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Abstract—A pretrain-finetune strategy is widely used to reduce
the overfitting that can occur when data is insufficient for
CNN training. First few layers of a CNN pretrained on a
large-scale RGB dataset are capable of acquiring general image
characteristics which are remarkably effective in tasks targeted
for different RGB datasets. However, when it comes down
to hyperspectral domain where each domain has its unique
spectral properties, the pretrain-finetune strategy no longer can
be deployed in a conventional way while presenting three major
issues: 1) inconsistent spectral characteristics among the domains
(e.g., frequency range), 2) inconsistent number of data channels
among the domains, and 3) absence of large-scale hyperspectral
dataset.

We seek to train a universal cross-domain model which can
later be deployed for various spectral domains. To achieve, we
physically furnish multiple inlets to the model while having a
universal portion which is designed to handle the inconsistent
spectral characteristics among different domains. Note that only
the universal portion is used in the finetune process. This
approach naturally enables the learning of our model on multiple
domains simultaneously which acts as an effective workaround
for the issue of the absence of large-scale dataset.

We have carried out a study to extensively compare models that
were trained using cross-domain approach with ones trained from
scratch. Our approach was found to be superior both in accuracy
and in training efficiency. In addition, we have verified that our
approach effectively reduces the overfitting issue, enabling us to
deepen the model up to 13 layers (from 9) without compromising
the accuracy.

Index Terms—Hyperspectral image classification, Pretrain-
finetune strategy, Cross-domain

I. INTRODUCTION

N many classification tasks, convolutional neural network

(CNN) has been showing a series of innovative per-
formances. However, when only given a small-sized target
dataset, it is difficult to avoid the overfitting issue due to an
enormous number of parameters that need to be optimized
in a deep CNN. One widely known approach to go around
this issue is to finetune the model from first few layers of a
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Fig. 1: Learning curve on OA. 9- and 13-layer models initialized
from scratch or a pretrained model are evaluated with Indian Pines
domain. The pretrained model is trained on six source domains
by using our cross-domain approach. Evaluation metric is overall
accuracy (OA).

pretrained model which was previously trained on a large-scale
dataset [[I]. This approach can be applied effectively when
the source and the target datasets share equivalent spectral
characteristics (e.g., RGB to RGB) and the size of the source
dataset is much larger than that of the target dataset.
However, when considering classification tasks in hyper-
spectral domailﬂ where domains contain their own spectral
properties, there are challenges when using this conventional
pretrain-finetune strategy. First of all, hyperspectral datasets
acquired by different sensors have different spectral charac-
teristics. For example, Indian Pines domain has 200 bands
representing 0.4~2.5um frequency range while Pavia Centre
domain has 102 bands covering 0.43~0.86um. The spectral
feature learned from the source may be unfit for the target
usage. Moreover, as number of data channels among different
hyperspectral domains are inconsistent, it is infeasible to
build an initial layer which can universally handle different
domains. Lastly, due to difficulties in annotating hyperspectral
images, most of the domains only contain an extremely small

In this paper, “hyperspectral domain” is represented by a dataset con-
sisting of hyperspectral data (typically one single image) and its associated
classification task.
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number of labeled examples (~10K), which can easily cause
overfitting issues when training high-capacity CNN models.

To address the aforementioned issues, we devise a cross-
domain approach which enables the training of a CNN model
which can be universally deployed for various spectral do-
mains. We have equipped this model with multiple inlets (i.e.,
data analysis layers) to physically handle different domains.
Meanwhile, in order to capture the universal aspect of different
domains, we prepare a shared portion in the model (i.e.,
mid-level feature analysis layer). Task-specific layers can be
appended on the other side of the shared portion of the model
dependent upon the task properties such as category size.
As the overall design of the architecture allows simultaneous
training of all the available hyperspectral domains, the issue
regarding the absence of large-scale dataset can be remedied
effectively.

In the overall finetune process for a given target domain,
only the shared portion of the model pretrained on multiple
source domains is to be inherited while all the other layers
(data analysis and task-specific layers) are initialized and
trained from scratch. It is noteworthy to mention that using
a 10x learning rate for the data analysis layer (while keeping
1x for the shared portion) was crucial to obtain a significant
accuracy gain. This specific procedure can quickly adapt the
data analysis layer to the newly introduced target domain
while slowly optimizing the shared portion of the model which
already contained the general spectral characteristics acquired
from the source domain.

In this paper, we validate the effectiveness of using a cross-
domain pretrain-finetune approach for the task of hyperspectral
image classification. We have first designed a CNN model
which outperforms all the available CNN-based models by em-
ploying recently introduced performance-increasing modules.
Across all the experiments, this model has been set as the
backbone model to evaluate the performance with/without the
cross-domain pretrain-finetune approach. Based on our exper-
iments, we observed several benefits of using a cross-domain
pretrained model, as shown in Figure [} Most importantly,
the pretraining provides better accuracy than its counterpart
randomly initialized from scratch. In addition, the proposed
approach moderates the overfitting issue which can occur
when the network depth increases, allowing deeper layers
(up to 13 layers from 9) without compromising accuracy.
We also observed that our approach results in faster training
convergence which can reduce the training time.

To provide a practical set of guides in training an ef-
fective cross-domain pretrained CNN model, we carried out
an additional comprehensive study to answer the following
question

1) Is pretraining necessary for hyperspectral image classi-
fication?

2) Does having a larger source domain improve overall
accuracy?

3) Is pretraining effective when target and source domains
are obtained from different sensors?

4) Does introducing more variety in the source domains for
pretraining increase the accuracy?

II. RELATED WORKS
A. Pretrain and Finetune

Girshick et al. [1] firstly use a pretrained model trained on
very large-scale dataset to overcome data scarcity. At that time,
existing object detection dataset (e.g., PASCAL VOC [4]) did
not include enough images annotated with object information
(bounding boxes, categories, etc.). Therefore, the state-of-the-
art CNN architecture for image classification becomes the
backbone of object detection model, and the model weights
are finetuned from the backbone trained on a very large-
scale ImageNet dataset [S]. In [1]], this strategy increases
the accuracy by 8.0% on PASCAL VOC. Due to such a
large margin of accuracy, pretrained models have been used
undoubtedly in many tasks [6]—-[12] over the past few years.

Recently several researchers have begun comprehensive
analyses on the effectiveness of pretraining. Mahajan et al. [[13]]
analyze the effect of pretraining when increasing the pre-
training dataset size. To significantly increase the dataset
size, [13]] collect social media images and adopt weakly
supervised strategy due to a lack of labels of these images.
When dataset scale was extremely enlarged, the classification
accuracy was proportionally increased. He et al. [14]] ques-
tioned whether pretraining actually increases the classification
accuracy. According to [14], a randomly initialized model
provides compatible accuracy to the model finetuned from
a pretrained model as long as it is trained with extremely
large amount of training time. Based on this observation, they
conclude that using pretrained models trained on large datasets
is not requirement in achieving high accuracy. In this paper
we also carry out comprehensive studies on the pretraining for
hyperspectral image classification according to recent trends.

B. Hyperspectral Image Classification

Recently, many CNN-based approaches have been intro-
duced to tackle hyperspectral image classification. Most of
CNN-based approaches have rebuilt the architecture with
existing layers or modules used for other typical recogni-
tion problems such as image classification (e.g., LeNet [17],
residual module [15[], multi-scale filter bank [15]], [[18]], [19],
deconvNet exploiting deconvolutional layers [20], Long Short-
Term Memory (LSTM) [21]], [22], Recurrent Neural Network
(RNN) [23]], capsule module [24] etc.). Chen al al. [25] intro-
duce a system that automatically designs a structure with the
existing layers to provide the highest classification accuracy.

2Although we elaborated such practical research questions within our
preliminary work [?2]], we managed to analyze our pretrain-finetune approach
with a limited number of experimental evaluations and thus could not address
the resolutions for the questions in a thorough manner. In this journal
manuscript, the entire set of experiments has been redesigned to reach at
the conclusions through more comprehensive analyses.

While the initial form of the cross-domain architecture used for the pretrain-
ing process was introduced in another preliminary work [3]l, a restructuring
procedure was carried out in order to suit the need for our final pretrain-
finetune process. In addition, we constructed a completely different backbone
yielding a higher accuracy. We have also conducted an extensive set of ablation
studies, and newly added experimental comparisons with additional set of
CNN-based hyperspectral image classification models. Instead of appending
additional experiments and analyses on the aforementioned manuscripts,
substantial portion of this manuscript has been rewritten.
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TABLE I: The proposed backbone model architecture. The table shows the architectural differences between the backbone CNN and the
contextual CNN from which the backbone CNN originated. Floating-point operations (FLOPs, multiply & addition) are calculated assuming
that the Indian Pines domain is used. That is, image height (H), image width (W), spectrum dimension, and the number of categories (C)
are set as 145, 145, 200, and 9, respectively. In order to have 9 layers in both models, k; and k> are set to 2 and 3, respectively.

layer name output size contextual CNN [15] output size our backbone
HxWx128 1x1, 128
*
Conv 1 HxWoc128 3x3, 128, pad 2 HxWx128 5%5, 128, pad 2
HxWx 128 5x5, 128, pad 41
HxWx384 channel-wise concat.
Conv 2 HxWx128 1x1, 128 HxW x128 1x1, 128
Res x HxWx128 X1 1281 HxWx128 D1, 1281
1x1,128 1x1,128
Classif 1 HxWx128 1x1, 128
Classif 2 HxWx128 1x1, 128
Classif 3 HxWxC 1x1, C HxWxC 1x1, C
FLOPs? 43.9%10° (k;=2) 31.8x10° (kp=3)

* 3x3 max pooling is applied to the output.
T 55 max pooling is applied to the output.
1 FLOPs is calculated as the equation given in [16].

Some previous approaches improve accuracy by integrating
multiple methods [26]] or multiple different features [27], [28].

There are also several literatures that introduce new layers or
modules to deal with the inherent limitations of hyperspectral
images, especially the overfitting problem that occurs because
there are very few hyperspectral images labeled due to the
difficulty of annotations (e.g., pyramidal bottleneck mod-
ule [29], lightweight unit [30]], multi-bias layer module [31]],
the Generative Adversarial Network (GAN) [32])). Instead of
new layers or modules, new data augmentation strategies based
on either GAN [33]], [34] or active learning [35] are also used
to cope with the overfitting problem. It is also widely used to
simply reduce the dimensions of the image spectrum via PCA
or spectrum selection to reduce the size of the model, thus
alleviating the overfitting problem to some extent [|36[—[38].

Similar to our approach, some works [30], [39]-[41] also
use pretraining, but do not properly tackle the issues ad-
dressed in this paper (no large-scale source domains, different
spectral characteristics between different domains). Windrim
et al. [40] collect multiple source domains and interpolate
spectral characteristics of different domains into the shared
spectrum. However, due to the large fluctuations in the spec-
trum, the interpolation cannot restore the missing spectrum
information accurately, and this affected accuracy degradation.
Other approaches [30]], [39], [41] use only one for the source
domain, so large-scale source domains are not built. Our cross-
domain approach can address such issues which other works
miss and comprehensive studies are conducted to verify the
effectiveness of our approach to improve the accuracy of
hyperspectral image classification.

[II. METHODOLOGY

Our goal is to explore and figure out a way to resolve
the issue of not being able to apply a conventional way
of pretraining a CNN model for the task of hyperspec-
tral image classification. We first design a state-of-the-art
CNN model for this task by employing recently introduced

performance-increasing modules (subsection [[lI-A)). Across all
the experiments, this model has been set as the backbone
model to evaluate the performance with/without the proposed
pretrain-finetune approach. Then, we will also describe the
newly devised cross-domain pretrain-finetune approach (sub-

section [III-B). In subsection details used for optimizing
the cross-domain pretrain-finetune approach are given.

A. Backbone

The backbone is built based on a contextual CNN archi-
tecture which is the deepest model among all existing CNN-
based methods [15], [42]. The contextual CNN is a fully
convolutional network and contains the sequentially connected
multi-scale filter bank, one convolutional layer, two 2-layer
residual modules, and three convolutional layers, as shown
in Table [l Multi-scale filter bank [43]] consists of 1x1, 3x3,
and 5 x5 filters for better analysis of the spatial characteristics.
Local response normalization (LRN) [44] for better general-
ization during training is applied after the first and second
convolutional layers. Dropout layers [45] were adopted after
7th and 8th layers to enable faster training by preventing
complex co-adaptation of each neuron. Each layer consists of
128 convolutional filters.

The backbone was constructed by adopting the contextual
CNN with a recently introduced new layer known to improve
accuracy while removing ineffective modules, as follows:

(1) No multi-scale filter bank: Instead of a complex multi-
scale filter bank, a convolutional layer with only 5x5
filters is used.

More residual modules: All layers are made up of
residual modules, except the first, second, and last layers.
Dropout is not necessary because it has the similar
functionality as the residual module for easing network
training.

Batch normalization (BN): BN [46] is adopted right
after each convolutional layer, so there is no need for
another normalization method such as LRN. BN helps

(i)

(iii)
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Fig. 2: Pretrain-finetune strategy. A pretrained model is trained with K source domains (Si, - -

-, Sk) and the target model is finetuned

from this pretrained model on a target domain T. Feature dimensions are denoted below each blob. For each domain, the number of data
channels is denoted by B;, and the number of categories classified by the associated task is denoted by C;.

the network learn the representation of the entire hyper-
spectral image when using a small number of training
example. By adding BN to the network, bias terms are
unnecessary unlike the original CNN architecture.

Focal loss: We use the focal loss [47] to optimize the
model for a target task. This loss enables all examples
to be effectively considered for each iteration by giving
higher weights to harder examples. Since hyperspectral
domains usually contain many easy examples, the focal
loss was found to be suitable. Softmax loss is used
when pretraining on multiple source domains as used in
contextual CNN.

Such changes reduce the network size and FLOPs while in-
creasing the accuracy according to our experiments (Table [VI).
Table [I| compares the modified backbone with the contextual
CNN in terms of architectural differences and FLOPs.

@iv)

B. Building Cross-Domain Pretrained Model

Our pretrained model is built by using a cross-domain
approach. This enables the training of a CNN model which
can be universally deployed for various hyperspectral domains.
The architecture sequentially consists of multiple inlets (i.e.,
data analysis layers), shared portion across multiple domains
(i.e., mid-level feature analysis layers), and multiple task-
specific layers. The data analysis layers that physically handle
different datasets cannot be shared universally due to the
inconsistent number of channels in each dataset. Task-specific
layers that depend on the task properties such as category size
cannot be shared as well.

After careful consideration, all residual modules are selected
as“ mid-level feature analysis layers” that are shared by the
various spectral domains. The 1st and 2nd layers are treated
as “data-specific layers” that analyze data-specific spectral

characteristics, and the last set of layers are considered as
“task-specific layers”.

In making use of a pretrained model towards a “target”
dataset, we finetune the middle portion (“mid-level feature
analysis layers™) from the pretrained model while other layers
are learned from scratch. In the finetune process, we use
10x learning rate for the data analysis layers (while keeping
1x for the shared portion). This specific procedure allows
the data analysis layers to quickly converge on the target
dataset, while slowing down the optimization of the shared
portion of the model in order to maintain the ability to extract
the general spectral characteristics acquired from the source
domain. This was crucial to obtain a significant accuracy gain
when compared to not adjusting the learning rate. The overall
pretrain-finetune strategy is illustrated in Figure 2]

Reasoning about the role of each layer. Even though it
is challenging to semantically find the role of each layer of
CNN model, we can infer these roles. In general, all CNN
layers other than the last layer are considered feature encoder
which encodes input examples in the learned common feature
space, and the last layer uses these features to carry out a
classification task. If there are multiple domains to be encoded
in a common feature space and the characteristics of domains
are significantly different, different encoders are required for
each domain. In our cross-domain model, we technically create
different encoders for different domains, and this was found
to be possible by simply sharing the layers across different
encoders but uniquely setting the first layers for different
domains.

Relation to previous works. The effectiveness of our design
strategies (i.e., multiple task-specific layers, multiple encoders,
and transferring ability when properties between source and
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TABLE II: Specifications for different hyperspectral domains. We use the domain abbreviations written in parentheses throughout the
paper. Reduced bands are acquired by removing the bands which correspond to the water absorption. Note that, datasets acquired using the
same type of sensor can have different reduced bands because the deleted bands were chosen according to the task unique to each dataset.

domain sensor range bands reduced bands # data # class
Indian Pines (I) 200 8,504 9
Salinas (S) AVIRIS 0.4~2.5um 224 204 54,129 17
Kennedy Space Center (KSC) 176 5,211 14
Pav?a Cer.ltre (.PC) ROSIS 0.43~0.86im 115 102 7,456 10
Pavia University (PU) 103 42,776 10
Botswana (B) Hyperion 0.4~2.5um 242 145 3,248 15
Houston University (H) Unknown 0.38~1.05um 144 144 15,029 15

target domains are different) have been validated in several
previous works shown below:

o Multiple task-specific layers. Multi-task learning, per-
forming multiple tasks with different layers in a common
learned space, is widely used and has presented better
accuracy than using multiple single task networks [9],
[48[]-[51]I.

« Multiple encoders. The key component of Contrastive
Language-Image Pretraining (CLIP) [52], which has re-
cently been attracting attention due to its remarkable
representative ability in the feature space, is to use two
encoders to encode the language input and the image
input in a common feature space, like our cross-model
architecture.

o Transferring ability when properties between source
and target domains are different. Self-supervised learn-
ing [7], [53]-[57], which has recently been explosively
used in representation learning, shows remarkable perfor-
mance when transferring to target tasks using a pretrained
networks on a simple pretext task without relying on
class labels. These works show that the pretrain-finetune
strategy is effective even when the source task and the
target task are completely different.

C. Optimization

We prepare different training strategies depending on the

training scenario:

« Batch containing the entire set of examples (Target
domain): When training a model with a single target do-
main, we use a batch containing the entire set of examples
for each training iteration to expedite the convergence.
Focal loss has a capability to effectively train on such a
batch.

o Mini-batch built with randomly selected examples
(Source domain): Unlike the target domain scenario, a
mini-batch optimization is used. This is due to the fact
that the source domain training involves multiple domains
concurrently, inevitably providing GPU memory issues
when the entire set of examples are used for training.

« Two-step cascade training strategy (Source domain):
When using multiple datasets for training, we should con-
sider a potential issue caused by the imbalanced datasets.
Since the Salinas dataset (S) or the Pavia University (PU)
has much more data, it requires more iterations than the

others. To cope with this issue, we adopt a two-step
optimization strategy introduced in [49], [50], [58]]. Under
this scheme, the model is initially trained on only the
largest dataset (Step I (S or PU)) and then is updated
using the whole dataset (Step II). S and PU are used
together as source domains, cross-domain optimization
is also used in step I. Both steps use a mini-batch
optimization.

Initialization. The layers that are not inherited from the
pretrained model are initialized according to the Gaussian
with zero-mean and standard deviation of 0.001. This setting
was very important in providing high accuracy. When we
had adopted recently introduced initialization methods (e.g.,
Xavier [59], kaiming_init [60]) or higher standard deviation
(e.g., 0.01), the accuracy was significantly degraded by ~30%.

Data augmentation. Hyperspectral image classification typ-
ically uses a small number of examples for training (e.g.,
several thousands examples to optimize 1.1M parameters),
which can cause overfitting problems. To provide richer set
of examples to cope with this issue, the training examples are
augmented eight-fold by mirroring each example across the
vertical, horizontal, and two diagonal axes [15].

Learning rate tuning for shared layers. When learning the
shared layers, we multiply 1/N (where N is the number
of domains involved in the training process) to the learning
rate because updating the weights in these layers are affected
by all N losses when back-propagation takes place at each
iteration. This strategy has proven effective for multi-task
learning in [S]].

1V. EXPERIMENTS
A. Settings

Domains. Seven hyperspectral domains shown in Table
are used for the experiments. The Indian Pines domain has
17 classes but only 9 classes (including background class)
with relatively large numbers of examples are used. For other
domains, we use all available classes. Indian Pines domain is
used as the target domain while various combinations of the
remaining six domains are used as the source domains. Once
a pretrained model is built using source domains, finetuning
process is carried out on a target domain.

Our main goal is to explore how pretrain-finetune strategy
affects the overall accuracy for the target domain. Therefore,
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Fig. 3: OA on Indian Pines domain with architectures having
different depths. The proposed approach has different architectures
depending on the number of the residual modules. The pretrained
model is built with six source domains (S, PC, PU, KSC, B, and
H).

when training on the source domains (i.e., pretraining), all the
available examples are used. For the target domain, 200 pixels
randomly selected from each category are used for training and
all the remaining pixels are used for testing. All the accuracy
values reported hereafter are acquired solely on the target
domain.

Learning specifications. We use the stochastic gradient de-
scend (SGD) approach for training. We set the momentum,
gamma, and weight decay as 0.9, 0.1, and 0.0005, respectively.

When S or PU is not included in the source datasets (i.e.,
one-step optimization), a pretrained model is trained with
a learning rate of 0.01 for 2K iterations. When a two-step
cascade optimization is used, we use a learning rate of 0.01
for 1K iterations for the first step, while the second step uses
the same settings used in the one-step optimization. For the
target domain, the model is trained with a learning rate of
0.001 for 100 iterations.

Evaluation metrics. We consider three metrics for evaluation:
overall accuracy (OA), average accuracy (AA), and kappa
static. All three metrics are used when comparing with other
previous methods, while only OA is used for the ablation
experiments.

B. Analysis of Pretrained Model

In this subsection, we answer each question claimed in
the introduction section and provide relevant experiments to
support our answer.

Is pretraining necessary? Yes. There are three benefits to
using a pretrained model as below:

(1) Models with a pretrained model consistently provide
higher accuracy than their random initialization counter-
parts, regardless of model architecture.

(i) Model using a pretrained model can be built deeper
with more residual modules up to 13 layers without
compromising the accuracy.

(iii) Learning converges faster, which reduces the training
time.

Figure 3| compares the accuracy of models using pretraining
and models trained from scratch. Using pretraining consis-
tently provides 0.2%~2.6% higher accuracy than all of the
randomly initialized models.

It is also observed that the 9-layer model provides the
highest accuracy when trained from scratch, which is also
shown in [15]. However, with a pretrained model, the 13-layer
model provides the best accuracy. This “going deeper” (i.e.,
network deepening) was made possible since the overfitting
issue could be addressed by finetuning on a pretrained model
that has the same effect as increasing the size of the training
dataset.

Figure [] shows learning curves for three models (5-, 9-,
13-layer). Models that use pretraining are generally shown to
converge faster than their counterparts. Furthermore, a model
trained from scratch takes more time to converge as the model
goes deeper. This may be due to the expansion of overfitting
issues as the model size increases.

Interestingly, our observation is very different from that
of [[14]]. For the object detection described in [14], when
using a pretrained model, fast convergence was observed,
but this model does not outperform the random initialization
counterpart regarding to the accuracy. The major claim made
in [14] is that given sufficient iterations, the model trained
from scratch can achieve comparable accuracy as the model
using pretraining. It is noteworthy to mention that the same
trend was said to have happened when only small number
of training examples (e.g., subset of COCO dataset) were
available.

However, unlike the claim made in [[14], the performance
comparison shows that a pretrained model indeed outperforms
the one trained from scratch leading to an opposite conclusion.
We consider the hyperspectral image classification as an ex-
treme case where very few examples are available for training,
thus showing a great demand to expand the training dataset.

Does a larger source dataset improve accuracy? Yes. We
question how much influence the dataset size of a source
domain has over the classification accuracy. To answer this
question, we generate 63 source domains by combining up
to 6 source domains and use them to train separate models.
Figure [5] shows the sizes of 63 source domains (along with
one constructed with random initialization) and OAs obtained
by finetuning each pretrained model on the target domain.
In the figure, we observed that using a larger source domain
generally improves the classification accuracy. In all the source
cases, accuracy was better than the case where the model was
randomly initialized.

Does source domain need to come from same sensor as
target domain? No. Pretraining was effective regardless of
the sensor type by which the source domain was obtained.

We verify the effect of pretraining a model on a source
domain acquired by a sensor different from the target data. In
general, using a pretrained model to finetune is effective only
if the source data which is used for pretraining and the target
data share the same sensor.
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Fig. 4: Learning curves on OA with three models (5-layer, 9-layer, 13-layer). Pretrained models are trained on six source domains and

target model is evaluated on the Indian Pines domain.

TABLE III: Comparison w.r.t. source data sensors. The accuracy of the models using single source domain is shown on the left side.
Several combinations of source domains which includes or excludes S or KSC are constructed and tested on the right side. Note that S and

KSC are taken from the same sensor as I.

S KSC PC PU B H S+ KSC+ S+ U KSC+ /(S+ U KSC+)
OA 96.9 97.5 96.9 97.0 96.6 96.7 98.2 97.9 97.9 97.1
data size 52.8k 5.1k 7.3k 41.8k 3.2k 14.7k

+: all sets including the corresponding source dataset (shown before the + mark)

U: union of two sets
/(): a complement set of ()

TABLE IV: Performance comparison of using single source and multiple sources. There are five cases where a single domain and a
combination of multiple domains have similar data size in figure [5] Domains are sorted according to the data size so the larger size is placed

on the right. In each case, the best accuracy is written in bold.

PC KSC+B KSC+PC H KSC+PC+B KSC+PC+B+H PU PU+B PC+PU+B S KSC+PC+PU
OA 96.9 97.3 96.9 96.7 97.9 97.2 97.0 97.0 97.3 96.9 97.0
data size | 7.3k 8.3k 12.4k 14.7k 15.5k 30.2k 41.8k 449k 52.2k 52.9k 54.1k

As shown in Table [[II} using source domains that share the
same sensor as the target domain (i.e., S and KSC) did not
provide the benefit of improving the accuracy compared to the
cases where the source and the target sensors were different
(i.e., PC, PU, B, and H). Instead, accuracy seems to be more
affected by the dataset size of the domain. In addition, we
have tested to validate how the inclusion/exclusion of source
data acquired by specific sensors (i.e., matching the target
sensor with the source) affect the accuracy when considering
combinations of domains. When comparing groups consisting
of source domains containing either S or KSC with a group
excluding both domains, the latter group (/(S+ U KSC+))
offers the worst accuracy among all groups, but the difference
is marginal (0.8%).

Does introducing more variety in the source domains for
pretraining always increase the accuracy? No. The source
training domain can be either a single domain or a combination
of multiple domains. In Figure [5] there are four groups where
a single domain and combinations of multiple domains have
similar data size. The selected groups are analyzed in detail
in Table In all four groups, introducing multiple sources
did not bring forth any drastic performance increase. This
demonstrates that the accuracy is not affected by the number

of different source domains involved in the pretraining.

C. Ablation Study

We carried out several ablation experiments to validate
each component (e.g., cross-domain approach, new network
components, etc.) used to analyze the need for a pre-trained
model.

Train on source and test on source: effectiveness of cross-
domain pretraining. The cross-domain approach used in the
pretraining process has the ability to train a model simultane-
ously in multiple hyperspectral domains with different spectral
characteristics. In this section, we evaluate the effectiveness of
the proposed cross-domain pretraining approach (leaving out
the finetuning process) when trained and tested on the source
domain (source-to-source). Note that this setting is different
from the case shown in the main article where pretraining is
carried out on the source domain and finetuned on the target
domain (source-to-target).

We evaluate whether building a single cross-domain pre-
trained model which handles multiple domains altogether is
better than the models separately trained for specific domains.
We use seven domains (i.e., I, S, KSC, PC, PU, B, and
H). Since PC is considered, we use two-stage cascaded
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Data size OA: Indian Pines
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Fig. 5: Data size and OA for all combinations of 6 source datasets.
Datasets are sorted according to their sizes and listed on the x axis.
Two graphs share the x axis..

optimization approach according to the criteria provided in
the main article. For each domain, we use 200 examples
randomly chosen from each positive category for training and
the remaining for testing. OAs reported in this experiment
are the average value over 5 runs. As shown in Table [V} our
cross-domain approach consistently outperforms the individual
models on the Indian Pines, Salinas, KSC, Pavia Center, Pavia
University, Botswana, and Houston by 1.1%, 1.1%, 1.3%,
1.7%, 2.3%, 1.6%, and 1.4%, respectively.

We also compare two cases (source-to-source vs. source-to-
target) which are both tested on Indian Pines dataset. For both
cases, the dataset is divided into train and test splits using the
same regime. We observe that the source-to-source accuracy
was higher than that of the source-to-target (99.3 vs. 98.9).
This strategy of co-training multiple domains together within
source-to-source setting, can be another effective solution to
address the overfitting issue caused by insufficient amount of
data. However, it suffers from the fact that large memory and
multi-domain dataset should be available for training.

Effectiveness of backbone architecture. The backbone used
in our experiments incorporates various new components that

TABLE V: OA on seven domains. For each domain, model is trained
separately from the other domains (individual) or simultaneously with
other domains (cross-domain).

dataset individual cross-domain gain
I 98.2 99.3 +1.1
S 97.6 98.7 +1.1
KSC 96.6 97.9 +1.3
PC 96.9 98.6 +1.7
PU 95.1 97.4 +2.3
B 97.5 99.1 +1.6
H 96.9 98.3 +1.4

has been proved to be effective in increasing the performance.
Table V1] shows the list of components along with the resulting
accuracy when each of those were added to the model.

There are three architectural modifications: no multi-scale
filters, more residual modules, and BN. Using a single 5x5
convolutional layer instead of a complicated multi-scale filters
can improve performance slightly (0.3%) and it simplifies
the architecture with fewer parameters. The other two mod-
ifications serve to increase the accuracy with a large gain
of 3.1% and 3.3%, respectively. Easing model optimization
by incorporating more residual modules seems to be very
effective in improving performance. From the observation that
BN also provides improved performance, better regularization
by normalizing output of each layer over the examples in each
batch was effective.

Focal loss was not very effective in improving accuracy.
When using focal loss for training and our backbone, the
accuracy change was 0.1% and 0.8%, respectively. The benefit
of using focal loss is faster convergence than using other loss
types. This will be analyzed further in the next subsection.

The pretrained model was effective in improving perfor-
mance only when using a large learning rate for the initial
layers. Without such adjustment, it is observed that accuracy
was rather decreased. Adjusting the learning rate for the shared
layers (i.e., shared layer Ir/N) provides a further improvement
of 0.1%.

Analysis of the use of a focal loss. As described in [47],
two hyper-parameters of focal loss, v and « control the
strength of the modulation term. « is used for addressing
the positive/negative imbalance problem, while ~ gives more
weight to difficult training examples. OA on the target domain
(i.e., Indian pines) for various ~ and « are shown in Table[VITa]
For this comparison, we use 9-layer model initialized from
scratch. The highest accuracy was achieved when taking a
high v (5.0) and a low « (0.25). This co-aligns with the fact
that Indian Pines domain has many easy examples and the
low ratio between foreground and background examples. The
selected numbers for the two parameters are used throughout
all the experiments carried out in the main article.

In table[VIIb] we compare the case where we train the entire
set of examples at once (using focal loss) to the case where
mini-batch-based optimization approaches are used (e.g., ran-
dom selection, online hard example mining (OHEM) [61]])
in terms of accuracy and training time. While the focal
loss is used to process the batch consisting of the entire
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TABLE VI: Newly adopted components of the proposed model. The proposed model was implemented by adding the recently introduced

components to the contextual CNN [15].

contextual [[15]

the proposed

no multi-scale filters? v

more residual modules? v

BN?

focal loss? v

w/ pre-train?

initial layer 10xIr
shared layer Ir/N?

ENENENEN
ENENENENEN
SN NN

OA | 93.6 93.7 93.9

96.7

-1 ENENENENENENEN

969 973 980 983 984 9

TABLE VII: Ablation experiments for focal loss (FL). 9-layer
model initialized from scratch is used. (a) for each  value, the
optimal value of « is used. (b) FL uses the entire set of training
sample as a single batch, while random and OHEM use mini-batches
with specific batch sizes. For random/OHEM, softmax loss is used.
Time indicates the relative wall-clock training time w.r.t. the case
of FL, and was measured until the highest accuracy was achieved.
Since each iteration time is different for the three methods (random,
OHEM, and FL), the wall clock training time is used instead of the
total iteration.

(a) Varying v and « (b) Batch Method

¥ « OA method batch size OA time
0 5 98.0 128 98.0 x2.4
0.1 75 98.0 Random 256 97.6 x2.1
0.2 75 98.0 512 97.6 x1.6
0.5 .50 98.2 128 98.2 %x3.8
1.0 25 98.3 OHEM 256 98.2 x3.7
2.0 25 98.9 512 97.9 x3.4
5.0 25 99.0 FL 1800 99.0

examples, mini-batch-based optimization uses a softmax loss.
Using a focal loss provides higher accuracy by at least 0.8
and was effective in reducing training time by at least x 1.6
compared to other mini-batch-based methods. Among mini-
batch-based optimization methods, OHEM generally provides
higher accuracy but requires longer training time than random
selection. Both random selection and OHEM do not greatly
depend on batch size when considering OA.

Appropriate training schedule for a pretrained model.
To find the proper training schedule, we compare various
pretrained models with different training iterations in terms of
OA. Figure 6] shows the OA with various pretraining iterations.
The highest accuracy was achieved at 2k iterations and did not
show any additional improvement thereafter. Accordingly, we
have selected 2k as the number of iterations to acquire our
pretrained model.

D. Comparison with Baselines

We have compared our model with the CNN-based baselines
that can be trained in an end-to-end fashion. To make a fair
comparison, bells and whistles that cannot be used to carry out
the end-to-end training have been omitted in all the models.
Table compares our model with the selected baselines
using the evaluation metrics of OA, AA, and k. Our backbone

OA: 13-layer, w/ pre-train ( S+KSC+PC+PU+B+H )

96 -

88 -

84 -

80 I | | | | | | | | | | | | | |
2 4 6 8 100 12 14 16 18 20 22 24 26 28 30

?)

iteration ( x10

Fig. 6: Evolution w.r.t. pretraining schedule. We have tested various
pretrained models using different schedule.

TABLE VIII: Comparisons with CNN-based baselines. For all the
baseline models except SSRN and HybridSN, we use DeepHyperX
implementations [[62]]. For SSRN and HybridSN, we have used the
original code provided by the authors.

method layer # params. OA AA k
Semi-super 1D [63]] 10 6.7K 89.1 87.6 84.9
1D [64] 2 69.9K 90.1 89.6 86.9
3D [65] 4 1.0M 90.3 90.6 87.4
2D [66] 5 2.5M 92.8 90.3 85.9
Contextual [15] 9 1.0M 93.6 95.8 94.7
3D-2D [67] 4 99.0M 93.8 92.8 89.8
3D-1D [68] 10 38.8K 94.3 93.8 89.7
Semi-super 2D [69] 6 4.6M 94.6 96.2 92.4
SSRN [[70] 11 717.8K 95.8 97.1 93.2
2-stream 3D [71] 3 78.7K 96.5 94.9 89.7
Multi-scale 3D [72] 10 169.7K 96.6 93.8 90.4
HybridSN [73] 7 4.8M 96.8 97.7 95.3
Our backbone 13 1.1M 98.0 98.9 97.7
w/ pretraining 13 1.IM 98.9 99.3 98.1

model even without finetuning is better than the baselines by
at least 1.2% for OA, 1.2% for AA, and 2.4% for k. When
adopting the pretrain-finetune strategy to utilize representative
capability of a pre-trained model on the six source domains,
the accuracy was further enhanced by 0.9% for OA, 0.4% for
AA, and 0.4% for k. We also confirmed that our model has
the deepest architecture without compromising the accuracy.

E. Proof of Concept

Representation capability. We carried out an additional ex-
periment to evaluate the representation capability of pretrained
network without finetuning. For this evaluation, the layers
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TABLE IX: Effectiveness of pretrain/finetune. “random init.” is the
model in which the layers except data-specific layer and task-specific
layer are randomly initialized and not updated during training.

w/ finetune
98.9

w/o finetune
87.3

random init.
15.0

method
OA

w/o pretrain
98.0

TABLE X: Accuracy of the pretrain-finetune strategy on Salinas
(S) and Botswana (B). When a pretrained model is used, all domains
except the target domain are used as source domains.

domain w/o pretrain w/ pretrain gain
S 97.6 98.1 +0.5
B 97.3 98.2 +0.9

transferred from a pretrained network is fixed with the weights
trained on source domains (i.e., S+KSC+PC+PU+B+H), but
the remaining layers (data-specific layer and task-specific
layer) are trained on the novel classes defined in the target
task. As shown in the Table accuracy achieved without
finetuning was much better than “random init.” by a signif-
icant margin and comparable to other models without/with
the pretrain-finetune strategy in which all layers are updated
during training. This comparison supports the representation
capability of the pretrained model.

Other source domain? We carried out further experiments
considering other datasets (Salinas and the Botswana dataset)
as target domains. Two selected datasets have distinct inherent
properties compared to other datasets as the Salinas dataset
contains the largest number of labeled examples and the
Botswana dataset was taken from the satellite unlike other
datasets taken from airborne. When acquiring the pretrained
model (source domain), we use all the datasets except the one
used as the target domain. As shown in Table using the
pretrain-finetune strategy consistently provides better accuracy
than its counterpart of training-from-scratch, regardless of
the source domain. Margins achieved by the pretrain-finetune
strategy were 0.5% and 0.9% for Salinas and Botswana
dataset, respectively. When the source domain is a large-scale
(e.g., S), the impact of using the pretrained model seems to
be reduced. On the other hand, the fact that the source and
target domains are from different sources between satellites
or airborne (e.g., B) does not seem to significantly affect the
effectiveness of the pretrain-finetune strategy.

V. CONCLUSION

The conventional pretrain-finetune strategy cannot be di-
rectly deployed in hyperspectral domains due to three major
issues: 1) inconsistent spectral characteristics among the do-
mains, 2) inconsistent number of data channels among the
domains, and 3) absence of large-scale domains. We have
devised a cross-domain model that can be universally deployed
for various hyperspectral domains. The proposed architecture
has multiple inlets and outlets that handle different domains
and classification tasks, with the middle portion shared by
all domains. The middle portion is expected to extract the
universal spectral properties from all the domains involved in

training and to transfer them to the target task in the finetune
process.

We carried out a comprehensive study using a variety
of ablation experiments to confirm the effectiveness of this
pretrain-finetune strategy. Our experiments demonstrate the
benefits of using pretraining in three aspects: i) increasing
accuracy, ii) building deeper models without sacrificing the
performance, and iii) providing faster training convergence
which results in reducing training time. From the experiments,
we have also observed that the accuracy of the target task does
not depend on sensor types or the number of source domains,
but rather on the data size of the combined source domain.
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