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Deep Learning-Based Spatiotemporal Data Fusion
Using a Patch-to-Pixel Mapping Strategy

and Model Comparisons
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Abstract— Tradeoffs among the spatial, spectral, and temporal
resolutions of satellite sensors make it difficult to acquire remote
sensing images at both high spatial and high temporal resolutions
from an individual sensor. Studies have developed methods to
fuse spatiotemporal data from different satellite sensors, and
these methods often assume linear changes in surface reflectance
across time and adopt empirical rules and handcrafted features.
Here, we propose a dense spatiotemporal fusion (DenseSTF)
network based on the convolutional neural network (CNN) to deal
with these problems. DenseSTF uses a patch-to-pixel modeling
strategy that can provide abundant texture details for each pixel
in the target fine image to handle heterogeneous landscapes and
models both forward and backward temporal dependencies to
account for land cover changes. Moreover, DenseSTF adopts
a mapping function with few assumptions and empirical rules,
which allows for establishing reliable relationships between the
coarse and fine images. We tested DenseSTF in three contrast
scenes with different degrees of heterogeneity and temporal
changes, and made comparisons with three rule-based fusion
approaches and three CNNs. Experimental results indicate that
DenseSTF can provide accurate fusion results and outperform
the other tested methods, especially when the land cover changes
abruptly. The structure of the deep learning networks largely
impacts the success of data fusion. Our study developed a novel
approach based on CNN using a patch-to-pixel mapping strategy
and highlighted the effectiveness of the deep learning networks
in the spatiotemporal fusion of the remote sensing data.

Index Terms— Convolutional neural networks (CNNs), deep
learning, spatiotemporal fusion.

I. INTRODUCTION

THE fast development of modern satellite technology
has advanced the usage of long-term time series of
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remote sensing images in the monitoring and modeling of
the land surface processes [1]–[3]. Given the differences in
satellite sensors, orbit altitudes, and revisiting periods, there
are tradeoffs regarding the spatial, temporal, and spectral
resolutions of images acquired from an individual satellite
sensor [4]. For example, the Moderate Resolution Imaging
Spectroradiometer (MODIS) provides observations at the spa-
tial resolution ranging from 250 to 1000 m and has a revisit
time of nearly one day for most areas across the world.
By comparison, Landsat acquires images at a high spatial
resolution of 30 m but relatively small scene coverage, and its
revisit time is up to 16 days. The recently launched satellite
missions (e.g., Sentinel-2) have improved spatial and temporal
resolutions compared with Landsat, and they lack historical
archives for analysis. In addition, satellite observations are
frequently affected by weather conditions, such as clouds
and aerosols [5], [6]. As a result, there are large application
demands that require continuous remote sensing data at both
high spatial and temporal resolutions. Developing spatiotem-
poral fusion methods to blend remote sensing data acquired
by different satellite sensors has, therefore, become a research
frontier in the field of remote sensing [7]–[9].

Previous studies have developed different algorithms for the
fusion of multisource remote sensing data. Early image fusion
algorithms often perform the frequency-domain analysis, such
as wavelet decomposition on images, and then fuse the decom-
posed image layers. For example, Malenovský et al. [10]
applied wavelet transform to fuse the MODIS and Landsat
images, and produced images at MODIS-like temporal res-
olution and Landsat-like spatial resolution. Zhou et al. [11]
applied a pyramidal wavelet transform to blend the Landsat
and SPOT images. Wu and Wang [12] evaluated the perfor-
mance of different wavelet functions in blending MODIS and
Landsat data, and demonstrated that the fused images gener-
ated from these wavelet transformation methods can be used
as substitutes when high spatiotemporal resolution images are
not available. The multisource image fusion algorithms based
on the frequency-domain analysis are simple and fast but often
provide fused images with apparent salt-and-pepper noise due
to the effects of pixel mixture.

The data fusion approaches based on linear unmixing can
effectively deal with the issue of pixel mixture [13]. The
linear unmixing approach selects the end-member pixels that
have spectral similarities with the target pixel and derives
the reflectance of one pixel in the coarse-spatial-resolution
image as the linearly weighted averages of the reflectance
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of all overlapped pixels in the high-spatial-resolution image.
Zhukov et al. [14] proposed a multisensor multiresolution
technique (MMT) that adopts a moving window to account
for the spatiotemporal variability of pixel reflectance. The
proposed method is suitable for image fusion applications
in regions where the reflectance of adjacent pixels does not
vary drastically. Later studies further improved the MMT
method and developed models to handle complex land-
scapes, such as the unmixing-based data fusion (UBDF [15]),
the spatial–temporal data fusion approach (STDFA [16]),
and the enhanced spatial and temporal data fusion model
(ESTDFM [17]). Maselli [18] introduced the distance weights
in the moving window and applied larger weights to pixels that
are closer to the target pixel. Busetto et al. [19] accounted
for the spatial and spectral differences among pixels when
selecting the end-members and determined the weights of
each pixel in the linear unmixing model based on both
spatial and spectral similarities. Zurita-Milla et al. [20] used
the classification approach of ISODATA to extract the class
information and improved the fusion of Landsat and MERIS
data by introducing constraints on reflectance into the linear
unmixing model. The linear unmixing approaches can well
explain the relationship of the correspondent pixels between
high and low spatial resolution images [21]. However, they
normally assume that the spectral reflectance of one feature
class is the same across the entire scene, making it difficult
for applications in heterogeneous regions. In addition, there are
often considerable residuals and outliers in the fusion results
when using the linear unmixing models due to the colinearity
problem and the noises in the reference image pairs.

To improve the spatiotemporal fusion of multisource remote
sensing data and circumvent the problem of residuals outliers
in solving the linear unmixing models, Gao et al. [22] pro-
posed a spatial and temporal adaptive reflectance fusion model
(STARFM), which is widely used in various applications,
such as vegetation monitoring and modeling [23]. STARFM
searches for pixels that are similar to the central pixel within
a moving window and assigns weights according to spatial,
spectral, and temporal proximities to reflect the contribution
of these similar pixels. Scholars have made improvements
based on the STARFM. For example, Hilker et al. [24]
proposed a spatial–temporal adaptive algorithm for mapping
reflectance change (STAARCH) for regions that experience
forest disturbance. STAARCH includes a disturbance factor to
determine whether the reflectance in Landsat images changes
drastically and improves the fusion results by selecting the
best phase image in the time series. Zhu et al. [4] pro-
posed the enhanced STARFM (ESTARFM) using additional
image pairs of MODIS and Landsat. Meng et al. [25] devel-
oped a spatial and temporal adaptive vegetation index fusion
model (STAVFM) that defines a timing window according to
the temporal characteristics of crops and improves the tem-
poral weighting strategies by accounting for crop phenology.
The virtual image pair-based spatiotemporal fusion (VIPSTF)
approach generated virtual image pairs, which is closer to the
data on the prediction date in the feature space, to decrease the
fusion error caused by temporal changes [26]. These improved
methods require at least two pairs of Landsat images and

the corresponding MODIS images to identify the changes in
the land cover type, while it is difficult to collect sufficient
high-quality image pairs within a reasonable period for many
applications and for many regions. Zhu et al. [27] proposed
a flexible spatiotemporal data fusion (FSDAF) method that
allows for predicting both gradual change and land cover
type change with one reference Landsat-MODIS image pair.
The enhanced FSDAF that incorporates subpixel class frac-
tion change information (SFSDAF [28]), FSDAF 2.0 [29],
and block-removed spatial unmixing (SU-BR [30]) methods
optimized the unmixing process of FSDAF to decrease the
fusion residuals. Wang and Atkinson [31] proposed a method
that integrates regression model fitting, spatial filtering, and
residual compensation (Fit-FC) to deal with strong seasonal
changes. The quality of identified similar neighborhoods has
a considerable impact on the accuracy of STARFM and its
variants. Fu et al. [32] improved the searching strategy of
pixels by accounting for spectral similarity and land cover
distribution in the moving window. Guan et al. [33] introduced
object-oriented constraints to guide the similar pixel selection.
Liu et al. [34] extracted the phenological information to
decrease the uncertainties resulted from a similar pixel selec-
tion procedure. The abovementioned methods can perform
the spatiotemporal fusion of multisource remote sensing data
effectively [35], [36], but they generally have assumptions
on temporal change of surface reflectance and use a series
of handcrafted features. The application of these algorithms
is challenging in landscapes that have strong heterogeneity
and/or experience abrupt changes because the underlying
assumptions might not hold in such cases [23], [37], [38].

In recent years, learning-based approaches have gained
increasing interest in the field of spatiotemporal fusion. Huang
and Song [39] proposed the sparse-representation-based spa-
tiotemporal reflectance fusion model (SPSTFM) that uses the
statistical method to learn a relationship between the dictionary
pairs of Landsat and MODIS images. Liu et al. [40] proposed
an extreme learning machine (ELM) that uses a single-layer
feedforward neural network to learn the mapping function
between fine and coarse images. Machine learning methods,
such as regression trees, random forests, and artificial neural
networks, have also gained interest in spatiotemporal data
fusion [41]–[43]. The fast-developing methods of deep learn-
ing provide a new approach for the fusion of remote sensing
data. Song et al. [44] reconstructed high spatial resolution
images from the corresponding low spatial resolution images
based on a super-resolution convolutional neural network
(SRCNN). Shao et al. [45] developed an extended SRCNN
for blending Landsat-8 and Sentinel-2 images, and producing
frequent and consistent time-series images. Ao et al. [46]
proposed an attentional SRCNN for blending Landsat-sentinel
normalized difference vegetation index (NDVI) and evaluated
the influence of method selection and fusion strategy on the
fusion accuracy. Note that SRCNN is originally developed for
reconstructing super-resolution images with the magnification
factor ranging from 2 to 4 [47], while the data fusion of
Landsat and MODIS has approximately 16 times magnifica-
tion factor between image pairs. Following the fusion rules
of STARFM, Tan et al. [48] proposed a deep convolutional
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spatiotemporal fusion network (DCSTFN) to fuse Landsat
and MODIS images. Tan et al. [49] further improved this
algorithm and proposed an enhanced DCSTFN (EDCSTFN)
with considerations on the reconstruction errors, feature errors,
and structural similarity in the loss function. Liu et al. [50]
proposed the spatiotemporal fusion network (STFNET) that
establishes the relationship between the spectral changes of
MODIS and Landsat, and integrates reconstruction error and
temporal dependence in the loss function. Both DCSTFN and
STFNET assume that the surface reflectance does not change
or only changes linearly with time. EDCSTFN requires a
threshold to balance different components in the loss function,
which is hard to tune in practical applications. STFNET
involves user-defined thresholds in both training loss and
reconstruction functions. In sum, there is a need to explore
and develop new deep learning methods for better blending
images acquired from different sensors with few assumptions
and empirical rules.

Most of the existing deep learning-based fusion approaches
attempt to learn a mapping function between input and output
pairs of small image patches (for example, 50 × 50 pixels).
The strategy that uses input patches to predict an output patch,
hereafter referred to as “the patch-to-patch mapping strategy,”
might not be robust for use in the deep learning models for
the fusion of remote sensing data, especially in landscapes
with strong heterogeneity. Compared to natural images that
are widely used in the deep learning models, remote sensing
images have strong heterogeneity with complex and diverse
textures. Due to the effects of spatial autocorrelation and the
phenomena of heterogeneity [51], the pixels that are located at
the edge of the patches are unlikely to have sufficient spatial
structure information for training the patch-to-patch mapping
function. By comparison, traditional rule-based fusion algo-
rithms, such as STARFM and its variants, construct a mapping
function between input small patches in a moving window
and the output pixel in the center of the moving widow.
The strategy that uses input patches to predict center pixel,
hereafter referred to as “the patch-to-pixel mapping strategy,”
may be more effective in accounting for spatial heterogeneity,
but it has not been tested in the deep learning models for data
fusion.

The main objectives of this article are to: 1) develop a
novel deep learning-based method with little assumptions and
empirical rules; 2) evaluate the effectiveness of patch-to-pixel
mapping strategy in spatiotemporal fusion; and 3) evaluate
and compare the deep learning-based methods and rule-based
fusion algorithms on image fusion.

II. STUDY MATERIALS

Three contrasting areas named Coleambally Irrigation Area
(CIA), Lower Gwydir Catchment (LGC), and Poyang Lake
(PYL), respectively, are selected for studies. For each study
scene, three pairs of Landsat and MODIS images were used
for data fusion. The first and last pairs of images were
used for model training, and the second pair of images was
used for model prediction. The fused surface reflectance data
include the blue (B), green (G), red (R), near-infrared (NIR),

Fig. 1. False-color-composite (NIR, red, and green bands) images for CIA
scene with the heterogeneous landscape. The top row shows the Landsat
images acquired on (a) 2002/052, (b) 2002/069, and (c) 2002/107, respectively.
(d), (e) and (f) in the bottom row are the corresponding MODIS images.

shortwave 1 (SW1), and shortwave 2 (SW2) bands. Detailed
information regarding the studied scene and data are listed in
Table I.

The CIA scene is located in southern New South Wales,
Australia (34.003 ◦S, 145.068 ◦E) and covers large areas
of irrigated croplands with irregular shapes and other land
types, such as dryland agriculture and woodlands. Due to the
extensive irrigation activities, the surface reflectance changes
severely and rapidly in a short time in the irrigated crop-
lands, whereas the surface reflectances in dryland agriculture
and woodlands are relatively constant. In Fig. 1, we can
see that the CIA scene has strong effects of spatial hetero-
geneity. The satellite images for the CIA scene came from
the benchmark dataset released by Emelyanova et al. [52],
which were widely used to evaluate the spatiotemporal data
fusion methods [27], [31]. The dataset provides coarse and
fine resolution image pairs that were radiometrically cali-
brated and geometrically corrected. The fine resolution images
were acquired by Landsat 7 ETM+, and the coarse res-
olution images were obtained from Terra/MODIS surface
reflectance Collection 5 products (MOD09GA). The used
Landsat and MODIS images cover an area of 25 km ×
25 km comprised of 1000 columns by 1000 lines at 25-m
resolution.

The LGC scene with land cover type change is located in
northern New South Wales, Australia (29.086 ◦S, 149.282 ◦E)
and is mainly covered by croplands, bare soil, and natural
vegetation. The LGC scene experienced flood events, and the
land cover types changed abruptly on the prediction date.
A large number of pixels in Fig. 2(a) change to water [see
Fig. 2(b)] due to the flooding. The satellite images for the
LGC scene came from the benchmark dataset released by
Emelyanova et al. [52]. The fine resolution images were
acquired by Landsat 5 TM, and the coarse resolution images
were obtained from MOD09GA Collection 5 products. Data
preprocessing, such as radiometric calibration, geocorrection,
and atmospheric correction, has been conducted. The used
Landsat and MODIS images have a spatial coverage of
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TABLE I

INFORMATION ON STUDIED SCENES AND USED IMAGES

Fig. 2. False-color-composite (NIR, red, and green bands) images for
LGC scene with abrupt land cover changes. The top row shows the Landsat
images acquired on (a) 2004/331, (b) 2004/347, and (c) 2004/363, respectively.
(d), (e) and (f) in the bottom row are the corresponding MODIS images.

25 km × 25 km corresponding to 1000 × 1000 pixels at 25-m
resolution.

The PYL scene is located in the south PYL in central China
(28.986 ◦N, 116.628 ◦E) and indicates strong heterogeneity
with various land cover types, such as forest, residential area,
wetland, and water body (see Fig. 3). Surface reflectance in
this scene is largely influenced by the flood period of the lake
and phenological changes of the vegetation, and the reference
image pairs are temporally far (approximately 190 days) from
the prediction time; thus, we consider it challenging for the
data fusion methods. We used the USGS Landsat 8 Tier 1
surface reflectance products and the MOD09GA Collection
6 products as the fine resolution images and the coarse
resolution images, respectively. To match the spatial resolution
and the coverage of the Landsat 8 images, the correspond-
ing MOD09GAimages were reprojected from the MODIS
sinusoidal projection to the Universal Transverse Mercator
projection using the HDF-EOS To GeoTIFF Conversion Tool
released by the National Aeronautics and Space Administra-
tion. The reprojected data were resampled to a 30-m spatial
solution using the nearest neighbor interpolation method to
preserve the spectral information. To reduce the influence
of cloud and cloud shadow in both Landsat and MODIS
data, we used the quality control data to generate a mask
for pixels with poor qualities and then applied the region-
fill algorithm in the commercial software of MATLAB to
fill up the surface reflectance of the gap pixels. After the
preprocessing, we cropped the images to the size of 1000 ×
1000 pixels for training and test.

III. METHODS

The overall goal of developing a spatiotemporal fusion
model is to predict the fine image F1 from the coarse image C1

on the prediction date t1 based on two reference pairs of coarse
and fine images at two neighboring dates t0 and t2 (i.e., images
F0 and C0 on t0 and F2 and C2 images on t2, respectively).
In essence, there is a need to establish a mapping function �
between F1 and the other reference images Fk and Ck

F1 = �(Fk , Ck, C1). (1)

Existing deep learning methods often made assumptions
to simplify (1). For example, the deep learning model of
DCSTFN [48] uses the mapping function as follows:

F1 = �1(Fk) + �2(Ck) − �3(C1) (2)

where �1, �2, and �3 are three different mapping functions,
respectively.

The deep learning model of STFNET assumes that the sur-
face reflectance changes linearly with time [50], and therefore,
the underlying mapping function is given as follows:

F1 − Fk = �(C1 − Ck). (3)

Note that the assumptions of (2) and (3) could affect
the results of the spatiotemporal fusion of remote sensing
images. Given that the convolutional neural network (CNN)
has demonstrated powerful capabilities in image classification,
feature extraction, and super-resolution [53], [54], we pro-
pose a CNN-based data fusion method, namely, the dense
spatiotemporal fusion (DenseSTF) network, which establishes
the mapping relationship between images at different resolu-
tions directly with little assumptions.

A. DenseSTF

In DenseSTF, we adopt the patch-to-pixel mapping strategy
to handle heterogeneous landscapes and model both forward
and backward temporal dependencies to account for land cover
changes.

The difference between the patch-to-patch and patch-to-
pixel mapping strategies is shown in Fig. 4. The patch-to-
patch mapping strategy crops the original images into small
patches and establishes a mapping function between the input
and output patches. In this procedure, the pixel in the center of
the output patch can obtain enough texture information, while
the pixels located at the edge of the output patch are unlikely to
have sufficient texture information due to the missing values
[see Fig. 4(a)]. A commonly used method to deal with this
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Fig. 3. False-color-composite (NIR, red, and green bands) images for
PYL scene with abrupt land cover changes. The top row shows the Landsat
images acquired on (a) 2017/260, (b) 2018/100, and (c) 2017/277, respectively.
(d), (e) and (f) in the bottom row are the corresponding MODIS images.

Fig. 4. Diagram shows the difference between (a) patch-to-patch mapping
strategy and (b) patch-to-pixel mapping strategy. The patch-to-patch mapping
strategy establishes a mapping function between the input and output patches,
and the pixels located at the edge of the output patch cannot obtain sufficient
texture information due to the missing values. The patch-to-pixel mapping
strategy constructs a mapping function between the input small patch in a
moving window and the output pixel in the center of the moving widow,
which can provide abundant texture information for each pixel.

situation is to fill the missing values with zeros based on the
zero padding technique. The filled values inevitably introduce
errors to the established mapping function, especially in land-
scapes with strong heterogeneity. By contrast, the patch-to-
pixel mapping strategy uses a moving window to extract input
patches from the original images and mapping the relationship
between the extracted input patches and the output pixel in
the center of the moving widow [see Fig. 4(b)]. This helps to
reduce the missing and filled values and ensure that each pixel
has sufficient texture information for constructing a reliable
mapping function.

We adopt the patch-to-pixel mapping strategy to decrease
mapping errors in heterogeneous landscapes. For each pixel
in the target fine image F1, the information from neighboring
pixels in a moving window is considered, and then, the
mapping function � needed to be solved becomes

F1(xw/2, yw/2) = �(Fk(xi , yi ), Ck(xi , yi), C1(xi , yi)) (4)

Fig. 5. Framework of the proposed DenseSTF network. The inputs to the
model are reference image patches in a moving window, and the outputs of the
model are the predicted central pixels in the corresponding moving window.

where w is the moving window size, (xw/2, yw/2) denotes the
central pixel of the moving window, and (xi , yi) represents the
i th pixel in the moving window.

A typical deep learning-based method for data fusion con-
sists of: 1) training a CNN model that represents the mapping
function � using two reference image pairs and 2) applying
the trained model to predict a fine image using a coarse image
on the prediction date and one pair of the reference image.
For example, previous studies normally used F0, C0, and C2

as input training images and F2 as target training images
to learn a CNN model and then adopted the trained model
with the inputs of F0, C0, and C1 to predict the image
of F1 [45], [48], [49]. Such a process does not account
for the temporal relationships among multitemporal images.
We develop a twofold procedure in both model training and
prediction (see Fig. 5). Two relationships are constructed in the
training procedure of DenseSTF using a shared CNN model
� with the loss function of mean square errors (mses) to
account for the forward temporal dependence from t0 to t2
in (5) and the backward temporal dependence from t2 to t0 in
(6), respectively, as follows:

F2
(
xw/2, yw/2

) = �(F0(xi , yi), C0(xi , yi), C2(xi , yi )) (5)

F0(xw/2, yw/2) = �(F2(xi , yi ), C2(xi , yi), C0(xi , yi )). (6)

In the prediction procedure, DenseSTF makes two initial
predictions on date t1 from the functions that account for the
forward and backward temporal dependencies, respectively,
as follows:

PF
(
xw/2, yw/2

) = �(F0(xi , yi), C0(xi , yi), C1(xi , yi )) (7)

PB(xw/2, yw/2) = �(F2(xi , yi), C2(xi , yi), C1(xi , yi )) (8)
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Fig. 6. Structure of the proposed DenseSTF network shows the details of
(a) overall network structure, (b) multifilter layer, (c) dense block, (d) atten-
tional feature extraction module in the dense block, and (e) transition layer.
N and K denote the number of the feature maps and the kernel size for the
convolutional layer, respectively.

where PF denotes the prediction from the function that
accounts for forward temporal dependence between t0 and t1,
and PB denotes the prediction from the function that accounts
for the backward temporal dependence between t2 and t1.

The final prediction of DenseSTF is concatenated from the
two initial predictions as follows:

F1
(
xw/2, yw/2

) = PF
(
xw/2, yw/2

) + PB(xw/2, yw/2)

2
. (9)

There are at least two advantages of the proposed modeling
procedures. First, compared with the other deep learning-
based methods, the proposed modeling procedure uses a
patch-to-pixel modeling strategy that can provide abundant
texture details for each pixel in the target fine image to
handle heterogeneous landscapes. Different from traditional
rule-based methods, the mapping function is built by learn-
ing a transformation for all pixels in the moving window
rather than weighting similar pixels estimated by handcrafted
features. Such a procedure helps preserve abundant spectral
and textural information and alleviate the colinearity and
ill-posed inversion problems. Second, the proposed modeling
procedure accounts for both forward and backward tempo-
ral dependencies among multitemporal images to handle the
land cover changes. We use a mapping function with few
assumptions and empirical rules to model the temporal depen-
dence, which allows for establishing reliable relationships
between the coarse and fine images. The process of temporal
dependence modeling and the final prediction construction
are all based on statistical learning, without involving any
changing thresholds. It helps make reliable predictions in
various landscapes, particularly in regions with land cover
changes.

We develop a new network structure for DenseSTF,
as shown in Fig. 6, based on DenseNet [54]. The main idea
is to apply the patch-to-pixel mapping strategy to deal with
approximately 16 times differences in the spatial resolutions
between MODIS and Landsat, and improve the information
flow among different convolution layers to achieve accurate
predictions. The sizes of input and output images are 48 × 48
(approximately 3 × 3 MODIS pixels) and 1 × 1, respectively.

1) Convolutional Stage: Typical convolutional stage con-
sists of three layers, including: 1) the convolution (CONV)
layer to extract image features using a convolution kernel; 2)
the batch normalization (BN) layer to solve the internal covari-
ate shift problem in the training process; and 3) the activation
function to perform the nonlinear transformation, such as the
sigmoid function, the hyperbolic tangent function, and the
rectified linear unit (ReLU). The CONV-BN-ReLU structure
has been widely used in the semantic segmentation of remote
sensing images [53], [54]. In the CONV-BN-ReLU structure,
the BN layer uses local statistics (e.g., mean and variance) of
each batch for normalization during the training procedure but
uses global statistics of all batches for normalization during the
prediction procedure. For the application of image fusion, both
image patches and batch sizes are relatively small, and there
are large differences in local statistics among batches, leading
to difficulties in parameter optimization and degraded model
performance. DenseSTF uses weight normalization (WN) to
accelerate parameter optimization and network convergence
as WN does not alter dependencies among examples in a
batch [55]. As previous studies have found that removing
unnecessary ReLU activations improved the network perfor-
mance [56] and so does in our preliminary experiments,
we remove redundant ReLU activations to reduce model
complexity and adopted CONV-WN as the basic convolutional
stage to construct the deep learning network.

2) Multifilter Layer: Because low-level features play a key
role in the deep learning networks and affect the image fusion
results [53], we adopt two convolutional stages with different
kernel sizes (i.e., 32∗3∗3 and 32∗7∗7 in parallel) to extract
multiresolution local features [see Fig. 6(b)]. The multifilter
layer delivers sufficient texture and spatial information in
varied receptive fields for building robust mapping functions.

3) Dense Block: We modify the feature extraction module
in the dense block in DenseNet and develop an attentional
feature extraction module to obtain effective representations
for the spatial and spectral information. As shown in Fig. 6(d),
we first adopt a bottleneck design (i.e., 192∗1∗1 convolution
followed by 32∗3∗3 convolution) to reduce the complexity
of feature extraction and then weight the extracted features
via both spatial and channelwise attention maps generated by
the attentional module, so as to enhance useful features while
suppressing less useful ones. The features obtained from each
attentional feature extraction module are concatenated via a
series of dense connections to improve the information flow
among different modules in the dense block [see Fig. 6(c)].
The modified dense block improves the quality of the extracted
features and helps capture useful spatial information in mul-
tispectral images.

4) Transition Layer: We use the transition layers to reduce
the number of feature maps generated by the dense blocks.
In the transition layers, the number of the feature maps is
halved, and a pooling layer is used to downsample the spatial
resolution of the feature maps. Different from the original
DenseNet that uses an average pooling (AP), we apply the
maximum pooling to better preserve the boundary information
[see Fig. 6(e)].



AO et al.: DEEP LEARNING-BASED SPATIOTEMPORAL DATA FUSION 5407718

The number of the bottleneck layers in each dense block
was set to 6, 12, 18, and 8, respectively, to balance network
performance and computational complexity. The model was
implemented in TensorFlow 1.14 and run on an NVIDIA
2080Ti GPU with 11 GB of RAM. The network weights were
initialized to 0, and the batch size was set as 128 to fit the GPU
memory. We used the Adam optimization method to minimize
the training loss. The learning rate was initialized as 5 × 10−4

and decayed with a ratio of 0.7 for every 10 000 iterations.
In the training process, the DenseSTF model was iterated for
a maximum of 60 000 times to ensure convergence.

B. Comparison Methods

We implemented both deep learning-based spatiotemporal
fusion models (i.e., VGG16, STFNET, and EDCSTFN) and
rule-based data fusion algorithms (i.e., STARFM, ESTARFM,
and FSDAF) for comparison.

The deep learning model of VGG16, initially designated
for image classification [57], does not serve the purpose of
spatiotemporal data fusion directly. We removed the softmax
layer to produce a numeric prediction and modified the number
of the output bands for data fusion. VGG16 was implemented
using the patch-to-pixel mapping strategy with considerations
on temporal dependence to allow for direct comparison with
DenseSTF. We initialized weights in VGG16 using random
numbers generated by a Gaussian distribution with a mean
of zero and a standard deviation of 0.001. The batch size
was set as 128 to fit the GPU memory. We used the mse
as the loss function during the training and adopted the
Adam optimization method to minimize the training loss.
The learning rate was initialized as 10−4 and halved every
20 000 iterations. In the training process, the VGG16 model
was iterated for a maximum of 100 000 times to ensure
convergence. The training data used in VGG16 are the same as
in DenseSTF. When implementing STFNET, we set 32 × 32 as
the sizes of the input images. The initial output was cropped
to produce a smaller output with an image size of 20 × 20 to
avoid the border effects. In the training phase, the training
image pairs were cropped with a stride of 20. The training
patches were augmented by rotating and reflecting in both
vertical and horizontal directions to enrich the training dataset
and mitigate model overfitting. After the data augmentation,
we obtained 15 000 training patches for each study site. The
network weights were initialized to 0, and the batch size was
set as 64 to fit the GPU memory. The learning rate was
initialized as 10−4 and halved every 2000 iterations. We used
the Adam optimization method to optimize the parameters and
set 100 000 times as the maximum iteration number. When
implementing EDCSTFN, we conducted model initialization
and optimization according to the guidelines in [49]. The
training data used in EDCSTFN were the same as used in
STFNET. Note that both DenseSTF and VGG16 adopt the
patch-to-pixel mapping strategy for data fusion, and both
STFNET and EDCSTFN adopt the patch-to-patch mapping
strategy.

FSDAF requires the land cover maps to estimate end-
member changes. We classified the study scenes using the

iterative self-organizing data analysis (ISODATA) method and
interpreted the labels of the obtained land cover classes.
Following the guidelines in [27], we set the minimize and
maximum numbers of the classes to [3, 5] for all studied
scenes. In STARFM, we set the spectral uncertainties of
Landsat and MODIS to 0.015 in all studied scenes as there
were changes on the land surface across time. STARFM
normally produces invalid values in the predicted images;
we filled these values with the counterpart of the reference
Landsat image to facilitate the accuracy assessment. When
implementing ESTARFM, we set the number of classes based
on the ISODATA classification maps. The other parameters in
the models of STARFM, ESTARFM, and FSDAF were set as
default in the published version of the software.

C. Quantitative Assessment

Four metrics, including the correlation coefficient (CC),
the root mean square error (RMSE), the average absolute
difference (AAD), and the structural similarity index measure
(SSIM), are used for quantitative assessment of the models.
R is indicative to the linear relationships between the predicted
surface reflectance and the reference. RMSE accounts for
the errors between the predicted surface reflectance and the
reference. AAD accounts for the deviation of the predicted
surface reflectance. SSIM assesses the similarity of the overall
textures between the predicted images and the reference. These
metrics are calculated, respectively, as follows:

CC = σyp

σy ∗ σp
(10)

RMSE =
√√√√

n∑
i=1

(yi − pi)
2/n (11)

AAD =
n∑

i=1

|(yi − pi)|/n (12)

SSIM = (2ȳ ∗ p̄ + C1)(2σyp + C2)

(ȳ2 + p̄2 + C1)(σ 2
y + σ 2

p + C2)
(13)

where yi denotes the i th pixel in the reference image y; pi

denotes i th pixel in the predicted image p; ȳ and p̄ denote the
mean of y and p, respectively; σy and σp denote the variance
of y and p, respectively; σyp denotes the covariance between
y and p; n denotes the pixel number; and C1 and C2 are
constants that ensure the stability of SSIM.

IV. RESULTS

A. Comparison With Rule-Based Methods That Use One
Reference Image Pair

Fig. 7 shows the false-color-composite images from the
observed data and the spatiotemporal fusion results derived
from different methods in the CIA scene. Visual inspection
suggests that the fusion image produced by DenseSTF is
highly consistent with the observed Landsat image. STFNET
tends to produce images with pseudospatial textures, and
EDCSTFN appears to generate images with blurred boundaries
in croplands. Compared with STFNET and EDCSTFN, the
fused image by VGG16 is closer to the observed Landsat
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TABLE II

QUANTITATIVE ASSESSMENT OF DIFFERENT FUSION METHODS IN THE CIA SCENE. THE METRIC VALUE INDICATIVE
TO THE BEST MODEL PERFORMANCE IS HIGHLIGHTED IN BOLD

image. STARFM effectively predicts large objects on the land
surface, but the predicted images have considerable spectral
differences against the observed Landsat images, and there
is apparent salt-and-pepper noise in the croplands. FSDAF
largely reduces the effects of the salt-and-pepper noise that
is apparent in STARFM.

Quantitative metrics for the CIA scene (see Table II)
illustrate that DenseSTF achieves high accuracy. Regarding
learning-based algorithms, DenseSTF and VGG16 produce
better results than STFNET and EDCSTFN. A possible expla-
nation for this may be related to the superiority of the
patch-to-pixel mapping strategy in providing abundant texture
information to handle heterogeneous landscapes. When com-
paring the rule-based methods, FSDAF slightly outperforms
STARFM. The possible reason may be the STARFM assumes
that the surface reflectance does not change across time,
and this assumption is problematic in croplands. Overall,
DenseSTF generally produces the best performances for all the

metrics in all bands except for the NIR band where FSDAF
achieves slightly better performance. When averaged for all
bands, the CC, RMSE, AAD, and SSIM values are 0.8835,
0.0252, 0.0181, and 0.8759, respectively, for DenseSTF, and
0.8692, 0.0265, 0.0191, and 0.8614, respectively, for FSDAF.
It suggests that the proposed DenseSTF outperforms FSDAF
in the CIA scene.

Fig. 8 exhibits the spatiotemporal fusion images derived
from different methods for the LGC scene. It can be observed
that all methods cannot fully capture the land cover changes
as some changes in the Landsat image are invisible in the
corresponding MODIS image. STARFM and FSDAF produce
the fusion images with unrealistic textures. DenseSTF and
VGG16 can better predict the flooded area compared with
STFNET and EDCSTFN. There are noticeable MODIS pixel
boundaries in the image fused by EDCSTFN. Overall, the
fusion result from DenseSTF is the closest to the observed
Landsat image.
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Fig. 7. Results of different spatiotemporal fusion methods for the CIA
scene (NIR, red, and green bands as RGB). (a) Observed MODIS image.
(b) Observed Landsat image. (c) DenseSTF. (d) VGG16. (e) STFNET.
(f) EDCSTFN. (g) STARFM. (h) FSDAF. The lower row images are zoom-in
scenes of the area marked in the upper row images. Note that both rule-based
methods (STARFM and FSDAF) use only one pair of Landsat and MODIS
images as reference images.

Fig. 8. Same as Fig. 7 but is shown for the LGC scene.

The quantitative analysis for the LGC scene (see Table III)
shows that DenseSTF achieves the best accuracy followed
by VGG16. The NIR, SW1, and SW2 bands of STARFM
results contain a large number of invalid values in the
flooded area, indicating that the STARFM is less robust than
FSDAF. STFNET and EDCSTFN perform slightly worse than

Fig. 9. Same as Fig. 8 but is shown for the PYL scene.

DenseSTF and VGG16. This may have resulted from their
underlying assumptions that surface reflectance changes lin-
early with time. In the flooded area, the land cover changes
abruptly, and this assumption can hardly be satisfied, which
leads to large uncertainties in the fusion results. By contrast,
the proposed modeling procedure accounts for both forward
and backward temporal dependencies among multitemporal
images and uses a mapping function with few assumptions
and empirical rules to model the temporal dependence. Results
demonstrate that the proposed modeling procedure is effective
in handling the land cover changes.

From the results of the PYL scene (see Fig. 9), it can
be observed that the DenseSTF result keeps in line with the
observed Landsat image. The enlarged maps for subareas show
that DenseSTF well captures the spatial characteristics of the
landscapes and makes reasonable predictions on tiny land
surface objects. Images fused by STFNET and EDCSTFN
contain noticeable artifacts in the enlarged subareas. STARFM
effectively models large features, such as water bodies and
wide roads on the land surface, but the predicted images have
considerable spectral differences against the observed Landsat
images. As for the FSDAF result, spatial details have been
blurred in the residential region, and pseudospatial textures
occur in the enlarged subarea.

As presented in Table IV, DenseSTF yields the best per-
formances for most of the metrics in the PYL scene. The
mean CC, RMSE, AAD, and SSIM for all bands are 0.6631,
0.0370, 0.0275, and 0.7449, respectively. Comparison of the
metrics in different scenes demonstrates that the predicting
power of the spatiotemporal fusion methods decreases as the
spatial heterogeneity increases, and the magnitude of land
cover changes increases. Moreover, the predicting power of
the rule-based spatiotemporal fusion methods decreases faster
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TABLE III

QUANTITATIVE ASSESSMENT OF DIFFERENT FUSION METHODS IN THE LGC SCENE. THE METRIC VALUE INDICATIVE
TO THE BEST MODEL PERFORMANCE IS HIGHLIGHTED IN BOLD

(a) (b) (c) (d)

Fig. 10. Comparisons between (a) observed Landsat images and the fusion
images derived from (b) DenseSTF, (c) STARFM-TP, and (d) ESTARFM,
respectively, in the CIA scene. The suffix of TP stands for the model that
uses two pairs of MODIS and Landsat images as inputs.

than that of deep learning-based methods. The fusion results
obtained from DenseSTF are more robust and reliable than the
other methods.

(a) (b) (c) (d)

Fig. 11. Same as Fig. 10 but is shown for the LGC scene.

B. Comparison With Rule-Based Methods That Use Two
Reference Image Pairs

Figs. 10–12 show the fusion images obtained from different
methods using two Landsat-MODIS image pairs as model
inputs. As seen from the figure, ESTARFM predicts the object
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TABLE IV

QUANTITATIVE ASSESSMENT OF DIFFERENT FUSION METHODS IN THE PYL SCENE. THE METRIC VALUE
INDICATIVE TO THE BEST MODEL PERFORMANCE IS HIGHLIGHTED IN BOLD

Fig. 12. Same as Fig. 11 but is shown for the PYL scene.

edges well but introduces considerable spectral differences
against the observed Landsat images. ESTARFM produces the
fusion image with mixed colors within fragmented farmland
blocks in the CIA scene. There are considerable effects of

salt-and-pepper noise in the images predicted by STARFM-
TP in all scenes.

The quantitative analysis (see Table V) shows that Dens-
eSTF outperforms ESTARFM and STARFM-TP. ESTARFM
performs better than STARFM-TP in the LGC and PYL
scenes, which experiences abrupt land cover changes. Compar-
ing the metrics in Tables II–V, we can find that STARFM-TP
outperforms STARFM in the scenes with abrupt changes.
ESTARFM yields slightly worse accuracy in the CIA scene.
The possible reason may be the surface reflectance changes
nonlinearly due to the crop phenology, which is inconsistent
with the underlying assumptions of ESTARFM. These findings
imply that appropriate consideration of temporal dependence
helps contribute to successful data fusion.

C. Comparisons on Models With Different Modules

To understand the impacts of components in the net-
work structure of DenseSTF, we conduct additional modeling
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TABLE V

QUANTITATIVE ASSESSMENT OF DIFFERENT METHODS USING TWO LANDSAT-MODIS IMAGE PAIRS. THE METRIC VALUE INDICATIVE
TO THE BEST MODEL PERFORMANCE IS HIGHLIGHTED IN BOLD. THE SUFFIX OF TP STANDS FOR THE MODEL

THAT USES TWO PAIRS OF MODIS AND LANDSAT IMAGES AS INPUTS

studies using different learning architectures, including
DenseSTF-BN, which uses BN instead of WN, and DenseSTF-
AP, which uses AP instead of maximum pooling. Quantitative
model assessments in Table VI suggest that the prediction
errors of DenseSTF-AP are slightly higher than DenseSTF.
One reason is that AP tends to smooth pixels located on
the edges of objects in an image. DenseSTF has higher
SSIM indices than DenseSTF-AP, implying that using maxi-
mum pooling better preserves texture details. Both DenseSTF
and DenseSTF-AP outperform DenseSTF-BN, indicating the
advantage of weighted normalization in decreasing the uncer-
tainties caused by the differences in local statistics among
batches. Overall, DenseSTF performs the best for all the
studied scenes.

D. Spatiotemporal Fusion of Image Time Series

We evaluated the performance of the proposed Dens-
eSTF model in the spatiotemporal fusion of image time
series at the CIA and LGC sites, respectively. At the CIA
site, nine Landsat-MODIS pairs acquired between 2001/280
and 2002/116 were collected. The first (2004/107) and last
(2005/093) image pairs served as the training data, and the
other image pairs were used for the model test. For STARFM
and FSDAF, the reference Landsat-MODIS pair that was tem-
porally closer to the prediction date was selected as algorithm
inputs. Table VII summarizes the fusion accuracies of different
methods on each prediction date in the time series. The mean
metrics for all bands were shown for comparison. The results
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TABLE VI

QUANTITATIVE ASSESSMENT OF THE DENSESTF MODELS USING DIFFERENT MODULES. THE METRIC VALUE INDICATIVE TO THE BEST
MODEL PERFORMANCE IS HIGHLIGHTED IN BOLD. DENSESTF-BN USES BN INSTEAD OF WEIGHTED NORMALIZATION,

AND DENSESTF-AP USES AP INSTEAD OF MAXIMUM POOLING

(see Table VII) showed that the RMSE values were lower
on all dates for DenseSTF compared with the other methods.
The accuracy of fusion results tended to decrease as the
temporal distance from the reference date increases. Overall,
DenseSTF produced more accurate results than the other tested
methods.

At the LGC site, we used the Landsat-MODIS pairs cap-
tured on 2004/107 and 2005/093 for model training and fused
image time series on ten prediction dates (see Table VIII).
It can be observed from Table VIII that DenseSTF was
reasonably accurate. The metrics of both RMSE and AAD
were lower, and the metrics of both CC and SSIM were higher
than the corresponding metrics for the other methods. The
result obtained for the LGC site is in line with that obtained
for the CIA site.

V. DISCUSSION

This article proposes a new deep learning-based model
that adopts a patch-to-pixel mapping strategy to perform
a spatiotemporal fusion of Landsat and MODIS data. The
proposed deep learning model of DenseSTF produces better
fusion images than the other tested methods, demonstrating the
applicability of the deep learning methods in spatiotemporal
data fusion. Although DenseSTF produces accurate fusion
images in general, it does not guarantee that DenseSTF
achieves the best assessment metrics than the other methods
in all circumstances. Note that we used mse for all spectral
bands as the loss function when training both VGG16 and
DenseSTF. The method that minimizes overall mse does not
necessarily optimize the model performance for each spectral
band, and optimizing the loss of mse does not always lead
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TABLE VII

COMPARISON OF DIFFERENT METHODS FOR TIME SERIES PREDICTION IN CIA SCENE. THE METRIC VALUES INDICATIVE
TO THE BEST MODEL PERFORMANCE ARE HIGHLIGHTED IN BOLD

to the optimized values in the other quantitative metrics, such
as CC, AAD, and SSIM. There might be tradeoffs among the
accuracy of different bands during the model training. One
possible solution to further improve the model performance
is to train an independent network for each spectral band,
but this strategy largely increases computational complex-
ity. Nevertheless, a comparison of overall fusion accuracies
of all bands between different methods (see Tables II–VI)
demonstrates that the mean CC, RMSE, AAD, and SSIM of
DenseSTF are superior to those of the other methods. Overall,
DenseSTF achieves reasonable performance on producing the
fusion images using Landsat and MODIS image pairs across
different scenes.

Among the tested deep learning-based models, both Dens-
eSTF and VGG16 perform substantially better than STFNET
and EDCSTFN (see Tables II–VI) in all scenes. One possible

explanation is both STFNET and EDCSTFN use the patch-to-
patch mapping strategies for model training and image fusion,
and the patch-to-patch mapping strategy is unlikely to deliver
sufficient spatial structure and texture information for pixels
at the edge of an image patch, particularly in heterogeneous
regions. Another possible reason may be that the underlying
assumptions on linear changes of surface reflectance cannot be
satisfied in the tested scenes. In addition, the loss functions of
both STFNET and EDCSTFN consist of different components,
such as spectral losses, feature losses, textural losses, and
temporal losses. Model tuning is required to balance these
components, but it is not easy to find the best parameter
settings in heterogeneous landscapes and in regions with land
cover changes. By contrast, DenseSTF uses the patch-to-pixel
mapping strategy to ensure sufficient spatial structure and
texture information for network modeling and account for
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TABLE VIII

COMPARISON OF DIFFERENT METHODS FOR TIME SERIES PREDICTION IN LGC SCENE. THE METRIC VALUES
INDICATIVE TO THE BEST MODEL PERFORMANCE ARE HIGHLIGHTED IN BOLD
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both spatial and temporal dependencies among image pairs.
The mapping function generated by DenseSTF requires little
assumptions or empirical settings and, hence, is more reliable
in different circumstances.

Previous studies have found that CNNs often suffer from the
data-hungry problem [58], and therefore, increasing the num-
ber of reference image pairs likely helps improve the fusion
accuracy [45]. When using multitemporal images, it is neces-
sary to account for temporal dependence among images during
model training but remains challenging. One commonly used
method is to assign weights to images according to the time
intervals with the predicted image [22]. This method could
be problematic in areas where surface reflectance changes
nonlinearly with time [4]. Studies also attempted to use the
spectral differences between coarse-spatial-resolution images
to measure the degrees of temporal changes [4], [50]. Due to
the effects of pixel mixture, this approach may not be feasible
in heterogeneous landscapes [23]. We apply a straightforward
strategy in DenseSTF to account for both forward and back-
ward temporal dependencies among images. Our experimental
results support the effectiveness of the adopted strategy across
landscapes. Nevertheless, to allow for comparisons with the
other fusion methods, we only tested two pairs of reference
images in DenseSTF, and further investigation is needed for
understanding its performance in spatiotemporal fusion with
multiply pairs of reference images.

Similar to the other spatiotemporal fusion methods, the
proposed DenseSTF is suitable for blending the surface
reflectance acquired by other satellite sensors, such as
Sentinel-2 and Sentinel-3 images [31]. Apart from surface
reflectance, it is also of interest to fuse the products derived
from surface reflectances, such as NDVI [59], the leaf area
index [60], and the land surface temperature [35]. Theoreti-
cally, traditional rule-based methods require the fused products
to be linearly additive and, hence, inevitably introduce errors
when fusing nonlinearly additive products. By comparison, the
deep learning-based methods can directly perform nonlinear
transformation via hidden layers, and the errors can be largely
reduced [46]. Therefore, DenseSTF may be a better choice in
applications where the fusion of nonlinearly additive products
is needed.

Comparisons among models using different modules imply
that the network structure is important to accelerate model
convergence and improve the model performance. In recent
years, a number of novel network structures (e.g., batch renor-
malization, the Gaussian error linear unit, and the recurrent
neural network) have proved effective in image semantic seg-
mentation [61]–[64]. Testing of the other network structures in
DenseSTF is worthy of studying in near future for improving
the model applicability.

For spatiotemporal fusion methods, it is generally difficult
to predict abrupt changes. For example, the black blocks in
Figs. 7 and 8 are not restored by all methods. One major chal-
lenge is that the acquisition time of the fine-resolution image
and the coarse-resolution image could be different, and the
abrupt changes (e.g., irrigation and flood events) could bring
noticeable spectral inconsistencies between the fine-resolution
and coarse-resolution images. In such cases, the changes in

the fine-resolution image are invisible in the corresponding
coarse-resolution image. As a result, all methods cannot fully
capture the abrupt changes. A possible solution to this problem
is to use more auxiliary data (e.g., Sentinel-2 images) that are
temporally close to the prediction time to provide sufficient
information for the spectral changes.

Although deep learning-based methods can yield higher
fusion accuracy, they normally require more computing
resources than traditional rule-based methods. Fortunately, the
emergence of cloud computing platforms, such as Google
Earth Engine (GEE) [65] and the Multi-Mission Algorithm
and Analysis Platform (MAAP) [66], has now provided
unprecedented computing resources and satellite images. Deep
learning-based methods can extract key structural and spectral
features from big data and learn reliable mapping functions
across different sensors. Moreover, recent studies have evalu-
ated the influence of registration error on fusion accuracy and
concluded that methods learning from patches are more robust
to misregistration than traditional rule-based methods that are
performed on a per-pixel basis. The abilities to handle big data
and tolerate registration errors make deep learning an attractive
and powerful tool for linking different sensors at large scales
via cloud computing platforms.

VI. CONCLUSION

Spatiotemporal data fusion is able to provide dense time
series images with a high spatial resolution for a wide range of
applications. Different from the rule-based spatiotemporal data
fusion methods that establish empirical relationships among
fine- and coarse-resolution images, we proposed a deep learn-
ing network named DenseSTF for blending the Landsat and
MODIS images. DenseSTF uses the patch-to-pixel mapping
strategy to handle heterogeneous landscapes and accounts for
temporal changes via both spatial and temporal dependencies
among image pairs. We conducted experiments to assess
DenseSTF and compare it with the other deep learning-based
methods (i.e., VGG16, STFNET, and EDCSTFN) and existing
rule-based methods (i.e., STARFM, ESTARFM, and FSDAF)
across three contrasting scenes with different levels of spatial
heterogeneity and land cover changes. The deep learning-
based model of DenseSTF shows effective and accurate in the
fusion of Landsat and MODIS images, particularly in areas
with abrupt changes. The modeling strategy and the network
structure of the deep learning networks are critical to accurate
data fusion. The implementation code for the DenseSTF model
is now publicly available via GitHub (https://github.com/sysu-
xin-lab/DenseSTF). We welcome researchers and scholars to
evaluate and improve the developed DenseSTF model for
broad applications.
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