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Abstract—Removing stripe noise, i.e., destriping, from remote
sensing images is an essential task in terms of visual quality
and subsequent processing. Most existing destriping methods
are designed by combining a particular image regularization
with a stripe noise characterization that cooperates with the
regularization, which precludes us to examine and activate
different regularizations to adapt to various target images. To
resolve this, two requirements need to be considered: a general
framework that can handle a variety of image regularizations
in destriping, and a strong stripe noise characterization that
can consistently capture the nature of stripe noise, regardless of
the choice of image regularization. To this end, this paper pro-
poses a general destriping framework using a newly-introduced
stripe noise characterization, named flatness constraint, where
we can handle various regularization functions in a unified
manner. Specifically, we formulate the destriping problem as
a nonsmooth convex optimization problem involving a general
form of image regularization and the flatness constraint. The
constraint mathematically models that the intensity of each
stripe is constant along one direction, resulting in a strong
characterization of stripe noise. For solving the optimization
problem, we also develop an efficient algorithm based on a diag-
onally preconditioned primal-dual splitting algorithm (DP-PDS),
which can automatically adjust the stepsizes. The effectiveness of
our framework is demonstrated through destriping experiments,
where we comprehensively compare combinations of a variety
of image regularizations and stripe noise characterizations using
hyperspectral images (HSI) and infrared (IR) videos.

Index Terms—destriping, flatness constraint, primal-dual split-
ting, hyperspectral images, infrared data

I. INTRODUCTION

REMOTE SENSING IMAGES such as hyperspectral
images (HSIs) and infrared (IR) videos offer various

applications, including mineral detection, earth observation,
agriculture, astronomical imaging, automatic target recogni-
tion, and video surveillance [1]–[3]. Such data, however, are
often contaminated by stripe noise, which is mainly due to
differences in the nonuniform response of individual detectors,
calibration error, and dark currents [4]–[6]. Stripe noise not
only degrades visual quality but also seriously affects subse-
quent processing, such as hyperspectral unmixing [1], [7], HSI
classification [8]–[11], and IR video target recognition [12].
Therefore, stripe noise removal, i.e., destriping, has been an
important research topic in remote sensing and related fields.
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In the past decades, a large number of destriping methods
have been proposed. Filtering-based approaches are widely
used due to their simplicity [13]–[15]. They effectively re-
move periodic stripe noise by truncating the specific stripe
components in a Fourier or wavelet data domain. However,
these approaches are limited in use since they assume that
stripe noise is periodic and can be identified from the power
spectrum. Deep learning-based approaches have also been
studied [16]–[20]. They can automatically extract the nature
of desirable data to remove stripe noise by learned neural
networks, but have difficulties, such as domain dependence,
a lack of a learning dataset, and excessive removal of image
structures (e.g., textures and singular features) [21], [22].

Among many destriping techniques, optimization-based ap-
proaches have received much attention. In these approaches,
desirable data and stripe noise are modeled by functions
that capture their nature, and then both are simultaneously
estimated by solving an optimization problem involving the
functions. These approaches adopt some form of regularization
to characterize desirable data, including piecewise smooth-
ness [23]–[28], low-rankness [29]–[33], self-similarity [34],
sparse representation [35], [36], and combinations of these
regularizations [37], [38].

The characterization of stripe noise is as essential as
image regularization in destriping. Existing stripe noise
characterizations can be roughly classified into a sparsity-
based model [29], [30], [32], [33], [39], a low-rank-based
model [40], [41], and a total variation (TV) model [42]–
[44]. The first model relies on the fact that stripe noise in
observed data is (group) sparsely distributed. The second
model characterizes stripe noise as low rankness since stripe
noise has a strong low-rank structure [40]. The third model
captures the vertical (or horizontal) smoothness of stripe noise
using TV regularization.

Many of the existing destriping methods are designed by
combining a particular image regularization with a stripe noise
characterization that cooperates with the regularization. Since
the function used for image regularization is often also used
for stripe noise characterization, these methods carefully select
the function used for stripe noise characterization so that it
does not conflict with the adopted image regularization. For
example, destriping methods using the low-rank based model
employ TV as the image regularization [40], but in the case of
destriping methods with the TV model, only the horizontal TV
is used to regularize the image [43], [44] because the vertical
TV is used to characterize the stripe noise.

On the other hand, it would be very beneficial to establish
a destriping framework that can handle various image regular-
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(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 1. Spatial flatness of stripe noise on HSI and IR video data. (a1) Striped
HSI data. (a2) Vertical gradient. (a3) Horizontal gradient. (b1) Striped IR
video data. (b2) Vertical gradient. (b3) Horizontal gradient.

izations in a unified manner, so that we can select a regular-
ization that matches each target image of different nature. In
fact, a number of image regularization techniques have been
proposed for remote sensing images. Typical examples are
hyperspectral image regularization techniques based on spatio-
spectral smoothness and correlation [23], [24], [29], [30], [33].
In the case of video data, there are also many regularization
techniques that consider moving objects [45]–[47]. Combining
multiple regularizations is also a promising strategy [38], [48].

In order to achieve the aforementioned unified framework,
two requirements need to be considered: 1) a general formu-
lation and algorithm that can handle a variety of image reg-
ularizations, and 2) a strong stripe noise characterization that
can consistently capture the nature of stripe noise, regardless
of the choice of image regularization.

Based on the above discussion, this paper proposes a general
destriping framework for remote sensing images. First, we for-
mulate destriping as a constrained convex optimization prob-
lem involving a general form of image regularization and a
newly introduced strong stripe noise characterization. Second,
we develop an efficient algorithm based on the diagonally-
preconditioned primal-dual splitting algorithm (DP-PDS) [37]-
[39], which can automatically determine the appropriate step-
sizes for solving this problem.

The main contributions of the paper are as follows:

• (General framework) Our framework incorporates image
regularization as a general form represented by a sum of
(possibly) nonsmooth convex functions involving linear
operators. This enables us to leverage various image
regularizations according to target images.

• (Effective characterization of stripe noise) The most com-
mon type of stripe noise has a strong flat structure in
the vertical or horizontal direction. As a typical example,
a band of a raw HSI, a frame of a raw IR video, and
their vertical and horizontal gradients are shown in Fig. 1,
where we can see that the stripe component only exists in
the horizontal differences. This implies that stripe noise
is flat in the vertical direction. Therefore, we can capture

(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 2. Temporal invariance of stripe noise on IR video data. (a1), (a2), and
(a3) Frames of a raw data. (b1), (b2), and (b3) Differences in the frames.

the flatness by constraining its vertical gradient to zero,
named the flatness constraint. Moreover, stripe noise in
videos is often time-invariant. For example, IR videos
are corrupted with time-invariant stripe noise due to focal
plane arrays [49], [50]. Some frames of a raw IR video
and their differences are shown in Fig. 2, where we can
see that the stripe noise is time-invariant because it does
not appear in the differences. For such data, we impose
the flatness constraint along the temporal direction in
addition to the spatial constraint. Thanks to such a strong
characterization, our framework has a marked ability of
stripe noise removal that does not so much depend on
what image regularization is adopted.

• (Automatic stepsize adjustment) Our algorithm can au-
tomatically adjust the stepsizes based on the structure
of the optimization problem to be solved. In general,
the appropriate stepsizes of PDS would be different
depending on image regularizations, meaning that we
have to manually adjust them many times. Our algorithm
is free from such a troublesome task.

We demonstrate the effectiveness of our framework through
destriping experiments, where we comprehensively compare
combinations of image regularizations and stripe noise char-
acterizations using hyperspectral images (HSI) and infrared
(IR) videos.

The remainder of this paper is organized as follows. The
mathematical notations are summarized in Tab. I. For more
detailed and visual understandings of tensor operators, [51],
[52] are helpful. Section II gives reviews the existing sparsity-
based, low-rank-based, and TV-based destriping models. Sec-
tion III presents the details of the proposed formulation and
the solver. Experimental results and discussion are given in
Section IV. Finally, we summarize the paper in Section V.

The preliminary version of this work, without mathemat-
ical details, comprehensive experimental comparison, deeper
discussion, or implementation using DP-PDS, has appeared in
conference proceedings [53].

1If M = 1, a tensor product space is equivalent to a tensor space.
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TABLE I
NOTATIONS AND DEFINITIONS

Line number Notation Terminology

1 R and R++ Real and positive real numbers

2 ΠMi=1R
ni,1×···×ni,Ni , ΠMi=1R

ni,1×···×ni,Ni
++ M Nith-order tensor/positive-element-tensor product space1

3 X , (X1, · · · ,XM ) Elements of tensor product space

4 Xi(i1, · · · , iNj
) or [Xi]i1,··· ,iNj

(i1, · · · , iNj
)th element of an ith tensor of X

5
‖X‖1,

X = (X1, · · · ,XM ) ∈ ΠMi=1R
ni,1×···×ni,Ni

`1-norm,
‖X‖1 =

∑
i

∑
i1,··· ,iNi

|Xi(i1, · · · , iM )|

6
〈X ,Y〉,

X = (X1, · · · ,XM ) ∈ ΠMi=1R
ni,1×···×ni,Ni ,

Y = (Y1, · · · ,YM ) ∈ ΠMi=1R
ni,1×···×ni,Ni

Inner product,
〈X ,Y〉 =

∑
i

∑
i1,··· ,iNi

Xi(i1, · · · , iM )Yi(i1, · · · , iNi
)

7
‖X‖F ,

X ∈ ΠMi=1R
ni,1×···×ni,Ni

Frobenius norm,
‖X‖F =

√
〈X ,X〉

8
X � Y ∈ ΠMi=1R

ni,1×···×ni,Ni ,
X = (X1, · · · ,XM ) ∈ ΠMi=1R

ni,1×···×ni,Ni ,
Y = (Y1, · · · ,YM ) ∈ ΠMi=1R

ni,1×···×ni,Ni

Hadamard product,
Zi(i1, · · · , iNi

) = Xi(i1, · · · , iNi
)Yi(i1, · · · , iNi

),
Z = X � Y,
∀ik ∈ {1, · · · , ni,Nk

},
∀i ∈ {1, · · · ,M},
∀k ∈ {1, · · · ,M}

9 I = (I1, · · · , IM )

Identity tensor product element with the Hadamard product,
Ii(i1, · · · , iNi

) = 1,
∀ik ∈ {1, · · · , ni,Nk

},
∀i ∈ {1, · · · ,M},
∀k ∈ {1, · · · ,M}

10 G−1 = (G−1
1 , · · · ,G−1

M )
Inverse tensor product element of G with the Hadamard product,

G � G−1 = I

11
‖X‖F,G ,

X ∈ ΠMi=1R
ni,1×···×ni,Ni ,

G ∈ ΠMi=1R
ni,1×···×ni,Ni
++

Frobenius norm skewed by the metric induced by G
‖X‖F,G =

√
〈G � X ,X〉

12

proxG,γf (X ),
X ∈ ΠMi=1R

ni,1×···×ni,Ni ,

G ∈ ΠMi=1R
ni,1×···×ni,Ni
++ ,

f is a proper lower semi-continuous convex function

The proximity operator of f with index γ > 0
within the metric induced by G,

proxG,γf (X ) := argmin
Y

1
2
‖Y − X‖2F,G + γf(Y).

II. REVIEW OF EXISTING APPROACHES

HSI and IR video data can be represented as third-order
tensors, where the spatial information lies in the first two
dimensions, and the spectral or frame information lies in the
third dimension. To estimate desirable data from the observed
data contaminated by stripe noise and random noise, we model
the observation data as follows:

V = Ū + S +N , (1)

where Ū ∈ Rn1×n2×n3 is a desirable data of interest, S ∈
Rn1×n2×n3 is stripe noise, N ∈ Rn1×n2×n3 is random noise,
and V ∈ Rn1×n2×n3 is the observed data.

Under the model in (1), the destriping problem is often for-
mulated as convex optimization problems with the following
form:

min
U,S

K∑
k=1

Rk(Lk(U)) + λSJ(S) +
λN
2
‖V − (U + S)‖2F ,

where Rk(Lk(·)) : Rn1×n2×n3 → (−∞,∞] is regularization
functions for imaging data with a linear operation Lk and

a function Rk (∀k = 1, · · · ,K), and J : Rn1×n2×n3 →
(−∞,∞] is a function characterizing stripe noise, respectively.
The positive scalars λS and λN are the hyperparameters.
Depending on how J is chosen, destriping models can be
classified into the following three categories: the (group-
)sparsity-based model, the low-rank-based model, and the TV-
based model.

The sparsity-based model has been used in a lot of methods.
Among them, the method proposed in [29] is known as a
representative work. This method uses the `1-norm as J , which
is a well-known sparsity measure. As mentioned, this model
relies on the fact that stripe noise is sparsely distributed in
observed data. The method proposed in [37] sets J to the
mixed `2,1-norm since each column of stripe noise is viewed
as a group. The mixed `2,1-norm is the sum of the `2-norm of
each column vector, which groups stripe noise by each column,
and thus it is used for the characterization of stripe noise based
on group sparsity. The sparsity-based model results in efficient
optimization due to its simple modeling, but cannot fully
capture the nature of stripe noise. Specifically, its destriping
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Fig. 3. A whole workflow of the proposed general destriping framework.

TABLE II
STRIPE NOISE CHARACTERIZATIONS

Model J(S)

Sparsity-based model λ‖S‖1
Group sparsity-based model λ

∑n2
j

∑n3
k ‖S(:, j, k)‖2

Low-rank-based model λ
∑n3
i=1 ‖S(:, :, i)‖∗

TV-based model µ‖Dv(S)‖0or1 + λ‖S‖1

performance strongly depends on image regularization, as will
be shown in Section IV-C.

The low-rank-based model has been proposed in [40].
In [40], the authors revealed that stripe noise only exists in the
horizontal gradient component and that the rank of stripe noise
is one. Based on this observation, they adopted the nuclear
norm for J , which is a reasonable convex function that can
evaluate the low-rankness of a matrix. In general, this model
outperforms the sparsity-based model. However, it conflicts
with low-rank image regularizations where the nuclear norm
is employed [29]–[31], [33].

The TV-based model [43], [44] adopted a TV term and a
sparse term to capture the one-directional smoothness of stripe
noise. This model is also superior to the sparsity-based model.
However, the TV-based model weakens the TV regularization
ability to capture the vertical smoothness, as will be shown in
Section IV-C.

We summarize the stripe noise characterizations in Tab. II.

III. PROPOSED FRAMEWORK

The proposed framework involves a general form of regu-
larization term and two types of the flatness constraint. The
choice of the specific image regularization and the removal of
the temporal flatness constraint are required to fit the nature of
an observed image. Depending on image regularization and the
temporal flatness constraint, the DP-PDS-based solver needs
to be implemented. We illustrate a whole workflow for the
proposed framework in Fig. 3.

A. General Destriping Model with Flatness Constraint
In this section, we propose a general destriping model using

the flatness constraint. As mentioned, stripe noise S has the
characteristic that the vertical/temporal gradient is zero, i.e.,{

Dv(S) = O,
Dt(S) = O,

(2)

where O ∈ Rn1×n2×n3 is a zero tensor, i.e., O(i, j, k) = 0,
∀i ∈ {1, · · · , n1}, ∀j ∈ {1, · · · , n2}, and ∀k ∈ {1, · · · , n3}.
Moreover, Dv : Rn1×n2×n3 → R(n1−1)×n2×n3 and Dt :
Rn1×n2×n3 → Rn1×n2×(n3−1) are the vertical/temporal dif-
ference operators with the Neumann boundary, which are
defined as

[Dv(X )]i,j,k := X (i, j, k)−X (i+ 1, j, k),
∀i ∈ {1, · · · , n1 − 1},
∀j ∈ {1, · · · , n2},
∀k ∈ {1, · · · , n3},

(3)

[Dt(X )]i,j,k := X (i, j, k)−X (i, j, k + 1),
∀i ∈ {1, · · · , n1},
∀j ∈ {1, · · · , n2},
∀k ∈ {1, · · · , n3 − 1}.

(4)

Using the flatness constraints in Eq. (2), we newly formulate
destriping as the following convex optimization problem:

min
U,S

K∑
k=1

Rk(Lk(U))+λ‖S‖1 s.t.


Dv(S) = O,
Dt(S) = O,
‖V − (U + S)‖F ≤ ε,

(5)
where λ > 0 is a hyperparameter, and Rk(Lk(·)) (k =
1, · · · ,K) is a regularization term with a proper semi-
continuous convex proximable2 function Rk and a linear
operator Lk. The vertical and temporal gradients of stripe
noise are constrained to zero by the first and second constraint,
which captures the vertical/temporal flatness of stripe noise.
Additionally, we impose the `1-norm on S to exploit the
sparsity of stripe noise. The third constraint is a Frobenius
norm constraint with the radius ε for data fidelity to V given
in (1). The data-fidelity constraint has an important advantage
over the standard additive data fidelity in terms of facilitating
hyperparameter settings, as addressed in [54]–[58]. If stripe
noise is variant in the third direction such as HSIs, we remove
the second constraint.

For data with horizontally featured stripe noise, as in images
acquired by whiskbroom scanning [43], we rotate the data 90
degrees in the spatial direction before optimization.

2If an efficient computation of the skewed proximity operator of f is
available, we call f skew proximable.
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Algorithm 1 The DP-PDS algorithm for solving Prob. (5)
Input: An observed image V , a balancing parameter λ, and

a data fidelity parameter ε
Output: U (n),S(n)

1: Initialize U (0),S(0),Y(0)
1,k(k = 1, . . . ,K),Y(0)

i (i =
2, 3, 4);

2: n = 0;
3: while A stopping criterion is not satisfied do
4: U (n+1) ← U (n) − GU � (

∑K
k=1 L

∗
k(Y(n)

1,k ) + Y(n)
4 );

5: S ′ ← S(n) − GS � (D∗v(Y
(n)
2 ) + D∗t (Y

(n)
3 ) + Y(n)

4 );
6: S(n+1) ← proxG−1

S ,λ‖·‖1(S ′) by Eq. (9);
7: for i = 1, · · · ,K do
8: Y(n)

1,k ← Y
(n)
1,k + GY1,k

� Lk(2U (n+1) − U (n));
9: Y(n+1)

1,k ← Y(n)
1,k − GY1,k

� proxGY1,k ,Rk
(G−1Y1,k

�
Y(n)
1,k );

10: end for
11: Y(n+1)

2 ← Y(n)
2 + GY2

�Dv(2S(n+1) − S(n));
12: Y(n+1)

3 ← Y(n)
3 + GY3

�Dt(2S(n+1) − S(n));
13: Y(n)

4 ← Y(n)
4 + G4 � (2(L(n+1) + S(n+1))− (L(n) +

S(n)));
14: Y(n+1)

4 ← Y(n)
4 − G4 � PB(V,ε)

(G−14 � Y(n)
4 ) by

Eq. (18);
15: n← n+ 1;
16: end while

B. Diagonally Preconditioned Primal-Dual Splitting Algo-
rithm for Solving the General Destriping model

In this part, we introduce DP-PDS [59] to solve Prob. (5).
DP-PDS (see Appendix), which is a diagonally preconditioned
version of the primal-dual splitting algorithm [60], [61], frees
us from tedious stepsize settings. Moreover, the convergence
speed of DP-PDS is much faster in general than that of the
original PDS algorithm.

To solve Prob. (5) with DP-PDS, we rewrite it into the
following equivalent problem:

min
U,S,Y1,1,...,Y1,K ,
Y2,Y3,Y4

λ‖S‖1 +

K∑
k=1

Rk(Y1,k) + ι{O}(Y2)

+ ι{O}(Y3) + ιB(V,ε)
(Y4) s.t.



Y1,1 = L1(U),
...
Y1,K = LK(U),

Y2 = Dv(S),

Y3 = Dt(S),

Y4 = U + S,

(6)

where ι{O} and ιB(V,ε)
are the indicator functions3 of {O}

and B(V,ε) := {X ∈ Rn1×n2×n3 |‖V − X‖F ≤ ε}, re-
spectively. DP-PDS computes the solution of Eq. (6) by
updating primal variables (U and S) and dual variables
(Y1,1, . . . ,Y1,K ,Y2,Y3, and Y4) alternately.

3For a given nonempty closed convex set C, the indicator function of C is
defined by ιC(X ) := 0, if X ∈ C; ∞, otherwise.

The primal variables are updated as follows:

U (n+1) ← U (n) − GU �

(
K∑
k=1

L∗k(Y1,k) + Y4

)
, (7)

S(n+1) ← proxG−1
S ,λ‖·‖1(

S(n) − GS �
(
D∗v

(
Y(n)
2

)
+ D∗t

(
Y(n)
3

)
+ Y(n)

4

))
, (8)

where L∗1, . . . ,L
∗
K , D∗v , and D∗t are the adjoint operators4

of L1, . . . ,LK , Dv , and Dt, respectively. The constants GU
and GS are stepsize parameters that are called preconditioners
and G−1S is the inverse tensor of GS (see line 10 of Tab. I).
The preconditioners are given by the coefficients of the linear
operations L and Dv (see Eq. (34) in Appendix for the detailed
definitions). The skewed proximity operator (see line 12 of
Tab. I for the definition) of ‖ · ‖1 in Eq. (8) is given by

proxG−1
S ,λ‖·‖1(X ) = sgn(X )�max{|X | − λGS , 0}, (9)

where sgn(X ), max{X , 0}, and |X | respectively denote the
sign, positive part, and magnitude of X . Their definitions are
as follows:

[sgn(X )]i,j,k =

{
1, if X (i, j, k) ≥ 0,

−1, if X (i, j, k) < 0,
(10)

[max{X , 0}]i,j,k =

{
X (i, j, k), if X (i, j, k) ≥ 0,

0, if X (i, j, k) < 0,
(11)

[|X |]i,j,k = |X (i, j, k)|,

∀i ∈ {1, · · · , n1},∀j ∈ {1, · · · , n2},
∀k ∈ {1, · · · , n3}.

(12)

Then, the dual variables are updated as follows:

Y(n+1)
1,k ←proxG−1

Y1,k
,R∗k(

Y(n)
1 + GY1,k

�
(
Lk

(
2U (n+1) − U (n)

)))
,

(∀k = 1, · · · ,K) (13)

Y(n+1)
2 ←proxG−1

Y2
,ι∗{O}(

Y(n)
2 + GY2

�
(
Dv

(
2S(n+1) − S(n)

)))
, (14)

Y(n+1)
3 ←proxG−1

Y3
,ι∗{O}(

Y(n)
3 + GY3 �

(
Dv

(
2S(n+1) − S(n)

)))
, (15)

Y(n+1)
4 ← proxG−1

Y4
,ι∗B(V,ε)(

Y(n)
4 + GY4

�
(
2
(
U (n+1) + S(n+1)

)
−
(
U (n) + S(n)

)))
,

(16)
where the constants GY1,1 , . . . ,GY1,K

,GY2 ,GY3 , and GY4 are
preconditioners that can be also determined automatically (see
Eq. (36) in Appendix). The functions R∗k, ι∗{O}, and ι∗B(V,ε)

4Let L :
∏N0
i=1 R

ni,1×···×ni,Ni →
∏M0
i=1 R

mi,1×···×mi,Mi . A lin-
ear operator L∗ :

∏M0
i=1 R

mi,1×···×mi,Mi →
∏N0
i=1 R

ni,1×···×ni,Ni

is called adjoint operator of L if for all X ∈ Rni,1×···×ni,Ni ,Y ∈∏M0
i=1 R

mi,1×···×mi,Mi , 〈L(X ),Y〉 = 〈X ,L∗(Y)〉.
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are the Fenchel–Rockafellar conjugate functions5 of Rk, ι{O},
and ιB(V,ε)

. The skewed proximity operator has the following
useful property [62, Corollary 6]:

proxG−1,f∗(X ) = X − G � proxG,f (G−1 �X ), (17)

so that the skewed proximity operator of a Fenchel-Rockafellar
conjugate function f∗ can be easily calculated if f is skew
proximable. The skewed proximity operators in Eq. (13)
are efficiently computed because Rk is a skew proximable
function. The skewed proximity operator of ι{O} in Eqs. (14)
and (15) are calculated as proxG,ι{O}(X ) = O for any

X ∈ R(n1−1)×n2×n3 and G ∈ R(n1−1)×n2×n3

++ . The skewed
proximity operator of ιB(V,ε)

in Eq. (16) is not proximable in
general. In our method, all entries of the preconditioner G4 are
1
2 . Hence, the operator proxG4,ιB(V,ε)

is easily calculated as

proxG4,ιB(V,ε)
(X )

= proxI,2ιB(V,ε)
(X )

= PB(V,ε)
(X ) =

{
X , if X ∈ B(V,ε),

V + ε(X−V)
‖X−V‖F , otherwise.

(18)

Through these update steps, we obtain the solution of
Prob. (5). We show the detailed algorithms in Alg. 1. We
note that this algorithm can handle a nonconvex optimization
problem that contains the proximable nonconvex function
such as the `0-norm and the rank function. However, its
convergence, in this case, is not guaranteed.

In temporally variant stripe noise cases, such as an HSI,
the temporal constraint is removed. Following the change, the
update step in (8) will be as follows:

S(n+1) ← proxG−1
S ,λ‖·‖

(
S(n) − GS �

(
D∗v(Y

(n)
2 ) + Y(n)

4

))
.

(19)
Then, we remove the update step of Y3 (line 9 of Alg. 1).

C. Examples of Image Regularizations

We give some examples of image regularization∑K
k=1Rk(Lk(U)) in (5). First, let us consider HTV [23].

Since the HTV is an image regularization for HSIs, we adopt
the formulation that does not involve the temporal flatness
constraint. The definition of HTV is

‖U‖HTV :=
∑
i,j

√∑
k

D1(i, j, k)2 +D2(i, j, k)2, (20)

where D1 = Dv(U) and D2 = Dh(U). Therefore, by
letting K = 1, L1(U) = {Dv(U),Dh(U)}, and R1 =
‖{U1,U2}‖1,2 =

∑
i,j,k

√
U1(i, j, k)2 + U2(i, j, k)2, we can

apply HTV to Prob. (5). The update of U is as follows:

U (n+1) ← U (n) − GU �
(
D∗v(Y

(n)
1,1,1) + D∗h(Y(n)

1,1,2) + Y(n)
3

)
,

(21)

5The Fenchel–Rockafellar conjugate function of f is defined as

f∗(X ) := max
Y
〈X ,Y〉+ f(Y).

where Y(n)
1,1 = {Y(n)

1,1,1,Y
(n)
1,1,2}. The proximity operator

of ‖ · ‖1,2 is calculated as follows:

Zl(i, j, k) =

max

{
1−

GY1,1,l
(i, j, k)√∑

k′ Y1,1,1(i, j, k′)2 + Y1,1,2(i, j, k′)2
, 0

}
∗ Y1,1,l(i, j, k), (22)

where {Z1,Z2} = proxGY1,k ,‖·‖1,2
(Y1,1). Preconditioners are

determined as GU (i, j, k) = 1/(G−1D∗v
(i, j, k)+G−1D∗h

(i, j, k)+1),
and GS(i, j, k) = 1/(G−1D∗v

(i, j, k) + 1), where

G−1D∗v
(i, j, k) =

{
1, if i = 1, n1,

2, otherwise,
(23)

G−1D∗h
(i, j, k) =

{
1, if j = 1, n2,

2, otherwise,
(24)

GY1,1,1(i, j, k) = 1/2, GY1,1,2(i, j, k) = 1/2, GY2(i, j, k) =
1/2, ∀i ∈ {1, · · · , n1}, ∀j ∈ {1, · · · , n2}, and ∀k ∈
{1, · · · , n3}. Finally, we obtain a solver for Prob. (5) with
HTV.

As another example for an IR video case, we consider
ATV [28]. ATV is defined as

‖U‖ATV := ‖Dv(U)‖1 + ‖Dh(U)‖1 + ‖Dt(U)‖1. (25)

Therefore, we set K = 3, L1 = Dv , L2 = Dh, L3 = Dt, and
R1 = R2 = R3 = ‖ · ‖1 to apply ATV to Eq. (6). Then, we
update U as

U (n+1) ← U (n)

− GU �
(
D∗v(Y

(n)
1,1 ) + D∗h(Y(n)

1,2 ) + D∗t (Y
(n)
1,3 ) + Y(n)

3

)
.

(26)

The proximity operator in line 11 of Alg. 1 is calcu-
lated by Eq. (9). Preconditioners are set as GU (i, j, k) =
1/(G−1D∗v

(i, j, k) + G−1D∗h
(i, j, k) + G−1D∗t

(i, j, k) + 1) and
GS(i, j, k) = 1/(G−1D∗v

(i, j, k) + G−1D∗t
(i, j, k) + 1), where G−1D∗v

and G−1D∗h
are already defined in the HTV example and

G−1D∗t
(i, j, k) =

{
1, if k = 1, n3,

2, otherwise,
(27)

GY1,1(i, j, k) = 1/2, GY1,2(i, j, k) = 1/2, GY1,3(i, j, k) = 1/2,
GY2

(i, j, k) = 1/2, GY3
(i, j, k) = 1/2, ∀i ∈ {1, · · · , n1},

∀j ∈ {1, · · · , n2}, and ∀k ∈ {1, · · · , n3}.

D. Computational Cost and Running Time

The complexities of lines 4, 8, and 9 of Alg. 1 depend
on what image regularization is adopted. When a specific
image regularization is not given, we cannot have explicit
complexities. All operations of lines 5, 6, 11, 12, 13, and
14 of Alg. 1 have the complexity of O(n1n2n3). Thus, the
complexity for each iteration of the algorithm is the larger of
O(n1n2n3) or the one for the image regularization term.

We measured the actual running times using MATLAB
(R2021a) on a Windows 10 computer with an Intel Core
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(a) (b)
Fig. 4. Convergence analysis of DP-PDS for that are experimentally per-
formed using two image regulraizations. (a) HSI destriping using HTV
(Eq. (20)). (b) IR video destriping using ATV (Eq. (25)).

(a) Iteration = 20 (b) Iteration = 40 (c) Iteration = 60

Fig. 5. Salinas destriping result of S(n) in each iteration with HTV (R: 140,
G: 101, B: 30).

i9-10900 3.7GHz processor, 32GB of RAM, and NVIDIA
GeForce RTX 3090. The actual running times [s] and total
iteration numbers were 13.47 and 932, 5.123 and 317, and
1.064 and 191 for Moffett Field destriping using HTV, Sali-
nas destriping using HTV, and Bats1 destriping using ATV,
respectively. For the experimental settings, see Sec. IV-C.

E. Convergence Analysis

The convergence property of Alg. 1 is given in Ap-
pendix B. Moreover, we experimentally confirm the conver-
gence properties. We plotted the objective function values∑K
k=1Rk(Lk(U (n))) + λ‖S(n)‖1 versus iterations n on the

experiments using HTV and ATV in Fig. 4, where our algo-
rithm minimizes the objective function. Figure 5 shows Salinas
destriping results of S(n) in each iteration. From these results,
we can see that the stripe noise becomes flat along the vertical
direction as the number of iterations is large. The convergence
speed of the stripe noise component depends on what image
regularization is adopted.

TABLE III
ALL METHODS (STRIPE NOISE CHARACTERIZATION+IMAGE

REGULARIZATION EXAMINED IN OUR EXPERIMENTS)

Image
regularization

Characterization of
stripe noise

S [29] GS [37] LR [40] TV [44] FC

HTV (HSI) [23] [37] [40] [44] Ours
SSTV (HSI) [24] None None None Ours

ASSTV (HSI) [25] None None None Ours
TNN (HSI) [30] None None None Ours

SSTV+TNN (HSI) [38] None None None Ours
l0-l1HTV (HSI) [27] None None None Ours

ATV (IR video) [28] None None None Ours
ITV (IR video) [28] None None None Ours

ATV+NN (IR video) [48] None None None Ours

IV. EXPERIMENTS

In this section, we illustrate the effectiveness of our frame-
work through comprehensive experiments. Specifically, these
experiments aim to show that
• Our flatness constraint accurately separates stripe noise

from striped images,
• Our framework achieves good destriping performance on

average, whatever image regularizations are used.
The specific experimental procedure is as follows.
1) Select image regularizations to be used.
2) Develop DP-PDS-based solvers for all optimization

problems that include all combinations of the image
regularizations and the stripe noise characterizations
summarized in Table III.

3) Set some parameters such as the weight of image reg-
ularization, the gradient regularization weight µ of the
TV-based model, the data-fidelity parameter ε, and the
parameter of the sparse term λ. (Their detailed settings
are given in each experimental section).

4) Conduct destriping experiments using these solvers and
parameters.

A. Image Regularizations and Stripe Noise Characterizations

In HSI experiments, we adopted Hyperspectral Total Varia-
tion (HTV) [23], Spatio-Spectral Total Variation (SSTV) [24],
Anisotropic Spectral-Spatial Total Variation (ASSTV) [25],
Tensor Nuclear Norm (TNN) [30], Spatial-Spectral Total Vari-
ation with Tensor Nuclear Norm (SSTV+TNN) [38], and l0-
l1 Hybrid Total Variation (l0-l1HTV) [27], which are often
used for HSI regularization. The parameters of ASSTV were
experimentally determined as the values that can achieve the
best performance. The parameter of SSTV+TNN was set to
the values recommended in [38]. In IR video experiments,
we adopted Anisotropic Total Variation (ATV), Isotropic Total
Variation (ITV) [28], and Anisotropic Total Variation with
Nuclear Norm (ATV+NN) [48], which are known as video
regularization. We compared the proposed flatness constraint
(FC) with the sparsity-based model (S), the group-sparsity-
based model (GS), the low-rank-based model (LR), and the
TV-based model (TV). For convenience, we denote each
method that combines a particular stripe noise characterization
and a particular image regularization shortly by connecting
each name with a hyphen. For example, the destriping method
using the sparsity-based model and HTV is denoted as S-HTV.

Table III summarizes all combinations of stripe noise
characterizations and image regularizations examined in our
experiments, where we indicate reference numbers for specific
combinations that have been proposed in existing studies
(”None” means that the combination has not been considered
yet).

B. Dataset Descriptions

We employed three HSI datasets and two IR datasets for
experiments in simulated and real noise cases. All images were
normalized between [0, 1].
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(a) Ground-truth (b) Observed (c) S [29] (d) GS [37] (e) LR [40] (f) TV [44] (g) FC
(MPSNR, MSSIM) (35.10, 0.8871) (35.79, 0.8919) (36.93, 0.9005) (35.85, 0.8711) (40.84, 0.9548)

Fig. 6. Moffett field destriping results in Case (i) with SSTV (R: 126, G: 95, B: 74). The MPSNR and MSSIM of our FC are highlighted in bold.
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(a) Ground-truth (b) Observed (c) S [29] (d) GS [37] (e) LR [40] (f) TV [44] (g) FC
(MPSNR, MSSIM) (31.89, 0.9541) (32.36, 0.9552) (38.67, 0.9945) (31.76, 0.9420) (41.94, 0.9953)

Fig. 7. Bats1 destriping results in Case (ii) with ATV. The MPSNR and MSSIM of our FC are highlighted in bold.

The Moffett Field [63] was acquired by Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) over the urban
and rural area in Moffett Field, CA, USA, with a spatial
resolution of 20 m. This image consists of 224 spectral bands
in the range of 400− 2500 nm. After removing noisy bands,
we used a sub-image of size 395× 185× 176 (Fig. 6 (a)) for
experiments in simulated noise cases.

The Salinas [64] was collected by AVIRIS over the field
area in Salinas Valley, CA, USA, with a spatial resolution of
3.7 m. This image consists of 224 spectral bands in the range
of 400−2500 nm. After removing noisy bands, we used a sub-
image of size 360× 217× 190 (Fig. 8 (a)) for experiments in
simulated noise cases.

The Suwannee [65] acquired by AVIRIS over National
Wildlife Reserves in the Gulf of Mexico with a spatial
resolution of 2 m. This image consists of 360 spectral bands
in the range of 395− 2450 nm. We used a sub-image of size
256 × 256 × 360 (Fig. 13 (a)) for experiments in real noise
cases.

The Bats1 and Bats2 [66], which include hundreds of bats,
were collected with three FLIR SC6000 thermal infrared cam-
eras at a frame rate of 125 Hz. For more detailed descriptions,
see also [3], [67], [68]. We used denoised and raw sub-images
of size 256×256×50 (Figs. 7 (a) and 13 (b)) for experiments
in simulated and real noise cases, respectively.

C. Experiments in Simulated Noise Cases

For the HSI destriping experiments, the parameter λ of
each stripe noise characterization model summarized in Tab. II
was set to a hand-optimized value, so as to achieve the best
MPSNR. For fair comparison, we set ε to the oracle value,
i.e., ε = ‖N‖F . As quantitative evaluations, we employed the
mean peak signal-to-noise ratio (MPSNR):

MPSNR =
1

n3

n3∑
k=1

10 log10

n1n2
‖Uk − Ūk‖22

, (28)

and the mean structural similarity overall bands (MSSIM) [69]:

MSSIM =
1

n3

n3∑
k=1

SSIM(Uk, Ūk), (29)

where Uk is the kth band of U . The larger these values are,
the better the destriping results are. The stopping criterion of
Alg. 1 was set as ‖U

(n+1)−U(n)‖F
‖U(n)‖F

< 1.0× 10−4.
We generated the three types of degraded images:

(i) HSIs with vertical stripe noise,
(ii) IR videos with time-invariant vertical stripe noise,

(iii) HSIs with vertical stripe noise and white Gaussian noise.

In the IR video experiments, we only consider stripe noise
because Gaussian-like random noise does not appear in raw IR
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TABLE IV
MPSNRS AND MSSIMS OF THE HSI DESTRIPING RESULTS IN CASE (I)

Image data Range of Regularization MPSNR MSSIM

stripe noise function S [29] GS [37] LR [40] TV [44] FC S [29] GS [37] LR [40] TV [44] FC

[−0.2, 0.2]

HTV 28.70 32.00 38.29 37.65 37.35 0.7601 0.8980 0.9835 0.9937 0.9929
SSTV 36.09 36.34 38.61 36.69 41.00 0.9344 0.9411 0.9628 0.9266 0.9751

ASSTV 36.92 38.92 41.64 37.29 39.29 0.9656 0.9756 0.9922 0.9646 0.9900
TNN 21.78 25.48 25.47 28.36 28.36 0.3230 0.5227 0.9404 0.9589 0.9589

SSTV+TNN 32.95 34.54 39.04 37.58 37.61 0.9285 0.9276 0.9889 0.9735 0.9799
l0-l1HTV 36.66 35.96 41.53 38.52 39.92 0.9515 0.9429 0.9877 0.9655 0.9837

[−0.25, 0.25]

HTV 28.51 31.63 37.17 37.21 36.92 0.8309 0.8949 0.9825 0.9930 0.9925
SSTV 35.84 36.10 37.75 36.55 40.78 0.9340 0.9407 0.9587 0.9264 0.9775

ASSTV 36.79 38.69 40.87 37.18 38.82 0.9652 0.9753 0.9918 0.9644 0.9791
TNN 22.75 24.79 24.86 28.25 28.25 0.4181 0.4739 0.9335 0.9480 0.9480

SSTV+TNN 32.66 34.26 37.89 37.21 37.25 0.9263 0.9260 0.9852 0.9737 0.9798
l0-l1HTV 36.38 35.70 40.87 38.39 39.69 0.9502 0.9412 0.9873 0.9651 0.9833

[−0.3, 0.3]

HTV 28.41 31.46 36.37 37.07 36.78 0.8292 0.8929 0.9817 0.9928 0.9924
SSTV 35.73 35.96 36.90 36.39 40.55 0.9328 0.9393 0.9509 0.9248 0.9764

Salinas ASSTV 36.70 38.62 40.35 37.11 38.76 0.9648 0.9797 0.9914 0.9640 0.9789
TNN 22.30 24.06 24.19 28.04 28.04 0.6844 0.7069 0.9224 0.9179 0.9179

SSTV+TNN 32.53 34.14 37.13 37.13 37.14 0.9252 0.9250 0.9839 0.9736 0.9796
l0-l1HTV 36.25 35.57 40.16 38.24 39.52 0.9492 0.9402 0.9868 0.9647 0.9831

[−0.35, 0.35]

HTV 28.34 31.38 36.07 36.84 36.62 0.8281 0.8916 0.9815 0.9925 0.9922
SSTV 35.60 35.86 35.86 36.10 40.07 0.9301 0.9374 0.9312 0.9216 0.9743

ASSTV 36.52 38.38 39.68 36.95 38.54 0.9638 0.9736 0.9905 0.9632 0.9781
TNN 21.83 23.36 23.59 27.36 27.36 0.3349 0.3871 0.9051 0.8355 0.8355

SSTV+TNN 32.47 34.17 36.71 37.04 37.14 0.9252 0.9257 0.9824 0.9727 0.9794
l0-l1HTV 36.10 35.45 39.31 38.02 39.23 0.9485 0.9393 0.9858 0.9641 0.9825

[−0.4, 0.4]

HTV 28.28 31.27 35.02 36.82 36.65 0.8268 0.8898 0.9796 0.9922 0.9931
SSTV 35.68 35.96 35.49 36.14 40.16 0.9287 0.9360 0.9353 0.9218 0.9726

ASSTV 36.57 38.52 39.68 37.02 39.09 0.9638 0.9742 0.9950 0.9633 0.9898
TNN 21.36 22.68 23.07 26.35 26.35 0.3015 0.3521 0.9003 0.7340 0.7339

SSTV+TNN 32.44 34.14 36.41 37.13 37.25 0.9238 0.9227 0.9865 0.9731 0.9799
l0-l1HTV 36.26 35.53 38.56 38.30 39.60 0.9488 0.9387 0.9857 0.9648 0.9833

[−0.2, 0.2]

HTV 27.95 29.32 36.88 36.07 36.18 0.6351 0.7237 0.9199 0.9165 0.9139
SSTV 35.33 35.97 38.69 36.17 40.91 0.8926 0.8952 0.9285 0.8825 0.9535

ASSTV 30.45 32.68 44.31 35.05 38.99 0.8418 0.8898 0.9847 0.9222 0.9691
TNN 24.51 26.26 32.67 35.54 35.54 0.4283 0.5301 0.7779 0.9390 0.9390

SSTV+TNN 32.63 35.14 39.94 37.38 38.00 0.8682 0.8857 0.9479 0.9465 0.9481
l0-l1HTV 35.51 35.14 41.24 37.77 39.17 0.8984 0.8834 0.9551 0.9269 0.9429

[−0.25, 0.25]

HTV 27.62 29.19 36.36 36.06 36.19 0.6216 0.7201 0.9151 0.9165 0.9144
SSTV 35.39 36.05 37.86 37.32 41.07 0.8960 0.8998 0.9218 0.9092 0.9580

ASSTV 30.37 32.59 44.07 33.76 38.97 0.8411 0.8886 0.9840 0.9111 0.9703
TNN 23.9 25.44 31.71 35.74 35.74 0.3846 0.4781 0.7496 0.9342 0.9342

SSTV+TNN 32.57 35.29 39.50 37.34 38.02 0.8701 0.8909 0.9450 0.9477 0.9498
l0-l1HTV 35.56 35.24 40.36 37.75 39.25 0.9025 0.8878 0.9526 0.9303 0.9466

[−0.3, 0.3]

HTV 27.18 29.05 35.72 35.96 36.07 0.6100 0.7135 0.9014 0.9133 0.9107
SSTV 35.10 35.79 36.93 35.85 40.84 0.8871 0.8919 0.9005 0.8711 0.9548

Moffett Field ASSTV 38.31 39.59 43.53 34.81 38.85 0.9672 0.9689 0.9819 0.9201 0.9691
TNN 23.33 24.65 30.66 36.59 36.41 0.3546 0.4308 0.7108 0.8873 0.8786

SSTV+TNN 32.33 35.04 38.72 37.28 37.95 0.8634 0.8851 0.9342 0.9464 0.9487
l0-l1HTV 35.28 34.93 39.85 37.69 39.02 0.8936 0.8795 0.9410 0.9243 0.9399

[−0.35, 0.35]

HTV 27.20 28.96 35.27 35.83 35.93 0.6100 0.7135 0.9014 0.9133 0.9107
SSTV 35.10 35.80 36.42 37.01 40.47 0.8871 0.8919 0.9005 0.9045 0.9548

ASSTV 30.27 32.46 43.10 33.67 38.78 0.8399 0.8875 0.9819 0.9087 0.9691
TNN 22.80 23.94 30.32 36.73 36.75 0.3450 0.4308 0.7108 0.8873 0.8786

SSTV+TNN 32.31 34.95 38.36 37.13 37.71 0.8634 0.8851 0.9342 0.9464 0.9487
l0-l1HTV 35.34 34.91 39.33 37.65 38.99 0.8972 0.8801 0.9421 0.9268 0.9420

[−0.4, 0.4]

HTV 26.98 28.80 34.47 35.57 35.67 0.5959 0.7015 0.8820 0.9039 0.9014
SSTV 34.96 35.61 35.57 35.61 40.27 0.8816 0.8871 0.8789 0.8634 0.9498

ASSTV 30.29 32.47 42.75 34.83 38.96 0.8408 0.8878 0.9763 0.9187 0.9691
TNN 22.27 23.26 30.00 35.91 36.75 0.2867 0.3602 0.6974 0.8848 0.8935

SSTV+TNN 32.14 34.74 37.24 37.09 37.66 0.8563 0.8801 0.9179 0.9415 0.9425
l0-l1HTV 35.13 34.74 38.24 37.36 38.60 0.8886 0.8749 0.9254 0.9169 0.9321

video data [14], [15]. For the variety of experiments, we con-
sidered the following five types of the intensity range of stripe
noise: [−0.2, 0.2], [−0.25, 0.25], [−0.3, 0.3], [−0.35, 0.35],
and [−0.4, 0.4]. The standard deviation of white Gaussian
noise was set to 0.05.

Tables IV, V, and VI list the resulting MPSNR and MSSIM
values in Case (i), Case (ii), and Case (iii), respectively.
The best and second-best values are highlighted in bold
and underline, respectively. The proposed FC achieved the
best/second-best MPSNR and MSSIM values in most cases. S

and GS performed worse overall. LR and TV performed better
than S and GS. However, the performance of LR and TV is
significantly degraded in the cases where they are combined
with a low-rank image regularization (LR-TNN) and TV image
regularizations (TV-SSTV and TV-ASSTV), respectively.

Figures 6, 7, and 8 depict the Moffett field destriping results
in Case (i) using SSTV, the Bats1 destriping results in Case
(ii) using ATV, and the Salinas destriping results in Case (iii)
using TNN, respectively. Figure 9 plots their band-wise or
frame-wise PSNRs and SSIMs. In the 95th-band results of
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TABLE V
MPSNRS AND MSSIMS OF THE IR DESTRIPING RESULTS IN CASE (II)

IR video data Range of Regularization MPSNR MSSIM

stripe noise function S [29] GS [37] LR [40] TV [44] FC S [29] GS [37] LR [40] TV [44] FC

[−0.2, 0.2]
ATV 30.15 30.48 34.85 29.97 36.53 0.9532 0.9540 0.9955 0.9400 0.9956
ITV 30.15 30.53 34.26 29.98 36.53 0.9532 0.9524 0.9935 0.9414 0.9957

ATV+NN 30.18 30.50 34.76 29.98 35.28 0.9531 0.9530 0.9951 0.9486 0.9951

[−0.25, 0.25]
ATV 30.02 30.44 32.09 29.98 36.82 0.9526 0.9540 0.9771 0.9399 0.9956
ITV 30.02 30.44 33.45 29.99 36.87 0.9525 0.9540 0.9936 0.9410 0.9959

ATV+NN 30.06 30.44 33.87 29.99 35.36 0.9528 0.9538 0.9950 0.9485 0.9951

[−0.3, 0.3]
ATV 31.89 32.36 38.67 31.76 41.94 0.9541 0.9552 0.9945 0.9420 0.9953

Bats1 ITV 31.90 32.37 37.85 31.82 42.13 0.9539 0.9551 0.9939 0.9430 0.9954
ATV+NN 31.90 32.37 34.96 31.91 41.73 0.9539 0.9551 0.9775 0.9504 0.9953

[−0.35, 0.35]
ATV 31.78 32.23 35.84 31.63 40.70 0.9539 0.9548 0.9914 0.9422 0.9955
ITV 31.78 32.37 34.88 31.68 40.54 0.9539 0.9553 0.9844 0.9424 0.9958

ATV+NN 31.82 32.39 35.69 31.98 40.69 0.9540 0.9554 0.9909 0.9503 0.9956

[−0.4, 0.4]
ATV 31.43 31.91 34.58 31.19 39.10 0.9537 0.9541 0.9899 0.9378 0.9954
ITV 31.43 31.91 34.99 31.27 39.38 0.9537 0.9541 0.9840 0.9393 0.9956

ATV+NN 31.37 31.85 34.48 31.36 38.98 0.9536 0.9540 0.9900 0.9467 0.9953
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(a) Ground-truth (b) Observed (c) S [29] (d) GS [37] (e) LR [40] (f) TV [44] (g) FC
(MPSNR, MSSIM) (22.43, 0.3678) (23.78, 0.7004) (23.15, 0.8421) (28.30, 0.8311) (28.30, 0.8311)

Fig. 8. Salinas destriping results in Case (iii) with TNN (R: 140, G: 101, B: 30). The MPSNR and MSSIM of our FC are highlighted in bold.

Figs. 9 (a) and (b), the PSNRs and SSIMs of S-SSTV, GS-
SSTV, and LR-SSTV dropped to 30 [dB] and 0.7, respectively.
This is because S-SSTV, GS-SSTV, and LR-SSTV excessively
smoothened the spectral signatures around the band. In the
magnified areas of Figs. 6 (c), (d), and (e), we see that the land
shapes of the red and green bands are removed as Gaussian
and stripe noise. TV-SSTV also resulted in the low PSNRs and
SSIMs of the band 95 and eliminated some edges in addition
to the stripe noise (see Fig. 6 (f)). S-ATV, GS-ATV, LR-ATV,
and TV-ATV removed bats as stripe noise, resulting in poor
performance (see Figs. 7 (c), (d), (e), and (f)). Figures 9 (c)
and (d) show that the PSNRs and SSIMs of S-ATV, GS-ATV,
LR-ATV, and TV-ATV vary according to frame numbers. The
reason is that the results are worse as the number of unrestored
bats increases. In contrast, FC-SSTV recovers the land shapes
and edges (see Fig. 6 (f)) and FC-ATV accurately removed
stripe noise, leading to high PSNRs and SSIMs. The SSIM
results for Figs. 9 (e) and (f) were better for LR than FC and
TV, but the PSNRs were better for FC and TV than LR. In
particular, from 30 to 150 bands, FC and TV achieved 10 [dB]
better PSNRs and 0.01 worse SSIMs than LR. In the magnified
area of the stripe noise by LR-TNN (Fig. 8 (e)), the yellow
line appears along with a field shape. This indicates that LR-

TNN restores the image structure but does not recover the
contrast. The three results verify that FC consistently achieves
high performance due to its accurate capturing ability for stripe
noise.

Figure 10 shows the means of MPSNRs and MSSIMs in
each noise case. In Case (i), LR and FC accurately captured
stripe noise, leading to better performances than TV. In Case
(ii), FC achieved the best performance. This is because FC
captures the temporal flatness while the other characterizations
do not. In Case (iii), LR captured horizontal lines as a stripe
noise component to remove Gaussian noise by the intersections
between vertical stripe noise and the horizontal lines, leading
to worse results. On the other hand, TV and FC obtained better
results than LR without capturing the horizontal lines.

Figure 11 plots the means of MPSNRs and MSSIMs in
each stripe noise intensity. LR dropped its MPSNRs as the
stripe noise intensities increased. This is due to the fact that
LR removes the meaningful image components as stripe noise
components if stripe noise intensity is high. The MPSNRs and
MSSIMs of TV did not decrease depending on the stripe noise
intensities but were lower than FC overall. Compared with
these existing stripe noise characterizations, FC accurately
eliminated stripe noise, resulting in high destriping perfor-
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TABLE VI
MPSNRS AND MSSIMS OF THE HSI DESTRIPING RESULTS IN CASE (III)

HSI Range of Regularization MPSNR MSSIM
stripe noise function S [29] GS [37] LR [40] TV [44] FC S [29] GS [37] LR [40] TV [44] FC

[−0.2, 0.2]

HTV 29.16 29.30 31.05 31.08 31.08 0.8371 0.8371 0.8717 0.8698 0.8698
SSTV 33.55 33.91 34.60 34.89 34.49 0.8643 0.8770 0.8910 0.8772 0.8913

ASSTV 28.93 28.98 29.11 28.83 28.96 0.6669 0.6268 0.6473 0.6613 0.6648
TNN 24.10 24.35 24.15 26.52 26.52 0.5456 0.4218 0.8565 0.8662 0.8662

SSTV+TNN 32.38 32.95 34.63 34.64 33.84 0.8893 0.9153 0.9382 0.9209 0.9097
l0-l1HTV 35.58 35.90 37.10 37.09 37.17 0.9384 0.9401 0.9523 0.9480 0.9483

[−0.25, 0.25]

HTV 28.74 29.10 30.68 30.98 30.98 0.8317 0.8354 0.8702 0.8696 0.8696
SSTV 33.01 33.59 34.16 34.39 34.39 0.8575 0.8757 0.8882 0.8917 0.8917

ASSTV 28.86 28.92 29.03 28.79 28.94 0.6643 0.6260 0.6471 0.6600 0.6638
TNN 23.34 23.89 23.67 26.40 26.40 0.4505 0.7146 0.8511 0.8549 0.8549

SSTV+TNN 31.63 32.49 34.14 34.39 33.51 0.8738 0.9103 0.9370 0.9194 0.9072
l0-l1HTV 35.12 35.28 36.71 36.91 36.99 0.9360 0.9357 0.9518 0.9474 0.9476

[−0.3, 0.3]

HTV 28.35 28.97 30.36 30.94 30.94 0.8247 0.8338 0.8688 0.8695 0.8695
SSTV 32.63 33.39 33.73 36.14 34.34 0.8495 0.8727 0.8817 0.9090 0.8910

Salinas ASSTV 28.80 28.89 28.98 28.77 28.92 0.6624 0.6256 0.6468 0.6591 0.6632
TNN 22.43 23.78 23.15 26.30 28.30 0.3678 0.7004 0.8421 0.8311 0.8311

SSTV+TNN 31.14 32.24 33.79 34.29 33.41 0.8611 0.9067 0.9362 0.9185 0.9058
l0-l1HTV 34.80 34.85 36.35 36.84 36.92 0.9337 0.9318 0.9513 0.9472 0.9474

[−0.35, 0.35]

HTV 28.03 28.86 30.17 30.90 30.90 0.8166 0.8323 0.8680 0.8693 0.8693
SSTV 32.30 33.17 33.22 34.20 34.20 0.8392 0.8668 0.8649 0.8881 0.888

ASSTV 28.74 28.85 28.91 28.75 28.91 0.6608 0.6251 0.6463 0.6586 0.6628
TNN 21.50 23.69 22.69 26.10 26.10 0.3066 0.6758 0.8276 0.7774 0.7774

SSTV+TNN 30.84 32.10 33.58 34.22 33.37 0.8527 0.9047 0.9349 0.9179 0.9052
l0-l1HTV 34.49 34.50 36.00 36.72 36.80 0.9306 0.9281 0.9501 0.9468 0.9471

[−0.4, 0.4]

HTV 27.69 28.73 30.12 30.88 30.88 0.8098 0.8309 0.8599 0.8688 0.8688
SSTV 32.17 33.17 32.99 34.60 34.31 0.8370 0.8671 0.8686 0.8730 0.8898

ASSTV 28.70 28.84 28.86 28.73 28.90 0.6598 0.6251 0.6460 0.6581 0.6623
TNN 21.55 23.47 22.26 25.54 25.54 0.6607 0.6198 0.8237 0.6978 0.6978

SSTV+TNN 30.58 31.99 33.25 34.22 33.38 0.8462 0.9029 0.9347 0.9173 0.9046
l0-l1HTV 34.39 34.31 35.58 36.86 36.94 0.9304 0.9266 0.9500 0.9471 0.9474

[−0.2, 0.2]

HTV 27.44 28.04 29.01 29.10 29.15 0.6387 0.6467 0.7043 0.7153 0.7275
SSTV 33.51 33.90 34.35 33.78 34.35 0.8421 0.8466 0.8574 0.8317 0.8548

ASSTV 27.08 28.00 28.02 28.00 28.18 0.6118 0.6327 0.6353 0.6234 0.6290
TNN 23.91 25.50 29.13 31.29 31.29 0.5512 0.6240 0.7505 0.8581 0.8581

SSTV+TNN 32.40 33.19 34.78 33.85 33.92 0.8413 0.8406 0.8933 0.8783 0.8698
l0-l1HTV 33.98 34.60 35.90 35.76 35.92 0.8778 0.8812 0.9060 0.9008 0.9022

[−0.25, 0.25]

HTV 27.22 27.69 28.82 29.19 29.14 0.6269 0.6294 0.6977 0.7291 0.7278
SSTV 33.16 33.68 34.05 34.37 34.37 0.8339 0.8436 0.8519 0.8565 0.8564

ASSTV 27.05 27.96 27.98 27.97 28.17 0.6112 0.6320 0.6339 0.6222 0.6284
TNN 23.85 25.42 28.70 31.23 31.23 0.5477 0.6203 0.7184 0.8506 0.8506

SSTV+TNN 32.03 32.94 34.61 33.79 33.90 0.8312 0.8364 0.8910 0.8799 0.8715
l0-l1HTV 33.74 34.20 35.66 35.74 35.91 0.8738 0.8747 0.9039 0.9023 0.9037

[−0.3, 0.3]

HTV 26.96 27.38 28.56 29.05 29.12 0.6092 0.6125 0.6834 0.7120 0.7256
SSTV 32.71 33.36 33.55 33.52 34.27 0.8175 0.8317 0.8337 0.8241 0.8497

Moffett Field ASSTV 25.98 26.15 26.04 27.94 26.14 0.4805 0.4871 0.4838 0.6195 0.4870
TNN 23.77 25.36 28.18 30.97 30.97 0.5427 0.6138 0.6822 0.8387 0.8387

SSTV+TNN 31.59 32.57 34.23 33.65 33.79 0.8138 0.8235 0.8820 0.8754 0.8669
l0-l1HTV 33.39 33.74 35.35 35.63 35.80 0.8615 0.8600 0.8926 0.8958 0.8972

[−0.35, 0.35]

HTV 26.73 27.11 28.34 29.15 29.11 0.5994 0.6024 0.6790 0.7279 0.7271
SSTV 32.60 33.39 33.30 34.32 34.31 0.8170 0.8348 0.8309 0.8548 0.8542

ASSTV 27.01 27.92 27.93 27.94 28.16 0.6087 0.6303 0.6319 0.6207 0.6277
TNN 23.75 25.39 27.97 31.38 31.38 0.5379 0.6006 0.6643 0.8403 0.8403

SSTV+TNN 31.34 32.43 34.18 33.67 33.79 0.8629 0.8605 0.8932 0.9012 0.9025
l0-l1HTV 33.30 33.62 35.14 35.70 35.87 0.8629 0.8605 0.8932 0.9012 0.9025

[−0.4, 0.4]

HTV 26.40 26.79 27.94 28.93 29.05 0.5807 0.5871 0.6603 0.7071 0.7210
SSTV 32.31 33.14 32.85 33.43 34.19 0.8069 0.8263 0.8150 0.8222 0.8472

ASSTV 26.98 27.90 27.89 27.93 28.16 0.6073 0.6280 0.6283 0.6184 0.6257
TNN 23.72 25.26 27.63 31.41 31.41 0.5359 0.5713 0.6521 0.8293 0.8293

SSTV+TNN 30.93 32.09 33.65 33.52 33.63 0.7939 0.8127 0.8670 0.8710 0.8630
l0-l1HTV 33.01 33.19 34.64 35.53 35.71 0.8504 0.8472 0.8777 0.8926 0.8939

mances regardless of the stripe noise intensity.

Figure 12 shows the means of MPSNRs and MSSIMs in
each image regularization. FC resulted in 0.5 [dB] worse
MPSNRs than LR for the ASSTV and SSTV+TNN cases.
This is because FC-ASSTV and FC-SSTV+TNN stop the it-
erations before the stripe noise components satisfy the flatness
constraint, leading to slightly dropping their MPSNRs and
MSSIMs. On the other hand, FC did obtain a 2 [dB] better
MPSNR and 0.05 better MSSIM than LR for the TNN case.
Compared with TV, the performances of FC were similar

for HTV, TNN, SSTV+TNN, and l0-l1HTV and better for
SSTV and ASSTV. Moreover, FC stably performed better
than the other characterizations for ATV, ITV, and ATV+NN.
These reveal that our framework achieves good performance
on average, whatever image regularizations are used.

D. Experiments in Real Noise Cases

In the real noise-case experiments, the parameter λ (Tab. II)
for each method was determined manually to balance the
tradeoff between the visual quality (e.g., over-smoothed or not)
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Band-wise or frame-wise PSNRs and SSIMs. (a) and (b) PSNRs and
SSIMs of the Moffett field destriping results in Case (i) using SSTV. (c) and
(d) PSNRs and SSIMs of the Bats1 destriping results in Case (ii) using ATV.
(e) and (f) PSNRs and SSIMs of the Salinas destriping results in Case (iii)
using TNN.

Fig. 10. Means of MPSNRs and MSSIMs in each noise case.

and destriping performance (e.g., stripe noise is sufficiently
removed or not). For the data fidelity parameter ε, we adjusted
it to an appropriate value after empirically estimating the
intensity of the noise in the real data. Specifically, it was set
to 200 for Suwannee and 0 for Bats2. The stopping criterion
of Alg. 1 was set as ‖U

(n+1)−U(n)‖F
‖U(n)‖F

< 1.0× 10−4.
We show the Suwannee destriping results for a real noise

case in Fig. 14. The destriping result by S-HTV (Fig. 14
(a1)) includes residual stripe noise. The results by S-SSTV
(Fig. 14 (a2)), GS-SSTV (Fig. 14 (b2)), S-ASSTV (Fig. 14
(a3)), GS-ASSTV (Fig. 14 (b3)), S-TNN (Fig. 14 (a4)), GS-
TNN (Fig. 14 (b4)), and S-l0-l1HTV (Fig. 14 (a6)) have
brighter areas than the original image (Fig. 13 (a)), and some
of the land shapes in the magnified areas were removed as

Fig. 11. Means of MPSNRs and MSSIMs in each stripe noise intensity range
[−η, η].

(a) (b)

(c) (d)

Fig. 12. Means of MPSNRs and MSSIMs in each image regularization. (a)
and (b) Means of MPSNRs and MSSIMs in the HSI experiments. (c) and (d)
Means of MPSNRs and MSSIMs in the IR video experiments.

the stripe noise components. These suggest that S and GS
are less capable of capturing the vertical continuity of stripe
noise. LR-ASSTV (Fig. 14 (c3)) recovered the narrow river
that lies along with the vertical direction in the magnified
areas. On the other hand, LR-SSTV (Fig. 14 (c2)) and LR-
TNN (Fig. 14 (c4)) removed part of the global structure in
the image as stripe noise. This may be due to the fact that
LR allows for changes in the overall luminance level so that
it does not prevent spectral oversmoothing caused by the
image regularizations. In the results by TV-SSTV (Fig. 14
(d2)), TV-ASSTV (Fig. 14 (d3)), TV-SSTV+TNN (Fig. 14
(d5)), and TV-l0-l1HTV (Fig. 14 (d6)), land shape was also
partially removed as stripe noise. For example, TV-ASSTV
(Fig. 14 (d3)) completely removed the narrow river in the
magnified area. This is because there is a conflict between
SSTV, ASSTV, SSTV+TNN, and l0-l1HTV, used as image
regularizations, and TV, used as a stripe noise characterization.
Compared with these existing stripe noise characterizations,
for FC-HTV, FC-SSTV, FC-TNN, FC-l0-l1HTV, its strong
ability of stripe noise characterization allows us to achieve
desirable destriping. However, our results do not satisfy the
flatness constraint and slightly include land shapes in the stripe
noise components only for FC-ASSTV and FC-SSTV+TNN
(Figs. 14 (e3) and (e5)). This indicates that FC-ASSTV and
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(a) (b)

Fig. 13. HSI and IR video data used for experiments in real noise cases. (a)
Suwannee (R: 357, G: 275, B: 120). (b) Bats2 (an IR video).

FC-SSTV+TNN need more iterations to preclude the land
shapes from their stripe noise components.

Figure 15 shows the destriping results of the IR video Bats2.
S and TV removed bats (moving objects) as stripe noise. This
is because the stripe noise components (Figs. 15 (a1), (a2),
(a3), (d1), (d2), and (d3)) have sparse or vertical smoothness
properties. GS and LR performed better than S and TV, but
some of bats were regarded as stripe noise components (see
Figs. 15 (b1), (b2), (b3), (c1), (c2), and (c3)). In contrast to
these stripe noise characterizations, our FC, when combined
with any of the image regularizations, removed only the stripe
noise while maintaining bats (see Figs. 15 (e1), (e2), and (e3)).

E. Comparison With A Deep Learning-Based Method

We compare our framework with a deep learning-based
method [20] 6, where we adjust the parameter so as to achieve
the best MPSNR. As observed images, the Moffett Field
and Salinas degraded by stripe noise with [−0.3, 0.3] and
Gaussian noise with σ = 0.05 are used. Figure 16 shows
the destriping results, which validate the effectiveness of our
framework compared to a deep learning-based method. The
method in [20] did not recover edges and objects (Figs. 16 (b)
and (e)), leading to worse MPSNRs and MSSIMs. This is due
to the limitation of deep learning-based methods in capturing
textures and singular features, as also mentioned in [21], [22].

F. Discussion

From the above experiments, we summarize the advantages
and limitations of our framework as follows:
• FC accurately captures various intensities of stripe noise

for any target images without image components.
• In particular, FC eliminates high intensities of stripe

noise.
• Our framework consistently removes stripe noise, what-

ever image regularizations are combined.
• When using some image regularization such as ASSTV

and SSTV+TNN, our framework requires many iterations
to converge.

V. CONCLUSION

In this paper, we have proposed a general destriping frame-
work for remote sensing images. Specifically, we formulated
the destriping as a convex optimization problem equipped with
the flatness constraint. Thanks to the strong characterization of

6The code is available at https://github.com/acecreamu/deep-hs-prior.

stripe noise, our framework is compatible with various regular-
ization functions and achieves effective destriping. Then, we
develop a solver for the problem based on DP-PDS, which
allows us to avoid stepsize adjustment. Through destriping
experiments using HSI and IR video data, we found that our
framework is advantageous on average compared to existing
methods, whatever image regularizations are used. For future
work, our framework needs the extension to consider the
various degradation such as the spectral variability and the
effectiveness demonstration in remote sensing image appli-
cations such as classification, unmixing, compressed sensing
reconstruction, and target recognition.

APPENDIX A
CONVERGENCE OF DP-PDS

Consider a convex optimization problem of the following
form:

min
Z,Y

f1(Z) + f2(Y) s.t. Y = K(Z), (30)

where Z = (Z1, · · · ,ZN0
) ∈

∏N0

i=1 Rni,1×···×ni,Ni and
Y = (Y1, · · · ,YM0) ∈

∏M0

i=1 Rmi,1×···×mi,Mi are variables
that include N0 tensors and M0 tensors, respectively, f1 and
f2 are proper lower semi-continuous convex functions, and K
is a linear operator.

We consider the following iterative procedures:

Z(n+1) ← proxG−1
1 ,f1

(
Z(n) − G1 � K∗(Y(n))

)
,

Y(n+1) ← proxG−1
2 ,f∗2

(
Y(n) + G2 � K(2Z(n+1) −Z(n))

)
,

(31)
where f∗2 is the Fenchel–Rockafellar conjugate function of
f2, and G1 = (G1,1, · · · ,G1,N0

) ∈
∏N0

i=1 R
ni,1×···×ni,Ni
++

and G2 = (G2,1, · · · ,G2,M0
) ∈

∏M0

i=1 R
mi,1×···×mi,Mi
++ are

preconditioners. For any Z(0) ∈
∏N0

i=1 Rni,1×···×ni,Ni and
Y(0) ∈

∏M0

i=1 Rmi,1×···×mi,Mi , the sequence generated by (31)
converges to the optimal solution of Prob. (30) if the linear op-
erator K and preconditioners G1,G2 satisfy the following con-
dition [59, Lemma 1]: for any X ( 6= O) ∈ ΠN0

i=0Rni,1×···×ni,Ni

‖G2 � K(G1 �X )‖F < ‖X‖F . (32)

Note that matrix-vector multiplication between a diagonal
matrix and a vector is equivalent to tensor-tensor Hadamard
product. Therefore, Eq. (31) is identical to the algorithm
described in [59].

DP-PDS sets G1 and G2 as follows. Since K∗ is a linear
operator, the (i1, · · · , iNi

)th entry of Zi is yielded by linear
combinations of Y as follows:

Zi(i1, · · · , iNi
)

=
∑
j

∑
jj,1,··· ,jj,Mj

k′j,jj,1,··· ,jj,Mj
∗ Yj(jj,1, · · · , jj,Mj

). (33)

Then, the (i1, · · · , iNi
)th entry of G1,i is given as

G1,i(i1, · · · , iNi
) =

1∑
j

∑
jj,1,··· ,jj,Mj

|k′j,jj,1,··· ,jj,Mj
|
. (34)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 14

HTV SSTV
B

ri
gh

te
ne

d
im

ag
e

B
ri

gh
te

ne
d

im
ag

e

St
ri

pe
no

is
e

St
ri

pe
no

is
e

(a1) S [29] (b1) GS [37] (c1) LR [40] (d1) TV [44] (e1) FC (a2) S [29] (b2) GS [37] (c2) LR [40] (d2) TV [44] (e2) FC
ASSTV TNN

B
ri

gh
te

ne
d

H
SI

B
ri

gh
te

ne
d

H
SI

St
ri

pe
no

is
e

St
ri

pe
no

is
e

(a3) S [29] (b3) GS [37] (c3) LR [40] (d3) TV [44] (e3) FC (a4) S [29] (b4) GS [37] (c4) LR [40] (d4) TV [44] (e4) FC
SSTV+TNN l0-l1HTV

B
ri

gh
te

ne
d

H
SI

B
ri

gh
te

ne
d

H
SI

St
ri

pe
no

is
e

St
ri

pe
no

is
e
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Fig. 14. HSI destriping results in real noise cases (R: 357, G: 275, B: 120). The top rows and bottom rows are the estimated HSIs and the estimated stripe
noise, respectively.

Similarly, the (i1, · · · , iMi)th entry of Yi is given as

Yi(i1, · · · , iMi)

=
∑
j

∑
jj,1,··· ,jj,Nj

kj,jj,1,··· ,jj,Nj
∗ Zj(jj,1, · · · , jj,Nj

). (35)

Then, the (i1, · · · , iMi
)th entry of G2,i is given as

G2,i(i1, · · · , iMi) =
1∑

j

∑
jj,1,··· ,jj,Nj

|kj,jj,1,··· ,jj,Nj
|
. (36)

These preconditioners G1 and G2 satisfy the condition in [59,
Lemma 2], i.e., Eq. (31) computes the solution of Prob. (30).

APPENDIX B
CONVERGENCE OF OUR ALGORITHM

Let Z = (U ,S) and Y = (Y1,1, . . . ,Y1,K ,Y2,Y3,Y4).
Then, by defining

f1(Z) := ‖S‖1,

f2(Y) :=

K∑
k=1

Rk(Y1,k) + ι{O}(Y2) + ι{O}(Y3) + ιB(V,ε)
(Y4),

K(Z) := (L1(U), . . . ,LK(U),Dv(S),Dt(S),U + S). (37)

Prob. (6) is reduced to Prob. (30), i.e., Prob. (6) is a special
case of Prob. (30). Therefore, our algorithm satisfies the
convergence property of the original DP-PDS.
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