
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 4408914

Landsat Snow-Free Surface Albedo Estimation Over
Sloping Terrain: Algorithm Development

and Evaluation
Yichuan Ma , Tao He , Member, IEEE, Shunlin Liang , Fellow, IEEE, Jianguang Wen,

Jean-Philippe Gastellu-Etchegorry, Member, IEEE, Jiang Chen , Anxin Ding , and Siqi Feng

Abstract— Surface albedo plays a key role in global climate
modeling as a factor controlling the energy budget. Satellite
observations were utilized to estimate surface albedo at global
and regional scales with good precision over flat areas. How-
ever, because topography greatly complicates radiative trans-
fer (RT) processes, estimating the albedo of rugged terrain
with satellite data remains a challenge. In addition, albedo
definitions over sloping terrain differ from that for flat areas.
They include horizontal/horizontal sloped surface albedo (HHSA)
and inclined/inclined sloped surface albedo (IISA). Methods
for retrieving HHSA and IISA in mountains have not been
well-explored. Here, we retrieved HHSA and IISA on sloping
terrain from Landsat 8 using a direct estimation algorithm.
We simulated a dataset of Landsat top-of-atmosphere (TOA)
reflectance and surface albedo with discrete anisotropic radiative
transfer (DART) model, for variable atmospheric, vegetation,
soil, and topography properties. Then, we used artificial neural
networks (ANNs) to derive an empirical relationship between
TOA reflectance and surface albedo. The accuracy of our method
was verified with in situ measurements: root mean squared
error (RMSE) and bias equal to 0.029 and −0.010 for HHSA, and
0.023 and −0.001 for IISA, respectively. Several albedo results
(HHSA, IISA, values without topographic consideration) were
evaluated and compared. HHSA was found similar to albedo
without topographic consideration, but IISA, considered as the
“true albedo” for sloping terrain, showed large difference from
them. This study demonstrated the feasibility of surface albedo
estimation from Landsat TOA reflectance directly in rugged
terrains and advanced our understanding of energy budget in
mountains.
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I. INTRODUCTION

MOUNTAINS cover approximately a quarter of earth’s
land surface [1], with 25% of terrestrial biodiversity

and 28% of global forests [2]. Their ecosystems are fragile
and sensitive to climate change; the mechanisms of which,
however, have not been well explored [3]–[5]. Among which,
monitoring mountain energy budget is of great importance for
understanding global and regional climate change [6], [7].

Surface albedo, defined as the ratio of reflected to incident
shortwave radiation, is a primary controlling factor for global
energy budget and is usually a key variable in climate mod-
els [8]. Satellite remote sensing is widely used as the most
effective way to estimate surface albedo in large areas with
long time series. Many albedo estimation algorithms [9]–[11]
and global products [12]–[15] have been developed, which
has boosted climate change research [16]–[18]. In recent
years, fine spatial resolution (e.g., 10–50 m, hereinafter be
shorted as “fine-resolution”) albedo estimation algorithms and
datasets have been developed for fine-scale environmental
monitoring and ecological applications [10], [19], [20], with a
good potential for better understanding and quantifying energy
budget in mountainous areas.

Topographic effects change the sun-target-viewing geo-
metrics, and it greatly influenced incoming and reflected
radiative fluxes in mountains [21], [22] (up to 600 W/m2),
and thus impacted surface albedo obviously; and negligence
of such effects for surface albedo retrievals over mountain
areas could introduce large errors [23], [24]. For example,
Wen et al. [25] showed that the coarse-scale albedo error can
reach 33% over a 40◦ slope. Hao et al. [23] highlighted the
need to consider topographic effects on snow-free surface
albedo even over a gentle terrain (with slope of 10◦–20◦).
Shi and Xiao [26] found that the errors could exceed 35%
when ignoring topographic effects for surface albedo in rugged
terrain. Therefore, the consideration of topography is neces-
sary when estimating surface albedo in mountainous areas.
Meanwhile, there are two definitions of surface albedo of
sloping terrain [27], [28]: horizontal/horizontal sloped surface
albedo (HHSA) and inclined/inclined sloped surface albedo
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Fig. 1. (a) HHSA and (b) IISA on sloping terrain. The yellow rectangles
indicate the reference planes. The black sectors indicate the angular range of
incident radiation for different albedos.

TABLE I

MAIN DIFFERENCE AMONG DIFFERENT ALBEDO DEFINITIONS

(IISA, also called slope-parallel albedo), as shown in Fig. 1.
The mathematical definitions for HHSA and IISA are shown
in the following equations:

HHSA = E↑
hor/E↓

hor (1)

IISA = E↑
slp/E↓

slp (2)

where E↑
hor and E↓

hor are upward and downward shortwave
radiation on horizontal plane and E↑

slp and E↓
slp are on the slop-

ing terrain, and mathematical details were described in [28].
The main difference between HHSA and IISA is concluded
in Table I. The confusion of HHSA and IISA may lead
to large deviations in further studies markedly, such as net
radiation retrieval [29] and small-scale fire process analysis in
mountains [30], [31]. Therefore, it is in urgent need to advance
our knowledge about HHSA and IISA in large areas to better
understand mountainous ecosystem.

Some studies have been carried out to estimate surface
albedo over mountainous areas. To correct the topographic
effects in coarse-scale albedo data, Wen et al. [25], [34]
smoothed the topography in the coarse-scale pixel and devel-
oped an equivalent slope for moderate-resolution imaging
spectroradiometer (MODIS) albedo estimation. To obtain daily
albedo in mountains, Li et al. [35] retrieved the shadow cov-

erage ratio for the correction of beam radiance, and estimated
albedo on complex terrain using MODIS data. To overcome
the topographic effects in high-resolution data, Shi et al. [36]
employed a coupled surface-atmosphere model with topo-
graphic consideration, and estimated multiple parameters in
rugged terrain, including HHSA. To cover the gap of albedo
product in high latitude, Traversa et al. [37] obtained albedo
based on atmospheric and topographic correction, and narrow-
to-broadband conversion. Lin et al. [38] found that retriev-
ing albedo by bidirectional reflectance distribution function
(BRDF)-based mountain-radiative-transfer (RT) model was
more accurate than retrieving it using separate atmospheric and
topographic corrections in mountains. Ma et al. [39] also found
correction bias in the widely used topographic correction mod-
els, and recommended coupling topographic considerations in
parameters estimation rather than adopt topographic correc-
tion. Some researchers have developed conversion algorithms
from HHSA to IISA for in situ measurements [33], [40], but
studies for both HHSA and IISA estimation from satellite data
are still lacking.

Fine-resolution satellites have the potential to depict surface
albedo in mountainous areas because topography induces large
spatial variability. However, their relatively small field of
views, long revisit cycles, and rapid change of sun-target-
sensor geometry in mountains make it difficult to collect
enough BRDF samplings to follow the albedo estimation
procedure with coarse-resolution satellite data, such as the
MODIS albedo product algorithm [12], [15], [41]. In addi-
tion, performing atmospheric corrections in mountainous areas
is difficult, and the adoption of topographic correction and
atmospheric correction would introduce errors into albedo
estimation. The direct estimation algorithm [9] could be used
to estimate surface albedo from top-of-atmosphere (TOA)
reflectance with instantaneous observations, and has shown
good performance in global scale [42], [43]. It also showed
great potential for accurate surface albedo estimation from
satellite data with limited angular sampling, such as Air-
borne Visible Infrared Imaging Spectrometer [44], Chinese
HJ-1 [45], and Landsat [46]. In mountainous areas, the direct
estimation algorithm may be a good option to retrieve albedo
without explicit atmospheric correction and BRDF modeling.
The recent improved accuracy and computing efficiency of 3-D
RT models [47], [48] and high-performance computers offer
us new opportunities for direct estimation of HHSA and IISA
on sloping terrain. Furthermore, there are remaining problems
in albedo estimation in mountains.

1) How to design the simulation scene and select appropriate
parameters to simulate typical sloping terrain?

2) How to utilize the simulation dataset for high-resolution
albedo estimation in mountains?

3) Whether it is possible to estimate HHSA and IISA from
satellite observations?

4) What is the difference between albedo with different
definitions?

The main objectives of this article are to explore the
feasibility of direct estimation algorithm based on the state-
of-the-art 3-D RT model that estimates snow-free albedo of
sloping terrain with fine-resolution TOA satellite reflectance
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Fig. 2. Flowchart of surface albedo estimation on sloping terrain with the direct estimation algorithm.

and topography data, and also to evaluate and compare dif-
ferent surface albedo over mountain areas. The following
strategies assured our model’s robustness.

1) Global sensitivity analysis was used to select typical
simulation parameters which ensured the simulation datasets
representativeness.

2) Good validation results against simulation dataset and
ground measurements declared our model’s feasibility in
diverse conditions.

The methods and data are included in Sections II and III,
respectively. The albedo estimation results are presented in
Section IV and discussed in Section V. Finally, the conclu-
sions are provided in Section VI.

II. METHODOLOGY

The discrete anisotropy radiative transfer (DART) [48]
model was used for atmospheric and sloping terrain’s RT mod-
eling. Artificial neural network (ANN) models were used to
link solar angles, topography, simulated TOA reflectance, and
surface albedo. ANN models were applied to satellite obser-
vations and topographic data for HHSA and IISA estimations,
respectively. We validated results with both simulated dataset
and in situ measurements, and we compared and analyzed
the albedo estimation without considering the topographic
effects [46], and the estimated HHSA and IISA.

Fig. 2 shows the flowchart of our surface albedo esti-
mation on sloping terrain. First, DART simulations were
carried out for creating a simulation dataset, with consider-
ation of topography, surface reflectivity properties (soil and
vegetation), atmospheric conditions, and illumination-viewing
geometries; their typical parameters setting in this study was
adopted from former studies [23], [49], [50] followed by
sensitivity analyses. Second, sun zenith angle (SZA), slope,
relative angle between sun azimuth angle and terrain’s aspect
(RAA), and TOA reflectance and surface albedo (HHSA and

IISA, respectively) were used for constructing ANN models.
We used 75% simulations to build ANN models, and 25%
to validate the models. We also collected in situ measured
HHSA and IISA for validation. Then, in the preprocessing
step of Landsat TOA reflectance data, pixels with cloud and
shadow were removed. Finally, surface albedo was estimated
by supplying the topographic data and satellite (e.g., Landsat)
TOA reflectance to the trained ANN models.

A. DART Simulation

DART is one of the most accurate 3-D RT models for the
simulation of remote sensing observations and radiation budget
of ground with topography and atmosphere [28], [51], [52].
It simulates the earth-atmosphere radiative coupling and envi-
ronmental effects in mountainous areas [48]. Its atmospheric
RT modeling has been successfully verified with MODerate
resolution atmospheric TRANsmission (MODTRAN) [53].
Here, we used DART (version 5.7.9, released on January 28,
2021, downloaded from https://dart.omp.eu/#/) with improved
accuracy and computational efficiency [48], [54], to simulate
HHSA and IISA on sloping terrain. HHSA was simulated by
the ratio of the existence (i.e., upward scattered radiation) to
irradiance (i.e., total incident radiation) of a horizontal plane
above the scene, and IISA equaled to one minus the ratio of the
absorbed radiation to the total intercepted radiation provided
by the outputs of DART [55].

In DART simulations, the topography was designed as
a 30 m × 30 m scene (the same size as a “nominal”
Landsat pixel) with soil and vegetation, as shown in Fig. 3.
Shi and Xiao [26] declared mean errors of albedo when
neglecting reflected radiation from neighboring environment
was small for low-reflective surface, and Sirguey [56] had
similar findings; therefore, the effect of nearby pixels could
be neglected in our study. We assumed there was no ter-
rain undulation in the high-resolution satellite pixel, which
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Fig. 3. DART simulation scene.

was called “solo slope” [24]. Thus, we used the so-called
“infinite slope” mode that ensures a continuous slope in an
infinite landscape [48]. Different topographic conditions were
considered by changing the slope and aspect of the scene,
while surface and atmospheric properties were also varied
to represent different surface and atmospheric conditions.
Snow covers, with very noteworthy reflectance from nearby
environment [57] and specific simulation conditions [58], were
beyond the scope of this study.

Surface BRDF product was not considered as the input for
simulation because current available satellite BRDF products
were derived from coarse-resolution satellite data, which can
contain complex sloping terrain, and the description of BRDF
features in mountainous areas remains a challenge [52], [59].
Instead, vegetation and soil’s features on sloping terrain were
simulated by the PROSPECT [60] and SOILSPECT [61]
models, respectively. Then, we used DART codes for creating
the simulation dataset.

Although computing efficiency of DART codes has been
continuously improved, carrying out multiple simulations with
high-dimension parameters is still time-consuming. There-
fore, the space of input parameters was carefully defined
to reduce computation time. For example, considering the
aerosol conditions in mountain areas [62], we selected three
aerosol optical depths AOD values (0.05, 0.2, and 0.4) of
the “RURALV23” aerosol model [63]. Gases (water vapor,
ozone, etc.) were prescribed by the “USSTD76” model [63].
Following Ma et al. [64] and Shi et al. [65], we selected
“spherical” leaf inclination distribution type. Based on former
research [50], [66], [67], we considered four parameters (struc-
ture coefficient N , and chlorophyll Cab, dry matter Cm , and
leaf water Cw contents) for PROSPECT, and two parameters
(ω, b) for SOILSPECT model. Also, a variance-based global
sensitivity analysis [23], [68], [69] was performed to determine
the intervals of inputting parameters. It decomposed the output
variance into fractions of total variance V (Y ) to quantify
the contribution of each parameter based on the following
equation:

V (Y ) =
n�

i=1

Vi +
n�

i=1

n�
j=i+1

Vi, j . . . + V1,2,...,n (3)

Fig. 4. Total sensitivity analysis for simulation parameters.

TABLE II

INPUT PARAMETERS FOR DART SIMULATION

where n is the number of input variables, Vi is the partial
variance of the i th variable, and Vi, j is the joint impact of the
i th and j th variable variance minus their first-order effects.
The total sensitivity index ST i was defined in the following
equation:

ST i =
⎛
⎝Vi +

�
j �=i

Vi, j + · · · + V1,2,...,n

⎞
⎠�

V (Y ) (4)

where a larger ST i indicates higher importance of the input
variable to the output variable.

Fig. 4 shows each variable’s total sensitivity to HHSA and
IISA. HHSA depends more on SZA, slope, and RAA than
IISA, and less on vegetation and soil properties than IISA.
This sensitivity analysis and former studies [23], [50] indicate
that IISA and HHSA are sensitive to SZA, slope, RAA, leaf
area index (LAI), Cab, and ω. We considered a variation of
SOILSPECT b despite its low sensitivity because this low
sensitivity is mainly due to dense vegetation (e.g., LAI = 6).
Note that scenes with shadow were removed (e.g., SZA = 70◦,
RAA = 180◦, slope = 50◦) because shadow areas were out
of our study scope. Table II shows the ranges of the selected
parameters.
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B. Albedo Estimation Method Based on an ANN Model

Machine learning methods have already showed great poten-
tial in various domains including remote sensing [70], [71].
Among them, ANNs have a long history and remain popular
for modeling nonlinear relationships [72]. In this article,
we employed ANNs to establish an empirical relationship
between TOA reflectance and surface albedo with the sim-
ulation dataset. Using SZA, slope, RAA, and simulated TOA
reflectance data as inputs, the ANN model f was defined
with a training process that minimized the mean square
error between the simulated albedo and predicted albedo. The
estimated albedo was

α = f (SZA, slope, RAA, TOA reflectance). (5)

To illustrate the need to consider topography as inputs in
the model, we also built ANN models without slope and RAA
as inputs, and the comparison is shown in Section IV-B.

A fully connected network with four hidden layers (64,
48, 32, and 24 neurons, respectively) was adopted for albedo
estimation with a balanced consideration of modeling accuracy
and time consumption. The input layer had ten nodes (SZA,
slope, RAA, and seven TOA reflectance spectral bands from
Landsat 8 OLI). The only output was the estimated surface
albedo. A model was constructed for HHSA and also for
IISA. All inputs were standardized to zero mean and unit
variance to mitigate the scale disagreement of inputs. The
ReLU activation function was chosen for powering the ability
for solving nonlinear problems in ANN model. Dropout was
adopted to prevent overfitting by randomly omitting the feature
detectors on each training case [73]. Simulated data were used
for training and validation with 75% used for training and
25% to validate models’ performance. Shadow areas were
excluded [74] because of limited information captured by sen-
sors, and image restoration technology may be a choice [75].
We also used Fmask 4.0 for automated clouds and cloud
shadows masking [76].

III. MATERIALS

A. Landsat Data
Landsat satellite series have provided global land obser-

vations for over 40 years, with data freely available from
the United States Geological Survey (USGS) [77], [78].
The Landsat L1TP dataset offers high geolocation accu-
racy [79], [80] and accurate radiometric calibration [81],
[82]. Data quality was improved with the OLI sensor on-
board Landsat 8, launched in 2013. We obtained the Land-
sat 8 OLI Tier 1 (T1, with highest quality) data from
USGS (https://earthexplorer.usgs.gov/). The TOA reflectance
was derived from the digital numbers using the conversion
coefficients included in the Landsat metadata. We used the
seven spectral bands of OLI: 0.43–0.45, 0.45–0.51, 0.53–0.59,
0.64–0.67, 0.85–0.88, 1.57–1.65, and 2.11–2.29 μm.

B. SRTM DEM Data
Digital elevation model (DEM) is an effective tool

to describe land surface topographic features. Here,
Shuttle Radar Topography Mission (SRTM) DEM V003

Fig. 5. Meteor Crater. (a) Aerial image (https://solarsystem.nasa.gov/
resources/2257/meteor-crater-Arizona-USA). (b) Elevation (m). (c) Slope
angle (◦). (d) Aspect angle (◦).

(https://search.earthdata.nasa.gov/) with a 1 arc-second
resolution (∼30 m on the equator) in WGS84 was used to
calculate the slope, aspect, incidence angle, and shadows.

Pixel-averaged slope and aspect can be calculated based on
DEM data. The illumination conditions (incidence angle i) can
be obtained from the following geometric expression [83]:

cos i = cos θs cos S + sin θs sin S cos(ϕa − ϕ0) (6)

where cos i is the cosine of the incidence angle, θs is the solar
zenith angle, S is the slope angle, ϕa is the solar azimuth
angle, and ϕ0 is the aspect angle of the terrain.

C. In Situ Measurements
In this study, we tried our best to collect in situ measure-

ments on sloping terrain with nominal slope greater than 5◦
from National Tibetan Plateau Data Center, European Fluxes
Database Cluster, and Ameriflux for in situ measured HHSA,
and stations from Chengde for in situ measured IISA, as shown
in Table III. All cloud-free and snow-free in situ measured data
were used for validating our method.

D. Experimental Site of Meteorite Crater
Apart from using in situ measured data for validation,

the exploration of topographic effects on albedo and differ-
ence between HHSA and IISA was also made on a slop-
ing landscape. Specific places with relatively homogenous
surface properties and comparatively symmetric topographic
conditions such as meteor craters were satisfactory choices
for in-depth analysis and comparison [91], [92]. In this
study, we selected Meteor Crater, AZ, USA (around 35.02◦N
111.03◦W) as the study area for further evaluation and com-
parison. The crater basin has a diameter of 1200 m and a
depth of 210 m and covered by sparse shrubs and grasses.
The image and topographic information of the study area are
shown in Fig. 5.

IV. RESULTS

A. Comparison of HHSA and IISA

Differences between HHSA and IISA were analyzed based
on the simulated dataset with inputs in Table II. Fig. 6 shows
the relationships among slope, SZA, RAA, incidence angle,
and albedo for the two albedo definitions. The HHSA varied
much more with changes in illumination geometry and terrain
slope than the IISA which was relatively stable. Generally,
HHSA had large values with large SZA and small RAA, and
IISA had large values with large SZA and RAA. The influence
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TABLE III

INFORMATION OF IN-SITU MEASUREMENTS FOR VALIDATION

Fig. 6. Variation of (a)–(c) and (g) HHSA and (d)–(f) and (h) IISA with
SZA, RAA, slope, and cosi .

of slope was smaller than RAA and SZA for both HHSA
and IISA. Meanwhile, the smallest incident angle could be
restricted by the SZA. For example, if SZA = 20◦, the smallest
cosine of incidence angle was ≈0.34 with slope = 50◦, and
RAA = 180◦ [see Fig. 6(g) and (h)]. The comparison in terms
of SZA and incidence angle showed the major difference of the
two albedos: HHSA was sensitive to both SZA and incidence
angle and had large values with high SZA and incidence angle.
IISA was seldom influenced by SZA variation, and reached
large values with small incidence angle, which was opposite
to the behavior of HHSA.

B. ANN Model Training and Validation for
Albedo Estimation

Our albedo estimation method was validated with the
simulated data. Fig. 7(a) and (b) shows the model training
results, and Fig. 7(c) and (d) shows the model validation
results using 25% simulation data. ANN models without
topography inputs (only input of SZA and TOA reflectance)
were also constructed and compared with the validation dataset
in Fig. 7(e) and (f). The simulated HHSA values range from

nearly 0 to 0.5, and the IISA values range from about 0.1–0.3
(see Fig. 7). They are mostly clustered around 0.15, which is
consistent with the simulated dataset with soil and vegetation.
The training results of HHSA model had an R2 of 0.985,
a root mean squared error (RMSE) of 0.008, and a bias of
0; these values were 0.966, 0.007, and 0.001 for the IISA
model. The validation results were close to the training results
for both models, which stressed their good performance: high
R2 (0.985 and 0.964), low RMSE (0.008 and 0.007), and low
bias (−0.001 and 0.001) for HHSA and IISA, respectively.
The validation results of the models without topography inputs
[see Fig. 7(e) and (f)] were worse, as expected. For HHSA,
R2 decreased from 0.985 to 0.953, and RMSE increased from
0.008 to 0.012. Similarly, for IISA, R2 decreased from 0.964
to 0.857 and RMSE increased from 0.007 to 0.013. The
validation of IISA showed worse results than HHSA without
topography inputs, which indicated that IISA depended more
on slope and RAA than HHSA in terms of inputting data.

C. Validation Against in Situ Measurements

Fig. 8 shows the validation using in situ measurements,
and colored circles indicate the measurement stations. The
comparison of the estimated and measured HHSA and IISA
[see Fig. 8(a) and (b)] illustrates the potential of our albedo
estimation: RMSE = 0.029, bias = −0.010, and R2 = 0.536
for HHSA; RMSE = 0.023, bias = −0.001, and R2 = 0.518
for IISA, which is quite acceptable given the small value of
albedo in our study (less than 0.3).

We compared the albedo without topographic consideration
to the measured HHSA and IISA: RMSE = 0.029, bias =
−0.011, and R2 = 0.37 for measured HHSA [see Fig. 8(c)];
RMSE = 0.060, bias = 0.029, and R2 = 0.119 for measured
IISA [see Fig. 8(d)]. We also cross compared the estimated and
measured HHSA and IISA in order to highlight their differ-
ences [see Fig. 8(e) and (f)]. It gave greatly larger RMSE and
biases: RMSE = 0.060, bias = −0.033, and R2 = 0.058 for the
comparison “estimated IISA–measured HHSA,” and RMSE =
0.072, bias = −0.034, and R2 = 0.017 for the comparison
“estimated HHSA–measured IISA.” Therefore, we get large
albedo differences when we consider different reference planes
(horizontal or slope-parallel) on sloping terrain. Meanwhile,
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Fig. 7. ANN models’ training and validation results. The color bar shows the point density. Training results of (a) HHSA and (b) IISA. Validation results
of (c) HHSA, (d) IISA, (e) HHSA without topography inputs, and (f) IISA without topography inputs.

values of albedo without topographic consideration and HHSA
are similar in mountainous area.

D. Analysis of Albedo Estimation in Meteor Crater

Estimated HHSA, IISA, and albedo neglecting topographic
effects were compared for the Meteor Crater, AZ, USA. Fig. 9
shows the time series of TOA near-infrared band reflectance
and albedo. Terrain with slope less than 5◦ is shown for display
purpose, but focused on the sloping terrain. Fig. 10 shows the
relationship between the albedos and incidence angle.

Figs. 9 and 10 further inform on the features of the three
albedos. Similar to findings in Section IV-C, the HHSA and
albedo neglecting topographic effects had similar values in
terms of different topography and times, and they were also
similar to the TOA reflectance distributions in Fig. 9. HHSA
and albedo neglecting topographic effects were both sensitive
to topography, especially for large SZA; for example, their
positive correlation with incidence angle was more obvious
with larger SZA [see Fig. 10(j)].

The IISA values were stable in the selected images, and
topographic effects were difficult to perceive based on visual
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Fig. 8. Validation of estimated surface albedo with in situ measurements. (a) Estimated HHSA compared with in situ measured HHSA. (b) Estimated IISA com-
pared with in situ measured IISA. (c) Estimated albedo without topographic consideration compared with in situ measured HHSA. (d) Estimated albedo without
topographic consideration compared with in situ measured IISA. (e) Estimated IISA compared with in situ measured HHSA. (f) Estimated HHSA compared
with in situ measured IISA. (c) and (e) Same legend as (a), while (d) and (f) have the same legend as (b).

inspection of Fig. 9. In Fig. 10, the correlation of incidence
angle and IISA was slightly negative, especially in Fig. 10(j).
It was consistent with simulation results in Section IV-A: IISA
had opposite trends against HHSA in terms of incidence angle.

E. IISA Mapping Results Example
To evaluate and compare albedo with and without topo-

graphic consideration over large areas, we estimated IISA in
mountainous areas around Chengde, China (around 41.5◦N
118.3◦E) in Landsat 8 (Path/Row: 122/031) with small
cloud covers. Fig. 11 shows the TOA reflectance false color

composite picture, albedo without topographic consideration,
and IISA results for June, September, and November 2017.
Flat areas with slope less than 5◦ are removed in albedo
maps. Shadow and cloud cover areas appear as white areas
after being masked with algorithms indicated in Section II-B.
Fig. 12 shows the comparison of the median values of albedo
neglecting topographic effects and estimated IISA in shady
(away from the sun) and sunlit (facing the sun) areas in the
selected image (path/row: 122/031).

In Fig. 11, topographic effects increase from June to
November for both albedos. The characteristics for them
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Fig. 9. Time series of TOA reflectance and albedos in Meteor Crater. (a) TOA
near-infrared band reflectance (band5). (b) IISA. (c) HHSA. (d) Albedo
without topographic consideration.

corresponded with Section IV-D: the value distributions of
albedo without topographic consideration were similar as the
TOA reflectance, while the high values always appeared in the
terrain away from the sun for IISA. IISA was prone to describe
the ground changes from June to November: when vegetation
withered, and the bare land had relatively high surface albedo.
In Fig. 12, IISA was more stable, and the IISA of shady area
exceeded that of sunlit area in winter. The difference of sunlit-
and shaded-area’s albedo increased from summer to winter
when neglecting topographic consideration, which can reach
0.06 (the relative difference is about 50%) in terms of median
albedo values.

Fig. 10. Relationship of incidence angle and albedos in Meteor Crater. The
blue cross is IISA, the red circle is HHSA, and the black point is the albedo
without topographic consideration. (a) 20170419. (b) 20170505. (c) 20170521.
(d) 20170606. (e) 20170622. (f) 20170708. (g) 20170809. (h) 20170825.
(i) 20170910. (j) 20170926.

Fig. 11. TOA reflectance and surface albedo in mountain areas for three
satellite images. (a) 01/06/2017. (b) 21/09/2017. (c) 8/11/2017. From left
to right are TOA reflectance with false color composites, albedo estimates
without topographic consideration, and IISA values, respectively. Clouds,
shadows, and slope areas less than 5◦ are masked as white.

V. DISCUSSION

Lin et al. [38] reported that the albedo estimation from
sloping surface reflectance using mountain RT model was
better than the surface reflectance with atmospheric and topo-
graphic correction; and over-simplified topographic correction
for albedo estimation over rugged terrain would lead to large
errors [39]. Meanwhile, the mechanism of the surface albedo
has been altered through topographic normalization: it was
neither HHSA nor IISA. Therefore, the estimation of surface
albedo should couple RT modeling in mountainous areas (e.g.,
the DART model used in this article). The direct estimation
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Fig. 12. Median values of albedo neglecting topographic effects and IISA
varied with time.

method we developed was simple and straightforward for
albedo retrieval with satellite observations, which does not
need explicit atmospheric and topographic corrections that are
often difficult to be accurately implemented over mountainous
regions.

In our study, we combined the atmospheric and surface
transfer process using the state-of-the-art 3-D transfer models
(DART), and directly retrieved the fine-resolution surface
albedo using TOA reflectance. The basic assumption was that
there was no subtopography in the fine-resolution pixels. Our
method targeted at near-nadir satellites, for satellite with large
field of view, the geometric relationship between sun-surface-
sensor should be further considered [21]. Our method was both
physically sound (based on RT) and simple (input data are easy
to obtain and the model is highly efficient). The reasonable
results in Figs. 8 and 11 indicated the method’s reliability. This
study provided a reference for surface albedo estimation in
mountains and adopted in-depth analysis in HHSA and IISA,
which could advance our knowledge of energy budget and
climate change [93], [94]. This study also offered a framework
for other surface parameters retrieval (e.g., LAI, net radiation,
etc.) in mountainous areas based on 3-D RT models. Further
development of consistent retrieval method for multiparameter
in mountains could be interesting [36], [95].

There were large differences between HHSA and IISA (see
Figs. 6 and 8–10). HHSA was greatly affected by topographic
effects, and differences between albedo neglecting topographic
effects [46] and HHSA over sloping terrain were much smaller
than those between HHSA and IISA. Meanwhile, IISA was
less affected by topography, and tended to be more correlated
with surface properties (see Fig. 4). It changed with incidence
angle in agreement with the variation in albedo of flat areas
with SZA [96]. Note that SZA is the incidence angle for
horizontal areas, and SZA for flat areas and incidence angle
for sloping terrain differ in the reference plane. Because the
IISA and HHSA albedos differ in terms of geometry (see
Fig. 1), thus, different incident and reflected radiation [28] and
downward radiation for horizontal/horizontal measurements
could not totally reach the terrain, while the reflected radiation
included the radiation from the surrounding pixels. The IISA
could capture the incident and reflected radiation of the terrain,
and was more inclined to reflect the true properties of the

surface. Therefore, IISA on sloping terrain could reveal the
“true albedo” features, and was recommended for applications
to characterize the surface inherent properties in terms of
continuous land cover. When it comes to single trees and
tree clusters, Ramtvedt et al. [32] declared that HHSA could
be more correlated with the vegetation properties. Owing to
various conditions in mountains, the interactions of topography
and trees or forest remain a challenge.

IISA over mountain areas was recommended for studying
surface energy budget, and some conversion algorithm from
in situ HHSA measurements to IISA measurements has been
proposed [33], [40], [87]. The simple conversion algorithm
worked well on in situ measurements [33], [40], but its
application using remote sensing data seemed difficult: diffuse
radiation/direct radiation percentage was the important input,
but high accuracy direct/diffuse radiation data in mountainous
areas are rare [97]. Therefore, there is a need to develop
conversion algorithms from HHSA to IISA to utilize current
albedo products for studies in mountains areas.

There were possible factors influencing the validation results
of our model (see Fig. 8).

1) Representativeness of simulation dataset. Although we
tried to select the typical simulation parameters, it was still
difficult to describe diverse ground in the real world and
possible uncertainty may be introduced.

2) DEM uncertainty. It was reported that the DEM
errors could largely influence shortwave radiation calcula-
tions [98], [99], and the accuracy of DEM may impact the
validation results in our work.

3) Although the ground data used have been checked with
high quality, the sensor tilt of in situ measured data may
introduce errors into validation [100].

Some limitations and future studies should be noted.
1) Snow cover areas were not studied partly due to

the difficulty to simulate snow simulations and significant
reflected radiation from surrounding pixels in snow cover
area [26], [58].

2) The topographic effect for forest in mountains is largely
unclear owing to different tree heights, distributions and
mutual shadowing, and insufficient in situ measurements; thus,
more analysis should be adopted [32], [101]. The energy
budget with coupling of topography and forest should be
studied to advance our understanding of mountain ecosystem.

3) There were limited ground measurements, especially,
“slope-parallel” stations on sloping terrain, which limited
validation in our work.

VI. CONCLUSION

There has been an increasing need for surface albedo in
mountainous areas. This article mainly solved four problems
for albedo estimation in mountains.

1) We designed a proper simulation scene using DART and
select appropriate parameters for simulations.

2) We used the ANN model to relate the satellite obser-
vations and simulation dataset, which bypassed over complex
RT modeling and parameters solving.

3) We proved that it was feasible to estimate both HHSA
and IISA using Landsat observations.
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4) We systematically compared and analyzed the difference
between HHSA, IISA, and albedo neglecting topographic
effects.

Based on the global sensitivity analysis and previous stud-
ies, major parameters were selected for the simulating scenes
with atmosphere and topography by DART, and for inputting
simulated data into ANN models for albedo estimation. The
final HHSA and IISA were realized by inputting SZA, slope,
RAA, and TOA reflectance into the ANN models. Validation
against in situ measurements verified our proposed method’s
feasibility: HHSA had an RMSE of 0.029, whereas it was
0.023 for IISA. Our method has a consideration of physical
mechanism and easy to apply which could be expanded for
regional and global scale. Its good performance also indicates
the superiority of 3-D RT models for studies in complicated
areas.

Large differences were obtained when comparing HHSA
and albedo without topographic consideration against in situ
IISA measurements (RMSE larger than 0.06). The comparison
of HHSA and IISA in the simulation dataset and Meteor Crater
deepened our understanding of them on sloping terrain. HHSA
was similar to albedo neglecting topographic effects, which
was sensitive to the variation of both SZA and incidence angle,
and could be greatly affected by topography. In contrast, IISA
better reflected the “true” surface properties on sloping terrain;
it increased with the incidence angle which is the counterpart
of SZA on flat areas. Therefore, IISA is recommended for
energy budget studies over sloping terrain, and our resulting
IISA images will be of great importance for better understand-
ing of energy budget and climate change in mountainous areas.

ACKNOWLEDGMENT

The authors would like to thank USGS and NASA Earth
Science Data Systems for the provision of Landsat data and
SRTM DEM. They would also like to thank Prof. Guangjian
Yan, Prof. Donghui Xie, and Yingji Zhou for providing valu-
able in situ measurements data in Chengde, and this dataset
was provided by the Chengde Remote Sensing Experimental
Station, State Key Laboratory of Remote Sensing Sciences.
They would also like to thank the anonymous reviewers for
their efforts in improving the manuscript. They would also like
to thank data support from the National Earth System Science
Data Center, National Science and Technology Infrastructure
of China (http://www.geodata.cn).

REFERENCES

[1] S. Blyth, Mountain Watch: Environmental Change & Sustainable
Developmental in Mountains, UNEP/Earthprint, Nairobi, Kenya,
2002.

[2] FAO, Mountains are Viatal for Our Lives, I. M. Day, Ed. Food
and Agriculture Organization of the United Nations, Rome, Italy,
2018.

[3] W. W. Immerzeel et al., “Importance and vulnerability of the world’s
water towers,” Nature, vol. 577, no. 7790, pp. 364–369, 2020, doi:
10.1038/s41586-019-1822-y.

[4] S. An et al., “Mismatch in elevational shifts between satellite observed
vegetation greenness and temperature isolines during 2000–2016 on the
Tibetan Plateau,” Global Change Biol., vol. 24, no. 11, pp. 5411–5425,
2018, doi: 10.1111/gcb.14432.

[5] M. Gao et al., “Divergent changes in the elevational gradient of
vegetation activities over the last 30 years,” Nature Commun., vol. 10,
no. 1, p. 2970, Dec. 2019, doi: 10.1038/s41467-019-11035-w.

[6] N. Pepin et al., “Elevation-dependent warming in mountain regions
of the world,” Nature Climate Change, vol. 5, no. 5, pp. 424–430,
May 2015, doi: 10.1038/nclimate2563.

[7] W.-L. Lee, K.-N. Liou, C.-C. Wang, Y. Gu, H.-H. Hsu, and
J.-L. F. Li, “Impact of 3-D radiation-topography interactions on surface
temperature and energy budget over the Tibetan Plateau in winter,”
J. Geophys. Res., Atmos., vol. 124, no. 3, pp. 1537–1549, 2019, doi:
10.1029/2018JD029592.

[8] S. Liang, D. Wang, T. He, and Y. Yu, “Remote sensing of Earth’s
energy budget: Synthesis and review,” Int. J. Digit. Earth, vol. 12,
no. 7, pp. 737–780, Mar. 2019, doi: 10.1080/17538947.2019.1597189.

[9] S. Liang, A. H. Strahler, and C. Walthall, “Retrieval of land sur-
face albedo from satellite observations: A simulation study,” J. Appl.
Meteorol., vol. 38, no. 6, pp. 712–725, 1999, doi: 10.1175/1520-
0450(1999)038<0712:ROLSAF>2.0.CO;2.

[10] Y. Shuai, J. G. Masek, F. Gao, C. B. Schaaf, and T. He, “An
approach for the long-term 30-m land surface snow-free albedo retrieval
from historic landsat surface reflectance and MODIS-based a priori
anisotropy knowledge,” Remote Sens. Environ., vol. 152, pp. 467–479,
Jul. 2014, doi: 10.1016/j.rse.2014.07.009.

[11] T. He, S. Liang, D. Wang, H. Wu, Y. Yu, and J. Wang, “Estimation
of surface albedo and directional reflectance from moderate resolution
imaging spectroradiometer (MODIS) observations,” Remote Sens. Env-
iron., vol. 119, pp. 286–300, Apr. 2012, doi: 10.1016/j.rse.2012.01.004.

[12] C. B. Schaaf et al., “First operational BRDF, albedo nadir reflectance
products from MODIS,” Remote Sens. Environ., vol. 83, nos. 1–2,
pp. 135–148, 2002, doi: 10.1016/S0034-4257(02)00091-3.

[13] Y. Qu, Q. Liu, S. Liang, L. Wang, N. Liu, and S. Liu, “Direct-
estimation algorithm for mapping daily land-surface broadband albedo
from MODIS data,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 2,
pp. 907–919, Feb. 2014, doi: 10.1109/TGRS.2013.2245670.

[14] T. He, S. Liang, and D.-X. Song, “Analysis of global land surface
albedo climatology and spatial-temporal variation during 1981–2010
from multiple satellite products,” J. Geophys. Res., Atmos., vol. 119,
no. 17, pp. 10281–10298, 2014, doi: 10.1002/2014JD021667.

[15] Y. Liu et al., “Evaluation of the VIIRS BRDF, Albedo and NBAR prod-
ucts suite and an assessment of continuity with the long term MODIS
record,” Remote Sens. Environ., vol. 201, pp. 256–274, Nov. 2017, doi:
10.1016/j.rse.2017.09.020.

[16] B. Mota, N. Gobron, F. Cappucci, and O. Morgan, “Burned area and
surface albedo products: Assessment of change consistency at global
scale,” Remote Sens. Environ., vol. 225, pp. 249–266, May 2019, doi:
10.1016/j.rse.2019.03.001.

[17] R. Möller, P. Dagsson-Waldhauserova, M. Möller, P. A. Kukla,
C. Schneider, and M. T. Gudmundsson, “Persistent albedo reduction on
southern Icelandic glaciers due to ashfall from the 2010 Eyjafjallajökull
eruption,” Remote Sens. Environ., vol. 233, Nov. 2019, Art. no. 111396,
doi: 10.1016/j.rse.2019.111396.

[18] J. Houspanossian, R. Giménez, E. Jobbágy, and M. Nosetto, “Surface
albedo raise in the south American chaco: Combined effects of defor-
estation and agricultural changes,” Agricult. Forest Meteorol., vol. 232,
pp. 118–127, Jan. 2017, doi: 10.1016/j.agrformet.2016.08.015.

[19] J. Malle, N. Rutter, C. Webster, G. Mazzotti, L. Wake, and T. Jonas,
“Effect of forest canopy structure on wintertime land surface albedo:
Evaluating CLM5 simulations with in-situ measurements,” J. Geophys.
Res., Atmos., vol. 126, no. 9, 2021, Art. no. e2020JD034118, doi:
10.1029/2020JD034118.

[20] Z. Wang et al., “Monitoring land surface albedo and vegetation
dynamics using high spatial and temporal resolution synthetic time
series from Landsat and the MODIS BRDF/NBAR/albedo product,”
Int. J. Appl. Earth Observ. Geoinf., vol. 59, pp. 104–117, Jul. 2017,
doi: 10.1016/j.jag.2017.03.008.

[21] T. Wang, G. Yan, X. Mu, Z. Jiao, L. Chen, and Q. Chu, “Toward
operational shortwave radiation modeling and retrieval over rugged
Terrain,” Remote Sens. Environ., vol. 205, pp. 419–433, Feb. 2018,
doi: 10.1016/j.rse.2017.11.006.

[22] G. Yan et al., “Temporal extrapolation of daily downward shortwave
radiation over cloud-free rugged terrains. Part 1: Analysis of topo-
graphic effects,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 11,
pp. 6375–6394, Nov. 2018, doi: 10.1109/TGRS.2018.2838143.

[23] D. Hao et al., “Sensitivity of coarse-scale snow-free land surface
shortwave albedo to topography,” J. Geophys. Res., Atmos., vol. 124,
no. 16, pp. 9028–9045, Aug. 2019, doi: 10.1029/2019JD030660.

[24] J. Wen et al., “Characterizing land surface anisotropic reflectance over
rugged terrain: A review of concepts and recent developments,” Remote
Sens., vol. 10, no. 3, p. 370, Feb. 2018, doi: 10.3390/rs10030370.

[25] J. G. Wen, Q. Liu, Q. Liu, Q. Xiao, and X. Li, “Scale effect
and scale correction of land-surface albedo in rugged terrain,”
Int. J. Remote Sens., vol. 30, no. 20, pp. 5397–5420, 2009, doi:
10.1080/01431160903130903.

http://dx.doi.org/10.1038/s41586-019-1822-y
http://dx.doi.org/10.1111/gcb.14432
http://dx.doi.org/10.1038/s41467-019-11035-w
http://dx.doi.org/10.1038/nclimate2563
http://dx.doi.org/10.1029/2018JD029592
http://dx.doi.org/10.1080/17538947.2019.1597189
http://dx.doi.org/10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2014.07.009
http://dx.doi.org/10.1016/j.rse.2012.01.004
http://dx.doi.org/10.1016/S0034-4257(02)00091-3
http://dx.doi.org/10.1109/TGRS.2013.2245670
http://dx.doi.org/10.1002/2014JD021667
http://dx.doi.org/10.1016/j.rse.2017.09.020
http://dx.doi.org/10.1016/j.rse.2019.03.001
http://dx.doi.org/10.1016/j.rse.2019.111396
http://dx.doi.org/10.1016/j.agrformet.2016.08.015
http://dx.doi.org/10.1029/2020JD034118
http://dx.doi.org/10.1016/j.jag.2017.03.008
http://dx.doi.org/10.1016/j.rse.2017.11.006
http://dx.doi.org/10.1109/TGRS.2018.2838143
http://dx.doi.org/10.1029/2019JD030660
http://dx.doi.org/10.3390/rs10030370
http://dx.doi.org/10.1080/01431160903130903


4408914 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[26] H. Shi and Z. Xiao, “Exploring topographic effects on sur-
face parameters over rugged terrains at various spatial scales,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–16, 2022, doi:
10.1109/TGRS.2021.3098607.

[27] N. Matzinger, M. Andretta, E. van Gorsel, R. Vogt, A. Ohmura, and
M. W. Rotach, “Surface radiation budget in an Alpine valley,” Quart.
J. Roy. Meteorol. Soc., vol. 129, no. 588, pp. 877–895, Jan. 2003, doi:
10.1256/qj.02.44.

[28] S. Wu et al., “Characterization of remote sensing albedo over sloped
surfaces based on DART simulations and in situ observations,” J. Geo-
phys. Res., Atmos., vol. 123, no. 16, pp. 8599–8622, Aug. 2018, doi:
10.1029/2018JD028283.

[29] T. He, S. Liang, D. Wang, Q. Shi, and M. L. Goulden, “Estimation of
high-resolution land surface net shortwave radiation from AVIRIS data:
Algorithm development and preliminary results,” Remote Sens. Envi-
ron., vol. 167, pp. 20–30, Sep. 2015, doi: 10.1016/j.rse.2015.03.021.

[30] Z. Wang et al., “Early spring post-fire snow albedo dynamics in high
latitude boreal forests using landsat-8 OLI data,” Remote Sens. Envi-
ron., vol. 185, pp. 71–83, Nov. 2016, doi: 10.1016/j.rse.2016.02.059.

[31] Y. Wang et al., “Surface shortwave net radiation estimation from land-
sat TM/ETM+ data using four machine learning algorithms,” Remote
Sens., vol. 11, no. 23, p. 2847, Nov. 2019, doi: 10.3390/rs11232847.

[32] E. N. Ramtvedt, O. M. Bollandsås, E. Næsset, and T. Gobakken, “Rela-
tionships between single-tree mountain birch summertime albedo and
vegetation properties,” Agricult. Forest Meteorol., vol. 307, Sep. 2021,
Art. no. 108470, doi: 10.1016/j.agrformet.2021.108470.

[33] U. Weiser, M. Olefs, W. Schöner, G. Weyss, and B. Hynek, “Correction
of broadband snow albedo measurements affected by unknown slope
and sensor tilts,” Cryosphere, vol. 10, no. 2, pp. 775–790, Apr. 2016,
doi: 10.5194/tc-10-775-2016.

[34] J. Wen, X. Zhao, Q. Liu, Y. Tang, and B. Dou, “An improved land-
surface albedo algorithm with DEM in rugged terrain,” IEEE Geosci.
Remote Sens. Lett., vol. 11, no. 4, pp. 883–887, Apr. 2014, doi:
10.1109/LGRS.2013.2280696.

[35] H. Li et al., “Calculation of albedo on complex terrain using MODIS
data: A case study in taihang mountain of China,” Environ. Earth Sci.,
vol. 74, no. 7, pp. 6315–6324, Oct. 2015, doi: 10.1007/s12665-015-
4656-4.

[36] H. Shi, Z. Xiao, Q. Wang, and D. Wu, “Multiparameter estimation
from landsat observations with topographic consideration,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 9, pp. 7353–7369, Sep. 2021, doi:
10.1109/tgrs.2021.3057377.

[37] G. Traversa, D. Fugazza, A. Senese, and M. Frezzotti, “Landsat
8 OLI broadband albedo validation in Antarctica and Greenland,”
Remote Sens., vol. 13, no. 4, p. 799, Feb. 2021. [Online]. Available:
https://www.mdpi.com/2072-4292/13/4/799

[38] X. Lin, S. Wu, D. Hao, J. Wen, Q. Xiao, and Q. Liu, “Sloping surface
reflectance: The best option for satellite-based albedo retrieval over
mountainous areas,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5,
2022, doi: 10.1109/LGRS.2021.3069637.

[39] Y. Ma, T. He, A. Li, and S. Li, “Evaluation and intercomparison of
topographic correction methods based on landsat images and simulated
data,” Remote Sens., vol. 13, no. 20, p. 4120, Oct. 2021. [Online].
Available: https://www.mdpi.com/2072-4292/13/20/4120

[40] G. Picard et al., “Spectral albedo measurements over snow-covered
slopes: Theory and slope effect corrections,” Cryosphere, vol. 14, no. 5,
pp. 1497–1517, May 2020, doi: 10.5194/tc-14-1497-2020.

[41] W. Lucht, C. B. Schaaf, and A. H. Strahler, “An algorithm for the
retrieval of albedo from space using semiempirical BRDF models,”
IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 977–998,
Mar. 2002, doi: 10.1109/36.841980.

[42] D. Wang, S. Liang, T. He, and Y. Yu, “Direct estimation of land surface
albedo from VIIRS data: Algorithm improvement and preliminary val-
idation,” J. Geophys. Res., Atmos., vol. 118, no. 22, pp. 12577–12586,
2013, doi: 10.1002/2013JD020417.

[43] S. Liang, “A direct algorithm for estimating land surface broad-
band albedos from MODIS imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 41, no. 1, pp. 136–145, Jan. 2003, doi:
10.1109/TGRS.2002.807751.

[44] T. He, S. Liang, D. Wang, Q. Shi, and X. Tao, “Estimation of high-
resolution land surface shortwave albedo from AVIRIS data,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 12,
pp. 4919–4928, Dec. 2014, doi: 10.1109/JSTARS.2014.2302234.

[45] T. He, S. Liang, D. Wang, X. Chen, D.-X. Song, and
B. Jiang, “Land surface albedo estimation from Chinese HJ
satellite data based on the direct estimation approach,” Remote
Sens., vol. 7, no. 5, pp. 5495–5510, May 2015. [Online]. Available:
https://www.mdpi.com/2072-4292/7/5/5495

[46] T. He et al., “Evaluating land surface albedo estimation from landsat
MSS, TM, ETM +, and OLI data based on the unified direct estimation
approach,” Remote Sens. Environ., vol. 204, pp. 181–196, Jan. 2018,
doi: 10.1016/j.rse.2017.10.031.

[47] J. Qi et al., “LESS: LargE-scale remote sensing data and image simula-
tion framework over heterogeneous 3D scenes,” Remote Sens. Environ.,
vol. 221, pp. 695–706, Feb. 2019, doi: 10.1016/j.rse.2018.11.036.

[48] Y. Wang, N. Lauret, and J.-P. Gastellu-Etchegorry, “DART radia-
tive transfer modelling for sloping landscapes,” Remote Sens. Env-
iron., vol. 247, Sep. 2020, Art. no. 111902, doi: 10.1016/j.rse.2020.
111902.

[49] H. Jin et al., “A multiscale assimilation approach to improve
fine-resolution leaf area index dynamics,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 10, pp. 8153–8168, Oct. 2019, doi:
10.1109/TGRS.2019.2918548.

[50] G.-J. Yang, C.-J. Zhao, W.-J. Huang, and J.-H. Wang, “Extension of the
Hapke bidirectional reflectance model to retrieve soil water content,”
Hydrol. Earth Syst. Sci., vol. 15, no. 7, pp. 2317–2326, Jul. 2011, doi:
10.5194/hess-15-2317-2011.

[51] W. Yu et al., “A simulation-based analysis of topographic effects
on LAI inversion over sloped terrain,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 13, pp. 794–806, 2020, doi:
10.1109/JSTARS.2020.2970999.

[52] S. Wu et al., “The definition of remotely sensed reflectance quan-
tities suitable for rugged terrain,” Remote Sens. Environ., vol. 225,
pp. 403–415, May 2019, doi: 10.1016/j.rse.2019.01.005.

[53] E. Grau and J.-P. Gastellu-Etchegorry, “Radiative transfer modeling
in the Earth–atmosphere system with DART model,” Remote Sens.
Environ., vol. 139, pp. 149–170, Dec. 2013, doi: 10.1016/j.rse.2013.
07.019.

[54] J. P. Gastellu-Etchegorry et al., “Recent improvements in the dart
model for atmosphere, topography, large landscape, chlorophyll flu-
orescence, satellite image inversion,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Sep. 2020, pp. 3455–3458, doi:
10.1109/IGARSS39084.2020.9323458.

[55] J. P. Gastellu-Etchegorry, DART User’s Manual (5.7.9), CESBIO,
Toulouse, France, 2021.

[56] P. Sirguey, “Simple correction of multiple reflection effects in rugged
terrain,” Int. J. Remote Sens., vol. 30, no. 4, pp. 1075–1081, Feb. 2009,
doi: 10.1080/01431160802348101.

[57] Q. Chu et al., “Quantitative analysis of terrain reflected solar radi-
ation in snow-covered mountains: A case study in southeastern
Tibetan Plateau,” J. Geophys. Res., Atmos., vol. 126, no. 11, 2021,
Art. no. e2020JD034294, doi: 10.1029/2020JD034294.

[58] M. Lamare et al., “Simulating optical top-of-atmosphere radiance
satellite images over snow-covered rugged terrain,” Cryosphere,
vol. 14, no. 11, pp. 3995–4020, Nov. 2020, doi: 10.5194/tc-14-3995-
2020.

[59] D. Hao et al., “Modeling anisotropic reflectance over composite
sloping terrain,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 7,
pp. 3903–3923, Jul. 2018, doi: 10.1109/TGRS.2018.2816015.

[60] J.-B. Féret, A. A. Gitelson, S. D. Noble, and S. Jacquemoud,
“PROSPECT-D: Towards modeling leaf optical properties through a
complete lifecycle,” Remote Sens. Environ., vol. 193, pp. 204–215,
May 2017, doi: 10.1016/j.rse.2017.03.004.

[61] S. Jacquemoud, F. Baret, and J. F. Hanocq, “Modeling spectral and
bidirectional soil reflectance,” Remote Sens. Environ., vol. 41,
nos. 2–3, pp. 123–132, Aug./Sep. 1992, doi: 10.1016/0034-
4257(92)90072-R.

[62] E. Emili et al., “High spatial resolution aerosol retrieval with MAIAC:
Application to mountain regions,” J. Geophys. Res., Atmos., vol. 116,
no. D23, Dec. 2011, doi: 10.1029/2011JD016297.

[63] A. Berk et al., “MODTRAN4 radiative transfer modeling for
atmospheric correction,” SPIE, Bellingham, WA, USA, 1999.

[64] H. Ma et al., “An optimization approach for estimating multi-
ple land surface and atmospheric variables from the geostationary
advanced Himawari imager top-of-atmosphere observations,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 4, pp. 2888–2908, Apr. 2021,
doi: 10.1109/TGRS.2020.3007118.

[65] H. Shi, Z. Xiao, S. Liang, and X. Zhang, “Consistent esti-
mation of multiple parameters from MODIS top of atmosphere
reflectance data using a coupled soil-canopy-atmosphere radiative
transfer model,” Remote Sens. Environ., vol. 184, pp. 40–57, Oct. 2016,
doi: 10.1016/j.rse.2016.06.008.

[66] A. Mousivand, M. Menenti, B. Gorte, and W. Verhoef, “Global
sensitivity analysis of the spectral radiance of a soil–vegetation sys-
tem,” Remote Sens. Environ., vol. 145, pp. 131–144, Apr. 2014, doi:
10.1016/j.rse.2014.01.023.

http://dx.doi.org/10.1109/TGRS.2021.3098607
http://dx.doi.org/10.1256/qj.02.44
http://dx.doi.org/10.1029/2018JD028283
http://dx.doi.org/10.1016/j.rse.2015.03.021
http://dx.doi.org/10.1016/j.rse.2016.02.059
http://dx.doi.org/10.3390/rs11232847
http://dx.doi.org/10.1016/j.agrformet.2021.108470
http://dx.doi.org/10.5194/tc-10-775-2016
http://dx.doi.org/10.1109/LGRS.2013.2280696
http://dx.doi.org/10.1007/s12665-015-4656-4
http://dx.doi.org/10.1007/s12665-015-4656-4
http://dx.doi.org/10.1109/tgrs.2021.3057377
http://dx.doi.org/10.1109/LGRS.2021.3069637
http://dx.doi.org/10.5194/tc-14-1497-2020
http://dx.doi.org/10.1109/36.841980
http://dx.doi.org/10.1002/2013JD020417
http://dx.doi.org/10.1109/TGRS.2002.807751
http://dx.doi.org/10.1109/JSTARS.2014.2302234
http://dx.doi.org/10.1016/j.rse.2017.10.031
http://dx.doi.org/10.1016/j.rse.2018.11.036
http://dx.doi.org/10.1109/TGRS.2019.2918548
http://dx.doi.org/10.5194/hess-15-2317-2011
http://dx.doi.org/10.1109/JSTARS.2020.2970999
http://dx.doi.org/10.1016/j.rse.2019.01.005
http://dx.doi.org/10.1109/IGARSS39084.2020.9323458
http://dx.doi.org/10.1080/01431160802348101
http://dx.doi.org/10.1029/2020JD034294
http://dx.doi.org/10.1109/TGRS.2018.2816015
http://dx.doi.org/10.1016/j.rse.2017.03.004
http://dx.doi.org/10.1016/0034-4257(92)90072-R
http://dx.doi.org/10.1016/0034-4257(92)90072-R
http://dx.doi.org/10.1029/2011JD016297
http://dx.doi.org/10.1109/TGRS.2020.3007118
http://dx.doi.org/10.1016/j.rse.2016.06.008
http://dx.doi.org/10.1016/j.rse.2014.01.023
http://dx.doi.org/10.1016/j.rse.2020.111902
http://dx.doi.org/10.1016/j.rse.2020.111902
http://dx.doi.org/10.1016/j.rse.2013.07.019
http://dx.doi.org/10.1016/j.rse.2013.07.019
http://dx.doi.org/10.5194/tc-14-3995-2020
http://dx.doi.org/10.5194/tc-14-3995-2020


MA et al.: LANDSAT SNOW-FREE SURFACE ALBEDO ESTIMATION OVER SLOPING TERRAIN 4408914

[67] A. Ding, H. Ma, S. Liang, and T. He, “Extension of the Hapke
model to the spectral domain to characterize soil physical properties,”
Remote Sens. Environ., vol. 269, Feb. 2022, Art. no. 112843, doi:
10.1016/j.rse.2021.112843.

[68] A. Saltelli, “Making best use of model evaluations to compute sensi-
tivity indices,” Comput. Phys. Commun., vol. 145, no. 2, pp. 280–297,
May 2002.

[69] J. Verrelst et al., “Emulation of leaf, canopy and atmosphere radiative
transfer models for fast global sensitivity analysis,” Remote Sens.,
vol. 8, no. 8, p. 673, Aug. 2016.

[70] J. Chen, T. He, B. Jiang, and S. Liang, “Estimation of all-sky
all-wave daily net radiation at high latitudes from MODIS data,”
Remote Sens. Environ., vol. 245, Aug. 2020, Art. no. 111842, doi:
10.1016/j.rse.2020.111842.

[71] W. Zhao, S.-B. Duan, A. Li, and G. Yin, “A practical method for
reducing terrain effect on land surface temperature using random forest
regression,” Remote Sens. Environ., vol. 221, pp. 635–649, Feb. 2019,
doi: 10.1016/j.rse.2018.12.008.

[72] K. J. Bergen, P. A. Johnson, M. V. de Hoop, and G. C. Beroza,
“Machine learning for data-driven discovery in solid Earth geoscience,”
Science, vol. 363, no. 6433, Mar. 2019, Art. no. eaau0323, doi:
10.1126/science.aau0323.

[73] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” 2012, arXiv:1207.0580.

[74] L. Xin, T. Koike, and C. Guodong, “Retrieval of snow reflectance
from landsat data in rugged terrain,” Ann. Glaciol., vol. 34, pp. 31–37,
Jan. 2002, doi: 10.3189/172756402781817635.

[75] H. Li, L. Xu, H. Shen, and L. Zhang, “A general variational framework
considering cast shadows for the topographic correction of remote
sensing imagery,” ISPRS J. Photogramm. Remote Sens., vol. 117,
pp. 161–171, Jul. 2016, doi: 10.1016/j.isprsjprs.2016.03.021.

[76] S. Qiu, Z. Zhu, and B. He, “Fmask 4.0: Improved cloud and
cloud shadow detection in Landsats 4–8 and sentinel-2 imagery,”
Remote Sens. Environ., vol. 231, Sep. 2018, Art. no. 111205, doi:
10.1016/j.rse.2019.05.024.

[77] C. E. Woodcock et al., “Free access to landsat imagery,” Sci-
ence, vol. 320, no. 5879, p. 1011, May 2008, doi: 10.1126/sci-
ence.320.5879.1011a.

[78] M. A. Wulder et al., “Current status of Landsat program, science, and
applications,” Remote Sens. Environ., vol. 225, pp. 127–147, May 2019,
doi: 10.1016/j.rse.2019.02.015.

[79] C. J. Tucker, D. M. Grant, and J. D. Dykstra, “NASA’s global orthorec-
tified Landsat data set,” Photogramm. Eng. Remote Sens., vol. 70, no. 3,
pp. 313–322, 2004, doi: 10.14358/PERS.70.3.313.

[80] J. C. Storey, M. J. Choate, and K. Lee, “Landsat 8 operational
land imager on-orbit geometric calibration and performance,” Remote
Sens., vol. 6, no. 11, pp. 11127–11152, 2014. [Online]. Available:
https://www.mdpi.com/2072-4292/6/11/11127

[81] G. Chander, B. L. Markham, and D. L. Helder, “Summary of current
radiometric calibration coefficients for landsat MSS, TM, ETM+,
and EO-1 ALI sensors,” Remote Sens. Environ., vol. 113, no. 5,
pp. 893–903, May 2009, doi: 10.1016/j.rse.2009.01.007.

[82] J. Lu, T. He, S. Liang, and Y. Zhang, “An automatic radiometric cross-
calibration method for wide-angle medium-resolution multispectral
satellite sensor using landsat data,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–11, 2022, doi: 10.1109/TGRS.2021.3067672.

[83] P. M. Teillet, B. Guindon, and D. G. Goodenough, “On the slope-aspect
correction of multispectral scanner data,” Can. J. Remote Sens., vol. 8,
no. 2, pp. 84–106, 1982.

[84] P. Stoy, AmeriFlux U.S.-BMM Bangtail Mountain Meadow. Ameriflux,
2021. [Online]. Available: https://ameriflux.lbl.gov/sites/siteinfo/US-
BMM#data-citation, doi: 10.17190/AMF/1660338.

[85] M. Galvagno et al., “Phenology and carbon dioxide source/sink
strength of a subalpine grassland in response to an exceptionally
short snow season,” Environ. Res. Lett., vol. 8, no. 2, Jun. 2013,
Art. no. 025008, doi: 10.1088/1748-9326/8/2/025008.

[86] C. Sturtevant, D. Durden, and S. Metzger, AmeriFlux U.S.-xNW
NEON Niwot Ridge Mountain Research Station (NIWO). Ameriflux,
2021. [Online]. Available: https://ameriflux.lbl.gov/sites/siteinfo/US-
xNW#data-citation, doi: doi.org/10.17190/AMF/1671898.

[87] W. Georg, H. Albin, N. Georg, S. Katharina, T. Enrico, and Z. Peng,
“On the energy balance closure and net radiation in complex terrain,”
Agricult. Forest Meteorol., vols. 226–227, pp. 37–49, Oct. 2016, doi:
10.1016/j.agrformet.2016.05.012.

[88] C. Zhao and R. Zhang, “Cold and arid research network of Lanzhou
university (an observation system of meteorological elements gradient
of dayekou station,” Nat. Tibetan Plateau Data Center, Tech. Rep.,
2019. [Online]. Available: http://data.tpdc.ac.cn/en/data/3e049027-
3b2d-4fef-8ecd-e24209831e7c/, doi: 10.11888/Geogra.tpdc.270169.

[89] G. Yan et al., “An operational method for validating the down-
ward shortwave radiation over rugged terrains,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 1, pp. 714–731, Jan. 2021, doi:
10.1109/TGRS.2020.2994384.

[90] Q. Chu et al., “Ground-based radiation observational method in
mountainous areas,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
Jul. 2019, pp. 8566–8569, doi: 10.1109/IGARSS.2019.8900174.

[91] S. W. Hoch and C. D. Whiteman, “Topographic effects on the
surface radiation balance in and around Arizona’s meteor Crater,”
J. Appl. Meteorol. Climatol., vol. 49, no. 6, pp. 1114–1128, 2010, doi:
10.1175/2010jamc2353.1.

[92] B. Mayer, S. W. Hoch, and C. D. Whiteman, “Validating the MYSTIC
three-dimensional radiative transfer model with observations from the
complex topography of Arizona’s meteor Crater,” Atmos. Chem. Phys.,
vol. 10, no. 18, pp. 8685–8696, Sep. 2010, doi: 10.5194/acp-10-8685-
2010.

[93] X. Lin et al., “Spatiotemporal variability of land surface albedo over
the Tibet plateau from 2001 to 2019,” Remote Sens., vol. 12, no. 7,
p. 1188, Apr. 2020, doi: 10.3390/rs12071188.

[94] L. Zheng, Y. Qi, Z. Qin, X. Xu, and J. Dong, “Assessing albedo
dynamics and its environmental controls of grasslands over the
Tibetan plateau,” Agricult. Forest Meteorol., vol. 307, Sep. 2021,
Art. no. 108479, doi: 10.1016/j.agrformet.2021.108479.

[95] T. Wang, G. Yan, and L. Chen, “Consistent retrieval methods to
estimate land surface shortwave and longwave radiative flux compo-
nents under clear-sky conditions,” Remote Sens. Environ., vol. 124,
pp. 61–71, Sep. 2012, doi: 10.1016/j.rse.2012.04.026.

[96] I. Grant, F. Prata, and R. Cechet, “The impact of the diurnal variation of
albedo on the remote sensing of the daily mean albedo of grassland,”
J. Appl. Meteorol. Climatol., vol. 39, pp. 231–244, Feb. 2000, doi:
10.1175/1520-0450(2000)039<0231:TIOTDV>2.0.CO;2.

[97] Y.-C. Yu, J. Shi, T. Wang, H. Letu, and C. Zhao, “All-sky total
and direct surface shortwave downward radiation (SWDR) estimation
from satellite: Applications to MODIS and Himawari-8,” Int. J. Appl.
Earth Observ. Geoinf., vol. 102, Oct. 2021, Art. no. 102380, doi:
10.1016/j.jag.2021.102380.

[98] L. Wang and K. Wang, “Impacts of DEM uncertainty on estimated
surface solar radiation and extracted river network,” Bull. Amer. Mete-
orol. Soc., vol. 96, pp. 297–304, Feb. 2015, doi: 10.1175/bams-d-13-
00285.1.

[99] D. Hao et al., “Impacts of DEM geolocation bias on downward surface
shortwave radiation estimation over clear-sky rugged terrain: A case
study in Dayekou Basin, China,” IEEE Geosci. Remote Sens. Lett.,
vol. 16, no. 1, pp. 10–14, Jan. 2019, doi: 10.1109/LGRS.2018.2868563.

[100] W. S. Bogren, J. F. Burkhart, and A. Kylling, “Tilt error in cryospheric
surface radiation measurements at high latitudes: A model study,”
Cryosphere, vol. 10, no. 2, pp. 613–622, Mar. 2016, doi: 10.5194/tc-
10-613-2016.

[101] T. Manninen et al., “Airborne measurements of surface albedo
and leaf area index of snow-covered boreal forest,” J. Geophys.
Res., Atmos., vol. 127, no. 1, 2022, Art. no. e2021JD035376, doi:
10.1029/2021JD035376.

Yichuan Ma received the B.S. degree from the
University of Electronic Science and Technology of
China (UESTC), Chengdu, China, in 2019. He is
currently pursuing the Ph.D. degree with Wuhan
University, Wuhan, China.

His main research interests include surface para-
meters estimation, radiative transfer modeling, and
energy budget in mountains.

http://dx.doi.org/10.1016/j.rse.2021.112843
http://dx.doi.org/10.1016/j.rse.2020.111842
http://dx.doi.org/10.1016/j.rse.2018.12.008
http://dx.doi.org/10.1126/science.aau0323
http://dx.doi.org/10.3189/172756402781817635
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.021
http://dx.doi.org/10.1016/j.rse.2019.05.024
http://dx.doi.org/10.1016/j.rse.2019.02.015
http://dx.doi.org/10.14358/PERS.70.3.313
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1109/TGRS.2021.3067672
http://dx.doi.org/10.17190/AMF/1660338
http://dx.doi.org/10.1088/1748-9326/8/2/025008
http://dx.doi.org/doi.org/10.17190/AMF/1671898
http://dx.doi.org/10.1016/j.agrformet.2016.05.012
http://dx.doi.org/10.11888/Geogra.tpdc.270169
http://dx.doi.org/10.1109/TGRS.2020.2994384
http://dx.doi.org/10.1109/IGARSS.2019.8900174
http://dx.doi.org/10.1175/2010jamc2353.1
http://dx.doi.org/10.5194/acp-10-8685-2010
http://dx.doi.org/10.5194/acp-10-8685-2010
http://dx.doi.org/10.3390/rs12071188
http://dx.doi.org/10.1016/j.agrformet.2021.108479
http://dx.doi.org/10.1016/j.rse.2012.04.026
http://dx.doi.org/10.1175/1520-0450(2000)039<0231:TIOTDV>2.0.CO;2
http://dx.doi.org/10.1016/j.jag.2021.102380
http://dx.doi.org/10.1175/bams-d-13-00285.1
http://dx.doi.org/10.1175/bams-d-13-00285.1
http://dx.doi.org/10.1109/LGRS.2018.2868563
http://dx.doi.org/10.5194/tc-10-613-2016
http://dx.doi.org/10.5194/tc-10-613-2016
http://dx.doi.org/10.1029/2021JD035376


4408914 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Tao He (Member, IEEE) received the B.E. degree
in photogrammetry and remote sensing from Wuhan
University, Wuhan, China, in 2006, and the Ph.D.
degree in geography from the University of
Maryland, College Park, MD, USA, in 2012.

He is currently a Professor with the School
of Remote Sensing and Information Engineering,
Wuhan University, and with the Department of
Geographical Sciences, University of Maryland. His
research interests include surface anisotropy and
albedo modeling, surface radiation budget, data

fusion of satellite products, and long-term regional and global surface radiation
budget analysis.

Shunlin Liang (Fellow, IEEE) received the Ph.D.
degree from Boston University, Boston, MA, USA,
in 1993.

He is currently a Professor with the Department
of Geographical Sciences, University of Maryland
at College Park, College Park, MD, USA. He has
authored or coauthored over 390 SCI indexed
peer-reviewed journal articles, 42 book chapters, and
nine special issues on different journals. He has
authored/edited seven books and four of which were
translated in Chinese, such as Quantitative Remote

Sensing of Land Surfaces (Wiley, 2004), Advances in Land Remote Sensing:
System, Modeling, Inversion and Application (Springer, 2008), Advanced
Remote Sensing: Terrestrial Information Extraction and Applications (Aca-
demic Press, 2012, 2019), Global LAnd Surface Satellite (GLASS) Prod-
ucts: Algorithms, Validation and Analysis (Springer, 2013), Land Surface
Observation, Modeling and Data Assimilation (World Scientific, 2013), and
Earth’s Energy Budget (Elsevier, 2017). He has led a team to develop the
Global LAns Surface Satellite (GLASS) products that are publicly available
at (www.glass.umd.edu) and widely used. His main research interests focus on
estimating land surface variables from satellite data, global satellite product
generation, earth’s energy balance, and environmental changes.

Dr. Liang was the Editor-in-Chief of the nine-volume books titled Com-
prehensive Remote Sensing (Elsevier, 2017). He was an Associate Editor of
the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. He is
currently the Editor-in-Chief of Science of Remote Sensing.

Jianguang Wen received the B.S. degree in geo-
graphic information system and the M.S. degree
in cartography and geographic information system
from the Jilin University of China, Changchun,
China, in 2002 and 2005, respectively, and the
Ph.D. degree in quantitative remote sensing from the
Institute of Remote Sensing Applications, Chinese
Academy of Sciences, Beijing, China, in 2008.

He is currently a Researcher with the Aerospace
Information Research Institute, Chinese Academy of
Sciences. His main research interests include remote

sensing radiative transfer mechanism and inversion, and remote sensing
experiment in land surface parameters validation.

Jean-Philippe Gastellu-Etchegorry (Member,
IEEE) received the B.Sc. degree in electricity
from ENSEEIHT, Toulouse, France, in 1978,
the Aggregation degree in physics from Paris 6
University, Paris, France, in 1981, and the Ph.D.
degrees in solar physics and remote sensing from
Toulouse III University (UT3), Toulouse, in 1983
and 1989, respectively.

He was with the PUSPICS-Remote Sensing
Center, Gadjah Mada University, Yogyakarta,
Indonesia, and Southeast Asian Ministers of

Education Organization (SEAMEO), Bangkok, Thailand, from 1984 to 1990.
He was with the Department of Remote Sensing, Centre d’Etude Spatiale
des Rayonnements (CESR), Toulouse, and the Centre d’Etudes Spatiales de
la Biosphère (CESBIO), Toulouse, in 1995. He is currently a Professor with
UT3. Since 1993, he has been developing the discrete anisotropic radiative
transfer (DART) model (https://dart.omp.eu). His research interest includes
3-D radiative transfer modeling.

Jiang Chen received the B.S. degree from
Huazhong Agricultural University, Wuhan, China,
in 2015, and the M.S. degree from Zhejiang Uni-
versity, Hangzhou, China, in 2018. He is currently
pursuing the Ph.D. degree in photogrammetry and
remote sensing with Wuhan University, Wuhan.

His research interests include quantitative remote
sensing and radiative transfer modeling.

Anxin Ding received the B.S. degree from Anhui
University of Science and Technology, Huainan,
Anhui, China, in 2016, and the M.S. degree from
Beijing Normal University, Beijing, China, in 2019.
He is currently pursuing the Ph.D. degree with
Wuhan University, Wuhan, China.

His research interests include RossThick-LiSparse-
Reciprocal (RTLSR) model, snow bidirectional
reflectance distribution function (BRDF) model, and
snow albedo.

Siqi Feng received the B.S. degree from Wuhan
University, Wuhan, China, in 2019, where she is cur-
rently pursuing the M.S. degree in photogrammetry
and remote sensing.

Her research interest includes the retrieval of sur-
face reflectance and atmospheric parameters from
hyperspectral satellite data.


