Note that even a small numerical

gap in the NMSE performance may lead to large error between

the estimated result and the true CM since the NMSE is

normalized. We can see that the proposed RSKE can improve

the estimation accuracy as compared with several existing

estimators in different cases. The CV choices of the shrinkage

factors can produce near-oracle performance. The performance

with KOAS and CV depends on the choice of the plug-in

estimates used and CV performs slightly better than KOAS.
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Fig. 6: NMSE versus ρst and ρp.

Fig. 5 shows the NMSE versus the the dimension NsNt of

Rst. Here we fix Nt = 2, L = 1
2NsNt and vary Ns from 4 to

8. As the dimension and the number of samples increase with

a constant ratio, the estimation accuracy is also improved.

Fig. 6 shows the NMSE versus ρst and ρp. Here we fix

L = 12 and other parameters are same as Fig. 4. 100

Monte-Carlo experiments are performed. The average NMSE

achieved by RSKE with different ρst and ρp is demonstrated

in Fig. 6 where the averages of the shrinkage factors chosen by

KOAS and CV are also marked. Each line shows the contour

of NMSE. It confirms that the different plug-in estimators

used lead to different shrinkage factors. Moreover, CV yields

solutions closer to the oracle ones compared to KOAS. The

selected shrinkage coefficients are also listed in Table II.

Fig. 7 shows the condition number of the estimated CM

of RSKE (with CV, KOAS), KMLE and KNSCM. We set
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Fig. 7: Condition number versus the number of samples.

the plug-in estimator for CV and KOAS as KNSCM. One

can see that the proposed CV and KOAS algorithms yield

CM estimates which are better-conditioned than those with

KNSCM and KMLE, especially when the number of samples

is small. As they also improve the NMSE, it is expected that

the RSKE with the proposed shrinkage factor choices can

improve the performance for applications where the inverse

of the CM is required, such as beamforming and spectral

estimation applications.

18 20 22 24 26 28 30 32 34 36

Number of Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SC
N

R
 L

os
s

RSKE,KOAS
RSKE, CV
SCM
KNSCM
KMLE

Fig. 8: SCNR loss versus the number of samples.

The performance of clutter suppression in PSTAP is often

evaluated via the normalized SCNR loss [21], [80], [81]

SCNRloss =

(
sHR̂−1s

)2

(
sHR̂−1RR̂−1s

)
(sHR−1s)

. (44)

Clearly its maximum SCNRloss = 1 is achieved when the

covariance matrix is perfectly estimated and a larger value

indicates better performance. Parameters are same as those in

Fig. 4. For each abscissa, 2000 Monte-Carlo experiments are

performed. Fig. 8 shows the SCNR loss resulted from different

covariance estimators. We can see that the proposed RSKE

with KOAS and CV can also outperform KNSCM, KMLE

and SCM.

V. CONCLUSIONS

In this paper, we investigate a robust, iterative shrink-

age estimator for Kronecker-structured covariance matrices

of compound Gaussian data, which is referred to as RSKE.

The RSKE can be obtained by minimizing a negative log-

likelihood function penalized by Kullback-Leibler divergence

and interpreted by integrating linear shrinkage into the fixed-

point iterations. The conditions for the existence of the RSKE

are investigated and the convergence of the iterative solver is

investigated. We also introduce two methods for choosing the

shrinkage factors by exploiting oracle approximating shrinkage

(OAS) and cross-validation (CV), respectively. The proposed

estimators are then applied to polarization radar detection in

the real sea clutter context. Compared with the state-of-the-art

estimators, the RSKE achieves better detection performance,

more accurate CM estimation and improves the condition

number by significantly reducing the number of unknown pa-

rameters and integrating shrinkage into the robust estimation.

APPENDIX A

PROOF OF PROPOSITION 1

In this appendix, we examine the conditions under which a

solution to (15) exists by constructing two auxiliary functions

to lowerbound the cost function in (14). Let λ
(1)
st

≥ λ
(2)
st

≥
· · · ≥ λ

(Nst )
st

and λ
(1)
p ≥ λ

(2)
p ≥ · · · ≥ λ

(Np)
p be the eigenvalues

of R̂st and R̂p. Then we have

logyH
l

(
R̂st ⊗ R̂p

)−1

yl ≥ log
yH
l

(
R̂st ⊗ INp

)−1

yl

λ
(1)
p

≥ 1

Np

Np∑

j=1

log rHj,lR̂
−1
st

rj,l − logλ(1)
p + logNp,

(45)

where we have utilized Jensen’s inequality in the last step.

Similarly, we have

logyH
l

(
R̂st ⊗ R̂p

)−1

yl

≥ 1

Nst

Nst∑

i=1

log cHi,lR̂
−1
p ci,l − log λ

(1)
st

+ logNst .
(46)

Here we have assumed that none of rj,l and ci,l is an all-zero

vector, such that rHj,lR̂
−1
st

rj,l 6= 0, cHi,lR̂
−1
p ci,l 6= 0, ∀i, ∀j, ∀l.

Then let us define the following auxiliary functions:

F1

(
R̂st

)

=
NpL

2
log det

(
R̂st

)
+

β1Nst

2

L∑

l=1

Np∑

j=1

log rHj,lR̂
−1
st

rj,l

+
αstL

2
Tr
(
R̂−1

st

)
+

αstL

2
log det

(
R̂st

)
− β2LN

2
logλ

(1)
st

,

F2

(
R̂p

)

=
NstL

2
log det

(
R̂p

)
+

β2Np

2

L∑

l=1

Nst∑

i=1

log cHi,lR̂
−1
p ci,l

+
αpL

2
Tr
(
R̂−1

p

)
+

αpL

2
log det

(
R̂p

)
− β1LN

2
logλ(1)

p ,
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where β1 + β2 = 1 and β1, β2 ∈ [0, 1]. From (45) and (46),

we have

L(R̂st , R̂p)

≥ 2

L

(
F1(R̂st ) + F2(R̂p)

)
+N(β1 logNp + β2 logNst ).

Since L, N , Nst and Np are finite, if F1(R̂st ) → +∞ and

F2(R̂p) → +∞, then L(R̂st , R̂p) → +∞. In the following,

we check the conditions under which F1(R̂st ) → +∞ and

F2(R̂p) → +∞ on the boundary of the set of positive-definite,

Hermitian matrices. Note that F1 and F2 are similar to the first

equation of [50, Appendix A].

Denote the eigenvectors corresponding to λ
(i)
st

and λ
(j)
p by

v
(i)
st

and v
(i)
p , respectively, for R̂st and R̂p. Then denote the

subspace spanned by {v(1)
st

, · · · ,v(i)
st
} and {v(1)

p , · · · ,v(j)
p }

as S(i)
st

and S(j)
p , respectively. Formally, define {rst , sst} with

1 ≤ rst ≤ sst ≤ Nst , such that λ
(i)
st

→ ∞ for i ∈ [1, rst ], λ
(i)
st

is bounded for i ∈ (rst , sst ] and λ
(i)
st

→ 0 for i ∈ (sst , Nst ].

Similarly, define {rp, sp} for λ
(j)
p . Here we consider the

case with rst ≥ 1, i.e., there exists at least one eigenvalue

diverging, following [50], in order to examine the condition

for F1(R̂st ) → +∞ at the boundary of feasible set for R̂st .

Define G1(R̂st) = exp(−F1(R̂st)) and G2(R̂p) =

exp(−F2(R̂p)).
Clearly, F1(R̂st) → +∞ is equivalent to G1(R̂st ) → 0.

From [50, Appendix A], the condition for G1(R̂st ) → 0
can be checked by examining the infinitesimal equivalence

of G1(R̂st ) in terms of the eigenvalues λ
(i)
st

of R̂st . From

(36) in [50, Appendix A], G1(R̂st ) → 0 if the orders of all

the eigenvalues λ
(i)
st

→ ∞ in the infinitesimal equivalence

are negative and those of λ
(i)
st

→ 0 are positive. Following

this argument, we invoke (36) in [50, Appendix A] by letting

N = LNp, K = Nst , ρ(s) = β1Nst

2 log(s), h1(s) = s,

α = α1 = αstL
2 and A1 = INst

, and hence aρ = a′ρ = β1Nst

and a1 = +∞, a′1 = 03. Note also that for any ǫ > 0,

(λ
(1)
st

)
β2NL

2 = o
(
(ϕ

(1)
st

)−
β2NL

2 −ǫ
)
= o

(
(ϕ

(r)
st

)−
β2NL

2 −ǫ
)
,

where o(·) denotes the higher order infinitesimal and ϕ
(i)
st

,
(λ

(i)
st
)−1. Then we impose the same condition as the first line4

of (36) in [50, Appendix A], i.e.,
(
LNp

2
+

αstL

2
− ǫ

)
d− β1Nst + ǫ

2
LNpPLNp(S(d)

st
)

− β2NL

2
− ǫ ≥ 0, d = 1, · · · , Nst − 1.

Under this condition, G1(R̂st ) goes to zero , i.e., F1(R̂st ) →
+∞ on the boundary of positive-definite and Hermitian R̂st

[50]. Letting ǫ → 0 and rearranging the terms, one has

PLNp

(
S(d)
st

)
<

(LNp + αstL) d− β2LN

β1LN
, (48)

for arbitrary d = 1, · · · , Nst − 1. Intuitively, this requires that

the samples are evenly spread in the subspace spanned by the

3(aρ, a′ρ) and (a1, a′1) are respectively defined for ρ(s) and αh1(s)
according to [50, Definition 2]

4The second line of (36) in [50, Appendix A] is always met since a1 = +∞

in this paper.

eigenvectors of R̂st . The condition (48) is then rewritten in a

general form as (17a). Similarly, we have (17b).

In summary, we have obtained conditions (17a) and (17b)

under which the cost function (14) tends to positive infinity at

the boundary of the set of positive definite and Hermitian ma-

trix. By [50, Lemma 1], these also give a sufficient condition

that a solution to (15) exists.

APPENDIX B

PROOF OF PROPOSITION 2

In this Appendix, we prove the convergence of the pro-

posed iteration process, following the methodology of [50],

[59]. By the concavity of the logarithm function, one has

log x ≤ log a + x
a
− 1, ∀a > 0. The equality holds when

x = a. Then we have

log

[
yH
l

(
R̂st ⊗ R̂(k)

p

)−1

yl

]
≤

yH
l

(
R̂st ⊗ R̂

(k)
p

)−1

yl

yH
l

(
R̂

(k)
st

⊗ R̂
(k)
p

)−1

yl

+ log

[
yH
l

(
R̂

(k)
st

⊗ R̂(k)
p

)−1

yl

]
− 1,

(49)

where the equality holds when R̂st = R̂
(k)
st

. We then construct

the surrogate function

G1

(
R̂st

∣∣∣∣R̂
(k)
st

, R̂(k)
p

)

=
Np

1− ρst
log det

(
R̂st

)
+

Nst

1− ρp
log det

(
R̂(k)

p

)

+
N

L

L∑

l=1

yH
l

(
R̂st ⊗ R̂

(k)
p

)−1

yl

yH
l

(
R̂

(k)
st

⊗ R̂
(k)
p

)−1

yl

+
N

L

L∑

l=1

log

[
yH
l

(
R̂

(k)
st

⊗ R̂(k)
p

)−1

yl

]
−N

+
Npρst
1− ρst

Tr
(
R̂−1

st

)
+

Nstρp
1− ρp

Tr

((
R̂(k)

p

)−1
)
.

(50)

Recalling (49), we have

L
(
R̂st , R̂

(k)
p

)
≤ G1

(
R̂st

∣∣∣∣R̂
(k)
st

, R̂(k)
p

)
, (51)

and the equality holds when R̂st = R̂
(k)
st

, i.e.,

L
(
R̂

(k)
st

, R̂(k)
p

)
= G1

(
R̂

(k)
st

∣∣∣∣R̂
(k)
st

, R̂(k)
p

)
. (52)

It is easy to verify that the minimizer of (50) is exactly (20a)

by setting the gradient of (50) with respect to R̂st to zero. It

follows that

R̂
(k+1)
st

= argmin
R̂st

G1

(
R̂st

∣∣∣∣R̂
(k)
st

, R̂(k)
p

)
. (53)
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Therefore,

L
(
R̂

(k+1)
st

, R̂(k)
p

)
≤ G1

(
R̂

(k+1)
st

∣∣∣∣R̂
(k)
st

, R̂(k)
p

)

= min
R̂st

G1

(
R̂st

∣∣∣∣R̂
(k)
st

, R̂(k)
p

)
≤ G1

(
R̂

(k)
st

∣∣∣∣R̂
(k)
st

, R̂(k)
p

)

= L
(
R̂

(k)
st

, R̂(k)
p

)
.

(54)

Then define

G2

(
R̂p

∣∣∣∣R̂
(k+1)
st

, R̂(k)
p

)

=
Np

1− ρst
log det

(
R̂

(k+1)
st

)
+

Nst

1− ρp
log det

(
R̂p

)

+
N

L

L∑

l=1

yH
l

(
R̂

(k+1)
st

⊗ R̂p

)−1

yl

yH
l

(
R̂

(k+1)
st

⊗ R̂
(k)
p

)−1

yl

+
N

L

L∑

l=1

log

[
yH
l

(
R̂

(k+1)
st

⊗ R̂(k)
p

)−1

yl

]
−N

+
Npρst
1− ρst

Tr

((
R̂

(k+1)
st

)−1
)
+

Nstρp
1− ρp

Tr
(
R̂−1

p

)
.

(55)

Similarly, we can verify that the minimizer of (55) is exactly

(20b), and

L
(
R̂

(k+1)
st

, R̂p

)
≤ G2

(
R̂p

∣∣∣∣R̂
(k+1)
st

, R̂(k)
p

)
, (56)

where the equality holds when R̂p = R̂
(k)
p , i.e.,

L
(
R̂

(k+1)
st

, R̂(k)
p

)
= G2

(
R̂(k)

p

∣∣∣∣R̂
(k+1)
st

, R̂(k)
p

)
. (57)

It follows that

L
(
R̂

(k+1)
st

, R̂(k+1)
p

)
≤ G2

(
R̂(k+1)

p

∣∣∣∣R̂
(k+1)
st

, R̂(k)
p

)

= min
R̂p

G2

(
R̂p

∣∣∣∣R̂
(k+1)
st

, R̂(k)
p

)
≤ G2

(
R̂(k)

p

∣∣∣∣R̂
(k+1)
st

, R̂(k)
p

)

= L
(
R̂

(k+1)
st

, R̂(k)
p

)
.

(58)

Combining (54) and (58), we have

L
(
R̂

(k+1)
st

, R̂(k+1)
p

)
≤ L

(
R̂

(k)
st

, R̂(k)
p

)
, (59)

i.e., the penalized log-likelihood function L(R̂st , R̂p) in (14)

is decreasing with iterations.

Since L(R̂st , R̂p) is g-convex, its minimizer exists and

denote it by (R̂∞
st
, R̂∞

p ). Then L(R̂∞
st
, R̂∞

p ) lower bounds

the sequence {L(R̂(k)
st

, R̂
(k)
p ), k = 1, 2, · · · }. This indicates

that the decreasing sequence {L(R̂(k)
st

, R̂
(k)
p )} is bounded by

an infimum. Then according to the monotone convergence

theorem [88], the sequence will converge to the infimum as k

increases, i.e., (R̂
(k)
st

, R̂
(k)
p ) will converge to the minimizer of

L(R̂st , R̂p), i.e., the solution to (15).

APPENDIX C

PROOF OF PROPOSITION 3

We here complete the proof by exploiting results from ran-

dom matrix theory. Following [89], when the true covariance

matrix Rst and Rp are known, the oracle shrinkage factor ρ⋆p,

i.e., the solution to (25), is given by

ρ⋆p =
E

{
Re
(
Tr
((

INp −Cp

)
(Rp −Cp)

H
))}

E
{
‖INp −Cp‖2

}

=
E1 − E2 − E3 +Tr (Rp)

E1 − 2E2 +Np

,

(60)

where Re(·) denotes the real part and

E1 = E
{
Tr
(
C2

p

)}
, E2 = E {Re (Tr (Cp))} ,

E3 = E
{
Re
(
Tr
(
CpR

H
p

))} (61)

and Cp is defined by (40). The resulting optimal shrinkage

estimate can be interpreted as the projection of the true CM

onto the linear space spanned by Cp and INp .

Let the eigen-decomposition of R, Rst and Rp be R =
VΛVH, Rst = VstΛstV

H
st

, and Rp = VpΛpV
H
p , respec-

tively. Then, we define zl = D−1yl

‖D−1yl‖2
, where D = VΛ

1
2 .

It is easy to see that ‖zl‖2 = 1 and {zl} are independent of

each other. Moreover, the whiten vectors {zl} are isotropically

distributed [90] and satisfy [47], [48]

E
{
zlz

H
l

}
=

1

N
IN ,

E

{(
zHl Λzl

)2}
=

Tr
(
R2
)
+Tr2 (R)

N(N + 1)
,

E

{(
zHl Λzq

)2}
=

1

N2
Tr
(
R2
)
, l 6= q.

(62)

Note that D = Dst ⊗ Dp, where Dst = VstΛ
1
2
st

, Dp =

VpΛ
1
2
p . We then reshape zl into a matrix satisfying

Zl = unvecNpNst
(zl) =

D−1
p Yl

(
D−1

st

)H

‖D−1yl‖2
, (63)

which can be easily verified by vectorizing both sides of (63).

In order to determine the shrinkage factor for the robust

shrinkage estimator of unstructured CM, [48] analyzed the

feature of Zl where it reduces to a vector. We here extend

the analysis to the more general case of matrix-valued Zl by

exploiting random matrix theory and properties of Kronecker

product. Let z
(i)
l be the ith entry of zl. From (62), one has

E

{
z
(i)
l

(
z
(j)
l

)∗}
=

{
1/N i = j
0 i 6= j

. (64)

This indicates that {z(i)l }Ni=1 are i.i.d. with zero mean and

variance 1/N . Consequently, we have

E
{
ZlZ

H
l

}
=

Nst

N
INp ,E

{
ZH
l Zl

}
=

Np

N
INst

. (65)

Note that
∥∥D−1yl

∥∥2
2
= yH

l (Rst ⊗Rp)
−1

yl, and we have

YlR
−1
st

YH
l

yH
l (Rst ⊗Rp)

−1
yl

= DpZlZ
H
l D

H
p ,

YH
l R

−1
p Yl

yH
l (Rst ⊗Rp)

−1
yl

= DstZ
H
l ZlD

H
st
,

(66)
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Note that E{·}, Re(·) and Tr(·) are exchangeable to each

other. Substituting (66) into (61), one has

E2 = Tr

(
N

LNst

L∑

l=1

DpE
(
ZlZ

H
l

)
DH

p

)
= Tr (Rp) ,

E3 = Tr
(
R2

p

)
,

(67)

From [91], [92], we have

E

{∣∣∣z(i)l

∣∣∣
4
}

=
2

N(N + 1)
,E

{∣∣∣z(i)l

∣∣∣
2 ∣∣∣z(j)l

∣∣∣
2
}

=
1

N(N + 1)
.

(68)

Since {zl}Ll=1 are i.i.d, we have

E

{∣∣∣z(i)l

∣∣∣
2 ∣∣∣z(i)q

∣∣∣
2
}

=
1

N2
,E
{
z(i)q

(
z
(i)
l

)∗
z
(j)
l

(
z(j)q

)∗}
= 0.

(69)

Therefore, (61) can be rewritten as

E1 = E
{
Tr
(
C2

p

)}

=

(
N

LNst

)2

E

{
Tr

(
L∑

l=1

L∑

q=1

DpZlZ
H
l D

H
p DpZqZ

H
q D

H
p

)}

=

(
N

LNst

)2

E

{
L∑

l=1

L∑

q=1

Tr
(
ZH
l ΛpZqZ

H
q ΛpZl

)
}
.

(70)

Utilizing [91, Lemma 1.1] and substituting (68), (69) into (70),

E1 is obtained as (71) in the following page. Substituting (71)

and (67) into (60), (27b) is obtained. Similarly, we can have

the optimal ρ⋆
st

, i.e., (27a). The resulting expressions of ρ⋆
st

and ρ⋆p can be used to produce the KOAS choice ρst,KOAS and

ρp,KOAS by plugging estimates of Rst and Rp into (27).

APPENDIX D

PROOF OF PROPOSITION 4

This proposition can be proven by combining the results in

Appendix C. Recalling (29), (65) and (66), we have

E (Sst ) = NstDstE
(
ZH
l Zl

)
DH

st
= Rst ,

E (Sp) = NpDpE
(
ZlZ

H
l

)
DH

p = Rp.
(72)

Moreover, (28) can be rewritten as

Jst (Σst ) = Tr
(
Σ2

st
− 2Re (ΣstE (Sst )) + E

(
S2
st

))
,

(73a)

Jp (Σp) = Tr
(
Σ2

p − 2Re (ΣpE (Sp)) + E
(
S2
p

))
. (73b)

By setting the derivative of (73a) and (73b) with respect to Σst

and Σp to zero, we have the minimizer of (28) as Σst = Rst

and Σp = Rp.
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