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Abstract—Salient object detection in optical remote sensing
images (ORSI-SOD) has been widely explored for understanding
ORSIs. However, previous methods focus mainly on improving
the detection accuracy while neglecting the cost in memory and
computation, which may hinder their real-world applications. In
this paper, we propose a novel lightweight ORSI-SOD solution,
named CorrNet, to address these issues. In CorrNet, we first
lighten the backbone (VGG-16) and build a lightweight subnet for
feature extraction. Then, following the coarse-to-fine strategy, we
generate an initial coarse saliency map from high-level semantic
features in a Correlation Module (CorrM). The coarse saliency
map serves as the location guidance for low-level features.
In CorrM, we mine the object location information between
high-level semantic features through the cross-layer correlation
operation. Finally, based on low-level detailed features, we refine
the coarse saliency map in the refinement subnet equipped with
Dense Lightweight Refinement Blocks, and produce the final fine
saliency map. By reducing the parameters and computations of
each component, CorrNet ends up having only 4.09M parame-
ters and running with 21.09G FLOPs. Experimental results on
two public datasets demonstrate that our lightweight CorrNet
achieves competitive or even better performance compared with
26 state-of-the-art methods (including 16 large CNN-based meth-
ods and 2 lightweight methods), and meanwhile enjoys the clear
memory and run time efficiency. The code and results of our
method are available at https://github.com/MathLee/CorrNet.

Index Terms—Lightweight salient object detection, optical
remote sensing image, cross-layer correlation, dense lightweight
refinement block.

I. INTRODUCTION

SALIENT object detection (SOD) [1]–[3] focuses on ex-
tracting the visually distinctive objects or regions in a

scene, and often serves as an important preprocessing step
in computer vision. It has been successfully applied in image
retargeting [4], image quality assessment [5], [6], and object
segmentation [7], [8], etc. In recent decades, there have been
many branches of SOD, such as SOD in natural scene images
(NSI-SOD) [1], video SOD [2], RGB-D SOD [9], [10], co-
saliency detection [11], SOD in optical remote sensing images
(ORSI-SOD) [12], etc. In this paper, we are committed to
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Fig. 1. Accuracy, parameters and inference speed comparisons of our CorrNet
and other CNN-based methods on the EORSSD dataset [13]. • represents
real-time methods, • represents non-real-time methods, and • represents our
CorrNet.

an emerging topic in SOD, i.e., ORSI-SOD. Optical remote
sensing images (ORSIs) are photographed by satellites and
aerial sensors, and have three optical bands (i.e., red, green
and blue bands), which are the same as natural scene images
(NSIs). The scenes of ORSIs are completely different from
NSIs and are very challenging. ORSI-SOD can discover at-
tractive objects, which is conducive to quickly analyzing and
understanding ORSIs.

Early traditional NSI-SOD methods [14] mainly relied on
hand-crafted features, which usually lead to unsatisfactory
detection accuracy. Recently, convolutional neural networks
(CNNs) [15] have demonstrated powerful capabilities in com-
puter vision, and greatly promoted the development of NSI-
SOD algorithms [1], which often generate satisfactory saliency
maps. However, the improvement in detection accuracy often
comes from more complicated network structures, which typ-
ically come with a large amount of parameters and increased
computational complexity. Since ORSIs and NSIs have gaps
in the scene, it is not appropriate to directly migrate NSI-
SOD to ORSIs, but most of the existing ORSI-SOD meth-
ods [13], [16]–[18] are affected by NSI-SOD methods. There-
fore, ORSI-SOD methods usually have a large computational
consumption and memory burden, and are accompanied by
limited inference speed.

In Fig. 1, we show the detection accuracy of recent NSI-
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SOD methods (PA-KRN [19], SUCA [20], GateNet [21],
EGNet [22]) and ORSI-SOD methods (DAFNet [13],
EMFINet [16], MJRBM [17], SARNet [18]) on an ORSI-
SOD dataset, namely EORSSD [13]. We also report their
parameters and inference speed in Fig. 1. Although these
methods show good performance, their parameters are amaz-
ing and inference speeds are slow, for example, PA-KRN
has 141.06M parameters with only 16 fps and EMFINet
has 107.26M parameters with 25 fps. And the performance
of the two lightweight NSI-SOD methods (CSNet [23] and
SAMNet [24]) is slightly inferior. Considering the application
scenarios of ORSI-SOD, we believe that ORSI-SOD is in
urgent need of a lightweight solution with fewer parameters,
faster speed and good accuracy.

Inspired by the above observations, in this paper, we pro-
pose a novel lightweight solution for ORSI-SOD, namely
CorrNet, which is the first lightweight ORSI-SOD model
as we know. In CorrNet, we mainly realize the lightweight
framework from two aspects: 1) lightening the backbone,
and 2) designing lightweight modules. For the backbone,
previous methods [13], [16]–[18] usually adopt the pre-trained
VGG [25] or ResNet [26] as the backbone, but such back-
bones suffer from a large number of parameters despite their
powerful feature extraction capabilities. To achieve a balance
between the feature extraction capabilities and the amount
of parameters, we modify the vanilla VGG [25] and build
a lightweight but powerful backbone for feature extraction.
For the lightweight modules, we use the depthwise separable
convolution [27], [28] instead of the regular one, which can
reduce the parameters of regular convolution by about 90%.
In this way, our CorrNet has only 4.09M parameters.

Moreover, to keep a good detection accuracy of CorrNet,
we implement it following the coarse-to-fine strategy with two
novel modules. For the coarse part, we explore the object loca-
tion information among two groups of high-level semantic fea-
tures in the Correlation Module, and obtain the initial coarse
saliency map. Then, we refine it with other low-level detailed
features in the refinement subnet, which consists of several
Dense Lightweight Refinement Blocks, and obtain the final
fine saliency map. With all components working together, our
CorrNet achieves excellent performance in accuracy (86.20%
in mean F-measure on the EORSSD dataset [13]), parameters
(4.09M) and inference speed (100fps), as shown in Fig. 1.

Our main contributions are summarized as follows:
• We explore the lightweight framework of ORSI-SOD for

the first time. To this end, we propose a novel lightweight
CorrNet (only 4.09M parameters) that uses the coarse-
to-fine strategy.

• We propose a Correlation Module to explore the cross-
layer correlation of high-level semantic context, generat-
ing an initial coarse saliency map to low-level features
for location guidance.

• We propose a Dense Lightweight Refinement Block to
merge the enhanced feature embeddings and the refined
features for finely sculpting salient objects, gradually
producing the final fine saliency map.

• We evaluate the proposed CorrNet against 26 state-of-
the-art methods on two ORSI-SOD datasets. Experiments

demonstrate that the proposed CorrNet achieves better
or competitive performance compared with previously
proposed large CNN-based methods.

We organize the rest of this paper as follows. In Sec. II,
we review the related work of ORSI-SOD. In Sec. III, we
elaborate our CorrNet. In Sec. IV, we conduct experiments and
ablation studies. Finally, in Sec. V, we draw the conclusion.

II. RELATED WORK

A. Lightweight Methods for NSI-SOD

The lightweight NSI-SOD task is an emerging direction
in NSI-SOD, which aims to propose a solution suitable
for edge computing devices. Gao et al. [23] proposed an
extremely lightweight network with only about 100K pa-
rameters and 95.3ms run-time on a single core i7-8700K
CPU. Liu et al. [24] constructed a stereoscopic attention
mechanism based backbone for lightweight NSI-SOD. In [29],
Liu et al. imitated the primate visual hierarchies, and proposed
the hierarchical visual perception network for better multiscale
learning. However, lightweight ORSI-SOD is still a desert.
In this paper, we propose an effective and efficient solution
for lightweight ORSI-SOD for the first time. Different from
the above lightweight NSI-SOD methods which focus on
designing lightweight backbones, we focus on lightening the
existing backbone (i.e., VGG-16) and proposing effective and
lightweight modules.

B. Traditional Methods for ORSI-SOD

Similar to traditional NSI-SOD methods [14], traditional
ORSI-SOD methods also mainly rely on hand-crafted features.
Faur et al. [30] presented a rate distortion-based estimation
method and considered the mean-shift algorithm to segment
the remote sensing images. Zhang et al. [31] applied color
information content analysis to ORSIs, and then computed
the saliency scores of each color channel and fused color
components for final results. In [32], Zhao et al. introduced
the high-level global and background cues for saliency map
integration. In [33], Zhang et al. combined the super-pixel and
statistical saliency feature analysis for ORSI-SOD. Based on
low-rank matrix recovery, Zhang et al. [34] proposed a self-
adaptive fusion method to fuse color feature, intensity feature,
texture, and global contrast for saliency detection in ORSIs.
Huang et al. [35] proposed a contrast-weighted dictionary
learning based method for VHR RSI saliency detection, which
follows the procedure of discriminant dictionary construction,
saliency measurement and saliency fusion.

In addition to general ORSI-SOD methods, there are some
traditional methods for specific scenes of ORSIs. For ship
detection, Chen et al. [36] proposed a contour refinement
and the improved generalized Hough transform-based method
to handle complex harbor scenes. For oil tank detection,
Liu et al. [37] constructed a color Markov chain in the CIE
Lab space to generate a bottom-up latent saliency map. For
airport detection, Zhang et al. [38] proposed a complementary
saliency analysis and saliency-oriented active contour model.
For residential areas extraction, based on complementarities,
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Fig. 2. The overall framework of the proposed CorrNet. First, we adopt a lightweight feature extraction subnet, which is a variant of classic VGG-16 [25],
to extract the basic feature embeddings. Then, we model the cross-layer correlation between two groups of high-level semantic features in the Correlation
Module (CorrM), and generate the initial coarse saliency map S4. Meanwhile, the low-level detailed features are enhanced in the general Feature Enhancement
Module (FEM). Finally, we refine the coarse saliency map with the enhanced features in the refinement subnet, which consists of three Dense Lightweight
Refinement Blocks (DLRBs), and generate the final fine saliency map S1. Notably, in the training phase, we adopt the deep supervision.

Zhang et al. [39] merged two global maps and one local map
to achieve complete residential areas.

Since hand-crafted features are usually accompanied by
a large amount of computational consumption and memory
burden, the above traditional methods are not efficient enough
for practical applications.

C. CNN-based Methods for ORSI-SOD

Taking the advantage of the powerful feature representation
capabilities of CNNs, many CNN-based ORSI-SOD methods
have shown good performance. In order to meet the data
requirements of CNN-based methods, Li et al. [12] and
Zhang et al. [13] constructed two challenging datasets for
ORSI-SOD, namely ORSSD and EORSSD. Based on these
two datasets, a large number of CNN-based methods have
emerged.

In [12], Li et al. constructed a L-shape module (i.e., the
two-stream pyramid module) and a V-shape module (i.e., the
encoder-decoder module with nested connections) based
on features extracted from five different-resolution ORSIs.
Zhou et al. [16] followed the multi-input strategy, and in-
troduced edge features to complete salient regions in feature
level. Edge information plays an important role in ORSI-
SOD. In [13], Zhang et al. additionally introduced the edge
supervision for network training and constructed a multi-task
framework. Tu et al. [17] extracted edge features from the
local cues and the global information, and embed the boundary
features into region features. In addition to edge information,
Li et al. [40] additionally introduced foreground, background

and the global image-level content to explore the comple-
mentarity of multiple content. Differently, Zhang et al. [41]
solved this problem based on the weakly supervised learning.
In [42], Li et al. focused on cross-level feature fusion, and
inferred saliency map from a parallel down-up fusion network.
Huang et al. [18] used the high-level features as a guide for
locating multi-scale objects, and combined cross-level features
and semantic information to refine the objects.

The above mentioned existing methods have achieved high
detection accuracy on the ORSSD and EORSSD datasets.
However, these methods neglect the parameter and computa-
tional complexity of models, which prevents them from being
deployed into practical systems. By contrast, in this paper, we
no longer focus on improving detection accuracy blindly, but
open up a new direction for ORSI-SOD, that is, lightweight
ORSI-SOD, which is to achieve a balance among accuracy,
parameters, and computational complexity. To this end, we
propose the first lightweight framework, namely CorrNet, for
ORSI-SOD. In CorrNet, we implement all components in a
lightweight manner while maintaining competitive or even
better performance.

III. PROPOSED METHOD

In this section, we elaborate the proposed CorrNet. In
Sec. III-A, we depict the network overview of our CorrNet.
In Sec. III-B, we show how to lighten the backbone. In
Sec. III-C and Sec. III-D, we elaborate the Correlation Module
and the Dense Lightweight Refinement Block, respectively. In
Sec. III-E, we formulate the loss function.
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TABLE I
PARAMETERS COMPARISON (INCLUDING THE PARAMETERS OF

CONVOLUTIONAL LAYER AND BATCH NORMALIZATION LAYER) OF
VANILLA-VGG AND OUR LFE-VGG.

Block
Vanilla-VGG LFE-VGG

#Param(M) Ratio #Param(M) Ratio

E1 0.04 0.27% 0.04 1.24%

E2 0.22 1.50% 0.22 6.83%

E3 1.48 10.05% 1.48 45.96%

E4/DS-E4 5.90 40.08% 0.67 20.81%
E5/DS-E5 7.08 48.10% 0.81 25.16%

Total 14.72 100.00% 3.22 100.00%

A. Network Overview

We present the overall framework of the proposed CorrNet
in Fig. 2. CorrNet is comprised of three main components:
a lightweight feature extraction subnet (equipped with the
general Feature Enhancement Module), a Correlation Module
and a refinement subnet (equipped with the Dense Lightweight
Refinement Block). It follows the coarse-to-fine strategy, that
is, first generating a coarse saliency map and then sculpting it
to generate a fine saliency map.

For feature extraction, we modify the classic vanilla VGG-
16 [25] and construct a lightweight feature extraction subnet,
named LFE-VGG. There are five convolution blocks in LFE-
VGG. The first three convolution blocks are denoted as Et

(t = 1, 2, 3) and their output features as f te ∈ Rct×ht×wt . The
last two convolution blocks are denoted as DS-Et (t = 4, 5),
and their output features as f tdse ∈ Rct×ht×wt . The size of input
is I ∈ R3×256×256, so ht is 256

2t−1 , wt is 256
2t−1 , and ct belongs

to {64, 128, 256, 512, 512}. Then, we apply the channel and
spatial attentions1 [43], [44] to f1

e and f2
e in the Feature En-

hancement Module (FEM), and get the enhanced features f̂1
e

and f̂2
e . To reduce parameters and computational complexity,

we compress the channel of f4
dse and f5

dse (i.e., 512) to 128,
and then upsample f5

dse to be the same size as f4
dse. This way,

we get f̂4
dse and f̂5

dse, which belong to Rĉ4×h4×w4 (ĉ4 is 128).
Next, we model the feature correlation among f̂4

dse and f̂5
dse

in the Correlation Module (CorrM), aiming to mine the object
location information of high-level semantic context. In this
way, we get an initial coarse saliency map S4. As shown in
Fig. 2, the coarse saliency map S4 can accurately locate the
salient objects. It is used to modulate f3

e to focus on the salient
regions, generating the modulated features f̂3

e . Finally, f̂1
e ,

f̂2
e and f̂3

e are fed to the refinement subnet to generate the
final fine saliency map S1 through three Dense Lightweight
Refinement Blocks (DLRBs).

B. Lightweight Feature Extraction Subnet

Previous ORSI-SOD methods [13], [16], [40] generally
adapt the vanilla VGG-16 [25] for basic feature extraction,

1Channel attention is implemented by a spatial-wise global max pooling
(GMP) and two fully connected layers (the first one is with ReLU and
the second one is with sigmoid); and spatial attention is implemented by a
channel-wise GMP and a one-channel regular convolution layer with sigmoid.

i.e., the last four layers (i.e., one max-pooling layer and
three fully connected layers) are abandoned. However, the
amount of parameters of the modified vanilla VGG is still
large, which is not suitable as the backbone of a lightweight
model. Therefore, in this paper, we propose a convenient way
to lighten the vanilla VGG without compromising its feature
extraction ability.

In Tab. I, we present the amount of parameters (including
the parameters of convolution layer and batch normalization
layer [45]) of each convolution block in the vanilla VGG.
We observe that the last two convolution blocks of the vanilla
VGG (i.e., E4 and E5) have 12.98M parameters, which account
for about 88.18% of all parameters. Recently, MobileNets [27],
[28] use the depthwise separable convolution (DSConv) to
replace the regular convolution. The DSConv can significantly
reduce the parameters without weakening the feature repre-
sentation ability. Motivated by [27], [28], we adopt DSConvs
instead of regular convolutions in E4 and E5, and get the
redefined convolution blocks DS-E4 and DS-E5. There are
two reasons why we only redefine E4 and E5. First, according
to the above analysis, E4 and E5 occupy the largest amount
of parameters. Second, we hope to use as many pre-trained
parameters of the vanilla VGG as possible to inherit powerful
feature extraction ability.

In this way, we construct our Lightweight Feature Extraction
Subnet, named LFE-VGG. As presented in Tab. I, the amount
of parameters of E4 is reduced from 5.90M to 0.67M, and that
of E5 is reduced from 7.08M to 0.81M. Overall, our LFE-VGG
reduces 11.50M parameters compared to the vanilla VGG,
and only has 3.22M parameters in total, which is a qualified
lightweight backbone. We will assess the effectiveness and
efficiency of LFE-VGG in Sec. IV-C.

C. Correlation Module
In video object segmentation, the target objects usually exist

in consecutive video frames with small differences. To accu-
rately segment the target objects, Lu et al. [46] employed the
co-attention mechanism [47] to effectively mine the inherent
correlation among consecutive video frames. Inspired by [46],
considering that the salient regions also exist in consecutive
features of an ORSI, we make an attempt to explore the cross-
layer correlation of continuous high-level semantic features
and propose the Correlation Module. Different from [46],
which generates corresponding segmentation maps of different
video frames, we focus on generating an initial coarse saliency
map from the continuous semantic features for location guid-
ance of low-level features.

We illustrate the Correlation Module (CorrM) in Fig. 3. It
has three main components: cross-layer correlation operator,
polishing gate, and initial coarse saliency map generation. In
the following, we elaborate CorrM based on these three parts,
and we also present the feature modulation process based on
the coarse saliency map.

1) Cross-layer Correlation. As shown in Fig. 3, we perform
the cross-layer correlation operator on f̂4

dse and f̂5
dse (i.e., the

continuous high-level semantic features), both belonging to
Rĉ4×h4×w4 . Here, we simplify refer their sizes ĉ4×h4×w4 as
C ×H ×W for notation conciseness.
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Fig. 3. Illustration of the Correlation Module (CorrM).

First, we reshape f̂4
dse to RC×(HW ), and reshape and

transpose f̂5
dse to R(HW )×C . Then, we define a learnable

weight matrix Wc ∈ RC×C for f̂5
dse, and construct a learning

process for the cross-layer correlation operator, which makes
our CorrM robust. Next, we compute the feature correlation
via matrix multiplication to capture similarity between each
row of the reshaped and transposed f̂5

dse and each column of
the reshaped f̂4

dse. We formulate the above process as follows:

r =
(
rshp(f̂5

dse)
)>

~Wc ~ rshp(f̂4
dse), (1)

where r ∈ R(HW )×(HW ) is the cross-layer correlation matrix,
rshp(·) is the reshape operation, > is the matrix transpose
operation, and ~ is the matrix multiplication.

After obtaining the cross-layer correlation matrix r, we
use the softmax function to normalize it along the rows and
columns respectively, and exploit it to determine the location
of salient regions of high-level semantic features, which can
be formulated as follows:

f4
corr = rshp

(
rshp(f̂4

dse)~ softmax(r)
)
, (2)

f5
corr = rshp

(
rshp(f̂5

dse)~ softmax(r>)
)
, (3)

where {f4
corr,f

5
corr} ∈ RC×H×W are features containing rich

location information.
Since we perform the matrix-based cross-layer correlation

operator on f̂4
dse and f̂5

dse, whose sizes are 128×32×32, its
computational cost is limited. Besides, only the parameters
of the weight matrix Wc need to be learned. Therefore, the
cross-layer correlation operator is with few parameters and
low computational cost, but has strong capabilities to locate
salient objects in ORSIs.

2) Polishing Gate. The above cross-layer correlation opera-
tor may leave some redundant information in f4

corr and f5
corr.

To address this issue, we introduce a simple but effective gate
mechanism to polish f4

corr and f5
corr, and achieve more pure

location information.
In order to reduce the module parameters, here, we adopt the

regular 1×1 convolution layer to separately produce a response
map (which belongs to [0, 1]1×H×W ) for f4

corr and f5
corr. Based

on the two response maps, we filter the redundant information
of f4

corr and f5
corr. We formulate the above gate mechanism

as follows:

f4
gate = sigmoid

(
conv1×1(f

4
corr)

)
⊗ f4

corr,

f5
gate = sigmoid

(
conv1×1(f

5
corr)

)
⊗ f5

corr,
(4)

where {f4
gate,f

5
gate} ∈ RC×H×W are the polished features,

conv1×1(·) is the regular 1×1 convolution operator, and ⊗
is the element-wise multiplication. Moreover, we adopt the
residual connection to merge f4

gate and f̂4
dse, and f5

gate and
f̂5
dse, respectively, producing f̂4

gate and f̂5
gate as follows:

f̂4
gate = DSconv(f4

gate ⊕ f̂4
dse),

f̂5
gate = DSconv(f5

gate ⊕ f̂5
dse),

(5)

where DSconv(·) is the 3×3 DSConv and ⊕ is the element-
wise summation. This original content preservation mode
(i.e., the residual connection) is good for feature represen-
tation.

3) Initial Coarse Saliency Map Generation. Thanks to the
above two effective parts of CorrM, the generated f̂4

gate and
f̂5
gate are very informative. Based on them, we introduce the

last part of our CorrM as follows:

S4 = sigmoid
(
conv1×1

(
DSconv(f̂4

gate } f̂5
gate)

))
, (6)

where S4 ∈ [0, 1]1×32×32 is the initial coarse saliency map and
} is the concatenation. In this way, we completely extract the
location information of f̂4

gate and f̂5
gate, accurately determining

the salient regions in ORSIs, as S4 shown in Fig. 2.
4) Feature Modulation. Further, we migrate location infor-

mation to the basic features f3
e as follows:

f̂3
e = Up(S4)⊗ f3

e ⊕ f3
e , (7)

where f̂3
e ∈ Rc3×h3×w3 is the modulated features and Up(·) is

the upsampling operation. This direct feature modulation mode
provides accurate location information for the subsequent
object refinement process, laying a solid foundation for the
final fine saliency map.

In summary, our CorrM balances effectiveness and effi-
ciency, that is, predicting a momentous coarse saliency map
with few parameters. We will evaluate the importance of our
CorrM in Sec. IV-C.

D. Dense Lightweight Refinement Block

The widely used refinement block usually follows a cas-
caded structure, i.e., several regular convolution layers are
connected one by one. However, there are some challenging
scenarios in ORSIs, such as multiple objects and small objects.
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Fig. 4. Illustration of the Dense Lightweight Refinement Block (DLRB).

The cascaded structure is not conducive to capturing multi-
scale information and is a suboptimal way for objects refine-
ment in ORSIs. Besides, the cascaded refinement block is usu-
ally implemented by regular convolution layers, bringing lots
of parameters. Inspired by DenseNet [48] and DSConv [27],
[28], we implement a refinement block with the dense structure
and DSConvs, constructing a Dense Lightweight Refinement
Block (DLRB) for objects refinement in ORSIs, as shown in
Fig. 4.

For each DLRB, there are three dilated DSConvs with
progressive dilation rates {2,4,6} and three 1×1 convolution
layers. Dilated DSConvs enlarge the receptive field, capturing
multi-scale features comprehensively. And 1×1 convolution
layers are in charge of merging the captured features. The
output feature of DLRB-t is denoted as f tdlrb. Here, we take
DLRB-3 as an example. In DLRB-3, its input is f̂3

e , and we
decompose its dense structure into three stages, which are
formulated as follows:

f3,1
dlrb = conv1×1

(
DSconv2(f̂

3
e )⊕ f̂3

e

)
, (8)

f3,2
dlrb = conv1×1

(
DSconv4(f

3,1
dlrb)⊕ f3,1

dlrb ⊕ f̂3
e

)
, (9)

f3,3
dlrb = conv1×1

(
DSconv6(f

3,2
dlrb)⊕ f3,2

dlrb ⊕ f3,1
dlrb ⊕ f̂3

e

)
,

(10)
where DSconvr(·) is the dilated 3×3 DSConv with dilation
rate r, and f3,3

dlrb is the output feature of DLRB-3, i.e., f3
dlrb.

In this way, our DLRB can perceive multi-scale information
and bring powerful feature representation during the refine-
ment phase, which will facilitate the carving of salient objects
in ORSIs and lead to good performance. We will evaluate the
effectiveness of our DLRB in Sec. IV-C.

E. Loss Function

To effectively train CorrNet, we combine the classic BCE
loss and IoU loss to construct a comprehensive loss function
for network training, which is the same as previous SOD
methods [40], [61], [62]. Moreover, we also adopt the deep
supervision [54], [63] in the training phase to supervise two
intermediate saliency maps of the refinement subnet as well
as the coarse and fine saliency maps, as shown in Fig. 2.
The intermediate saliency maps and fine saliency map are
generated by the 1×1 convolution layer. We formulate the
total loss function Ltotal as:

Ltotal =
∑4

t=1

(
`bce
(
Up(St),G

)
+ `iou

(
Up(St),G

))
,

(11)

where G is the ground truth, and `bce(·) and `iou(·) are BCE
loss and IoU loss, respectively.

IV. EXPERIMENTS

A. Implementation Details and Evaluation Metrics

1) Implementation Details. We train and test CorrNet on
the ORSSD and EORSSD datasets, respectively. There are
800 ORSIs with corresponding ground truths in the ORSSD
dataset [12], in which 600 images are used for training and
200 images for testing. And there are 2,000 ORSIs with corre-
sponding ground truths in the EORSSD dataset [13], in which
1,400 images are used for training and 600 images for testing.
We adopt the flipping and rotation for data augmentation,
generating 4,800 training pairs for ORSSD and 11,200 training
pairs for EORSSD. All the experiments are conducted on the
PyTorch [64] platform with an NVIDIA Titan X GPU (12GB
memory). In the training phase, we resized the training pairs
to 256×256, and adopt the Adam optimization strategy [65]
with the batch size 8 and the initial learning rate 1e−4,
which will be divided by 10 after 30 epochs. We initialize
the first three blocks of LFE-VGG by the pre-trained VGG-
16 model [25], and initialize other newly added DSConvs
and 1×1 convolution layers by the normal distribution [66].
Notably, on the ORSSD dataset, we train our CorrNet for 44
epochs; and on the EORSSD dataset, we train our CorrNet for
34 epochs.

2) Evaluation Metrics. We employ five quantitative eval-
uation metrics to evaluate our method and other compared
methods, including S-measure (Sα, α = 0.5) [67], (maximum,
mean and adaptive) F-measure (Fβ , β2 = 0.3) [68], (maximum,
mean and adaptive) E-measure (Eξ) [69], Mean Absolute Error
(MAE, M), and Precision-Recall (PR) curve. The first three
evaluation metrics are the bigger the better. MAE is the smaller
the better. And PR curve is closer to the upper right, the better.

B. Comparison with State-of-the-art Methods

We conduct a comprehensive comparison with 26 state-of-
the-art NSI-SOD and ORSI-SOD methods, including eight
traditional methods (RRWR [49], HDCT [50], DSG [51],
SMD [52], RCRR [53], VOS [38], CMC [37], and
SMFF [34]), sixteen CNN-based methods (DSS [54],
RADF [55], R3Net [56], PoolNet [57], EGNet [22],
GCPA [58], MINet [59], ITSD [60], GateNet [21], SUCA [20],
PA-KRN [19], LVNet [12], DAFNet [13], MJRBM [17], SAR-
Net [18], and EMFINet [16]), and two lightweight methods
(CSNet [23] and SAMNet [24]). Since some methods have
different backbone versions, we only report their performance
based on VGG backbone. For a fair comparison, we retain
CNN-based NSI-SOD methods with their default parameter
settings on the same training set as our method. And the
saliency maps of other methods are provided by the authors
or generated by public source codes.

1) Computational Complexity Comparison. In Tab. II, we
report the inference speed with batch size of 1 (without
I/O time), parameter amount (#Param) and FLOPs of our
method and most compared methods. Notably, our method
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TABLE II
QUANTITATIVE COMPARISONS WITH 26 STATE-OF-THE-ART METHODS, INCLUDING FIVE TRADITIONAL NSI-SOD METHODS, THREE TRADITIONAL

ORSI-SOD METHODS, ELEVEN CNN-BASED NSI-SOD METHODS, FIVE CNN-BASED ORSI-SOD METHODS, AND TWO LIGHTWEIGHT METHODS, ON
EORSSD AND ORSSD DATASETS. THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE AND GREEN, RESPECTIVELY.

Methods Type
Input Speed #Param FLOPs EORSSD [13] ORSSD [12]

size (fps)↑ (M)↓ (G)↓ Sα ↑ Fmax
β ↑ Fmean

β ↑ F adp
β ↑ Emax

ξ ↑ Emean
ξ ↑ Eadp

ξ ↑ M ↓ Sα ↑ Fmax
β ↑ Fmean

β ↑ F adp
β ↑ Emax

ξ ↑ Emean
ξ ↑ Eadp

ξ ↑ M ↓

RRWR15 [49] T.N. - 0.3 - - .5992 .3993 .3686 .3344 .6894 .5943 .5639 .1677 .6835 .5590 .5125 .4874 .7649 .7017 .6949 .1324

HDCT16 [50] T.N. - 7 - - .5971 .5407 .4018 .2658 .7861 .6376 .5192 .1088 .6197 .5257 .4235 .3722 .7719 .6495 .6291 .1309

DSG17 [51] T.N. - 0.6 - - .6420 .5232 .4597 .4012 .7260 .6594 .6188 .1246 .7195 .6238 .5747 .5657 .7912 .7337 .7532 .1041

SMD17 [52] T.N. - - - - .7101 .5884 .5473 .4081 .7697 .7286 .6416 .0771 .7640 .6692 .6214 .5568 .8230 .7745 .7682 .0715

RCRR18 [53] T.N. - 0.3 - - .6007 .3995 .3685 .3347 .6882 .5946 .5636 .1644 .6849 .5591 .5126 .4876 .7651 .7021 .6950 .1277

VOS18 [38] T.R. - - - - .5082 .2765 .2107 .1836 .5982 .4886 .4767 .2096 .5366 .3471 .2717 .2633 .6514 .5352 .5826 .2151

SMFF19 [34] T.R. - - - - .5401 .5176 .2992 .2083 .7744 .5197 .5014 .1434 .5312 .4417 .2684 .2496 .7402 .4920 .5676 .1854

CMC19 [37] T.R. - - - - .5798 .3268 .2692 .2007 .6803 5894 .4890 .1057 .6033 .3913 .3454 .3108 .7064 .6417 .5996 .1267

DSS17 [54] C.N. 400×300 8 62.23 114.6 .7868 .6849 .5801 .4597 .9186 .7631 .6933 .0186 .8262 .7467 .6962 .6206 .8860 .8362 .8085 .0363

RADF18 [55] C.N. 400×400 7 62.54 214.2 .8179 .7446 .6582 .4933 .9140 .8567 .7162 .0168 .8259 .7619 .6856 .5730 .9130 .8298 .7678 .0382

R3Net18 [56] C.N. 300×300 2 56.16 47.5 .8184 .7498 .6302 .4165 .9483 .8294 .6462 .0171 .8141 .7456 .7383 .7379 .8913 .8681 .8887 .0399

PoolNet19 [57] C.N. 400×300 25 53.63 123.4 .8207 .7545 .6406 .4611 .9292 .8193 .6836 .0210 .8403 .7706 .6999 .6166 .9343 .8650 .8124 .0358

EGNet19 [22] C.N. ∼380×320 9 108.07 291.9 .8601 .7880 .6967 .5379 .9570 .8775 .7566 .0110 .8721 .8332 .7500 .6452 .9731 .9013 .8226 .0216

GCPA20 [58] C.N. 320×320 23 67.06 54.3 .8869 .8347 .7905 .6723 .9524 .9167 .8647 .0102 .9026 .8687 .8433 .7861 .9509 .9341 .9205 .0168

MINet20 [59] C.N. 320×320 12 47.56 146.3 .9040 .8344 .8174 .7705 .9442 .9346 .9243 .0093 .9040 .8761 .8574 .8251 .9545 .9454 .9423 .0144

ITSD20 [60] C.N. 288×288 16 17.08 54.5 .9050 .8523 .8221 .7421 .9556 .9407 .9103 .0106 .9050 .8735 .8502 .8068 .9601 .9482 .9335 .0165

GateNet20 [21] C.N. 384×384 25 100.02 108.3 .9114 .8566 .8228 .7109 .9610 .9385 .8909 .0095 .9186 .8871 .8679 .8229 .9664 .9538 .9428 .0137

SUCA21 [20] C.N. 256×256 24 117.71 56.4 .8988 .8229 .7949 .7260 .9520 .9277 .9082 .0097 .8989 .8484 .8237 .7748 .9584 .9400 .9194 .0145

PA-KRN21 [19] C.N. 600×600 16 141.06 617.7 .9192 .8639 .8358 .7993 .9616 .9536 .9416 .0104 .9239 .8890 .8727 .8548 .9680 .9620 .9579 .0139

LVNet19 [12] C.R. 128×128 1.4 - - .8630 .7794 .7328 .6284 .9254 .8801 .8445 .0146 .8815 .8263 .7995 .7506 .9456 .9259 .9195 .0207

DAFNet21 [13] C.R. 128×128 26 29.35 68.51 .9166 .8614 .7845 .6427 .9861 .9291 .8446 .0060 .9191 .8928 .8511 .7876 .9771 .9539 .9360 .0113

MJRBM21 [17] C.R. 352×352 32 43.54 95.7 .9197 .8656 .8239 .7066 .9646 .9350 .8897 .0099 .9204 .8842 .8566 .8022 .9623 .9415 .9328 .0163

SARNet21 [18] C.R. 336×336 47 25.91 129.7 .9240 .8719 .8541 .8304 .9620 .9555 .9536 .0099 .9134 .8850 .8619 .8512 .9557 .9477 .9464 .0187

EMFINet21 [16] C.R. 256×256 25 107.26 480.9 .9290 .8720 .8486 .7984 .9711 .9604 .9501 .0084 .9366 .9002 .8856 .8617 .9737 .9671 .9663 .0109

CSNet20 [23] L.W. 224×224 38 0.14 0.7 .8364 .8341 .7656 .6319 .9535 .8929 .8339 .0169 .8910 .8790 .8285 .7615 .9628 .9171 .9068 .0186

SAMNet21 [24] L.W. 336×336 44 1.33 0.5 .8622 .7813 .7214 .6114 .9421 .8700 .8284 .0132 .8761 .8137 .7531 .6843 .9478 .8818 .8656 .0217

Ours L.W. 256×256 100 4.09 21.09 .9289 .8778 .8620 .8311 .9696 .9646 .9593 .0083 .9380 .9129 .9002 .8875 .9790 .9746 .9721 .0098

T.N.: Traditional NSI-SOD method, T.R.: Traditional ORSI-SOD method, C.N.: CNN-based NSI-SOD method, C.R.: CNN-based ORSI-SOD method, L.W.: Lightweight method.
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Fig. 5. Quantitative comparison in terms of PR curve on two datasets. The
top five methods are shown in different colors, while the other compared
methods are shown in gray. Please zoom-in for better visualization of details.

achieves competitive performance in these three computa-
tional complexity metrics. Our method (i.e., 100 fps) has
2.1× faster inference speed than the second-placed method
SARNet (i.e., 47 fps). Compared with CNN-based methods,
the parameter amount and FLOPs of our method are smaller
than them. While compared with two lightweight methods,
i.e., CSNet and SAMNet, our method is slightly inferior, but
it is still good as the first lightweight ORSI-SOD solution.
Therefore, we believe that our method is an efficient and
promising lightweight ORSI-SOD framework.

2) Quantitative Comparison. In Fig. 5, we plot the PR

curves of our method and all compared methods on EORSSD
and ORSSD. As visible, our method (i.e., the red one) is
closest to the upper right than other methods on both datasets,
showing a competitive performance.

We report the quantitative performance of our method and
all compared methods on EORSSD and ORSSD in Tab. II.
On the EORSSD dataset, our method ranks first in five out
of all eight metrics. Compared with EMFINet with similar
performance, our method has 4× faster inference speed,
26× fewer parameters, and 23× fewer FLOPs than it. On
the ORSSD dataset, our method outperforms all compared
methods in all eight metrics. Specifically, in Fmax

β , Fmean
β

and F apt
β , our method is 1.27%, 1.46% and 2.58% higher

than the second-placed method EMFINet respectively. Com-
pared with the lightweight methods, i.e., CSNet and SAMNet,
the performance of our method is significantly better than
them. Moreover, we observe that the performance of CNN-
based ORSI-SOD methods is generally better than that of
the retrained CNN-based NSI-SOD methods, which indicates
that the ORSI scenes are extremely challenging. Overall,
the above analysis clearly demonstrates that our lightweight
CorrNet achieves a favorable trade-off between effectiveness
and efficiency.

3) Visual Comparison. We present the visual comparison of
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ORSI GT Ours EMFINet SARNet MJRBM DAFNet LVNet PA-KRN SUCA CMC RCRR
Fig. 6. Visual comparisons with nine representative state-of-the-art methods. Please zoom-in for the best view.

our method and nine representative state-of-the-art methods
on some challenging ORSI scenes in Fig. 6. As the first
four rows of Fig. 6, the first scene is low contrast. In these
four cases, only our method can clearly highlight all salient
objects. Other compared methods are interfered by similar
backgrounds and fail in individual cases, such as EMFINet
fails in the second case and MJRBM fails in the first and
third cases. As the fifth and sixth rows of Fig. 6, the second
scene is multiple objects, which is a difficult scene in ORSI-
SOD. Our method can accurately locate all salient objects
with fine details, while some models occasionally miss objects
(such as SARNet and LVNet) or fail to outline details (such
as DAFNet and SUCA). As the seventh row of Fig. 6, the
third scene is the big object. In this scene, due to the large
span of the bridge, most methods only segment its middle part
and ignore its two ends. As the last two rows of Fig. 6, the
fourth scene is cluttered background. The cluttered background
confuses some methods, causing them to incorrectly include
background or miss objects in their saliency maps. Overall,
our method shows strong scene adaptability and overcomes
the above scenes.

C. Ablation Studies

Here, we conduct comprehensive experiments to evaluate
the effectiveness of important components of our CorrNet
on EORSSD dataset. In particular, we investigate 1) the
efficiency of the lightweight feature extraction subnet, 2) the
effectiveness of the coarse-to-fine strategy, 3) the individual
contribution of each module in CorrNet, 4) the importance of
cross-layer correlation and polishing gate in CorrM, and 5)
the rationality of dilated DSConvs’ dilation rates in DLRB.

TABLE III
ABLATION RESULTS OF EVALUATING THE EFFICIENCY OF THE

LIGHTWEIGHT FEATURE EXTRACTION SUBNET.

Models
#Param FLOPs EORSSD [13]

(M)↓ (G)↓ Sα ↑ Fmax
β ↑ Emax

ξ ↑ M ↓

Vanilla-VGG 15.59 28.1 .9292 .8789 .9718 .0083

DS-VGG 2.55 10.4 .9063 .8447 .9512 .0108

LFE-VGG (Ours) 4.09 21.1 .9289 .8778 .9696 .0083

Vanilla-VGG: VGG-16 with regular convs.

DS-VGG: VGG-16 with DSConvs.

For each variant experiment, we rigorously retrain it with the
same parameter settings and datasets as in Sec. IV-A.

1) The efficiency of the lightweight feature extraction subnet.
To evaluate the efficiency of the lightweight feature extraction
subnet (i.e., LFE-VGG), we replace it with two backbones,
i.e., Vanilla-VGG and DS-VGG. Vanilla-VGG is all convolu-
tion layers of VGG-16 are regular convolution layers, and DS-
VGG is all convolution layers of VGG-16 are DSConvs. We
report the quantitative results in Tab. III.

The complete Vanilla-VGG does improve performance, but
the improvement is limited, e.g., Fmax

β is increased by 0.11%
and Emax

ξ is increased by 0.22%. However, along with im-
proved performance comes a massive increase in parameters,
e.g., #Param increases sharply from 4.09M to 15.59M. This
means that our LFE-VGG is effective and efficient, and our
modification is reasonable. As for DS-VGG, its performance
is obviously degraded, e.g., Fmax

β is reduced by 3.31% and
Emax
ξ is reduced by 1.84%, and its parameter reduction is also
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TABLE IV
ABLATION RESULTS OF EVALUATING THE EFFECTIVENESS OF THE

COARSE-TO-FINE STRATEGY. THE BEST ONE IN EACH COLUMN IS BOLD.

Models
EORSSD [13]

Sα ↑ Fmax
β ↑ Emax

ξ ↑ M ↓

S4 .8741 .7800 .9578 .0126

S3 .9138 .8560 .9667 .0094

S2 .9265 .8755 .9698 .0083

S1 (Ours) .9289 .8778 .9696 .0083

TABLE V
ABLATION RESULTS OF EVALUATING THE INDIVIDUAL CONTRIBUTION OF
EACH MODULE IN CORRNET. THE BEST ONE IN EACH COLUMN IS BOLD.

No. Baseline FEM DLRB CorrM
EORSSD [13]

Sα ↑ Fmax
β ↑ Emax

ξ ↑ M ↓

1 ! .9146 .8548 .9535 .0113

2 ! ! .9160 .8591 .9541 .0106

3 ! ! ! .9231 .8679 .9607 .0086

4 ! ! ! .9232 .8718 .9639 .0086

5 ! ! ! ! .9289 .8778 .9696 .0083

limited, e.g., #Param is reduced by 1.54M. We think that the
reason for the performance degradation of DS-VGG is because
its parameters are initialized by the normal distribution [66],
losing the benefits of pre-trained parameters. Overall, our LFE-
VGG maintains the powerful feature extraction ability of E1,
E2 and E3, and greatly reduces the parameters of DS-E4 and
DS-E5, so it is a qualified lightweight backbone.

2) The effectiveness of the coarse-to-fine strategy. To evalu-
ate the effectiveness of the coarse-to-fine strategy, we quanti-
tatively measure the performance of the initial coarse saliency
map (S4), two intermediate saliency maps (S3 and S2) and
the final fine saliency map (S1). As reported in Tab. IV, the
quantitative performance is generally incremental, e.g., Fmax

β :
78.00%→ 85.60%→ 87.55%→ 87.78%. And compared with
S4, the improvement of S1 is greatly significant in all metrics,
i.e., Sα, Fmax

β , Emax
ξ andM are improved by 5.48%, 9.78%,

1.18% and 0.0043, respectively. This confirms that the coarse-
to-fine manner is useful in our CorrM, and the refinement
subnet demonstrates powerful refinement capabilities.

3) The individual contribution of each module in Corr-
Net. To evaluate the individual contribution of each mod-
ule, i.e., FEM, DLRB and CorrM, we design four variants
of the full CorrNet (i.e., No.5) in Tab. V: 1) Baseline,
2) Baseline+FEM, 3) Baseline+FEM+DLRB, and 4) Base-
line+FEM+CorrM. For Baseline, we directly remove FEMs,
replace CorrM with concatenation-convolution operation to
generate the coarse saliency map, and replace DLRB with
three cascaded regular DSConvs.

According to the quantitative performance in Tab. V, we ob-
serve that each module of CorrNet contributes to the ultimate
excellent performance. Our full CorrNet boosts the primitive
Baseline by 1.43%, 2.30%, 1.61%, and 0.0030 on Sα, Fmax

β ,

TABLE VI
ABLATION RESULTS OF EVALUATING THE IMPORTANCE OF CROSS-LAYER
CORRELATION AND POLISHING GATE IN CORRM AND THE RATIONALITY

OF DILATED DSCONVS IN DLRB. THE BEST ONE IN EACH COLUMN IS
BOLD.

Models
EORSSD [13]

Sα ↑ Fmax
β ↑ Emax

ξ ↑ M ↓

CorrNet (Ours) .9289 .8778 .9696 .0083

w/o Correlation .9232 .8690 .9649 .0085

w/o Gate .9253 .8728 .9661 .0086

w/o dilation rate .9254 .8718 .9663 .0089

w/ 1-3-5 .9262 .8727 .9662 .0087

w/ 3-5-7 .9272 .8743 .9666 .0077

Emax
ξ and M, respectively. As the key roles of CorrNet,

DLRB improves Fmax
β and Emax

ξ of Baseline+FEM by 0.88%
and 0.66%, respectively, and CorrM improves Fmax

β and Emax
ξ

of Baseline+FEM by 1.27% and 0.98%, respectively. With the
cooperation of DLRB and CorrM, the full CorrNet improves
Fmax
β and Emax

ξ of Baseline+FEM by 1.87% and 1.55%,
respectively. Therefore, the above analysis verifies that each
module in CorrNet is effective for ORSI-SOD.

4) The importance of cross-layer correlation and polishing
gate in CorrM. To evaluate the importance of cross-layer
correlation and polishing gate in CorrM, we provide two vari-
ants in Tab. VI: 1) deleting cross-layer correlation operator in
CorrM, namely w/o Correlation, and 2) deleting two polishing
gates in CorrM, namely w/o Gate. For w/o Correlation, there
is no cross-layer correlation operator to capture the feature
correlation among the high-level semantic context, the object
localization capabilities of CorrM are greatly weakened, and
Sα and Fmax

β drop to 92.32% and 86.90%, respectively. w/o
Gate can capture the object location information with some
redundant information, and obtain slightly better results than
w/o Correlation, i.e., 92.53% of Sα and 87.28% of Fmax

β .
The above variants verify that the cross-layer correlation and
polishing gate are important to CorrM.

5) The rationality of dilated DSConvs’ dilation rates in
DLRB. To evaluate the rationality of dilated DSConvs’ dilation
rates in DLRB, we provide three variants in Tab. VI: 1)
replacing three dilated DSConvs with three regular DSConvs
in DLRB, namely w/o dilation rate, 2) changing the original
dilation rates {2,4,6} to {1,3,5}, namely w/ 1-3-5, and 3)
changing the original dilation rates {2,4,6} to {3,5,7}, namely
w/ 3-5-7. Based on the quantitative performance of w/o dila-
tion rate and w/ 1-3-5, we observe that the relatively large
receptive fields can capture more complementary multi-scale
information, which is very important for objects refinement in
ORSI-SOD. However, when we continue to expand the recep-
tive fields to {3,5,7}, we observe the performance degradation
of w/ 3-5-7, possibly due to that excessively large receptive
fields make DLRB impossible to accurately capture the salient
objects with variable scales in ORSIs. Thus, we can come to a
conclusion that the dilated DSConvs with dilation rates {2,4,6}
are rational and exactly appropriate in DLRB.
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D. Discussion

Here, we discuss the weaknesses of our method and our
future works. For weaknesses, we summarize as follows: 1)
since our method is based on GPU, its model size is still
too large for edge computing devices; and 2) although the
parameter amount and computations of our method are small
as compared with most CNN-based methods, it is still difficult
to run on the CPU in real time.

Therefore, in future works, we will work in the following
two directions: 1) similar to the lightweight ORSI-SOD meth-
ods, we will focus on developing a lightweight backbone with
smaller model size for ORSI-SOD; and 2) we will introduce
the model pruning technology into our model to remove
redundant layers and to further accelerate our model.

V. CONCLUSION

In this paper, we propose an effective lightweight frame-
work, namely CorrNet, for ORSI-SOD. In CorrNet, we first
lighten the vanilla VGG and propose a lightweight feature
extraction subnet, namely LFE-VGG. Then, we lighten other
modules of CorrNet, that is, we use DSConvs instead of
regular convolution layers in the modules. In addition, in order
to obtain a good performance, CorrNet follows the coarse-to-
fine strategy. It first generates an initial coarse saliency map
from high-level semantic features via the Correlation Module,
and then refines the salient objects via the refinement subnet
equipped with Dense Lightweight Refinement Blocks, produc-
ing the final fine saliency map. Experimental evaluations on
two ORSI-SOD datasets demonstrate that though our CorrNet
only has 4.09M parameters and 21.09G FLOPs, it achieves
competitive or even better performance than large CNN-based
methods and runs at 100 fps. The success of our CorrNet
comes from three aspects: 1) the matrix-based cross-layer
correlation operation that extracts salient regions effectively
and only contains a few parameters, 2) the DSConv that
maintains powerful feature representation capabilities and only
has about 10% of the parameters of the regular convolution
layer, and 3) the coarse-to-fine strategy that lays a high-
accuracy foundation.
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