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Abstract—This paper analyzes the interferometric 

measurements of ground-based Global Navigation Satellite 
Systems (GNSS) stations and proposes a novel method for sea 
surface states detection. The novel technique benefits from a cost-
effective data collection from a large number of global GNSS 
stations. In this study, we extend a traditional GNSS 
interferometry reflectometry (GNSS-IR) model so that it can be 
applied to a multilayer surface by considering the surface 
roughness, total reflectivity, and penetration loss in multilayer 
situations. Based on this model, the wavelet analysis is used to 
perform parameterization on the interferometric observations 
represented by the Signal to Noise Ratio (SNR). An integration 
factor and power curve are also proposed to characterize the 
surface state transition. One-year data from an Arctic geodetic 
GNSS station in the north of Canada are collected for analysis to 
validate the proposed approach with comparisons to the existing 
methods based on the amplitude and damping factors. The results 
show that the new method demonstrates good usability and 
sensitivity to detect surface state transitions, eg. icing, snowfall, 
and snow melting. However, the amplitude and damping factor-
based methods derived from the single-layer model are only able 
to detect the pure ice surface and cannot respond to thick snow 
conditions. Finally, the high-resolution spaceborne images 
confirm the reliability of this method, exhibiting a great potential 
for long-term coastal sea surface detection based on the global 
geodetic GNSS stations and later being expected to be applied to 
sense cryosphere surface states.  
 

Index Terms—GNSS Interferometry Reflectometry, Sea 
surface detection, Area factor, Signal to Noise Ratio, Cryosphere, 
multilayer surface. 

I. INTRODUCTION 
HE continual advancement and enhancement of the GNSS 
technique have enriched abundant L-band signals as remote 

sensing sources for the GNSS reflectometry (GNSS-R) 
technique. The extraction of Earth’s surface parameters using 
GNSS reflected signals received at different platforms has 
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gradually developed during recent decades since the first usage 
as a new remote sensing concept was proposed in [1][2]. 
Numerous studies based on the spaceborne measurements 
demonstrated the potential of GNSS-R to sense the Earth’s 
surface [3], including sea surface height [4] [5][6], wind speed 
[7][8], soil moisture [9][10], sea ice[11][12], and potentially 
precipitation over calm oceans [13][14]. Compared to 
spaceborne scenarios, the ground-based GNSS interferometry 
reflectometry (GNSS-IR) technique based on interference data 
represented by SNR records is an even lower cost and higher 
temporal and spatial resolution Earth monitoring approach. 
This technique is a passive and multi-static remote sensing 
technique to obtain the Earth’s surface state in nearby areas of 
stations. The GNSS-IR provides long-term novel information 
for spatial and climatic analysis in addition to traditional 
geodetic applications. Many previous studies have validated the 
availability and reliability of this approach, utilizing the 
geodetic antenna at no additional cost for sea level [15][16], 
snow depth [17][18], soil moisture [19][20], and permafrost 
monitoring [21]. 

Water environment monitoring based on a huge number of 
global GNSS stations offers new concepts for global water 
cycle monitoring [22]. The ice parameter plays an essential role 
in the global water cycle and climate changes, and its coverage 
performs a vital indicator of the global radiation budget [23]. 
Furthermore, unexpected ice cover changes have significant 
consequences for the mariculture, fishing, and transportation 
industries, as well as port terminals, and can result in economic 
and social losses [24]. At the moment, regional ice monitoring 
is mostly focused on dedicated observatories using microwave 
radar techniques with high costs. Although satellite 
observations have demonstrated the capability to monitor large 
areas [25][26], they are severely affected by weather and 
atmospheric factors. Observations based on optical remote 
sensing are unavailable when it is cloudy, and microwave 
monitoring can suffer from low spatial resolution [27].  
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The GNSS-R passive remote sensing shows the potential of 
surface freezing states detection. The solid water surface is 
more conducive to reflect navigation signals and there is a large 
difference between the dielectric constants of solid and liquid 
water [28]. Based on this, we can sense the surface ice near the 
antenna at the station. Assuming that a large number of GNSS 
stations can be effectively used for surface states detection, 
low-cost near-coastal ice and snow monitoring with a global 
coverage can be achieved. Furthermore, many stations are 
operational for a long period and can provide new information 
for global climate change research and increase the added value 
of GNSS stations. In addition, long-term measurements also 
assist and validate satellite-based monitoring results especially 
focusing on coastal areas. Beyond the ground-based case, the 
sea ice detection using airborne and spaceborne GNSS-R 
techniques can provide excellent capabilities for sea ice change 
monitoring [12][29][30]. 

The study on ice detection using multipath interferometric 
signals recorded by geodetic GNSS stations is still in its initial 
stages. Strandberg et al. [31] modified the traditional GNSS-IR 
equation and proposed the relative damping factor parameter to 
detect the ice period of the reflected surface. That study reveals 
that damping factor changes are consistent with the recorded 
local temperature and ice observations. The residual SNR 
damping factor, on the other hand, is highly correlated with the 
roughness of the reflecting surface. However, when the surface 
is covered by ice and thick snow, the multilayer structure can 
lead to more complex changes in reflection patterns. In this 
case, the single-layer model fails to track the transition of 
surface states, especially for the thick snow layer where the 
signals penetrate more deeply. Furthermore, the amplitude of 
the residual SNR data is closely related to roughness and 
dielectric constant changes, implying that the damping and 
amplitude factors are not completely independent and 
uncorrelated. Therefore, the detection method based solely on 
the damping factor may be not optimal. Yusof et 
al.[32]conducted an ice thickness study based on data from 
GNSS equipment placed on the ice surface and used a principle 
similar to tide and water level monitoring to detect the height 
between the antenna phase center and the ice-water interface to 
obtain the ice thickness indirectly, with an accuracy of 7 cm. 
Meanwhile, it confirms the penetration of reflected GNSS 
signals in the multilayer surface. This ice thickness 
measurement method for ice identification requires more 
verification, but it can be combined with the ice detection 
method to provide more detailed information for climate 
research. It is worthwhile to further develop the research based 
on geodetic stations instead of mounting the instruments on the 
ice. Jacobson et al. [33] used a fitting method based on a GNSS 
antenna, of which the panel is placed vertically to measure the 
thickness of lake ice. This fitting method considers the ice 
dielectric parameters and the results are in good agreement with 
the ground-truth ice thickness, and further concluded that the 
ice thickness was inconsistent in different areas of the lake. This 
strategy of the experiment in [33] has repeatedly demonstrated 
sensitivity to ice thickness [34]. With a correlation coefficient 
of 0.7 between the monitoring findings and the actual recorded 
data, the same experiment of polar ice concentration monitoring 
using similarly positioned antennas once again confirmed the 
great potentials of reflected GNSS signals for ice detection [23]. 

Due to the specific instrument in this experiment, a worldwide 
monitoring is supposed to be expensive, making it difficult to 
popularize the method and achieve global coverage. However, 
sea surface states detection based on a large number of off-the-
shelf GNSS stations would be an innovative and low-cost 
method. Furthermore, long-time series retrieval of historical 
data would improve the potential of historical global climate 
change analysis. In this paper, we present a multilayer model 
for the GNSS-IR technique and present detailed discussions on 
the power of reflection received by the geodetic antenna. Based 
on this multilayer model, a novel method is proposed and 
demonstrates a stronger sensitivity to surface state transitions. 

The paper is organized as follows. The methodology is 
presented in Section 2. The dataset and implementation are 
given in Section 3 with an emphasis on the outcomes and 
comparisons to previous studies. Finally, concluding remarks 
are presented in Section 4. 

II.  METHODOLOGY 

A. The single-layer model for the GNSS-IR technique 
The GNSS signal reflected by the flat surface and the 

interference with the direct signal at low elevation angles result 
in a periodic oscillation of the signal SNR, which can be 
explained by a vector decomposition [35], as shown in Fig. 1. 
With different states of reflecting surfaces (water or ice), the 
reflected signals change in the phase and amplitude.  

 
Fig. 1. Vector decomposition of interference composite signals under a single 
layer reflected surface conditions. I and Q refer to the in-phase and quadrature 
components. 
 

In Fig. 1, 𝑨𝑨𝑐𝑐 is the interference signal received by an upright 
geodetic antenna installed nearby the water surface. 𝑨𝑨dir is the 
vector of the direct signal. 𝑨𝑨ref  is the vector of the reflected 
signal, containing the amplitude and phase information. 𝜓𝜓ref is 
the delay phase between the direct and reflected signals, which 
is associated with the vertical distance ℎ  between the phase 
center of the antenna and the reflecting surface, i.e. 𝜓𝜓ref =
2ℎ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)/𝜆𝜆 [36]. 𝜆𝜆 is the wavelength of the GNSS signal. 𝜃𝜃 is 
the elevation angle at the geodetic antenna toward GNSS 
satellites. Consequently, the interference signal can be 
expressed by the vector of direct and reflected signal [35], as 
follows: 
|𝑨𝑨c|2 = |𝑨𝑨dir + 𝑨𝑨ref|2 
           = |𝑨𝑨dir|2 + |𝑨𝑨ref|2 + 2|𝑨𝑨dir||𝑨𝑨ref|  

× cos(𝜓𝜓(𝜃𝜃) + 𝜗𝜗)                               (1) 
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where  |𝑨𝑨dir|2 = |𝑨𝑨𝑐𝑐|2F(θ) . |𝑨𝑨ref|2 = �𝑨𝑨𝑐𝑐ℜ𝑟𝑟𝑟𝑟𝑟𝑟�
2F(−θ) . 𝑨𝑨dir 

and 𝑨𝑨ref are the direct and reflected components as shown in 
Fig. 1. ℜ𝑟𝑟𝑟𝑟𝑟𝑟  is the reflection coefficient. |∗|  is the function 
obtaining the amplitude of the signal vector. 𝐹𝐹(𝜃𝜃) is the gain 
pattern of the antenna as a function of the elevation angle 𝜃𝜃 
denoting the direction of incidence with respect to the 
horizontal plane at the phase center, and a negative sign 
indicates under the horizontal plane. 𝜗𝜗 is the random phase. As 
a previous analysis demonstrated, 𝜗𝜗 can be used to retrieve soil 
moisture [19]. However, changes in surface height will result in 
a far larger and more complex variation of delay phase 
compared to the random phase 𝜗𝜗, so that 𝜗𝜗 can be ignored in 
this situation. Mainly, due to the directivity of antenna gain and 
the surface roughness loss, we have |𝑨𝑨dir|2 ≫ |𝑨𝑨ref|2 . 
Therefore, the time series of reflected signal amplitude can be 
obtained utilizing low-order polynomial fitting to remove the 
main trend domain by the direct signal, as the simplified 
expression (2) from Eq. (1): 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                        (2) 
where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≈ |𝑨𝑨dir|2 is the dominant component that refers to 
the direct signal’s 𝑆𝑆𝑆𝑆𝑆𝑆  data extracted from the RINEX file. 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ 2|𝑨𝑨dir||𝑨𝑨ref| × cos(𝜓𝜓(𝜃𝜃) + 𝜗𝜗)  represents the 
reflected component. |𝑨𝑨ref| is affected by the gain, 𝐹𝐹𝑅𝑅/𝐿𝐿(−𝜃𝜃) , 
of the antenna with respect to the elevation angle  𝜃𝜃  , and 
Fresnel reflection coefficient  ℜ𝑅𝑅/𝐿𝐿 of the RHCP (Right Hand 
Circular Polarization) and LHCP (Left Hand Circular 
Polarization) components associated with the permittivity of the 
reflected medium. The RHCP and LHCP components are 
identified by subscripts 𝑅𝑅/𝐿𝐿. |𝑨𝑨ref| can be further extended as 
[37]: 

 |𝑨𝑨ref| = �𝑨𝑨ref,R + 𝑨𝑨ref,L�    
= |𝑨𝑨dir|[ℜ𝑅𝑅𝐹𝐹(−θ) + ℜ𝐿𝐿𝐹𝐹(−θ)]                   (3) 

where 𝑨𝑨ref,R and 𝑨𝑨ref,L are the RHCP and LHCP components 
in the reflected signals with reflection coefficients of ℜ𝑅𝑅, ℜ𝐿𝐿, 
respectively. The reflection coefficient varies with the reflected 
medium change and can be calculated according to the Fresnel 
law even in the complicated situation of multilayer, which will 
be analyzed later. GNSS signals are originally transmitted in 
RHCP, however, reaching the surface, a proportion of the signal 
is reflected in LHCP. The RHCP and LHCP ratio of the 
reflected signals is dependent on the reflection geometry. The 
RHCP design of geodetic antenna restrains receiving LHCP 
signals, which result in ℜ𝐿𝐿F(−θ)  approaching zero, 
i.e., ℜ𝐿𝐿F(−θ) ≈ 0. Therefore, combining Eq.(2) and (3) and 
adding an attenuation item concerned to the pattern of antenna 
gain and roughness of the reflected surface to ensure the 
conformity of modeling [38], the single-layer model is built.  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ Γ cos(𝜓𝜓(𝜃𝜃) + 𝜗𝜗) × Υ(𝜃𝜃,𝜎𝜎)          (4) 
Where Γ = 2|𝑨𝑨dir|2 ℜ𝑅𝑅F(−θ) ， ℜ𝑅𝑅  is the reflection 
coefficient of RHCP signals in the single-layer reflection from 
layer 1 to layer 2, with relative permittivities, 𝜀𝜀1(𝜀𝜀1 = 𝜀𝜀1′ − 𝑗𝑗𝜀𝜀1′′) 
and 𝜀𝜀2  ( 𝜀𝜀2 = 𝜀𝜀2′ − 𝑗𝑗𝜀𝜀2′′ ), respectively. ℜ𝑅𝑅  can be calculated 
from ℜ12

𝑣𝑣  and ℜ12
ℎ  [39], as follows: 

ℜ𝑅𝑅 = 1
2

(ℜ12
𝑣𝑣 + ℜ12

ℎ ),ℜ𝐿𝐿 = 1
2

(ℜ12
𝑣𝑣 − ℜ12

ℎ )               (5) 
where ℜ𝐿𝐿 is the reflection coefficient of LHCP signals ℜ12

𝑣𝑣  and 
ℜ12
ℎ  are the reflection coefficients of vertical and horizontal 

polarization signals, respectively. ℜ12
𝑣𝑣  and ℜ12

ℎ  are calculated 
based on the Fresnel equations [39]: 

 

ℜ12
𝑣𝑣 = 𝜀𝜀1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−�𝜀𝜀1𝜀𝜀2−(𝜀𝜀1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2

𝜀𝜀1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+�𝜀𝜀1𝜀𝜀2−(𝜀𝜀1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2

ℜ12
ℎ = 𝜀𝜀2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−�𝜀𝜀1𝜀𝜀2−(𝜀𝜀1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2

𝜀𝜀2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+�𝜀𝜀1𝜀𝜀2−(𝜀𝜀1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2

                      (6) 

where 𝜃𝜃 is the elevation angle at the specular point. 𝜀𝜀1(𝜀𝜀1 =
𝜀𝜀1′ − 𝑗𝑗𝜀𝜀1′′ ) and 𝜀𝜀2  ( 𝜀𝜀2 = 𝜀𝜀2′ − 𝑗𝑗𝜀𝜀2′′ ) are the relative complex 
permittivities of the up medium and down medium separated by 
a single interface. 

 Υ(𝜃𝜃,𝜎𝜎) is the attenuation item that determines the declining 
trend of the dSNR data with the elevation angle increase. 𝜎𝜎 is 
the surface roughness represented by the surface height 
standard deviation (STD), which leads to a different variation 
trend in Γ(|𝑨𝑨ref|), of the dSNR. Υ(𝜃𝜃,𝜎𝜎) reads [31][39] 

ϒ(𝜃𝜃,𝜎𝜎) = exp(−4𝜓𝜓std2)                           (7) 
where 𝜓𝜓std = 𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 , 𝜆𝜆  and κ = 2π/λ  are the wavelength 
and wavenumber of GNSS signals. In the previous analysis, ξ =
σ2, called damping factor, is investigated by fitting approach to 
be as an indicator to distinguish the ice and water [31]. 
Consequently, the single-layer reflection model read 

dSNR ≈ Γ(𝜃𝜃) cos(𝜓𝜓(𝜃𝜃) + 𝜗𝜗)exp(−16 π2

λ2
ξ sin2 θ)      (8) 

where Γ(𝜃𝜃) and ξ are called amplitude and damping factors. By 
analyzing and modeling the measured residual SNR data as Eq. 
(8), the surface information, i.e., surface height changes [40], 
surface roughness, and soil moisture [19] can be retrieved. 

 

B. The single reflection over the multilayer surface 
In high latitude regions, the water surface is commonly 

covered with ice and snow. Those changing surfaces can lead 
to a complicated variation in the reflection coefficient of GNSS 
signals. For the multilayer surface, the Multiple-Ray Single-
Reflection (MRSR) model was proposed by [28] to investigate 
the power contribution of each reflective layer to the coherent 
signals based on the LHCP. Here we extend this forward model 
by adding the impact of the surface roughness to analyze the 
power of RHCP signals on each reflective layer. A simple 
sketch in Fig. 2 shows the reflective geometry of the MRSR 
model in the air-snow-ice-seawater surface. 

 
Fig. 2. The geometric path of reflection signals in the MRSR model. The 
seawater surface is coved by snow and ice. The RHCP signals start from the 
transmitter (T) and propagation to the receiver (R) after the multilayer surface 
reflection. The multilayer surface is composed of snow, ice, and seawater from 
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top to bottom, and the thickness of each layer is 𝐻𝐻1,𝐻𝐻2,𝐻𝐻3 , respectively. 
𝐻𝐻1,𝐻𝐻2,𝐻𝐻3  is the antenna height of the receiver from the snow surface. The 
elevation angle in the interface between 𝐻𝐻1,𝐻𝐻2,𝐻𝐻3 and 𝑖𝑖 layer is represented by 
𝜃𝜃𝑖𝑖. 

The power of the reflected signal mainly consists of three 
compositions that are reflected by the three interfaces between 
air, snow, ice, and seawater. In general, in the air-snow-ice-
seawater surface, from upper to lower levels, the permittivity 
increases with the penetration depth, which results in a 
gradually decreasing refraction angle. According to the Fresnel 
law, the RHCP component declines with the increment of 
elevation angle. Therefore, the sub-structure layers will 
contribute less than the first interface between air and snow.  

Nevertheless, the sub-structure layer can disturb the 
reflection compared with the single-layer surface, especially in 
the low elevation angle range. Based on the MRSR model [28], 
the complicated composited reflected signals can be 
represented by a multi-vectors summation, as shown in Fig. 3. 

 
Fig. 3. Vector decomposition of interference composite signals under multi-
layer reflected surface conditions. 

In Fig. 3, the composite reflected signal consists of three 
reflective sub-signals that are reflected from different interfaces. 
Its amplitude and phase can be calculated by vector summations 
of sub-signals. Consequently, the signal received at the antenna 
phase center can be obtained as follows: 

|𝑨𝑨𝑐𝑐|2 = �𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟01 + 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟12 + 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟23 �2               (9) 
where 𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑  is the vector of direct signal, 𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1𝑖𝑖 i=1,2,3,4. are the 
signals reflected by the interface between 𝑖𝑖 − 1 and 𝑖𝑖 layer. The 
direct signal can be expressed by: 

𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑 = |𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑|𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑                       (10) 
where 𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑 is the path range of the direct signal. Each reflected 
sub-signal can be expressed by: 

𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1𝑖𝑖 = �𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1𝑖𝑖�𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋(𝜌𝜌𝑑𝑑𝑑𝑑𝑑𝑑+𝜌𝜌𝑖𝑖−1𝑖𝑖)             (11) 
where 𝜌𝜌𝑖𝑖−1𝑖𝑖 is the additional path delay of the signal reflected 
from the interface between  𝑖𝑖 − 1 and 𝑖𝑖 layer with respect to the 
direct signal. �𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1𝑖𝑖� is the amplitude of signals reflected from 
the interface between  𝑖𝑖 − 1 and 𝑖𝑖 layer, which is calculated as: 

�𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1𝑖𝑖�2 = |𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑|2𝐹𝐹(−𝜃𝜃)𝑈𝑈𝑖𝑖−1𝑖𝑖2 ϒ𝑖𝑖−1𝑖𝑖          (12) 
where 𝑈𝑈𝑖𝑖−1𝑖𝑖 is the total reflection coefficient of RHCP signals 
reflected by the interface between the 𝑖𝑖 − 1 and 𝑖𝑖 layer, which 
reads [28] 

𝑈𝑈𝑖𝑖 = 𝑅𝑅𝑖𝑖−1𝑖𝑖𝛱𝛱𝑚𝑚=1
𝑚𝑚=𝑖𝑖𝑇𝑇𝑚𝑚−1𝑚𝑚𝑇𝑇𝑚𝑚𝑚𝑚−1𝑒𝑒−2𝛼𝛼𝑖𝑖𝑑𝑑𝑖𝑖             (13) 

where 𝑅𝑅𝑖𝑖−1𝑖𝑖 , 𝑇𝑇𝑚𝑚−1𝑚𝑚 , and 𝜃𝜃𝑖𝑖−1  are the reflection coefficient, 
transmission coefficient, and the elevation angle (residual angle 
of the incidence angle) on the interface between 𝑖𝑖 − 1 (𝑚𝑚 − 1) 

and 𝑖𝑖 (𝑚𝑚) layer. 𝛼𝛼𝑖𝑖 = 2𝜋𝜋
𝜆𝜆

| Im{�𝜀𝜀𝑖𝑖}| is the attenuation constant 
[39] that attenuates the signal by combining the travel length 
𝑑𝑑𝑖𝑖 = 𝐻𝐻𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖
 of signal in 𝑖𝑖 layer. 𝐻𝐻𝑖𝑖  is the thickness of 𝑖𝑖 layer. 𝜀𝜀𝑖𝑖 

is the relative complex permittivity of 𝑖𝑖 layer. 𝜃𝜃𝑖𝑖−1 is calculated 
as: 

𝜃𝜃𝑖𝑖 = acos( cos 𝜃𝜃𝑖𝑖−1 �
𝜀𝜀𝑖𝑖−1
𝜀𝜀𝑖𝑖

)                      (14) 

In Eq. (12), ϒ𝑖𝑖−1𝑖𝑖  is the damping item associated with the 
surface roughness, which can be calculated by Eq. (7) with the 
surface height STD, 𝜎𝜎𝑖𝑖−1𝑖𝑖 of the interface between layer 𝑖𝑖 − 1 
and 𝑖𝑖. 

In Eq. (11), 𝜌𝜌𝑖𝑖−1𝑖𝑖 is calculated by follows[28]: 
𝜌𝜌𝑖𝑖−1𝑖𝑖 = 𝜌𝜌01 + 2∑ 𝐻𝐻𝑚𝑚−1

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑚𝑚−1

𝑚𝑚=𝑖𝑖
𝑚𝑚=1 − �2∑ 𝐻𝐻𝑚𝑚−1 tan( 90 −𝑚𝑚=𝑖𝑖

𝑚𝑚=1

               𝜃𝜃𝑚𝑚−1)� cos 𝜃𝜃0                                                          (15) 
where 𝜌𝜌01 = 2𝐻𝐻0 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃0 , 𝐻𝐻0  is the vertical distance between 
phase center and the first interface, 𝐻𝐻𝑚𝑚−1  is the thickness of 
layer 𝑚𝑚 − 1. Expanding Eq. (9) and removing the main trend 
of the direct signal contribution in the SNR data, a 
simplification similar to Eq. (2) can be performed to analyze the 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  by considering: |𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑|𝐹𝐹(𝜃𝜃0) ≫ �𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1𝑖𝑖�𝐹𝐹(−𝜃𝜃0), 𝑖𝑖 =
1,2,3,4. 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≈ 2∑ �𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑𝑨𝑨𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖−1𝑖𝑖� cos( 2𝜋𝜋𝜌𝜌𝑖𝑖−1𝑖𝑖/𝜆𝜆)𝑛𝑛
𝑖𝑖=1           (16) 

where 𝑛𝑛 is the number of layers of reflective surface medium, 
in the situation presented in Fig. 2, 𝑛𝑛 = 4. Referring to the 
MRSR model and involves the influence of surface roughness, 
Eq. (16) can be extended as: 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2𝐹𝐹(−𝜃𝜃0)∑ |𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑|2𝑈𝑈𝑖𝑖−1𝑖𝑖2 ϒ𝑖𝑖−1𝑖𝑖 cos( 2𝜋𝜋𝜌𝜌𝑖𝑖−1𝑖𝑖/𝜆𝜆)𝑛𝑛

𝑖𝑖=1   
(17) 

Eq. (17) is the multilayer model for the GNSS-IR technique 
associated with permittivities, layer thicknesses, surface 
roughness, and the elevation angle, which can be used to 
simulate the power of reflected signals and investigate the 
impact of diverse multilayer surfaces on the reflections. 

C. Power analysis of the reflected signal 
The influence on the power of reflected signals can be 

concluded into three parts. The first is the original power of the 
signal transmitted from GNSS satellites, which is related to the 
age of the GPS transmitter and its design varying in different 
blocks [41]. The secondary factor is the power loss due to the 
long-distance propagation, including the free-space 
propagation loss [42], and inevitable losses due to single or 
multiple reflections [43]. Considering the short range of 
elevation angle applied to the GNSS-IR technique, the free 
space propagation loss is neglectable, whereas the reflection 
loss related to the dielectric properties and roughness of the 
surface is regarded as the dominant [43]. The third part is the 
gain pattern of the antenna and the signal processing 
mechanism of different signals [44]. In general, the gain pattern 
is related to the hardware design of the antenna, and for a 
particular station, its impact can be weakened by differential 
calculations between different time epochs. It is worth noticing 
that the damping factor in Eq. (8) is closely related to antenna 
gain. Thus special attention should be paid to the gain pattern 
when applying quantitative geo-information retrieval based on 
this damping factor [38]. In summary, it can be considered that 
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the power of the reflected signal is mainly determined by the 
roughness and medium type of the reflecting surface, and both 
can be quantified utilizing the surface height STD and 
permittivity of the reflected medium. Theoretically, it is 
possible to detect surface states based on model parameters 
related to roughness and mediums. 

1) Surface roughness 
The waves driven by winds and swell have a direct impact 

on the surface roughness during the ice-free period. Generally, 
in an open sea area, the higher the wind speed, the rougher the 
surface. However, over a small inland water surface, fetches 
due to winds over small inland water bodies tend to be stable 
due to the limited fetch left for the winds to form the waves. 
Here we use the surface height standard deviation to qualify the 
surface roughness. The surface roughness model is given by Eq. 
(7), and the details of this can be found in [39]. Based on this 
model, a simulation associated with the elevation angle and 
surface roughness is presented in Fig. 4. 

 
Fig. 4. Surface reflections related to surface roughness and elevation angles. 
It can be seen that both elevation angles and surface 

roughness have an apparent impact on the signal reflection. 
Considering the elevation angle range from 5 to 30 degrees, the 
amplitude of reflection will decline faster as the elevation angle 
increase when the surface height STD is over 0.05m. In general, 
the ice surface is slightly rough compared to the water surface 
so that it can be distinguished by this damping information in 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  data. However, it is worth noting that smooth water 
surfaces at very low wind speeds can result in a comparable 
value of damping parameters as the ice or snow surface. In 
addition, both the snow accumulation and melting process can 
change the roughness of the reflecting surface, which is 
common in the high latitude regime, i.e., Arctic and Antarctica. 
In this complex composited state of the surface, high damping 
values may not be abnormal even if the surface is frozen, which 
means that the damping parameter-based method may not be 
suitable in this high latitude area. 

2) Total reflectivity 
The reflection coefficient is another important factor that 

affects the power of reflected signals, which is determined by 
the permittivity of the surface medium. In a single layer 
situation, i.e., water or pure ice, the reflection coefficient shows 
a similar impact on the reflection signals, resulting in a decline 
in reflection power with the elevation angles increase. However, 
in a multilayer surface, the reflection coefficient is affected by 
a variety of physical parameters, i.e., thickness, temperature, 
salinity, density, and the volumetric fraction of liquid water. In 
Fig. 5, we present some simulations of the total reflection 

coefficient concerning the thickness of different layers 
according to Eq. (9). 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Total reflectivity simulations versus elevation angles regarding the 
different multilayer surfaces. (a), the total reflectivity is changing within a 
limited range corresponding to the variations of snow and ice thicknesses from 
0 to 1m. (b), the different color patches indicate the corresponding range of 
variations of total reflectivity due to the changes in thicknesses from 0 to 1m 
(snow and ice are changing independently) in different multilayer surfaces. (c) 
the integration of reflectivity curves in Fig. 5(b) versus the thickness of the 
snow layer corresponding to different surface situations with the fixed ice 
thickness of 0.3 m. The snow layer is mainly determined by the snow density 𝜌𝜌 
(unit: g/cm3) and the volumetric fraction of liquid water 𝑚𝑚𝑚𝑚 (unit: %). The 
physical properties of ice and seawater layers are represented by temperature 𝑇𝑇 
(unit: degrees Celsius) and salinity 𝑆𝑆 (unit: ppt). The permittivities of each layer 
for different physical parameters are calculated followed by the formulation in 
[39]. 
 

To simplify this multi-parameters simulation, firstly, the total 
thickness of the snow layer and ice layer is set as 1 m, which 
means in each simulation as the snow layer increases, the ice 
thickness is decreasing. A group of simulations, setting the 
snow density, volumetric fraction of liquid water as 0.1 g/cm3, 
and 3%, temperature and salinity of ice as -2 degrees Celsius 
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and 8ppt, respectively, is presented in Fig. 5(a). The total 
reflectivity versus the elevation angle corresponding to 
different thicknesses of snow and ice is changing complicatedly 
and alternately. There is not a regular overall rising or 
descending trend of total reflectivity for sequence change of 
snow thickness but keeps a limited variation range for all the 
layer thickness situations. After a more comprehensive 
simulation with thicknesses of snow and ice layer changing 
from 0 to 1m independently, we found that the reflectivity is 
only changed in a limited range, as the dashed frame shown in 
Fig. 5(a). Analogously, more surface conditions related to 
different physical parameters are simulated, corresponding 
limited variation ranges are shown by the different color 
patches (P1, P2, P3, P4, P5, P6, P7) in Fig. 5(b), in which, the 
patches P1, P2, P3, P5, P6, P7 have the close up-boundary. The 
relative permittivities of snow, ice, and seawater are given in 
TABLE I. 

TABLE I  
PERMITTIVITIES OF DIFFERENT SURFACE LAYERS 
layer permittivity 
snow 1.54-0.052𝑗𝑗 ~ 2.24-0.11𝑗𝑗 
ice 3.12-0.041𝑗𝑗 

seawater 74.91-50.71𝑗𝑗 

 In Fig. 5(b), it can be seen that the air-snow-ice-water 
composited surface varying in the snow density and liquid 
water content will have a great impact on the total reflectivity. 
Different thicknesses of snow and ice will lead to the total 
reflectivity variations in a limited range. Comparing patches P1, 
P2, and P3, when the snow density increases from 0.1 g/cm3 to 
0.3 g/cm3  with the same liquid water content of 3%, the 
reflectivity increases, and the range of variation becomes 
narrower and tends to be closer to the ice situation represented 
by the patch P4. The same results can be found when the liquid 
water content increases and keep the same snow density of 0.1 
g/cm3 (Patches P1 and P5). The increases in the liquid water 
content result in narrowing the range of variation by raising the 
lower bound, which is caused by the increase in attenuation 
constant due to the increasing liquid water content. Accordingly, 
enlarging the density and the liquid water content will increase 
the reflectivity and reduce its range of change. In addition, the 
high liquid water content will increase the attenuation constant 
and weaken the power of reflection faster when penetrating, 
which is the reason why the variation range tends to be 
narrowed. The seawater surface maintains a stable and small 
total reflectivity, showing a large difference compared to the ice 
and snow surface, which is an apparent signature to distinguish 
ice and water. In addition, the impact of surface roughness 
involving the seawater surface demonstrates a more rapid 
decline in reflectivity, enlarging the difference between the 
water surface and other surfaces, as the comparison between the 
gray and black dash lines presented in the right panel of Fig. 
5(b). However, it is worth noticing that the damping trend of 
total reflectivity in the snow surface is irregular in a wide 
limited range, shown in Fig. 5(a), which indicates that the 
damping-based method may fail to distinguish snow surface 
and water surface. 

The snow layer is a special medium with a permittivity close 
to that of air, which means that L-band signals have greater 
penetration depth and bigger refraction angles compared to the 

ice layer. Therefore, stronger power of reflection from the 
interface between the snow and ice layer will occur a more 
intense interference with the reflected signal from the air-snow 
interference. Variations in snow thickness can lead to different 
degrees of interference effects between the signals reflected 
from the first and second interface, and demonstrate a wider 
range of variations. 

Considering that there are overlaps in different color patches 
in Fig. 5(b), a further investigation on the integration of total 
reflectivity is carried out. In this analysis, the thickness of sea 
ice is fixed to 0.3m to concentrate on analyzing the impact of 
snow parameters. As shown in Fig. 5(c ), we integrated each 
total reflectivity curve along with the elevation angles, and 
more obvious discrepancies among the different multilayer 
surface situations can be observed. The results demonstrate that 
the integration is increasing as the snow density and liquid 
water content increase. Despite the appearance of multiple 
periodic curves overlapping due to the interference effect, the 
magnitude relationship between these integration lines does not 
change, as shown in the middle zoomed-in plot. Furthermore, 
the water surface situations keep the lowest value and reduce 
with increasing surface roughness. While the ice surface 
maintains the largest integration of the reflectivity curve, 
exhibiting an apparent contrast to the other situations. These 
results provide us with new opportunities to detect surface 
states transitions. 

As a result, the total reflectivities of solid water surfaces are 
higher than that of the water surface. Moreover, more obvious 
discrepancies can be observed to detect and distinguish the 
surface states. While the damping factor proposed in [31] will 
not be an optimal method to detect complex reflective surfaces 
with ice and thick snow layering. Therefore, based on the 
simulation and multilayer model, a new method of surface 
states detection that takes advantage of the apparent contrast 
between diverse states of the reflective surfaces is designed.  

D.  Area factor and power curve 
Ice detection using amplitude and damping factors extracted 

from residual SNR data can be found in [31], and this study 
concluded that the damping factor demonstrated a better 
performance than the amplitude factor. However, when the 
surface roughness is small enough, the reflected signal power 
shows a declining trend similar to the first-order exponential 
function of height angle, while the attenuation caused by 
surface roughness is a second-order exponential function 
similar to the back trail of the normal distribution function. 
Accordingly, fitting the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  data to a normal distribution 
function is not an optimal approach. Furthermore, the fitting 
model associated with the amplitude and attenuation is unstable 
and error-prone, especially since the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  data have no 
obvious periodic characteristics. For larger attenuation rate 
scenarios, the amplitude factor tends to increase as the 
attenuation factor increases, which means that both factors are 
not independent. In this case, we utilize the Wavelet analysis 
tool to quantify the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 data to obtain instantaneous powers 
of reflected signals, and then propose a new parameter to 
characterize surface states. Referring to the formula of energy 
consumption, the new factor is introduced: 

𝛩𝛩(𝑡𝑡) = 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) × 𝑡𝑡                        (18) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

where 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) is the power of the reflected signal, which is 
calculated via the Wavelet analysis.  𝛩𝛩 is the Pseudo-energy, 
and it can be also called the area factor as it is the integral of the 
power curve 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) along 𝑡𝑡, i.e. the area of the power curve 
with respect to the horizontal axis of the coordinate. 𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 
is the value related to time.  

Previous studies have verified the capability of the Wavelet 
spectrum analysis in the GNSS-IR technique to obtain 
instantaneous frequencies along the elevation angles [45][46]. 
The Wavelet transform method is based on a wavelet 𝜓𝜓𝑤𝑤(𝑡𝑡) to 
measure the similarity between child wavelet with scale 𝑎𝑎 and 
translation 𝑏𝑏 parameters and the input signal. The child wavelet 
can be defined as follows [47]:  

𝜓𝜓𝑤𝑤(𝑡𝑡) = 1
�|𝑎𝑎|

𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡−𝑏𝑏
𝑎𝑎

)                        (19) 

where 𝑎𝑎 ∈ ℝ+ and 𝑏𝑏 ∈ ℝ  are the scale and translation 
parameters, respectively. The wavelet transform is presented 
[46]: 
𝑊𝑊𝑇𝑇𝑓𝑓

𝜓𝜓(𝑎𝑎, 𝑏𝑏) = 1
�|𝑎𝑎| ∫ 𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃))𝜓𝜓𝑤𝑤∗ (𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)−𝑏𝑏

𝑎𝑎
)𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃))  

(20) 
where 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and maximum 
elevation angles. 𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃)  is the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  data. ∗  denotes the 
complex conjugate.  𝑊𝑊𝑇𝑇𝑓𝑓

𝜓𝜓(𝑎𝑎, 𝑏𝑏)  is the wavelet transform 
coefficient. The scale parameter 𝑎𝑎  determines the frequency 
associated with the vertical height ℎ between the antenna and 
reflecting surface, and the translation parameter 𝑏𝑏 is related to 
the instantaneous elevation angle associated with time. 

To facilitate subsequent calculations and ensure the 
consistency of the area factor obtained from each SNR segment 
data, the concept of full-size SNR data is introduced. The full-
size SNR data means that the SNR data are continuous within 
the entire range of elevation angle threshold and recover both 
the minimum and maximum. This is a more rigorous restraint 
for data preprocessing compared to traditional applications but 
it is decent enough for surface states detection during the period 
of rapid development of the GNSS system. 

For validation, a full-scale SNR segment data simulated by 
MPSIM[48] for an air-ice-seawater situation is analyzed as an 
instance for the explanation. A two-dimensional power 
spectrum as a function of the elevation angle and retrieval 
height 𝑅𝑅𝑅𝑅 , between the antenna and reflective surface 
(transformed from frequency [46]), obtained by applying the 
Discrete Wavelet spectrum analysis method is shown in Fig. 6. 

 
Fig. 6.  The two-dimensional power spectrum(plane (A)) is obtained using 
Wavelet analysis on the full-scale SNR segment shown in panel(C). 𝑅𝑅𝑅𝑅 is the 
efficient height between the phase center of the antenna and the reflective 

surface, which is transformed from frequency[46]. The power curve of the 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 data extracted from the two-dimensional power spectrum is present in 
plane (B). The permittivities of the seawater (T=10 degrees Celsius, S=34ppt ) 
and ice (T=-2 degrees Celsius, S=8 ppt ) are: 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 74.91− 50.71𝑗𝑗 ,  
𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 3.12− 0.04𝑗𝑗, respectively. 

 
In panel (B) of Fig. 6, the instantaneous power curve as a 

function of the elevation angle contains the amplitude and 
damping information of the  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  data. The amplitude and 
damping factors can also be obtained by fitting this power 
curve. Once the power curve is estimated by the Wavelet 
analysis, the area factor 𝛩𝛩(𝑡𝑡,𝑁𝑁prn) corresponding to time 𝑡𝑡 and 
PRN (Pseudo-Random Noise) number 𝑁𝑁prn of GNSS satellites 
can be calculated by integrating the power curve along the 
elevation angle: 

𝛩𝛩(𝑡𝑡,𝑁𝑁prn) = 1
𝑛𝑛 ∫ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜉𝜉 (𝑡𝑡,𝑁𝑁prn,𝜃𝜃)𝑑𝑑𝑑𝑑𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚

              (21) 
where 𝑛𝑛  is the number of sampling in each 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  data. 
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  are the lower and upper limits of the elevation angle 
respectively. 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜉𝜉 (𝑡𝑡,𝑁𝑁prn,𝜃𝜃) is the power curve only related to 
reflecting surface conditions, corresponding to elevation 
angles, time, and PRN of GNSS satellites. 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜉𝜉 (𝑡𝑡,𝑁𝑁prn, 𝜃𝜃) is 
calculated as 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜉𝜉 (𝑡𝑡,𝑁𝑁prn,𝜃𝜃)= 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜 (𝑡𝑡,𝑁𝑁prn,𝜃𝜃)-𝜉𝜉F(−𝜃𝜃) − 𝛿𝛿𝑟𝑟     (22) 

where 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜 (𝑡𝑡,𝑁𝑁prn,𝜃𝜃) is the observed power curve estimated 
by the Wavelet analysis, containing damping information   
𝜉𝜉F(−𝜃𝜃) , caused by antenna gain pattern, and random unknown 
errors 𝛿𝛿𝑟𝑟. If the antenna gain pattern is unknown, Eq. (22) can 
be substituted by: 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜉𝜉avg (𝑡𝑡,𝑁𝑁prn,𝜃𝜃)= 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜 (𝑡𝑡,𝑁𝑁prn,𝜃𝜃)-𝜉𝜉avg(𝜃𝜃,𝑁𝑁prn) − 𝛿𝛿𝑟𝑟  (23) 

where 𝜉𝜉avg(𝜃𝜃,𝑁𝑁prn) is the average power including the damping 
information of antenna gain pattern and surface roughness in 
the ice-free surface condition. Therefore, the power curve and 
area factor associated with the time and the specific satellite can 
be obtained. In addition, the further daily area factor can be 
calculated by averaging the different results of all satellites. 

III. IMPLEMENTATION AND VALIDATION BASED ON AN 
ARCTIC COASTAL GNSS STATION  

A. Datasets 
To investigate the applicability of the new method on the 
condition of complex and diverse changes in the reflecting 
surface, we conduct a one-year experiment based on the coastal 
geodetic GNSS station, named TUKT. This station is located in 
Tuktoyaktuk, in the north of Canada, with a subarctic climate, 
see Fig. 7(a). Since the Arctic Ocean freezes over a long time 
every year, this area holds a cold winter and the temperature is 
much lower than normal seasons due to the minimized maritime 
influence. The average temperature reaches its maximum of 
around 10 degrees Celsius in the middle of the year. In addition, 
extreme cold weather dominates much time of the year resulting 
in less rainfall and more snowfall, with ice thicknesses up to 2 
m [49] and snow depths up to 60 cm [50]. The TUKT station 
was installed in 2003 and equipped with an Ashtech CGRS 
MicroZ 12-channel dual-frequency receiver. In 2015, the 
receiver was replaced with Trimble NetR9. The antenna of this 
station is mounted on a pillar, type of ASH701945E_M, with a 
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height of 1.5 m over the ground, as presented in Fig. 7(b). The 
antenna height is about 6m from the water surface. The 
elevation angles range is set as 5 to 20 degrees, and the azimuth 
range is 8 to 125 degrees to ensure the footprint of the reflection 
is located on the sea surface, as the first Fresnel zone shown in 
Fig. 7(a). In this experiment, we collect the data from January 
1 to December 31, 2018. 

 
(a) (b) 

Fig. 7. The location and the first Fresnel zone for elevation angles: 5, 10, 20 
degrees (a) and a photograph (b) of the TUKT GNSS Station  
(source: https://www.sonel.org/spip.php?page=gps&idStation=864). 

In addition, corresponding temperature (2 meters 
temperature and sea surface temperature), snow depth, 
snowmelt, snowfall, and snow density data from the European 
Centre for Medium-Range Weather Forecasts Reanalysis v5 
(ERA5) are collected to verify the reliability of the results, as 
shown in Fig. 8. 

  
(a) 

 
(b) 

  
(c) 

Fig. 8. The average temperature and snow-related data from the ERA5 
reanalysis data at the TUTK station for the year 2018. (a) Average 
temperatures from the ERA5 dataset of the year 2018 at the TUKT station. 
The freezing point is about -1.6 degrees Celsius according to the sea surface 
temperature data. (b) The snow depth and snowfall data from the ERA5 dataset 
of the year 2018 at the TUKT station. (c) The snow density and snowmelt data 
from the ERA5 dataset of the year 2018 at the TUKT station. The unit [m of 
w. eq.] in (b-c) represents the meter of water equivalent. 
 

In Fig. 8(a), the sea surface temperature is not synchronized 
with the change of the 2 meters temperature during the period 
of snow and ice melting. The sea surface temperature starts 
increasing on 30 July, while the 2 meters temperature starts to 
rise to -1.6 degrees Celsius on about 30 May. The melting 
processes of snow and ice lead to this 31-day delay, which can 
also be obtained in combination with Fig. 8(b) and Fig. 8(c). In 
addition, the surface starts freezing on 1 October, which is 
about 9 days after the temperature dropped to -1.6 degrees 
Celsius. As the temperature drops, the snow begins to 
accumulate immediately after the ice forms. The fresh snow 
keeps a low density during the beginning (1 January to 10 April) 
and end (1 October to 31 December) of this year. The depth of 
snow increases at the beginning (1 January to 10 May) and the 
end (1 October to 31 December) of the year, while the melting 
process occurs only between 10 May and 19 June. 

B. Results and analysis 
Based on the proposed method, one-year data of 2018 are 

processed and the area factor is obtained. To demonstrate more 
information, the image of the time series daily average power 
curves overlapping with the area factor results is also illustrated 
in Fig. 9(A). In Fig. 9(A), the area factor presents obvious 
variations along the time: falling, rising, and being constant, 
and the daily average power curves show different trends along 
the elevation angle. The area factor is the integral of the power 
curve, which reflects the overall characteristics of the reflected 
temporal power variation, while the power curve can exhibit 
more details. As shown in Fig 9(A), the area factors of 25 
January and 27 October are comparable. However, the strengths 
of the power curves show different trends with the change of 
the elevation angle. The strengths of the power curve on 25 
January are more concentrated at a small range of elevation 
angles from 7 to 9 degrees, while the strengths of the power 
curve on 27 October are evenly distributed in the range from 5 
to 12 degrees. These differences are related to the state of the 
surface. As analyzed in the last section, the different states of 
the reflecting surfaces with diverse covered mediums, such as 
water, ice, snow, and their mixtures, are reflected in the power 
curve and area factor. Therefore, the corresponding 
temperature, snow depth, snowmelt, snowfall, and snow density 
data can be used to verify the usability and correctness of the 
proposed method. 

The time-series results of the area factor shown in Fig. 9(A) 
can be separated into 3 parts. The first part is the snow 
accumulation period from the start of the year to 11 May and 
another duration from 10 October to the end of the year. In this 
period, the area factor decreases along the time and reaches its 
first local minimum point on 11 May. From the reanalysis data, 
we can confirm that the temperature remains almost constantly 
below -10 degrees Celsius, and the Tuktoyaktuk area is in a 
freezing period during this time. The sea surface was covered 
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with snow and ice between the seawater and air due to the 
extreme Arctic climate and long periods of intermittent 
snowfall. As presented in Fig. 8(b), the accumulated snow 
gradually reaches its highest point on 11 May. Fresh snow tends 
to be fluffy, and the accumulated fresh snow will increase the 
roughness of the interface, which is consistent with the changes 
in the daily power curves of this part. The strong power in the 
daily average power curve decays from the high elevation 
angles to the low elevation angles, indicating the surface tends 
to be rougher to decrease the coherent signals at high elevation 
angles. Another important fact is that the long penetration 
length will aggravate the attenuation of the power of the 
incidence signal, essentially for grazing geometric conditions. 
This attenuation due to the penetration loss in the reflection is 
holistic, therefore the area factor drops with the increasing snow 

depth synchronously. However, in the thick snow and melting 
initial period, another important point that we should notice: the 
ice or high-density snow loading on the antenna will reduce the 
power of the direct signal and lead to a decrease in the SNR 
data. Alternatively, the snow and ice remaining in the choke 
ring around the antenna may also affect the power of reflected 
signals, thus weakening the interference observations at low 
elevation angles. As shown on 05 May in Fig. 9(A), the area 
factor drops abruptly and then rises gradually when the 
temperature starts approaching the freezing point, which may 
be caused by the gradual melting of the snow on the antenna. 
The analysis above pertains to the period from 10 October to 
the end of the year as well. Both periods show a declined trend 
in area factor with the snowfall and the increase in snow depth. 

 
Fig. 9 (A), the area factor and the daily average power curve obtained from the S1C SNR data of the TUKT station. Based on the same data, the time-series of 

damping factor (B), and amplitude factor (C) were also calculated.  
 

When the surface starts freezing, the area factor suddenly 
rises and reaches its highest, and then decays after the ice 
surface starts accumulating snow. However, around 11 
October, the area factor plunges for a short time, which is 
caused by the abrupt accumulation of fresh snow with low 
density and liquid water content. As simulated in Fig. 5, fresh 
snow can lead to a low power curve and integration. After that, 
the area factor recovers to high values due to the consecutive 
low temperatures until another disturbance of snowfall. On 20 
November, the snow depth increased suddenly according to the 
climatic data. Correspondingly, the area factor slightly 
decreases, which is consistent with the qualitative results from 
the simulation in Fig. 5(c). In general, the snow layer on the ice 
has a significant impact on the area factor. It is also due to the 

interference of the snow layer so that this indicator can 
distinguish between snow and ice. 

After the first local minimum point in area factor on 11 May, 
the second part demonstrates a conversely temporary increase 
until 30 June. In this period, acknowledging from the climate 
information, the reflective surface undergoes complex changes 
due to the daily average temperature increase from -10 to 6.5 
degrees Celsius. Once the temperature rises and approaches the 
freezing temperature (-1.6 degrees Celsius), the covered snow 
and ice on the reflective surface start to melt, increasing density 
and liquid water content, as the snowmelt data shown in Fig. 
8(c). As simulated before, on the one hand, an increase in 
density and liquid water content can lead to a stronger reflected 
signal and increase the area factor. On the other hand, the high 
liquid water content in the snow can augment the penetration 
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loss. Therefore, in this period, the area factor rises gradually, 
but not by a large magnitude, which is consistent with the 
calculated area factor illustrated in Fig. 9(A). Moreover, on 12 
June, the reanalysis data indicate that the snow is almost 
completely melted, which means that the ice is covered with a 
thin layer of water. In this special situation, the reflected signal 
is reflected by a flat and smooth layer consisting of a mixture 
of ice and water. As the snow gradually melts, more water will 
be covered on the ice surface, and the surface becomes 
smoother, which will shift the range location of the peak in the 
daily average power curve from 5 to 8 degrees for the period 
from 11 May to 12 June. However, in the period from 13 June 
to 30 June, the area factor almost keeps a sightly high value due 
to the ice and water mixing reflective surface with low 
roughness. As a result, the change of the snow state and 
roughness both contribute to the increase in the area factor. This 
part can be inferred as a melting period, in which the transitions 
of surface states are successfully tracked by the proposed 
method. 

The third part from 30 June to 30 September illustrates that 
the area factor reaches its lowest value for a duration of 92 days 
due to the high temperature. In this duration, reflected signals 
are mainly reflected by the water surface, which is rougher 
compared to the ice, snow, and melting period. In addition, 
from Fig. 5(b), simulations demonstrate that the reflectivity of 
the water surface keeps a stable and lower value, and the lowest 
integration of the water surface can be found in Fig. 5(c). 
Therefore, the area factor corresponding to the water surface 
consistently maintains approaching zero after removing the 
average power curve of the ice-free period from the observed 
power curve. The observations shown in Fig. 9(A) during the 
period from 30 June to 30 September are consistent with the 
theoretical analysis, which confirms the sensitivity of this 
method for distinguishing the liquid and solid water. Another 
comparison between this detected ice-free date range and sea 
surface temperature data, showing consistency, indicates the 
correctness and accuracy of this new observation. Overall, the 
new observations obtained based on the analysis of the 
multilayer model response obvious variabilities on the sea 
surface state transitions, showing a potential opportunity for 
surface detection. 

C. Comparison with damping and amplitude factors 
To compare the proposed method with the damping factor-

based method derived from the single-layer model 
demonstrated in [31]. This one-year data are processed using 
the fitting method. The 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 data are fitted as the formulation  
in Eq. (8) to obtain the amplitude factor and damping factor. 
The results are presented in Fig. 9(B-C). 

In Fig. 9 (B-C), the time-series of damping and amplitude 
factors show a complicated trend. Firstly, it can be confirmed 
that both damping and amplitude factors can detect the surface 
transition from water to ice on 30 September, while the changes 
in both factors are small and not apparent compared to the sharp 
and sudden changes in area factor. For the inverse transition 
from ice to liquid water on 30 June, the damping factor fails to 
track the ice melting process, maintaining a value the same as 
the liquid water situations. As validated and analyzed before, 
the surface of this period (12-30 June) is a mixed surface of ice 
and water. Thus it can be inferred that the damping factor 

assumes that the surface returns to its liquid state and can not 
distinguish the water-ice mixture situation. Although the 
amplitude factor is increased compared to the ice-free period, 
the value corresponding to the 13-30 June period is almost the 
same as the initial freezing stage but involves a different surface 
situation. On the contrary, the area factor drops rapidly and 
shows a relatively small value with respect to the ice-forming 
period, showing a stronger sensitivity to changes in the state.  

After the ice surface is gradually covered by snow starting 
from 1 October, the damping factor continues to maintain a low 
value and the amplitude factor keeps a higher value than the 
water surface. For the area factor, an abrupt drop occurs on 11 
October, which can not be observed in the damping and 
amplitude factors. An empirical validation in the next part 
indicates that at this time point the ice surface is covered by a 
thick snow layer, which further proved the better performance 
of the new observations. With the thickness of the snow layer 
increasing, the changes in two factors start to become 
synchronized instead of the opposite. During the end period of 
the year 2018 from 22 November, the damping factor shows a 
slightly declining trend, which is opposite to the conclusion in 
[31]. Moreover, a more apparent weakness of the damping and 
amplitude factor can be observed in the first half-year. From 1 
January to 12 June, the damping factor starts increasing over 
the value corresponding to the liquid water surface until 12 June 
due to the influence of the snow layer. Meanwhile, the 
amplitude factor demonstrates the same variation trend as the 
damping factor. In theory, the snow layer will increase the 
surface roughness and decreases the power on account of the 
penetration loss. However, the amplitude factor gradually raises 
and shows a larger value than the ice surface, which means the 
amplitude factor-based method is not functioning in this 
situation. In addition, an increase in the damping factor 
exceeding the abnormal indicates the invalidity of the damping 
factor-based method. Therefore, the results indicate that the 
previous method derived from a single-layer model is not 
suitable for a complicated multilayer surface situation.  

Further investigations found that the invalidity of the 
previous methods is mainly caused by the fitting method based 
on the single-layer model inherently. The amplitude and 
damping factors in exponential function are not independent 
parameters, in which the amplitude tends to be large when the 
decay trend is sharp. In addition, due to the thick depth of snow 
on the ice, the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 data can not be fitted effectively, which 
can be verified though the sparse results during 5-30 May. In 
the multilayer situation, the decaying impact caused by 
multilayer mediums is insufficient to be characterized using a 
single attenuation parameter. Therefore, this damping factor-
based method is only suitable for the pure ice (including thin 
snow) and water surface. 

On the contrary, the area factor shows a reasonable variation 
in relation to the climate data and simulation. In the duration of 
the thick layer of snow, reductions in the area factor due to the 
accumulated fresh snow with low density and water content and 
fresh thickness of snow layer. In summary, these two methods, 
although they can roughly detect the transition between water 
and ice, but they are not able to respond decently to the complex 
processes associated with the formation and melting of snow. 
Instead, the area factor combining the power curve shows a 
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strong sensitivity to sense transitions in the state of the 
reflective surface. 

D. Validation using spaceborne images 
To further confirm the usability and the correctness of the 

area factor, an additional investigation on relationships between 
specific area factors and spaceborne high-resolution images is 
carried out. This helps to have a better understanding of the 
behavior of the area factor corresponding to the surface states. 
The dates of selected time points are presented in Fig. 10, and 
their corresponding spaceborne images are shown in Figs. 11 
and 12.  

 
Fig. 10. The time-series of the area factor along with the dates of 8 selected 
points for the comparison with satellite images. 

 

 
Fig. 11. The spaceborne images at the TUKT station from Sentinel-2 and 
Landsat-8 satellites on 2018.05.14 (A), 2018.06.13 (B), 2018.06.29 (C), and 
2018.07.02 (D) 
 

 

Fig. 12. The spaceborne images of the TUKT station from Sentinel-2 satellite 
on 2018.09.21 (A), 2018.10.03 (B), 2018.10.11 (C), and 2018.10.25 (D) 
 

The images from the Sentinel-2 and Landsat 8 satellites 
provide a clear sense with a high resolution of 5m/pixels after 
upsampling processing. The natural color of the images can 
help to identify the real condition of the reflective surface. As 
the simulation and results discussed before, a thicker layer of 
snow can reduce the strength of the reflected signal. In Fig. 
11(A) and Fig. 12(C), the images show that the land and ocean 
are covered by white snow. The coastal line near the station is 
even hidden in the thick snow layer in Fig. 11(A), indicating a 
deeper snow layer compared to Fig. 12(C). The contrast 
obtained from these two images is in agreement with the 
analysis: thick snow can lead to a low observation in the area 
factor. In addition, both results are larger than the pure water 
surface situations as shown in Fig. 12(A) and Fig. 11(D). In Fig. 
11(C) and Fig. 12(B), the surfaces are covered by pure ice 
without snow, but both are in different stages of freezing. It can 
be inferred the ice shown in Fig. 11(C) is at the end of the 
melting stage with an additional layer of water over ice, while 
the other is at the beginning of ice formation. This state 
information is consistent with the simulation and analysis that 
a layer of melting water on the ice surface can reduce the 
reflectivity, leading to a related lower area factor of Fig. 11(C) 
than that of Fig. 12(B). The critical point on 29th June shown 
in Fig. 11 coincides well with the phenomenon at the end of ice 
melting shown in Fig. 12(C), which proves the correctness of 
this indicator. 

Another special case is shown in Fig. 11(B) and Fig. 12(D). 
In these cases, it can be found that the ice surface tends to be 
gray-white, indicating that the ice surface is covered by a thin 
layer of snow or involves with high content of water. In 
addition, the snow on land in Fig. 11(B) is completely melted, 
which means that the reflective surface consists of water, snow, 
and ice, showing a good agreement with the results of the 
proposed method. While the thin layer of snow over ice 
illustrated in Fig. 12(D) is consistent with the analysis discussed 
before as well. Overall, changes in the state of the surface 
derived from the spaceborne images are consistent with the 
analysis based on this new observation method. Therefore, 
cross-validation based on high-resolution images confirms the 
sensitivity and correctness of the proposed method. 

At the end of the cross-validation using the image data, there 
is one point that should be highlighted: although the high-
resolution image data can be used for interpreting the state of 
the sea surface with wide spatial coverage to some extent, it was 
quite limited by the climate and extreme night in cryosphere 
region, resulting in sparse valid data. As we can find that the 
validations in Fig. 11 are mainly limited in the middle period of 
the whole calendar year due to the limitation of image data 
validity. On the contrary, the GNSS data on the ground is not 
affected by the climate and be collected continuously, which 
ensures continuity of observations. Moreover, as for the data 
source, the new observation is only based on the available 
GNSS data originally for positioning applications. Therefore 
the proposed method is a low-cost approach to detect more 
surface information, further enhancing the application value of 
the GNSS station.  
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IV. CONCLUSIONS  
In this study, a new method of sea surface states detection 

based on ground-based interferometric observations was 
presented. Different from the traditional single-layer reflective 
surfaces, a multilayer model for the GNSS-IR technique was 
investigated based on the MRSR model. This method considers 
the surface roughness and interference influence of multi-
reflections. The simulations following this multilayer model 
revealed the relationship between the diverse multilayer 
situations associated with surface medium changes and the 
power of reflected signals. Subsequently, two indicators, named 
area factor and power curve, are proposed based on the Wavelet 
analysis to sense the sea surface states. To validate the proposed 
method, one-year data from an Arctic geodetic GNSS station, 
located in the north of Canada, were collected for analysis. By 
comparing the results with the reanalysis data from ERA5, the 
new observations show a strong sensitivity to the surface state 
transitions, successfully tracking the icing, snowfall, and snow 
melting. However, the results of the amplitude and damping 
factors-based method derived from the single-layer model 
demonstrated a limited capacity to track the complex multilayer 
surface involving a thick snow layer. Finally, further validation 
using the spaceborne high-resolution images was carried out to 
verify the accuracy of this method. Comparison illustrated that 
proposed indicators are well consistent with the real surface 
information given by images, which further validated the 
proposed indicator for surface states detection. In summary, this 
method provides the potential to sense the sea surface state 
transition of polar regions with low-cost and long-term data, 
increasing the value of permanent GNSS stations. In the future, 
it may be expected to be further applied to ice sheet surface state 
monitoring in the cryosphere, combined with cryospheric 
GNSS stations to observe surface state data. 
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