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Abstract—Point cloud data acquired using terrestrial laser 

scanning (TLS) often need to be semantically segmented to 
support many applications. To this end, various point-based, 
voxel-based and image-based methods have been developed. For 
large scale point cloud data, the former two types of methods often 
require extensive computational effort. In contrast, image-based 
methods are favorable from the perspective of computational 
efficiency. However, existing image-based methods are highly 
dependent on RGB information and do not provide an effective 
means of representing and utilizing the local geometric 
characteristics of point cloud data in images. This not only limits 
the overall segmentation accuracy, but also prohibits their 
application to situations where the RGB information is absent. To 
overcome such issues, this research proposes a novel image 
enhancement method to reveal the local geometric characteristics 
in images derived by the projection of the point cloud coordinates. 
Based on this method, various feature channel combinations were 
investigated experimentally. It was found that the new 
combination 𝑰𝑰𝒁𝒁𝐞𝐞𝑫𝑫𝐞𝐞  (i.e., intensity, enhanced Z coordinate and 
enhanced range images) outperformed the conventional IRGB and 
IRGBD channel combinations. As such, the approach can be used 
to replace the RGB channels for semantic segmentation. Using this 
new combination and the pre-trained HR-EHNet considered, a 
mean Intersection over Union (mIoU) of 74.2% and an Overall 
Accuracy (OA) of 92.1% were achieved on the Semantic3D 
benchmark, which sets a new state-of-the-art (SOTA) for the 
semantic segmentation accuracy of image-based methods. 
 

Index Terms—deep learning, point cloud, semantic 
segmentation, terrestrial laser scanning, transfer learning.  

I. INTRODUCTION 
HE rapid development of three-dimensional (3D) data 
acquisition technologies has led to various types of sensors, 

such as terrestrial laser scanning (TLS) devices, RGB-D 
cameras and LiDAR [1]. Among these instruments, TLS stands 
out for its ability to quickly acquire large-volume (hundreds of 
millions of points per scan) and high-precision (millimeter 
level) point cloud data and is, therefore, used widely in 
applications where high-quality point cloud data are required. 
These may include, but are not limited to, 3D building 
reconstruction [2]–[6], vegetation and forest assessments [7]–
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[10], and cultural heritage management [11], [12]. 
In addition to the high-precision geometric information 

provided by TLS point clouds, semantic segmentation is often 
required as the basis for more complex purposes in the 
aforementioned applications. The goal of semantic 
segmentation of point clouds is mainly to annotate each data 
point with a semantic label, which is often based on the 
geometry, the reflection intensity and sometimes the color 
information provided by the data point itself and its neighbors. 
This can be achieved via traditional supervised classification 
methods [13]–[15] or deep learning approaches [16]–[20]. 
Compared to traditional classification methods using 
handcrafted features (e.g., support vector machines, random 
forests and conditional random fields), deep learning methods 
are becoming increasingly popular because they can 
automatically learn the feature representations needed for 
segmentation from raw data, avoid complex feature design, and 
typically result in higher segmentation accuracy [1], [21], [22].  

Existing point cloud segmentation methods can be 
categorized into three major groups based on the form of the 
input data: point-based, voxel-based and image-based methods. 
The pioneering work on point-based methods is PointNet [16], 
which used shared Multi-Layer Perceptrons (MLPs) to learn 
pre-point features and used symmetrical pooling functions to 
learn global features. On the basis of PointNet, many other 
point-based networks have been proposed in recent years, 
which can be subdivided into pointwise MLP methods [17], 
[22], [23]–[31], graph-based methods [18], [32]–[37], point 
convolution methods [38]–[43], and RNN-based methods [44]–
[46]. This class of algorithm can typically achieve high 
accuracy, and the state-of-the-art (SOTA) method is the RFCR 
[31] in this category, which achieved an Overall Accuracy (OA) 
of 94.3% and a mean Intersection over Union (mIoU) of 77.8% 
on the Semantic3D (reduced-8) [31], [47]. However, while 
point-based methods are focused on increasing the 
segmentation accuracy of point clouds, their high 
computational cost makes them too costly for practical 
application to large-scale TLS point clouds. For example, for a 
use case where the processing time was revealed [47], it ranges 
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from 10 to 50 minutes to process 4-point clouds containing 80 
million points in Semantic3D (reduced-8).  

For the second class of voxel-based methods [48]–[52], they 
first convert the point cloud into a dense/sparse discrete voxel 
representation and then apply the 3D convolutional neural 
network (CNN). Since 3D convolutional networks are 
extremely computationally intensive and consume significant 
amounts of Graphics Processing Unit (GPU) memory, such 
methods have to make careful trade-offs in terms of 
segmentation accuracy and processing time. From the 
published performance of these methods on various benchmark 
datasets [47], [53]–[56], such methods are not only less accurate 
than the first type of method, but also very slow in processing 
and, therefore, are considered unsuitable for processing large-
scale TLS point cloud data.  

The image-based methods utilize 2D convolutional neural 
networks (CNNs) to segment multi-channel images generated 
from point cloud data. There are two approaches for image 
generation. The first approach [57]–[59] projects point cloud 
data from multiple virtual camera views onto a plane, while the 
second approach [20], [60]–[62] projects the point cloud data 
as a panoramic image centered at the scanner. The second 
approach is more efficient than the multi-view ones because 
processing is limited to only one panoramic image for each 
point cloud obtained [20], [58]. Coupled with the use of 2D 
CNNs (much more efficient than those networks used in point-
based and voxel-based methods), the panoramic images offer 
an extremely fast approach to segmenting point cloud data. For 
example, the SOTA image-based method [20] takes only 5.13s 
to process the Semantic3D (reduced-8) [47] test dataset. 
However, it was noticed that its segmentation accuracy [20] 
was relatively low compared to the SOTA point-based method 
RFCR [31], achieving an OA of only 89.4% and a mIoU of 
63.5% on Semantic3D (reduced-8). Therefore, image-based 
methods are ideal for processing large-scale TLS point cloud 
data, but such methods available in the literature suffer from the 
problems elaborated in the next paragraph, which also form the 
likely basis for any further improvements in their segmentation 
accuracy.  

Three types of information of TLS point clouds can be 
considered for semantic segmentation (i.e., geometric 
information (coordinates and their derivatives), intensity and 
RGB if images were taken). In the existing image-based 
methods, it was noticed that combinations of feature channels 
considered [20], [57]–[59] always included the RGB 
information, without which the segmentation accuracy 
degraded significantly. This is not surprising as the true colors 
include rich information about the objects to be segmented. 
However, this means that those methods are highly reliant on 
the RGB information and could not effectively handle the cases 
where the RGB information is missing (no images taken) or are 
mismatched to point clouds due to moving objects in the scene 
or the imperfect matching between images and point clouds 
taken separately. In addition, the geometric information was 
either not considered or not used in an effective way. In 
contrast, point-based and voxel-based methods perform well for 
point clouds with only coordinate information [18], [22], [41], 

[50], indicating that geometric features are valuable for point 
cloud semantic segmentation. Hence, it is reasonable to 
speculate that the application scope and segmentation accuracy 
of image-based approaches can be improved further if the 
geometric information contained in the point cloud is utilized 
effectively. 

Therefore, under the umbrella of image-based methods, this 
study aims to improve and generalize this class of methods by 
considering the characterization of the geometric information 
of scenes/objects in the panoramic images derived from 
coordinates of point cloud data. The increase in accuracy relates 
to the semantic segmentation while the generalization refers to 
cases where the RGB information is missing in the point cloud 
data. To this end, an image enhancement method is proposed to 
characterize the local geometric features in the images. Based 
on the enhanced images, this research proposes a new 
combination of feature channels without the RGB information. 
In the CNN used for extracting the semantic information in this 
study, the Atrous Spatial Pyramid Pooling (ASPP) module [63] 
is considered to aggregate multi-scale high-level features from 
HRNet [64]. In the past studies [63], [65], [66], the aggregation 
was typically executed using coarse-resolution feature maps. 
However, in our study, the finest-resolution feature maps in 
HRNet are used for the aggregation, the outputs of which are 
concatenated with multiple low-level features for segmentation.  

The main contributions of this research are the establishment 
of a new image enhancement method for characterizing 
effectively the local geometric features in the panoramic images 
derived from point clouds, and the finding that the utilization of 
those local geometric features can increase the segmentation 
accuracy of image-based methods. The approach proposed in 
this study offers a better alternative channel combination to 
replace those involving the RGB channels, which is very useful 
for cases where the RGB information is absent or inaccurate. 

II. METHODOLOGY 
The methodology considered in this research involves the 

following key steps. Firstly, the information (e.g., intensity and 
XYZ coordinates) contained in the unstructured point cloud data 
was projected into a multichannel panoramic image using the 
transformation relationship between the Cartesian coordinate 
system and the spherical coordinate system. Secondly, the 
local-based enhancement was applied to the panoramic image 
channels that contain geometric information such as XYZ 
coordinates and range. Lastly, semantic information was 
extracted from the panoramic image using a pre-trained 
customized CNN, and back-projected to the raw point cloud 
data to obtain semantically segmented point cloud. More 
detailed descriptions of these steps are provided in Sections 
II.C-II.F.  

A. Study data 
The large-scale Sementic3D dataset [47] was used to 

demonstrate and evaluate the proposed method, which contains 
a total of 30 labeled TLS point clouds collected at 10 different 
scenes. Point cloud data were labeled as eight classes, namely: 
made terrain, natural terrain, high vegetation, low vegetation, 
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buildings, hard scape, scanning artefacts and cars. The ground 
reference labels for 15 training point clouds are available from 
the dataset supplier.  The online evaluation frequency of test set 
results is limited to once every three days. Therefore, except for 
Section III.D where the test set was used for comparison with 
the state-of-the-art results, all other experiments were 
conducted on the training set. More specifically, for Sections 
III.B-III.C, the performance of our method was evaluated by 
employing 5-fold cross-validation on the Semantic3D training 
dataset. 

B. Segmentation accuracy metrics 
To evaluate the segmentation performance, the same 

evaluation metrics as used in the Semantic3D online evaluation 
were used in this study, i.e., OA and mIoU. The OA metric is 
the ratio of correctly classified points (regardless of class) to the 
total number of points. The mIoU metric is the mean IoU of all 
classes. For class 𝑖𝑖 , the IoU metric is the ratio of correctly 
classified pixels to the total number of ground reference data 
and predicted pixels in that class. The formulae for the 
aforementioned metrics are shown in Equations 1-3. 
                                   OA = TP

Total number of points
 (1) 

                                           IoU = TP
TP+FN+FP

 (2) 

                                           mIoU = ∑ IoU𝑖𝑖
𝑁𝑁
𝑖𝑖=1
𝑁𝑁

 (3) 
where TP, FN, FP, 𝑖𝑖,𝑁𝑁 represent the true positive, false negative, 
false positive points classified, index of class and total number 
of classes, respectively. 

In general, OA provides a quick and computationally 
inexpensive estimate of the percentage of correctly classified 
points, while mIoU provides a measurement of accuracy that 
not only penalizes false positives, but also increases the penalty 
against segmentation errors in small classes. Since the numbers 
of points contained in the eight classes of the Semantic3D 
benchmark dataset are highly imbalanced (shown in Fig.1), 
mIoU is considered more critical in this research. 

C. Point cloud to image projection 
Many terrestrial laser scanners collect point cloud data 

through vertically rotating optics that are mounted on a 
horizontally rotating base. Since their rotational steps are 
usually fixed throughout a single scan, the point cloud data 
obtained would theoretically have fixed inclination and 
azimuthal resolutions. These two resolutions are typically the 
same. In other words, if the point cloud data are considered as 

vectors originating from the origin (i.e., the scanner’s optical 
center), these vectors will be uniformly distributed in a 
spherical space centered at the origin. Therefore, TLS point 
clouds are inherently suitable to be projected into spherical 
coordinate systems. Based on this, the following method for 
point cloud to image projection was used in this study, which is 
demonstrated using the example shown in Fig.2.a Firstly, the 
Cartesian coordinates of the point cloud data were transformed 
into spherical coordinates using Equations 4-6. 
                                𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑟𝑟) = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 (4) 
                                   inclination (𝜃𝜃) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧

𝑟𝑟
 (5) 

                                    azimuth (𝜑𝜑) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦
𝑥𝑥
 (6) 

Secondly, the position of each data point in the unit spherical 
surface (i.e., "continuous" spherical image) is determined by its 
inclination 𝜃𝜃 and azimuth 𝜑𝜑, as shown in Fig.2.b Thirdly, by 
using a specific angular resolution 𝜔𝜔  to discretize the 
"continuous" spherical image, a rasterized spherical image is 
obtained. To ensure the image continuity, the image angular 
resolution should be slightly larger than the scanner angular 
resolution. Finally, by mapping the available information (e.g., 
RGB, intensity, range) to the rasterized spherical image and 
splitting it from a certain azimuth (e.g.,180° used in the 

 
Fig. 1. The distribution of the classes of points in Semantic3D dataset. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2.  Key stages in the projection process: (a). The raw input point cloud 
[47], (b). All points scaled to a spherical surface at a distance of 1 from the 
origin (i.e., the center of the scanner), (c). The panoramic image rasterized 
from the spherical surface. 
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subsequent experiments), the multichannel panoramic image is 
obtained (e.g., the RGB panoramic image in Fig.2.c). More 
specifically, for a data point of the inclination 𝜃𝜃 and the azimuth 
𝜑𝜑 in the spherical coordinate system, its pixel location in the 
panoramic image is determined using Equation 7. 
                                           ��90−𝜃𝜃

𝜔𝜔
� , �180−𝜑𝜑

𝜔𝜔
��       (7) 

where the former element represents the row location for the 
inclination 𝜃𝜃, the latter element represents the column location 
for the azimuth 𝜑𝜑, 𝜔𝜔 is the angular resolution, ⌈𝑥𝑥⌉ rounds 𝑥𝑥 to 
the nearest integer greater than or equal to 𝑥𝑥.  

Because of the fine angular resolutions of laser scanners, the 
resolution of the projected panoramic image could be ultra-high. 
For example, the equivalent panoramic image size of the point 
cloud captured using the RTC360's finest resolution is 
8333×20334 pixels. 

During the point cloud to image projection, it is often the case 
that a single image pixel contains multiple data points. In this 
case, the pixel values in the panoramic feature image (e.g., RGB 
image) were taken as the average values of multiple data points, 
while the pixel values (labeled classes) in the labeled panoramic 
image (labeled image used for training) were taken as the ones 
corresponding to the rarest class to increase network 
segmentation accuracy regarding the imbalanced class 
(typically, the class with fewer data is harder to segment).  

D. Enhancement of image-based geometric features  
As shown in Fig.3.a, the panoramic RGB image is relatively 

clear. However, objects in the grayscale images obtained by 
projecting the XYZ coordinates and the range information were 
not shown clearly, such as the panoramic image of the Z 
coordinate shown in Fig.3.b. Due to this phenomenon, existing 
image-based methods [20], [57], [58] rely mainly on the RGB 
information, and this type of grayscale images was usually used 
as auxiliary information only. 

By comparing the pixel value distribution histograms 
(Fig.3.d and Fig.3.f) of the RGB image (Fig.3.c) and Z-
coordinate image (Fig.3.e) for the same local area (area within 
the 256*256 white box in Fig.3.a and Fig.3.b), it was found that 
the distribution of grayscale values of the Z coordinate image 
was extremely concentrated compared to the RGB image. This 
is due to the fact that the range of variation in the coordinates 
of adjacent local data points is relatively small compared to that 
of the whole dataset. Based on this observation and the fact that 
CNNs are good at learning local features rather than global 
ones, the proposed enhancement method is local-based and its 
detailed description is presented as follows. 

Firstly, for a given local area, the grayscale values are 
redistributed so that their histogram conforms to the Rayleigh 
Distribution defined in Equation 8. 

                                  𝑓𝑓(𝑧𝑧) = 𝑧𝑧
𝜎𝜎2
𝑒𝑒�−

𝑧𝑧2

2𝜎𝜎2
�, 𝑧𝑧 ≥ 0 (8) 

where the value of σ is taken as 0.4 so that the expected value 
of mean grayscale values is 0.5. After this local enhancement 
was applied, the "hidden" geometrical features in Fig.3.e are 
revealed clearly in Fig.3.g, and the corresponding redistributed 
histogram is shown in Fig.3.h. Intuitively, the enhanced Z 
coordinate image (Fig.3.g) contains many detailed geometric 

 
Fig. 3.  Illustrations of image enhancement effects: (a). The panoramic image 
projected from RGB channels, (b). The panoramic image projected from Z 
coordinate, (c). A local RGB image extracted from the box in (a), (d). The 
distribution histogram of the pixel values in (c), (e). The local Z coordinate 
image extracted from the box in (b), (f). The distribution histogram of the pixel 
values in (e), (g). The enhanced local Z coordinate image. (h) The distribution 
histogram of the pixel values in (g), (i). The enhanced Z coordinate image 
without overlapping. (j). The enhanced Z coordinate image with overlapping. 
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features that are distinct from the RGB image in Fig.3.c. 
In the above example, the local enhancement method 

essentially magnifies the Z coordinate differences within the 
local area. However, if there is a general trend for the values 
within adjacent local areas, applying the local enhancement 
method individually to each area will result in discontinuous 
pixel values at the edges of the local areas. For example, the Z-
values of the grass area on the right side of Fig.3.a gradually 
increases from the bottom to the top. If the local enhancement 
method is applied without overlap (the sizes of the local areas 
are taken as 256*256 pixels) between two adjacent local areas, 
the bottom pixels of the top local area (e.g., Fig.3.g) are set 
close to black and the top pixels of the bottom local area (i.e., 
the local area right below the area representing by Fig.3.g) are 
set close to white. This leads to those horizontal edge 
discontinuities on the right side of Fig.3.i. This phenomenon is 
the reason for choosing the Rayleigh distribution instead of a 
uniform distribution in this research. In general, an image with 
a uniformly distributed histogram will contain the most 
information [67]. However, adopting the uniformly distributed 
histogram means that more points will be distributed close to 
the two extremes (i.e., zero or one), which will exacerbate the 
discontinuity at the edges. 

To minimize the edge discontinuity, an overlapped local 
enhancement was used in this study. More specifically, the 
panoramic image was firstly divided into square areas of the 
same size that overlap each other by one-eighth of the edge 
length, and the local enhancement method was applied to each 
square area. During this process, symmetric padding was used 
to fill in the blank areas when the actual image area was 
insufficient. Finally, for the overlapping part, the pixel values 
were taken as the average of the values of the overlapped pixels. 
The Z coordinate image enhanced using this method is shown 
in Fig.3.j, where the size of the local square area was taken as 
256*256 pixels (same as for Fig.3.i) for this example. It can be 
observed that the edge discontinuity was effectively mitigated 
by the overlapping strategy. It should be noticed that the size of 
the local area has a significant effect on the final enhanced 
image, and the selection of a proper size is demonstrated in 

Section III.B. 

E. Semantic segmentation network structure 
To obtain the semantic information from the fine-resolution 

panoramic images, a customized CNN was adopted in this 
research, which consists of two parts: a backbone and a 
segmentation head. The entire network structure is shown in 
Fig.4, which is named as HR-EHNet to indicate that it is 
designed for the segmentation of fine-resolution enhanced 
panoramic images.  

The backbone part is responsible for extracting features from 
the input images [64]. Although there are various backbone 
structures available [64], [68]–[73], only HRNet was designed 
for processing fine-resolution images [64], which has widely 
been adopted for excellent semantic segmentation results [74]–
[77]. As such, it was adopted in this study. More specifically, 
the HRNet_W48 version (larger version) was adopted, where 
the number 48 indicates the network width of the finest 
resolution branch. The basic network structure of HRNet is 
depicted in Fig.4. Different from mostly used single-branch 
backbones [78], the HRNet has four parallel branches 
corresponding to four downsample levels (4, 8, 16, and 32, 
respectively). As for the width of the network (i.e., the number 
of feature map channels/ the number of convolutional kernels), 
HRNet adopts a scheme where the number of channels is 
doubled accordingly whenever the resolution of a feature map 
decreases [64]. Compared to single-branch backbones, HRNet 
increases significantly the network depth (i.e., the number of 
convolutional layers) with respect to fine-resolution features, 
and meanwhile retains coarse-resolution features to provide 
global contextual information. Since a deeper network structure 
extends the receptive field and enhances the discrimination of 
each pixel, the fine-resolution segmentation task could benefit 
from the deep fine-resolution branch in HRNet.  

The segmentation head is responsible for interpreting the 
extracted features from the backbone to assign an appropriate 
label to each pixel. The ASPP segmentation head was adopted 
in this study, which was first proposed by [63] and adopted 
widely by others [20], [65], [66], [79]. The ASPP module 

 
Fig. 4.  Illustration of the HR-EHNet network structure: upsampling and downsampling were implemented by bilinear interpolation and strided 3x3 convolution, 
respectively; The colored blocks that represent multiple residual convolution operations were performed. 
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employs several parallel atrous (dilated) convolutions with 
different dilation rates to extract semantic information from 
different spatial scales [65]. The commonly used output stride 
for the ASPP module is 16 or 8 (16 most commonly in the 
literature), which means that its input resolution corresponds to 
a downsampling level of 16 or 8, respectively. This is because 
most of the backbones are single-branch structures, which 
generate only high-level features at a relatively high 
downsampling level. This is not the case for HRNet. Therefore, 
the ASPP module is attached to the end of the first branch 
(corresponding to a downsampling level of 4) to take advantage 
of the fine-resolution features in HR-Net. It was ascertained in 
previous research [65], [66] that the proper dilation rate 
combination for ASPP with an output stride of 16 includes 6, 
12 and 18, which should be multiplied by 2 (i.e., 12, 24 and 36) 
when an output stride of 8 was used. Hence, for an output stride 
of 4, the dilation rate combination is taken as 24, 48 and 72 in 
this research.  Finally, similar with the DeeplabV3+ [65], the 
output of ASPP is concatenated with three groups of low-level 
features (corresponding to the outputs of the first three stages 
of the first branch) for the final segmentation.  

F. Pretraining of network and transfer learning 
For image semantic segmentation, it is a consensus that a 

higher segmentation accuracy can be obtained using pre-trained 
networks [80]–[82]. This step was also employed in this 
research where the Cityscapes dataset [83] was used for 
network pretraining. Similar to Semantic3D, Cityscapes was 
focused on semantic segmentation in urban scenes and was 
collected mainly in Europe. Cityscapes contains 5,000 finely 
labeled fine-resolution RGB images, which were originally 
divided into 2975, 500, 1525 images for training, validation and 
testing, respectively [83]. However, since it is beneficial to use 
a larger dataset for the pretraining, all the training and 
validation images were used as the training set in this study. 
Pixels in these images are labeled into 30 classes. Compared to 
Semantic3D, Cityscapes covers a wider range of urban scenes, 
has a greater variety of annotations, and suffers from a greater 
class imbalance. 

The training protocol for conducting pre-training followed 
previous research [63], [64], [84], [85]. The stochastic gradient 
descent with momentum (SGDM) optimizer was adopted. The 
base learning rate, the momentum and the weight decay were 
set to 0.01, 0.9, and 0.0005, respectively. The poly learning rate 
policy was used for dropping the learning rate, where the power 
was set to 0.9. The focal loss function [86] was adopted to 
address the issues of imbalanced classes. The size of the input 
images was set as 512*1024 pixels. The images were 
augmented by random cropping, random resize (0.5~2) and 
random horizontal flipping. Finally, HR-EHNet was trained for 
180,000 iterations with a mini-batch size of 8 and synchronized 
batch normalization. 

Since HR-EHNet was pre-trained using the RGB images of 
Cityscapes, the number of convolutional kernel channels in the 
first convolutional layer was three, which accepts only three-
channel images as its input. However, subsequent experiments 
in Section III.B-III.C need to use input images with various 

numbers of channels for comparison. Therefore, in those 
experiments, the first convolutional layer of the pre-trained HR-
EHNet was replaced by a new convolutional layer where its 
kernel channel number is equal to the number of input features. 
Meanwhile, the channel number of the convolutional kernels in 
the last two convolutional layers of the pre-trained HR-EHNet 
corresponds to the total number of classes (i.e., 19) for 
Cityscapes. This was replaced by new convolution layers with 
kernels of 8 channels to accommodate the number of classes in 
Sementic3D. The weights in these convolution layers were 
initialized randomly. When HR-EHNet was fine-tuned using 
the images generated from Semantic3D, almost the same 
training protocols as those in pre-training were used, expect that 
the iteration numbers were reduced to 60,000 and 75,000 for the 
training with five-fold cross-validation and for completing the 
training with the training set, respectively. 

III. EXPERIMENT AND RESULTS  

A. Information loss from point clouds to images 
One of the most frequently quoted drawbacks of image-based 

approaches is the inevitable information loss during the process 
where point cloud data are projected to images [87]. However, 
based on the literature surveyed in this research, no previous 
studies have quantitatively evaluated the information loss in 
that process. Therefore, a quantitative analysis of information 
loss was carried out for the projection method proposed in the 
first place. In this study, the degree of information loss was 
quantified by comparing the labeling information of the 
Semantic3D training dataset before and after a complete 
projection process (i.e., point cloud to image, followed by 
image to point cloud), in which OA and mIoU were used as the 

 
Fig. 5.  Plot of accuracy (OA and mIoU) versus angular resolution. 
 

  
(a) (b) 

Fig. 6.  Effects of an excessive angular resolution on the projected image: (a). 
Many black empty pixels for an angular resolution of 1/50 degree, (b). A 
continuous image without empty pixels for an angular resolution of 1/20 
degree. 
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evaluation metrics. Following the projection process described 
in Section II.C and using a set of angular resolutions equal to 
1/n degree (where n equals 1, 2, 3, ... 50), the corresponding OA 
and mIoU were recorded and shown in Fig.5. 

It is observed in Fig.5 that OA and mIoU decreased gradually 
with increasing angular resolution, and the decreasing rate of 
mIoU was much higher. Although there was almost no 
information loss when extremely small angular resolutions 
were used (e.g., OA = 0.998, mIoU = 0.991 for the angular 
resolutions of 1/50 degree), this will result in excessive 
computational demands for subsequent image processing and 
leave many noisy blank pixels in projected images (e.g., 
Fig.6.a). The angular resolution of 1/20 degree (i.e., an image 
size of 3600*7200 pixels) was used in this research to perform 
the point cloud-image projection, as it can provide visually 
clean projected images (e.g., Fig.6.b) with a relatively low 
information loss (OA =  0.993, mIoU =  0.97). 

B. Effect of local enhancement area on the segmentation 
results 

As mentioned in Section II.D, the size of the local square area 
used during enhancement has an impact on the enhanced 
images produced. For example, the enhanced images of the Z 
coordinate (i.e., Fig.3.b) using a local area of 128*128, 32*32, 
and 8*8 pixels were shown in Fig.7a, 7b and 7c, respectively, 
in addition to that using a size of 256*256 pixels in Fig.3.j. It is 
seen that there are notable differences in the enhanced images 
when different local patch sizes are used. 

To determine an appropriate local patch size for 
enhancement and to test its effects on the segmentation results, 
an experiment was conducted for eight local patch sizes (8*8, 
16*16... 1024*1024, i.e., 23~10 ∗ 23~10 ). Four groups of 
original grayscale images were used in this experiment, which 
were projected from XYZ coordinates and range (D) in 
Semantic3D, respectively. Each group contain 15 images 
(corresponding to 15 training point clouds) with a size of 
3600*7200 pixels (i.e., an angular resolution of 1/20 degree). 

These original images were enhanced using each of the eight 
different sizes, leading to a total of 32 groups of enhanced 
images. The pre-trained HR-EHNet was fine-tuned on these 36 
groups of single-channel images, respectively. The 
segmentation performances of each group are shown in Fig.8. 

From Fig.8, it is seen that the segmentation accuracy of the 
network was significantly increased by using the image 
enhancement in this experiment. However, it was also noticed 
that the accuracies of the networks trained using the enhanced 
images derived from X or Y coordinates were considerably less 
than those based on Z coordinates and range in terms of both 
OA and mIoU metrics. Therefore, these two types of 
information (i.e., X and Y coordinates) were not considered in 
the subsequent sections. In addition, it is observed that for the 
images derived from Z coordinates and range, the OA and mIoU 
metrics were relatively similar when the image enhancement 
was performed using local area sizes from 32*32 pixels to 
256*256 pixels. This suggests that the local area size for the 
image enhancement does not require careful adjustments as 
long as it is within that range. Nevertheless, since it can be seen 
from Fig.8.b that the images obtained from Z coordinates and 
range with a local area size of 64*64 pixels produced the 
highest mIoU index, this size was selected for this research. 

C. Selecting combinations of feature channels 
In this section, various combinations of the channels were 

tested, including the enhanced Z coordinate images ( 𝑍𝑍e ), 
enhanced range images (𝐷𝐷e), and intensity images (I) where the 
raw intensity values of Semantic3D dataset were used without 

 
(a) 128*128 

 
(b) 32*32 

 
(c) 8*8 

Fig. 7.  Impacts of the local enhancement area on the enhancement results: (a). 
128*128 pixels, (b). 32*32 pixels, (c). 8*8 pixels. 

 
(a) 

 
(b) 

Fig. 8.  Impacts of the local enhancement area on the enhancement results: (a). 
OA, (b). mIoU. 
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any corrections. This is followed by tests on conventional 
combinations involving RGB channels (IRGBD and IRGB) that 
were demonstrated to be relatively accurate channel 
combinations in previous studies [20]. In addition, the 
combinations of 𝑍𝑍e and 𝐷𝐷e with IRGB and IRGBD were tested. 
A total number of eight combinations of channels were 
investigated in this research. The test results are shown in Table 
I. Based on the first four sets of experiments, it is observed that 
using I, 𝑍𝑍e , and 𝐷𝐷e  together is more accurate than any 
combination of two of them. In addition, it is clear that the 
segmentation accuracy achieved by the 𝐼𝐼𝐼𝐼e𝐷𝐷e combination was 
significantly higher than those achieved by the IRGB and the 
IRGBD combinations. For comparisons of the segmentation 
accuracy with respect to each class, the segmentation accuracy 
of 𝐼𝐼𝐼𝐼e𝐷𝐷e  was found to be higher than the other two 
combinations (IRGB and IRGBD) in most of the classes, 
especially in recognizing high vegetation and low vegetation. It 
was also found that the integration of 𝑍𝑍e𝐷𝐷e to IRGB or IRGBD 

significantly increased their segmentation accuracy in 
comparison to IRGB or IRGBD alone, but both cases failed to 
exceed the segmentation accuracy (mIoU and OA) achieved by 
the combination  𝐼𝐼𝐼𝐼e𝐷𝐷e . However, it was also observed that 
 𝐼𝐼𝐼𝐼e𝐷𝐷e did not perform best for some individual classes. The 
likely reasons are presented in the following. An individual 
channel may be favorable to the segmentation of a particular 
class. However, when multiple channels are combined, their 
interactions also play an important role in the segmentation 
accuracy of that particular class. In other words, the network 
will take into account the trade-off between the contribution of 
each channel (similar to a weighted average effect) to achieve a 
higher overall segmentation accuracy for all classes.  
Consequently, the accuracy of the segmented results of 
individual classes with or without the use of a particular channel 
may vary from one to another. 

D. Final performance of HR-EHNet 
Based on the experimental results in Table I, the channel 

TABLE I 
QUANTITATIVE RESULTS OF DIFFERENT CHANNEL COMBINATIONS ON THE SEMANTIC3D TRAINING SET (FIVE-FOLD CROSS-VALIDATION) 

Channels Index mIoU OA man-
made natural high 

 veg 
low 
 veg buildings hard 

scape 
scanning 

art cars 

𝑍𝑍e𝐷𝐷e 1 68.4  89.3  85.3  75.0  81.9  41.3  95.3  33.7  42.2  92.5  

𝐼𝐼𝐼𝐼e 2 66.4  90.1  86.5  75.1  68.3  45.3  93.4  26.8  49.2  86.3  

𝐼𝐼𝐷𝐷e 3 64.5  88.7  85.5  73.9  71.8  24.0  93.6  27.8  51.5  88.1  

𝐼𝐼𝐼𝐼e𝐷𝐷e 4 70.8  91.9  86.4  77.7  88.5  60.6  94.2  37.3  43.5  77.8  

IRGB 5 63.8  90.0  85.2  76.5  80.5  39.6  92.7  31.4  33.7  71.0  

IRGBD 6 66.0  90.4  85.4  74.4  74.6  31.9  93.0  45.2  41.5  82.0  

𝐼𝐼RGB𝑍𝑍e𝐷𝐷e 7 68.8  90.9  86.5  78.7  83.7  40.6  95.2  41.3  41.9  82.5  

𝐼𝐼RGB𝐷𝐷𝐷𝐷e𝐷𝐷e 8 68.7  90.6  86.4  76.9  81.8  51.0  94.8  36.9  43.5  78.0  
 

TABLE II 
IMPACTS OF RETAINING OR REPLACING THE FIRST LAYER OF THE PRE-TRAINED NETWORK ON THE SEGMENTATION RESULTS WHEN 𝐼𝐼𝐼𝐼E𝐷𝐷E WERE USED AS THE INPUT 

CHANNELS (FIVE-FOLD CROSS-VALIDATION) 

First layer mIoU OA man-
made natural high 

 veg 
low 
 veg buildings hard 

scape 
scanning 

art cars 

Replaced 70.8  91.9  86.4  77.7  88.5  60.6  94.2  37.3  43.5  77.8  

Remain 73.1  91.6  85.5  76.1  89.3  57.3  95.1  46.8  46.8  88.2  
TABLE III 

QUANTITATIVE RESULTS (%) OF DIFFERENT APPROACHES ON SEMANTIC3D (REDUCED-8)  

  Time 
(s) 

Params 
(M) mIoU OA man- 

made. natural. high 
veg. 

low 
veg. buildings hard 

scape 
Scanning 

art. cars 

Point- 
based  
Methods 

RF MSSF [23] 1643.75 - 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6 

ShellNet [30] 3000 0.48 69.3 93.2 96.3 90.4 83.9 41 94.2 34.7 43.9 70.2 

OctreeNet [52] 184.84 - 59.1 89.9 90.7 82.0 82.4 39.3 90.0 10.9 31.2 46.0 

GACNet [34] 1380 - 70.8 91.9 86.4 77.7 88.5 60.6 94.2 37.3 43.5 77.8 

SPGraph [18] 3000 0.25 73.2 94 97.4 92.6 87.9 44 83.2 31.0 63.5 76.2 

KPConv [41] 600 14.9 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 77.3 79.7 

RandLA-Net [22] - 0.95 77.4 94.8 95.6 91.4 86.6 51.5 95.7 51.5 69.8 76.8 

RFCR [31] - - 77.8 94.3 94.2 89.1 85.7 54.4 95 43.8 76.2 83.7 

Projection- 
based 
Methods 

DeePr3SS [57] - 134 58.5 88.9 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2 

SnapNet [58] 3600 29 59.1 88.6 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4 

XJTLU [20] 5.13 70.6 63.5 89.4 85.4 74.4 74.6 31.9 93.0 25.2 41.5 82.0 

HR-EHNet (Our study) 11.72 73.6 74.2 92.1 85.1 75.5 89.6 55.9 95.5 50.8 48.3 92.5 
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combination 𝐼𝐼𝐼𝐼e𝐷𝐷e  was selected as the final input to HR-
EHNet, which happened to be a three-channel image. This 
means that for this particular combination, the first 
convolutional layer of the pre-trained HR-EHNet is 
unnecessarily replaced with a randomly initialized one. 
According to previous work [21], the operation of replacing the 
first convolutional layer could reduce the segmentation 
accuracy. Therefore, an experiment was conducted to determine 
whether to retain the pre-trained first convolutional layer in the 
final version of HR-EHNet. More specifically, the fourth 
experiment in Table I was repeated on the condition that the 
first pre-trained convolutional layer of HR-EHNet was retained. 
The corresponding segmentation results are summarized in 
Table II. As expected, the strategy of retaining the first pre-
trained convolutional layer is beneficial for segmentation 
accuracy in mIoU and, therefore, adopted in the final version of 
HR-EHNet. All the prerequisites for performing the final 
training of HR-EHNet have now been determined. Therefore, 
the pre-trained HR-EHNet was fine-tuned with the complete 
training set (i.e., 15 images with 𝐼𝐼𝐼𝐼e𝐷𝐷e feature channels and a 
size of 3600*7200 pixels) for 75,000 iterations according to the 
training protocols described in Section II.F. 

The performance of HR-EHNet was evaluated on the 
Semantic3D (reduced-8) test dataset, which contains four point 
clouds. The four pseudo color images of 𝐼𝐼𝐼𝐼e𝐷𝐷e  and the 
corresponding segmentation results are illustrated in Fig.9. 
Through visual inspection, it is observed that the majority of the 
objects are correctly segmented and that most of the mislabels 
are concentrated at the edges where different objects intersect. 
These two-dimensional segmentation results were projected 

onto each data point in the point clouds to produce the 
segmented point clouds, which were uploaded to the online 
evaluation system of Semantic3D. The evaluation results have 
been made publicly available in the Semantic3D website under 
the name HR-EHNet (𝐼𝐼𝑍𝑍e𝐷𝐷e). The quantitative results of HR-
EHNet and the recently published methods on Semantic3D 
(reduced-8) are summarized in Table III. Without RGB 
channels, HR-EHNet significantly outperforms the best 
outcomes of the previous image-based methods by 2.7% (OA) 
and 10.7% (mIoU), and meanwhile performed better than most 
of the point-based methods. It is also noted that HR-EHNet 
achieved the best segmentation accuracy with respect to high 
vegetation and cars among all the published methods. 

The time spent on each step of HR-EHNet is recorded in 
Table IV. The data used in this test is the Semantic3D (reduced-
8) test dataset, where the four-point clouds contain a total of 
78.7 million data points. The inference was conducted with an 
AMD 3700X @3.6GHz CPU and an NVIDIA RTX2080Ti 
GPU. The total processing time was 11.72s, which was much 
faster than the other methods in Table III except XJTLU (Cai et 
al., 2021a). As shown in Table IV, HR-EHNet is slower than 
XJTLU because of the additional image enhancement step used. 

TABLE IV 
THE TIMES TAKEN BY EACH STEP OF HR-EHNET TO PROCESS THE 

SEMANTIC3D (REDUCED-8) TEST DATASET 
 Time (s) % of total time 

Point cloud-image projection 0.17 1.5% 
Enhancement 6.89 58.8% 

Inference with neural network 4.55 38.8% 
Image-point Cloud projection 0.11 1.0% 

Total time 11.72 - 
 

 

  

  

  

  
(a) (b) 

Fig. 9. (a). The pseudo color images of 𝐼𝐼𝐼𝐼e𝐷𝐷e feature channels for the point clouds in Semantic3D (reduced-8) test set, (b). The corresponding segmentation results 
(The legend is only for the visualization of the segmentation results in (b)). 
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IV. DISCUSSION 
The core idea of HR-EHNet is to provide CNNs with 

distinguishable local geometric characteristics by 
enhancements of images derived from point cloud data. In this 
research, local image enhancement was implemented by a 
hand-crafted algorithm. Although the image enhancement 
method proposed was experimentally demonstrated to be 
effective and insensitive to the local patch size, it consumed 
more than half of the processing time as shown in Table IV. 
Considering that image enhancement is a relatively simple task 
in comparison to image segmentation, it is worth investigating 
how to reduce its processing time in the future. For example, 
one potential solution is to use the current image enhancement 
results as the target images to train a relatively simple neural 
network. 

In this research, not all possible channel combinations were 
tested and as such there is no guarantee that 𝐼𝐼𝐼𝐼e𝐷𝐷e is the best 
among all possible channel combinations. This is because the 
computational effort required would be enormous and the focus 
of this research was not on screening the optimal channel 
combinations. As such, developing an efficient way to identify 
optimal channel combinations is highly desirable in future 
research. Nevertheless, the results in this research showed that 
the channel combination 𝐼𝐼𝐼𝐼e𝐷𝐷e represents a promising choice. 

The experimental results in Section III.C show that adding 
additional information (e.g., RGB or RGBD) to 𝐼𝐼𝐼𝐼e𝐷𝐷e  had a 
negative impact on the overall results (i.e., mIoU and OA). The 
primary reason for this phenomenon is the low reliability of the 
RGB images as mentioned Section I. For example, the RGB and 
the 𝑍𝑍e images of the same scene were shown in Fig.10.a and 
Fig.10.b, respectively. The RGB image shows a cyclist that 
does not exist in the 𝑍𝑍e image because the acquisition was not 
done simultaneously. The experimental results in Table I 
indicate that such false RGB information is an obstacle for 
neural networks to learn correct features. More evidences are 
shown in Fig.11, where Fig.11.b shows the classes predicted 
using the pseudo color images of 𝐼𝐼𝐼𝐼e𝐷𝐷e  in Fig.11.a, and 

  
(a) (b) 

Fig. 10. Incorrect RGB information in TLS point cloud data: (a). The RGB 
image contains the cyclist that were not scanned by TLS, (b). The enhanced Z 
image for the same scene. 

 
 

Scene1 

    

Scene2 

    

Scene3 

    
 (a) (b) (c) (d) 

Fig. 11. Comparisons between  𝐼𝐼𝐼𝐼e𝐷𝐷e and 𝐼𝐼RGB𝑍𝑍e𝐷𝐷eon segmentation results for three scenes: (a). The pseudo color images of 𝐼𝐼𝐼𝐼e𝐷𝐷e, (b). The segmentation results 
using the corresponding 𝐼𝐼𝐼𝐼e𝐷𝐷e images, (c) The RGB images, (d). The segmentation results using the feature combination of 𝐼𝐼RGB𝑍𝑍e𝐷𝐷e. 
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Fig.11.d shows the classes predicted using 𝐼𝐼RGB𝑍𝑍e𝐷𝐷e  (i.e., 
𝐼𝐼𝐼𝐼e𝐷𝐷e in Fig.11.a and the RGB images in Fig.11.c). For Scene 
1, it is seen that the vehicle in Fig.11.b was correctly segmented 
using only 𝐼𝐼𝐼𝐼e𝐷𝐷e . However, when the erroneous RGB 
information was added, chaotic segmentation results (Fig.11.d) 
were obtained. A similar situation occurred for the vase in 
Scene 2. Nevertheless, Table I shows that for some particular 
classes (i.e., buildings, hardscape, man-made and natural), 
combining RGB information with 𝐼𝐼𝐼𝐼e𝐷𝐷e  improved their 
segmentation accuracies. This is because the accuracy of the 
RGB information is uncertain. When the RGB information of a 
particular class is accurate, it may be beneficial to include the 
RGB information for the segmentation of that particular class. 
For example, although the vehicle was segmented incorrectly 
in Scene 1 in Fig.11.d due to the erroneous RGB information, 
the vegetation at the windows was segmented correctly due to 
the correct and high contrast RGB information. However, when 
the RGB information of two adjacent classes does not show 
clear contrast, the inclusion of it may be problematic for the 
segmentation as demonstrated in the next paragraph. Future 
research may address the quality of RGB information from two 
perspectives. The most straightforward solution is to design a 
TLS strategy that simultaneously collects point cloud and 
imagery data to reduce as much false information as possible. 
The second possible solution is to design a neural network 
structure to enhance its ability to discriminate correct 
information from redundant/false information.  

Compared with other segmentation methods, HR-EHNet was 
found to performance excellently in the recognition of plants 
and vehicles. This finding suggests its potential application to 
applications such as forest classification and autonomous 
driving. The possible reason for lower accuracies in the other 
methods for these two types of objects is that the use of the RGB 
information may cause confusion to neural networks if plants 
or vehicles have similar colors (i.e., spectra) to their 
surrounding objects. In contrast, HR-EHNet performs semantic 
segmentation mainly via the geometric features in the enhanced 
images, which are independent of color and can replace RGB 
images. For example, although the RGB colors of the 
vegetation in Scene 2 and Scene 3 seem to be accurate visually, 
the segmentation results obtained after adding the RGB 
information became worse due to its similarity to the 
surrounding objects. Furthermore, this characteristic is 
presumed to have significant advantages in terms of resistance 
to adversarial attack, which may offer better security for certain 
applications such as autonomous driving. There are many 
studies demonstrating that deep learning relying on RGB 
images is vulnerable to color perturbation attacks [88]–[90]. For 
example, shining light from a laser pointer on a stop sign may 
cause neural networks to fail to recognize the stop sign, which 
poses a significant safety challenge for autonomous driving 
[88]. Thus, it may be beneficial to extend the idea in this 
research to point cloud data that are used typically for a wider 
range of applications, including autonomous driving.  

At present, there is only one TLS point cloud dataset (i.e., 
Semantic3D) publicly available for evaluating algorithms. 
Although Semantic3D is a large point cloud dataset in terms of 

the number of data points, it is small when it is processed as an 
image dataset (i.e., project each point cloud as a panoramic 
image), in comparison to image datasets such as the Cityscapes 
and Mapillary Vistas datasets [47], [83], [91]. Therefore, 
establishing a larger point cloud dataset would be extremely 
beneficial to the development of relevant research fields. It is 
also thought interesting to explore the feasibility of few-shot 
learning using the relatively small existing point cloud dataset. 

Only 15 labeled panoramic images can be derived from the 
Semantic3D training set, which is not sufficient to support the 
decent training of HR-EHNet from scratch. Therefore, the 
Cityscapes dataset - that was taken in similar urban scenes and 
semantically labeled - was used for the network pre-training in 
this study. However, such semantically labeled images are often 
not publicly available. In contrast, unlabeled image datasets can 
readily be obtained for various application scenarios, through 
online resources and/or field acquisitions. Therefore, it is 
interesting to investigate how to effectively use techniques such 
as self-supervised learning [92]–[96] to pre-train networks 
using unlabeled images. 

V. CONCLUSIONS 
In this paper, a novel image enhancement method was 

proposed to characterize effectively the local geometric features 
in the panoramic images derived from TLS point cloud data. 
The enhanced images (i.e., enhanced Z-coordinates 𝑍𝑍e , and 
enhanced range 𝐷𝐷e) alone and in various combinations of other 
popular feature channels (i.e., intensity 𝐼𝐼, RGB, range 𝐷𝐷) were 
used in a pre-trained CNN to assess the potential for semantic 
segmentation of the Semantic 3D datasets. It was found that 
compared with the commonly used channel combinations 
IRGB or IRGBD, our proposed combination 𝐼𝐼𝐼𝐼e𝐷𝐷e  produced 
more accurate semantic segmentation predictions. By fine-
tuning the customized pre-trained HR-EHNet with the channel 
combination 𝐼𝐼𝐼𝐼e𝐷𝐷e, an OA of 92.1% and a mIoU of 74.2% were 
obtained on the Semantic3D (reduced-8) test dataset, which 
substantially outperformed the other image-based methods. 
This suggests that effective utilization of local geometric 
features in images can increase the segmentation accuracy of 
image-based methods. This study also offers a better alternative 
channel combination to replace those involving the RGB 
channels, which may be extremely useful for cases where the 
RGB information is absent or inaccurate. 

REFERENCES 
[1] R. Zhang, G. Li, M. Li, and L. Wang, “Fusion of images and point 

clouds for the semantic segmentation of large-scale 3D scenes based 
on deep learning,” ISPRS J. Photogramm. Remote Sens., vol. 143, pp. 
85–96, Sep. 2018. 

[2] Z. Cao, D. Chen, J. Peethambaran, Z. Zhang, S. Xia, and L. Zhang, 
“Tunnel Reconstruction with Block Level Precision by Combining 
Data-Driven Segmentation and Model-Driven Assembly,” IEEE 
Trans. Geosci. Remote Sens., vol. 59, no. 10, pp. 8853–8872, Oct. 
2021, doi: 10.1109/TGRS.2020.3046624. 

[3] Y. Cai and L. Fan, “An Efficient Approach to Automatic 
Construction of 3D Watertight Geometry of Buildings Using Point 
Clouds,” Remote Sens., vol. 13, no. 10, p. 1947, May 2021, doi: 
10.3390/rs13101947. 

[4] H. Huang, C. Zhang, and A. Hammad, “Effective Scanning Range 
Estimation for Using TLS in Construction Projects,” J. Constr. Eng. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

12 

Manag., vol. 147, no. 9, p. 04021106, Jul. 2021, doi: 
10.1061/(asce)co.1943-7862.0002127. 

[5] L. Fan and Y. Cai, “An efficient filtering approach for removing 
outdoor point cloud data of manhattan-world buildings,” Remote 
Sens., vol. 13, no. 19, p. 3796, Sep. 2021, doi: 10.3390/rs13193796. 

[6] Y. Cai, L. Fan, and C. Zhang, “An overview of constructing 
geometric models of buildings using point clouds,” in International 
Conference on Image, Video Processing, and Artificial Intelligence, 
Nov. 2021, vol. 12076, p. 26, doi: 10.1117/12.2611685. 

[7] S. Zheng et al., “Rethinking Semantic Segmentation from a 
Sequence-to-Sequence Perspective with Transformers,” Dec. 2020, 
doi: 10.1109/cvpr46437.2021.00681. 

[8] J. Liu et al., “Comparison of terrestrial LiDAR and digital 
hemispherical photography for estimating leaf angle distribution in 
European broadleaf beech forests,” ISPRS J. Photogramm. Remote 
Sens., vol. 158, pp. 76–89, Dec. 2019, doi: 
10.1016/j.isprsjprs.2019.09.015. 

[9] A. H. Safaie, H. Rastiveis, A. Shams, W. A. Sarasua, and J. Li, 
“Automated street tree inventory using mobile LiDAR point clouds 
based on Hough transform and active contours,” ISPRS J. 
Photogramm. Remote Sens., vol. 174, pp. 19–34, Apr. 2021, doi: 
10.1016/j.isprsjprs.2021.01.026. 

[10] L. Fan, W. Powrie, J. Smethurst, P. M. Atkinson, and H. Einstein, 
“The effect of short ground vegetation on terrestrial laser scans at a 
local scale,” ISPRS J. Photogramm. Remote Sens., vol. 95, pp. 42–
52, Sep. 2014, doi: 10.1016/j.isprsjprs.2014.06.003. 

[11] A. Montuori et al., “Combined use of ground-based systems for 
Cultural Heritage conservation monitoring,” in International 
Geoscience and Remote Sensing Symposium (IGARSS), Nov. 2014, 
pp. 4086–4089, doi: 10.1109/IGARSS.2014.6947384. 

[12] J. Moyano, J. León, J. E. Nieto-Julián, and S. Bruno, “Semantic 
interpretation of architectural and archaeological geometries: Point 
cloud segmentation for HBIM parameterisation,” Automation in 
Construction, vol. 130. Elsevier, p. 103856, Oct. 01, 2021, doi: 
10.1016/j.autcon.2021.103856. 

[13] B. Yang, Z. Dong, Y. Liu, F. Liang, and Y. Wang, “Computing 
multiple aggregation levels and contextual features for road facilities 
recognition using mobile laser scanning data,” ISPRS J. 
Photogramm. Remote Sens., vol. 126, pp. 180–194, Apr. 2017, doi: 
10.1016/j.isprsjprs.2017.02.014. 

[14] G. Vosselman, M. Coenen, and F. Rottensteiner, “Contextual 
segment-based classification of airborne laser scanner data,” ISPRS 
J. Photogramm. Remote Sens., vol. 128, pp. 354–371, Jun. 2017. 

[15] M. Weinmann, B. Jutzi, S. Hinz, and C. Mallet, “Semantic point 
cloud interpretation based on optimal neighborhoods, relevant 
features and efficient classifiers,” ISPRS J. Photogramm. Remote 
Sens., vol. 105, pp. 286–304, Jul. 2015, doi: 
10.1016/j.isprsjprs.2015.01.016. 

[16] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning 
on point sets for 3D classification and segmentation,” in Proceedings 
- 30th IEEE Conference on Computer Vision and Pattern 
Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp. 77–85, doi: 
10.1109/CVPR.2017.16. 

[17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep 
hierarchical feature learning on point sets in a metric space,” in 
Advances in Neural Information Processing Systems, 2017, vol. 
2017-Decem, pp. 5100–5109. 

[18] L. Landrieu and M. Simonovsky, “Large-Scale Point Cloud Semantic 
Segmentation with Superpoint Graphs,” in Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition, 2018, pp. 4558–4567, doi: 10.1109/CVPR.2018.00479. 

[19] M. Jaritz, J. Gu, and H. Su, “Multi-view pointnet for 3D scene 
understanding,” in Proceedings - 2019 International Conference on 
Computer Vision Workshop, ICCVW 2019, Oct. 2019, pp. 3995–
4003, doi: 10.1109/ICCVW.2019.00494. 

[20] Y. Cai, H. Huang, K. Wang, C. Zhang, L. Fan, and F. Guo, “Selecting 
Optimal Combination of Data Channels for Semantic Segmentation 
in City Information Modelling (CIM),” Remote Sens., vol. 13, no. 7, 
p. 1367, Apr. 2021, doi: 10.3390/rs13071367. 

[21] B. Pan, Z. Shi, X. Xu, T. Shi, N. Zhang, and X. Zhu, “CoinNet: Copy 
Initialization Network for Multispectral Imagery Semantic 
Segmentation,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 5, pp. 
816–820, May 2019, doi: 10.1109/LGRS.2018.2880756. 

[22] Q. Hu et al., “Randla-Net: Efficient semantic segmentation of large-
scale point clouds,” in Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, 2020, pp. 
11105–11114, doi: 10.1109/CVPR42600.2020.01112. 

[23] H. Thomas, F. Goulette, J. E. Deschaud, B. Marcotegui, and Y. Le 
Gall, “Semantic classification of 3d point clouds with multiscale 
spherical neighborhoods,” in Proceedings - 2018 International 
Conference on 3D Vision, 3DV 2018, 2018, pp. 390–398, doi: 
10.1109/3DV.2018.00052. 

[24] M. Jiang, Y. Wu, T. Zhao, Z. Zhao, and C. Lu, “PointSIFT: A SIFT-
like Network Module for 3D Point Cloud Semantic Segmentation,” 
arXiv, 2018, [Online]. Available: http://arxiv.org/abs/1807.00652. 

[25] F. Engelmann, T. Kontogianni, J. Schult, and B. Leibe, “Know what 
your neighbors do: 3D semantic segmentation of point clouds,” in 
Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 
Sep. 2019, vol. 11131 LNCS, pp. 395–409, doi: 10.1007/978-3-030-
11015-4_29. 

[26] W. Zeng and T. Gevers, “3Dcontextnet: K-d tree guided hierarchical 
learning of point clouds using local and global contextual cues,” in 
Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 
Sep. 2019, vol. 11131 LNCS, pp. 314–330, doi: 10.1007/978-3-030-
11015-4_24. 

[27] S. Xie, S. Liu, Z. Chen, and Z. Tu, “Attentional ShapeContextNet for 
Point Cloud Recognition,” in Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition, 
Dec. 2018, pp. 4606–4615, doi: 10.1109/CVPR.2018.00484. 

[28] H. Zhao, L. Jiang, C. W. Fu, and J. Jia, “Pointweb: Enhancing local 
neighborhood features for point cloud processing,” in Proceedings of 
the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, Jun. 2019, vol. 2019-June, pp. 5560–5568, doi: 
10.1109/CVPR.2019.00571. 

[29] L.-Z. Chen, X.-Y. Li, D.-P. Fan, K. Wang, S.-P. Lu, and M.-M. 
Cheng, “LSANet: Feature Learning on Point Sets by Local Spatial 
Aware Layer,” arXiv, May 2019, Accessed: Apr. 21, 2021. [Online]. 
Available: http://arxiv.org/abs/1905.05442. 

[30] Z. Zhang, B. S. Hua, and S. K. Yeung, “ShellNet: Efficient point 
cloud convolutional neural networks using concentric shells 
statistics,” in Proceedings of the IEEE International Conference on 
Computer Vision, 2019, vol. 2019-Octob, pp. 1607–1616, doi: 
10.1109/ICCV.2019.00169. 

[31] J. Gong et al., “Omni-supervised Point Cloud Segmentation via 
Gradual Receptive Field Component Reasoning,” May 2021, doi: 
10.1109/cvpr46437.2021.01150. 

[32] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. 
Solomon, “Dynamic graph Cnn for learning on point clouds,” ACM 
Trans. Graph., vol. 38, no. 5, pp. 1–12, Oct. 2019, doi: 
10.1145/3326362. 

[33] L. Landrieu and M. Boussaha, “Point cloud oversegmentation with 
graph-structured deep metric learning,” in Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition, Jun. 2019, vol. 2019-June, pp. 7432–7441, doi: 
10.1109/CVPR.2019.00762. 

[34] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan, “Graph attention 
convolution for point cloud semantic segmentation,” in Proceedings 
of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, 2019, vol. 2019-June, pp. 10288–10297, doi: 
10.1109/CVPR.2019.01054. 

[35] L. Pan, C. M. Chew, and G. H. Lee, “PointAtrousGraph: Deep 
Hierarchical Encoder-Decoder with Point Atrous Convolution for 
Unorganized 3D Points,” in Proceedings - IEEE International 
Conference on Robotics and Automation, Jul. 2020, pp. 1113–1120, 
doi: 10.1109/ICRA40945.2020.9197499. 

[36] H. Lei, N. Akhtar, and A. Mian, “Spherical Convolutional Neural 
Network for 3D Point Clouds,” arXiv, May 2018, Accessed: Apr. 21, 
2021. [Online]. Available: http://arxiv.org/abs/1805.07872. 

[37] J. Liu, B. Ni, C. Li, J. Yang, and Q. Tian, “Dynamic points 
agglomeration for hierarchical point sets learning,” in Proceedings of 
the IEEE International Conference on Computer Vision, Oct. 2019, 
vol. 2019-Octob, pp. 7545–7554, doi: 10.1109/ICCV.2019.00764. 

[38] S. Wang, S. Suo, W. C. Ma, A. Pokrovsky, and R. Urtasun, “Deep 
Parametric Continuous Convolutional Neural Networks,” in 
Proceedings of the IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, Dec. 2018, pp. 2589–2597, doi: 
10.1109/CVPR.2018.00274. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

13 

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 
image recognition,” in Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, Jun. 2016, 
vol. 2016-Decem, pp. 770–778, doi: 10.1109/CVPR.2016.90. 

[40] A. Boulch, “ConvPoint: Continuous convolutions for point cloud 
processing,” Comput. Graph., vol. 88, pp. 24–34, May 2020, doi: 
10.1016/j.cag.2020.02.005. 

[41] H. Thomas, C. R. Qi, J. E. Deschaud, B. Marcotegui, F. Goulette, and 
L. Guibas, “KPConv: Flexible and deformable convolution for point 
clouds,” in Proceedings of the IEEE International Conference on 
Computer Vision, 2019, vol. 2019-Octob, pp. 6410–6419, doi: 
10.1109/ICCV.2019.00651. 

[42] F. Engelmann, T. Kontogianni, and B. Leibe, “Dilated Point 
Convolutions: On the Receptive Field Size of Point Convolutions on 
3D Point Clouds,” in Proceedings - IEEE International Conference 
on Robotics and Automation, May 2020, pp. 9463–9469, doi: 
10.1109/ICRA40945.2020.9197503. 

[43] J. Mao, X. Wang, and H. Li, “Interpolated convolutional networks for 
3D point cloud understanding,” in Proceedings of the IEEE 
International Conference on Computer Vision, Oct. 2019, vol. 2019-
Octob, pp. 1578–1587, doi: 10.1109/ICCV.2019.00166. 

[44] Q. Huang, W. Wang, and U. Neumann, “Recurrent Slice Networks 
for 3D Segmentation of Point Clouds,” in Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition, Dec. 2018, pp. 2626–2635, doi: 
10.1109/CVPR.2018.00278. 

[45] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe, 
“Exploring Spatial Context for 3D Semantic Segmentation of Point 
Clouds,” in Proceedings - 2017 IEEE International Conference on 
Computer Vision Workshops, ICCVW 2017, Jul. 2017, vol. 2018-
Janua, pp. 716–724, doi: 10.1109/ICCVW.2017.90. 

[46] X. Ye, J. Li, H. Huang, L. Du, and X. Zhang, “3D recurrent neural 
networks with context fusion for point cloud semantic segmentation,” 
in Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 
Sep. 2018, vol. 11211 LNCS, pp. 415–430, doi: 10.1007/978-3-030-
01234-2_25. 

[47] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and 
M. Pollefeys, “SEMANTIC3D.NET: A NEW LARGE-SCALE 
POINT CLOUD CLASSIFICATION BENCHMARK,” in ISPRS 
Annals of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, May 2017, vol. 4, no. 1W1, pp. 91–98, doi: 
10.5194/isprs-annals-IV-1-W1-91-2017. 

[48] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, 
“SEGCloud: Semantic segmentation of 3D point clouds,” in 
Proceedings - 2017 International Conference on 3D Vision, 3DV 
2017, May 2018, pp. 537–547, doi: 10.1109/3DV.2017.00067. 

[49] C. Choy, J. Gwak, and S. Savarese, “4D spatio-temporal convnets: 
Minkowski convolutional neural networks,” in Proceedings of the 
IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, Jun. 2019, vol. 2019-June, pp. 3070–3079, doi: 
10.1109/CVPR.2019.00319. 

[50] H. Y. Meng, L. Gao, Y. K. Lai, and Di. Manocha, “VV-net: Voxel 
VAE net with group convolutions for point cloud segmentation,” in 
Proceedings of the IEEE International Conference on Computer 
Vision, Oct. 2019, vol. 2019-Octob, pp. 8499–8507, doi: 
10.1109/ICCV.2019.00859. 

[51] B. Graham, M. Engelcke, and L. Van Der Maaten, “3D Semantic 
Segmentation with Submanifold Sparse Convolutional Networks,” in 
Proceedings of the IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, Dec. 2018, pp. 9224–9232, doi: 
10.1109/CVPR.2018.00961. 

[52] F. Wang, Y. Zhuang, H. Gu, and H. Hu, “OctreeNet: A Novel Sparse 
3-D Convolutional Neural Network for Real-Time 3-D Outdoor 
Scene Analysis,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 2, pp. 
735–747, Apr. 2020, doi: 10.1109/TASE.2019.2942068. 

[53] I. Armeni et al., “3D semantic parsing of large-scale indoor spaces,” 
in Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, 
pp. 1534–1543, doi: 10.1109/CVPR.2016.170. 

[54] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous 
driving? the KITTI vision benchmark suite,” in Proceedings of the 
IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, 2012, pp. 3354–3361, doi: 
10.1109/CVPR.2012.6248074. 

[55] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: 
The KITTI dataset,” Int. J. Rob. Res., vol. 32, no. 11, pp. 1231–1237, 
Aug. 2013, doi: 10.1177/0278364913491297. 

[56] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor 
segmentation and support inference from RGBD images,” in Lecture 
Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, 
vol. 7576 LNCS, no. PART 5, pp. 746–760, doi: 10.1007/978-3-642-
33715-4_54. 

[57] F. J. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. S. Khan, and M. 
Felsberg, “Deep projective 3D semantic segmentation,” in Lecture 
Notes in Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, 
vol. 10424 LNCS, pp. 95–107, doi: 10.1007/978-3-319-64689-3_8. 

[58] A. Boulch, J. Guerry, B. Le Saux, and N. Audebert, “SnapNet: 3D 
point cloud semantic labeling with 2D deep segmentation networks,” 
Comput. Graph., vol. 71, pp. 189–198, 2018, doi: 
10.1016/j.cag.2017.11.010. 

[59] M. Tatarchenko, J. Park, V. Koltun, and Q. Y. Zhou, “Tangent 
Convolutions for Dense Prediction in 3D,” in Proceedings of the 
IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, Dec. 2018, pp. 3887–3896, doi: 
10.1109/CVPR.2018.00409. 

[60] B. Wu, A. Wan, X. Yue, and K. Keutzer, “SqueezeSeg: 
Convolutional Neural Nets with Recurrent CRF for Real-Time Road-
Object Segmentation from 3D LiDAR Point Cloud,” in Proceedings 
- IEEE International Conference on Robotics and Automation, 2018, 
pp. 1887–1893, doi: 10.1109/ICRA.2018.8462926. 

[61] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “SqueezeSegV2: 
Improved model structure and unsupervised domain adaptation for 
road-object segmentation from a LiDAR point cloud,” in 
Proceedings - IEEE International Conference on Robotics and 
Automation, 2019, vol. 2019-May, pp. 4376–4382, doi: 
10.1109/ICRA.2019.8793495. 

[62] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet ++: Fast 
and Accurate LiDAR Semantic Segmentation,” in IEEE International 
Conference on Intelligent Robots and Systems, 2019, pp. 4213–4220, 
doi: 10.1109/IROS40897.2019.8967762. 

[63] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. 
Yuille, “DeepLab: Semantic Image Segmentation with Deep 
Convolutional Nets, Atrous Convolution, and Fully Connected 
CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 
834–848, Apr. 2018, doi: 10.1109/TPAMI.2017.2699184. 

[64] J. Wang et al., “Deep High-Resolution Representation Learning for 
Visual Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 
43, no. 10, pp. 3349–3364, Apr. 2021, doi: 
10.1109/TPAMI.2020.2983686. 

[65] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, 
“Encoder-decoder with atrous separable convolution for semantic 
image segmentation,” in Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), Sep. 2018, vol. 11211 LNCS, pp. 
833–851, doi: 10.1007/978-3-030-01234-2_49. 

[66] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking 
Atrous Convolution for Semantic Image Segmentation,” Jun. 2017, 
Accessed: Aug. 23, 2021. [Online]. Available: 
https://arxiv.org/abs/1706.05587v3. 

[67] R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital Image 
Processing, Third Edition,” J. Biomed. Opt., vol. 14, no. 2, p. 029901, 
2009, doi: 10.1117/1.3115362. 

[68] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, 
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 
Proceedings of the IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, 2018, pp. 4510–4520, doi: 
10.1109/CVPR.2018.00474. 

[69] F. Chollet, “Xception: Deep learning with depthwise separable 
convolutions,” in Proceedings - 30th IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR 2017, Nov. 2017, vol. 2017-
Janua, pp. 1800–1807, doi: 10.1109/CVPR.2017.195. 

[70] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, 
inception-ResNet and the impact of residual connections on 
learning,” in 31st AAAI Conference on Artificial Intelligence, AAAI 
2017, 2017, pp. 4278–4284. 

[71] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-
Excitation Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

14 

42, no. 8, pp. 2011–2023, Aug. 2020, doi: 
10.1109/TPAMI.2019.2913372. 

[72] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár, 
“Designing network design spaces,” in Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern 
Recognition, 2020, pp. 10425–10433, doi: 
10.1109/CVPR42600.2020.01044. 

[73] S. H. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. 
Torr, “Res2Net: A New Multi-Scale Backbone Architecture,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, Feb. 
2021, doi: 10.1109/TPAMI.2019.2938758. 

[74] S. Borse, Y. Wang, Y. Zhang, and F. Porikli, InverseForm: A Loss 
Function for Structured Boundary-Aware Segmentation. 2021, pp. 
5901–5911. 

[75] C. Yu et al., “Lite-HRNet: A Lightweight High-Resolution 
Network,” in Proceedings of the IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition, Nov. 2021, pp. 10435–
10445, doi: 10.1109/cvpr46437.2021.01030. 

[76] Y. Yuan, X. Chen, and J. Wang, “Object-Contextual Representations 
for Semantic Segmentation,” in Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), Aug. 2020, vol. 12351 LNCS, pp. 
173–190, doi: 10.1007/978-3-030-58539-6_11. 

[77] Z. Xu, W. Zhang, T. Zhang, and J. Li, “Hrcnet: High-resolution 
context extraction network for semantic segmentation of remote 
sensing images,” Remote Sens., vol. 13, no. 1, pp. 1–23, Dec. 2021, 
doi: 10.3390/rs13010071. 

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 
image recognition,” in Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, 2016, vol. 
2016-Decem, doi: 10.1109/CVPR.2016.90. 

[79] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler, “Gated-SCNN: 
Gated shape CNNs for semantic segmentation,” in Proceedings of the 
IEEE International Conference on Computer Vision, Oct. 2019, vol. 
2019-Octob, pp. 5228–5237, doi: 10.1109/ICCV.2019.00533. 

[80] S. Niu, Y. Liu, J. Wang, and H. Song, “A Decade Survey of Transfer 
Learning (2010–2020),” IEEE Trans. Artif. Intell., vol. 1, no. 2, pp. 
151–166, Jun. 2021, doi: 10.1109/tai.2021.3054609. 

[81] H. Liang, W. Fu, and F. Yi, “A Survey of Recent Advances in 
Transfer Learning,” in International Conference on Communication 
Technology Proceedings, ICCT, Oct. 2019, pp. 1516–1523, doi: 
10.1109/ICCT46805.2019.8947072. 

[82] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual 
categorization: A survey,” IEEE Trans. Neural Networks Learn. 
Syst., vol. 26, no. 5, pp. 1019–1034, May 2015, doi: 
10.1109/TNNLS.2014.2330900. 

[83] M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene 
Understanding,” in Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, 2016, vol. 
2016-Decem, pp. 3213–3223, doi: 10.1109/CVPR.2016.350. 

[84] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing 
network,” in Proceedings - 30th IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR 2017, Nov. 2017, vol. 2017-
Janua, pp. 6230–6239, doi: 10.1109/CVPR.2017.660. 

[85] H. Zhao et al., “PSANet: Point-wise spatial attention network for 
scene parsing,” in Lecture Notes in Computer Science (including 
subseries Lecture Notes in Artificial Intelligence and Lecture Notes 
in Bioinformatics), Sep. 2018, vol. 11213 LNCS, pp. 270–286, doi: 
10.1007/978-3-030-01240-3_17. 

[86] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss 
for Dense Object Detection,” IEEE Trans. Pattern Anal. Mach. 
Intell., vol. 42, no. 2, pp. 318–327, Feb. 2020, doi: 
10.1109/TPAMI.2018.2858826. 

[87] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep 
Learning for 3D Point Clouds: A Survey,” IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 43, no. 12, pp. 4338–4364, Jun. 2020, doi: 
10.1109/tpami.2020.3005434. 

[88] R. Duan, X. Ma, Y. Wang, J. Bailey, A. K. Qin, and Y. Yang, 
“Adversarial camouflage: Hiding physical-world attacks with natural 
styles,” in Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, 2020, pp. 997–1005, doi: 
10.1109/CVPR42600.2020.00108. 

[89] K. Eykholt et al., “Robust Physical-World Attacks on Deep Learning 
Visual Classification,” in Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, Dec. 2018, 
pp. 1625–1634, doi: 10.1109/CVPR.2018.00175. 

[90] A. Shahin Shamsabadi, R. Sanchez-Matilla, and A. Cavallaro, 
“ColorFool: Semantic Adversarial Colorization,” in Proceedings of 
the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, 2020, pp. 1148–1157, doi: 
10.1109/CVPR42600.2020.00123. 

[91] G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder, “The 
Mapillary Vistas Dataset for Semantic Understanding of Street 
Scenes,” in Proceedings of the IEEE International Conference on 
Computer Vision, 2017, vol. 2017-Octob, pp. 5000–5009, doi: 
10.1109/ICCV.2017.534. 

[92] X. Zhan, X. Pan, Z. Liu, D. Lin, and C. C. Loy, “Self-supervised 
learning via conditional motion propagation,” in Proceedings of the 
IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, Jun. 2019, vol. 2019-June, pp. 1881–1889, doi: 
10.1109/CVPR.2019.00198. 

[93] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, 
“Context Encoders: Feature Learning by Inpainting,” in Proceedings 
of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, Dec. 2016, vol. 2016-Decem, pp. 2536–2544, 
doi: 10.1109/CVPR.2016.278. 

[94] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised Feature 
Learning via Non-parametric Instance Discrimination,” in 
Proceedings of the IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, Dec. 2018, pp. 3733–3742, doi: 
10.1109/CVPR.2018.00393. 

[95] R. Zhang, P. Isola, and A. A. Efros, “Split-brain autoencoders: 
Unsupervised learning by cross-channel prediction,” in Proceedings 
- 30th IEEE Conference on Computer Vision and Pattern 
Recognition, CVPR 2017, Nov. 2017, vol. 2017-Janua, pp. 645–654, 
doi: 10.1109/CVPR.2017.76. 

[96] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum Contrast 
for Unsupervised Visual Representation Learning,” in Proceedings 
of the IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, 2020, pp. 9726–9735, doi: 
10.1109/CVPR42600.2020.00975. 

 


	I. INTRODUCTION
	II. Methodology
	A. Study data
	B. Segmentation accuracy metrics
	C. Point cloud to image projection
	D. Enhancement of image-based geometric features
	E. Semantic segmentation network structure
	F. Pretraining of network and transfer learning

	III. Experiment and results
	A. Information loss from point clouds to images
	B. Effect of local enhancement area on the segmentation results
	C. Selecting combinations of feature channels
	D. Final performance of HR-EHNet

	IV. Discussion
	V. Conclusions
	References

